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Abstract

We consider wavelet block thresholding method for density estimation. A block-thresholded density
estimator is proposed and is shown to achieve the optimal global rate of convergence over Besov spaces
and simultaneously attain the optimal adaptive pointwise convergence rate as well. These results are
obtained in part through the determination of an optimal block length.
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1. Introduction

In nonparametric function estimation the performance of an estimator is typically mea-
sured under one of two commonly used losses: squared error at each point and integrated
squared error over the whole interval. The first is a measure of accuracy of an estimator
locally at a point and the second provides a global measure of precision. Minimax and
adaptation theories have been well developed for both the local and global losses. See for
example[7,12–14,21,23]. See also the references in Efromovich[16].
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It has been noted in the literature that a local or global risk measure alone does not
fully capture the performance of an estimator. For functions of spatial inhomogeneity, local
smoothness of the functions varies significantly from point to point and a globally rate-
optimal estimator can have erratic local behavior. On the other hand, an estimator which is
locally rate optimal at each point can be far from optimal under the global loss, see[8]. More
recent focus has been on a simultaneously local and global analysis of the performance of an
estimator. The goal is to construct adaptive estimators which are near optimal simultaneously
under both pointwise loss and global loss over a collection of function classes. Such an
estimator permits the trade-off between variance and bias to be varied along the curve in an
optimal way, resulting in spatially adaptive smoothing in classical sense. This approach has
been used for example in Cai[4,6] and Efromovich[17] in the context of nonparametric
regression and in Cai[5] for inverse problems.

Wavelet methodology has demonstrated considerable success in terms of spatial adap-
tivity and asymptotic optimality. In particular, block thresholding rules have been shown
to possess impressive properties. The estimators make simultaneous decisions to retain or
to discard all the coefficients within a block and increase estimation accuracy by utilizing
information about neighboring coefficients. The idea of block thresholding can be traced
back to Efromovich[15] in orthogonal series estimators. In the context of nonparametric
regression local block thresholding has been studied, for example, in Hall et al.[19], Cai
[4,6], Cai and Silverman[9] and Efromovich[17]. Block thresholding rules for inverse
problems were considered in Cai[5]. In particular it is shown in Cai[4,6] that there are con-
flicting demands on the block size for achieving the global and local adaptivity. To achieve
the optimal global adaptivity the block size needs to be “large” and to achieve the optimal
local adaptivity the block size must be “small”. An optimal choice of block size is given
and the resulting estimator is shown to attain the adaptive minimax rate of convergence
simultaneously under both the pointwise and global losses.

In the present paper we consider block thresholding for density estimation. In this context,
Kerkyacharian et al.[22] proposed a wavelet block thresholding estimator which uses an
entire resolution level as a block. The thresholding rule is not local and so does not enjoy
a high degree of spatial adaptivity. A local version of block thresholding density estimator
was introduced in Hall et al.[20]. The block size is chosen to be of the order(log n)2 where
n is the sample size. The estimator is shown to enjoy a number of advantages over the
conventional term-by-term thresholding estimators. The global properties of the estimator
were studied. The estimator adaptively attains the global optimal rate of convergence over
a range of function classes of inhomogeneous smoothness under integrated squared error.
However, as shown in this paper, the estimator does not achieve the optimal local adaptivity
under pointwise squared error. The block size is too large to fully capture subtle spatial
changes in the curvature of the underlying function.

In the present paper, we propose a block thresholding density estimator and give a si-
multaneously local and global analysis for the estimator. LetX1, X2, . . . , Xn be a random
sample from a distribution with density functionf. We wish to estimate the densityf based
on the sample. The estimation accuracy is measured both globally by the mean integrated
squared error

R(f̂ , f ) = E‖f̂ − f ‖2
2 , (1)
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and locally by the expected squared error loss at each given pointx0

R(f̂ (x0), f (x0)) = E(f̂ (x0) − f (x0))
2. (2)

Our block thresholding procedure first divides the empirical coefficients at each resolution
level into nonoverlapping blocks and then simultaneously keeps or kills all the coefficients
within a block, based on the magnitude of the sum of the squared empirical coefficients
within that block. Motivated by the analysis of block thresholding rules for nonparametric
regression in Cai[6], the block size is chosen to be logn. It is shown that the block
thresholding estimator adaptively achieves not only the optimal global rate over Besov
spaces, but simultaneously attains the adaptive local convergence rate as well. These results
are obtained in part through the determination of the optimal block length.

The paper is organized as follows. After Section2, in which background information on
wavelets and the function spaces of interest is given, we discuss block thresholding rules
for density estimation in Section3. The asymptotic properties of the block thresholding
estimator are set forth in Section4, along with a related theorem on a block thresholded
convolution kernel estimator. Simulation results for the proposed estimator are found in
Section 5 and proofs of the theorems are given in Section6.

2. Wavelets and function spaces

An orthonormal wavelet basis is generated from dilation and translation of a “father”
wavelet� and a “mother” wavelet�. In this paper, the functions� and� are assumed to
be compactly supported and

∫
� = 1. We call a wavelet� r-regular if � hasr vanishing

moments andr continuous derivatives. Let�ij (t) = 2i/2�(2i t−j), �ij (t) = 2i/2�(2i t−
j). The collection {�mj , �ij , i�m, j ∈ Z} is then an orthonormal basis ofL2(R), see
[11,26].

Besov spaces arise naturally in many fields of analysis. They contain a number of tradi-
tional function spaces such as Hölder and Sobolev spaces as special cases. A Besov space
Bs
p,q has three parameters:s measures degree of smoothness,p andq specify the type

of norm used to measure the smoothness. Besov spaces can be defined by the sequence
norm of wavelet coefficients. For a given functionf, denote�mj = ∫

f (t)�mj (t) dt and
�ij = ∫

f (t)�ij (t) dt . Define the sequence norm of wavelet coefficients off by

‖f ‖Bs
p,q

= ‖�mj‖�p +

 ∞∑

i=m


2i(s+1/2−1/p)


∑

j

|�i,j |p



1/p



q


1/q

. (3)

The standard modification applies for the casesp, q = ∞. Let the wavelet� ber-regular.
For s < r, the Besov spaceBs

p,q is defined to be the Banach space consisting of functions
with finite Besov norm‖ · ‖Bs

p,q
. The Hölder space�s is a special case of a Besov space

Bs
p,q with p = q = ∞. See Triebel[28,29] and Meyer[26] for more on the properties of

Besov spaces.
We shall measure the global adaptivity of an estimator over two families of rich function

classes which were used in Hall et al.[19]. The classes contain functions of inhomogeneous
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smoothness and are different from other traditional smoothness classes. Functions in these
classes can be regarded as the superposition of smooth functions with irregular perturbations
such as jump discontinuities and high-frequency oscillations. Let

F s
p,q(M,L) = {f ∈ Bs

p,q : supp(f ) ∈ [−L,L], ‖f ‖Bs
p,q

�M} (4)

be the collection of functions with support contained in[−L,L] and Besov norm bounded
by M. Following the notation of Hall et al.[19], the first function space of interest is
Ṽs1(F

s
2,q(M,L)) which consists of functions which are the sum of a function in the space

F s
2,q(M,L), q�1 and an irregular function inF s1

(s+1/2)−1,q
(M,L).

A second space of interest, denoted byVd,�(F
s
2,q(M,L)), consists of functions which

can be represented as the sum of a function in the spaceF s
2,q(M,L), q�1 and a function

in Pd,�,L which is the set of piecewise polynomials of degreed, support in[−L,L], and
with the number of discontinuities no more than�.

Local adaptivity of an estimator is measured over the local Hölder classes�s(M, x0, �)
which is defined as follows. For 0< s�1,

�s(M, x0, �) = {f : |f (x) − f (x0)|�M|x − x0|s , x ∈ (x0 − �, x0 + �)}
and fors > 1,

�s(M, x0, �) = {f : |f (s∗)(x) − f (s∗)(x0)|�M|x − x0|t , x ∈ (x0 − �, x0 + �)},
wheres∗ is the largest integer strictly less thansandt = s − s∗.

3. The estimators

3.1. Wavelet and convolution kernels

LetX1, X2, . . . , Xn be a random sample of sizen from a distribution with density function
f. The objective is to estimate the density functionf based on the sample. We shall use
similar notation as in Hall et al.[19]. Let K(x, y) be a kernel function onR2, and define
Ki(x, y) = 2iK(2ix,2iy), i = 0,1,2, . . . . Additionally,Kif will be the integral operator
defined asKif (x) = ∫

Ki(x, y)f (y) dy. Note that

K̂i(x) = n−1
n∑

m=1

Ki(x,Xm)

is an unbiased estimate ofKif (x) for all x. If using a convolution kernel,K(x, y) =
K(x − y). For wavelets,K(x, y) = ∑

j �(x − j)�(y − j), where� is the father wavelet.
We impose the following conditions on the kernelK. First, there exists a compactly

supportedQ ∈ L2 such that

Q(x) = 0 when|x| > q0 (5)

and

|K(x, y)|�Q(x − y) for all x andy. (6)
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Next,K satisfies the moment condition of orderN:∫
|x|N+1Q(x) dx < ∞

and ∫
K(x, y)(y − x)kdy = �0k for k = 0,1, . . . , N. (7)

Conditions (5)–(7) are met in the wavelet case if the mother wavelet� hasN vanishing
moments.

As in Hall et al.[19] define the “innovation” kernel by

Di(x, y) = Ki+1(x, y) − Ki(x, y)

for i = 0,1, . . . . Let Dif be the integral operatorKi+1f − Kif . Then, similarly toK̂i ,
an unbiased estimator ofDif (x) is

D̂i(x) = n−1
n∑

m=1

Di(x,Xm).

For the wavelet kernel defined above,K andDi can be associated with the projection
operators of the multiresolution analysis.K(x, y) is the projection operator on to the space
spanned by� and its integer translates.Di(x, y) is, then, the operator projecting on to the
“detail” spaces of multiresolution analysis.KandDi perform similar tasks in the convolution
case: namely, projection operators on to coarse and detail spaces. This innovation kernel
will be used to define the density estimator.

3.2. Block thresholded estimators

The densityf may be written as

f (x) = K0f (x) +
∞∑
i=0

Dif (x). (8)

The linear part,K0f (x), will be estimated byK̂0(x). The remaining part will be estimated
using thresholding methods, and hence is nonlinear in nature.

Let� and� be compactly supported father and mother wavelets satisfying conditions (5)–
(7). We shall write�j for �0j . Then unbiased estimates of�j = 〈f,�j 〉 and�ij = 〈f,�ij 〉
are

�̂j = n−1
n∑

m=1

�j (Xm) and �̂ij = n−1
n∑

m=1

�ij (Xm).

Note that the linear partK0f (x) can be written asK0f (x) = ∫
K(x, y)f (y) dy =∑

j �j�j (x). The estimate ofK0f (x) is then K̂0(x) = ∑
j �̂j�j (x) = n−1∑n

m=1
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K(x,Xm). Similarly, note that

Di(x, y) = Ki+1(x, y) − Ki(x, y) =
∑
j

�ij (x)�ij (y).

Therefore, in a manner similar to that used above onK0f (x), Dif (x) = ∑
j �ij�ij (x).

The estimate of the detail partDif (x) is, then,D̂i(x) = ∑
j �̂ij�ij (x). We can then rewrite

(8) as

f (x) =
∑
j

�j�j (x) +
∞∑
i=0

∑
j

�ij�ij (x), (9)

and estimate (9) as

f̂ (x) =
∑
j

�̂j�j (x) +
R∑
i=0

∑
j

�̂ij�ij (x) = K̂0(x) +
R∑
i=0

D̂i(x), (10)

whereR is a finite truncation value for the infinite series.
An adaptive density estimator will be constructed by applying a block thresholding rule

as follows. In each resolution leveli, the indicesj are divided up into nonoverlapping blocks

of lengthl = log n. Within this block, the average estimated squared biasl−1∑
j∈B(k) �̂

2
ij

will be compared to the threshold. Here,B(k) refers to the set of indicesj in block k.
By estimating all of these squared coefficients together, the additional information allows
a better comparison to the threshold, and hence a better convergence rate than the more
conventional term-by-term thresholding estimators. If the average squared bias is larger
than the threshold, all coefficients in the block will be kept. Otherwise, all coefficients will
discarded.

LettingBik = l−1∑
j∈B(k) �

2
ij and estimating this witĥBik = l−1∑

j∈B(k) �̂
2
ij , the block

thresholding wavelet estimator off becomes

f̂ (x) =
∑
j

�̂j�j (x) +
R∑
i=0

∑
k

∑
j∈B(k)

�̂ij�ij (x)I (B̂ik > cn−1). (11)

This may also be written as

f̂ (x) = K̂0(x) +
R∑
i=0

∑
k

D̂ik(x)I (x ∈ Jik)I (B̂ik > cn−1),

whereD̂ik(x) = ∑
j∈B(k) �̂ij�ij (x) is an estimate ofDikf (x) = ∑

j∈B(k) �ij�ij (x), and

Jik =
⋃

j∈B(k)
{x : �ij (x) �= 0} =

⋃
j∈B(k)

{supp�ij }.

Note that if the support of� is of length�, then the length ofJik is (� + l − 1)/2i �2l/2i ,
and these intervals overlap each other at either end by 2−i (� − 1).
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The equivalent, block-thresholded convolution kernel estimator is

f̂ (x) = K̂0(x) +
R∑
i=0

∑
k

D̂i(x)I (x ∈ Iik)I (Âik > cn−1), (12)

where theIik are nonoverlapping intervals of length 2−i l, andAik = l−1
∫
Iik
(Dif (x))

2 dx,

is estimated byÂik = l−1
∫
Iik

D̂2
i (x) dx.

Remark. As mentioned in the introduction, block size plays a crucial role in the performance
of the resulting block thresholding estimator. It determines the degree of adaptivity. The
block size ofl = log n is chosen so that the estimator achieves both the optimal global and
local adaptivity.

Remark. Hal et al.[19] choose block sizel = C(log n)2 and show that the block thresh-
olding estimator is adaptively rate optimal under the global mean integrated squared error.
However, as shown in the next section, this choice of block size is too large to achieve the
optimal local adaptivity.

4. Local and global adaptivity

The global minimax rate of convergence of an estimate of a density in a Besov class
F s
p,q(M,L) to the true underlying density isO(n−2s/(2s+1)). This minimax rate of con-

vergence can be achieved adaptively without knowing the smoothness parameters. For the
wavelet kernel density estimator (11) with block lengthl = log n and appropriate choice
of series truncation parameterR, the optimal rate of convergence is achieved adaptively
over the spacẽVs1(F

s
2,q(M,L))∩B∞(A), whereB∞(A) is the space of all functionsfwith

‖f ‖∞ �A.

Theorem 1. Let f̂ be the wavelet kernel density estimator(11) with the block lengthl =
log n, R = �log2(Dnl−1)� where D is a constant given in(35), and

c = A(0.08)−1
(
C2‖Q‖2 + ‖Q‖1C

−1/2
1

)2
,

whereC1 andC2 are the universal constants fromTalagrand[27].Suppose that thewavelets
� and� are compactly supported and r-regular withr > max(s1, N − 1) (i.e., conditions
(6), (7)with orderN − 1,and(5) are met).Then there exists a positive constant C such that
for all 1/2 < s < N , q�1,ands1 − s > s/ (2s + 1),

sup
f∈Ṽs1(F s

2,q (M,L))∩B∞(A)

E‖f̂ − f ‖2
2�Cn−2s/(2s+1).

In this theorem (and the rest in this section) the function space parametersM,L andA are
arbitrary finite constants. The bound constantC is dependent on them as well as on the
choice of the kernel functionK (and hence onQ).
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The convolution kernel estimator (12) also achieves the global, optimal minimax conver-
gence rate with this smaller block length, although over a different space of irregular Besov
functions.

Theorem 2. Let f̂ be the convolution kernel density estimator(12). Let l, R and c be as
in theorem1. Let �n be a sequence of positive numbers such that for all	 > 0, �n =
O(n	+1/(2N+1)). If K satisfies(6), (7) with orderN − 1, and (5), and1/2 < s < N , then
there exists a positive constant C such that

sup
d<N,���n

sup
f∈Vd�(F

s
2,q (M,L))∩B∞(A)

E‖f̂ − f ‖2
2�Cn−2s/(2s+1).

Here, it can be seen that the number of discontinuities that can be handled by the estimator
is on the order of the sample sizen to a power.

One of the differences between Theorems 1 and 2 and those set forth in Hall et al.[19]
is in regards to the block lengthl. In this paper,l = log n is used instead of their value
(log n)2. This choice of block length is crucial in estimators of the form given in the above
two theorems. In fact, larger block lengths are unsatisfactory in that they preclude local
convergence optimality.

When attention is focused on adaptive estimation there are some striking differences
between local and global theories. Under integrated squared error loss there are many
situations where rate adaptive estimators can be constructed. When attention is focused on
estimating a function at a given point rate optimal adaptive procedures typically do not
exist. A penalty, usually a logarithmic factor must be paid for not knowing the smoothness.
Important work in this area began with Lepski[23] where attention focused on a collection
of Lipschitz classes. See also Brown and Low[1], Efromovich and Low[18] and Lepski
and Spokoiny[25]. Connections between local and global parameter space adaptation can
be found in Lepski et al.[24], Cai [3] and Efromovich[17].

We shall use the local Hölder class�s(M, x0, �) defined in Section 2 to measure lo-
cal adaptivity. The minimax rate of convergence for estimatingf (x0) over �s(M, x0, �)
is n−2s/(2s+1). Lepski [23] and Brown and Low[2] showed that in adaptive pointwise
estimation, where the smoothness parameters is unknown, the optimal adaptive rate of
convergence over�s(M, x0, �) is (n−1 log n)2s/(2s+1). By using a block length ofl =
log n in the wavelet kernel estimator, this optimal adaptive rate of convergence is achieved
simultaneously over a range of local Hölder classes.

Theorem 3. Let f̂ be the wavelet kernel density estimator(11). Let R, l and c
be as in Theorem1, and suppose� and� are bounded. If1/2 < s < N , and� has
N − 1 vanishing moments, then there exists a positive constant C such that for anyx0 in
the support of f

sup
f∈�s (M,x0,�)∩B∞(A)

E(f̂ (x0) − f (x0))
2�C(log n/n)2s/(2s+1).

By combining Theorems1 and3 we see that the block thresholding density estimator
(11) adaptively achieves not only the optimal global rate of convergence over a wide range
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of perturbed Besov spaces, but simultaneously attains the adaptive local convergence rate
as well.

The optimal global and local adaptivity cannot be attained if a larger block size is used.
With a block length of order larger than logn (for example,l = (log n)2), the global rate
may still be attained, but the local rate will not:

Theorem 4. Let f̂ be the wavelet kernel density estimator(11). Let R, l and c be as in
Theorem1,and suppose� and� are as in Theorem3. If 1/2 < s < N andl = (log n)1+r

for somer > 0, then for somex0 in the support of f and some constant C

sup
f∈�s (M,x0,�)

E(f̂ (x0) − f (x0))
2�C(log n/n)2s/(2s+1)(log n)2rs/(2s+1).

5. Simulation results

In this section we compare the block thresholded wavelet estimator from this paper with
various other estimators via a simulation study. We will refer to the estimator at (11) simply
as DenBlock.

The thresholdc supplied by the theorems for DenBlock is useful for theoretical pur-
poses, but it is not practical for implementation. Since the thresholding in the estimator is
essentially a bias-variance comparison, we keep the estimated wavelet coefficients when the
average squared bias of the coefficients in a block exceeds the variance of those coefficients.
Therefore,c is replaced with an estimate of the variance of the coefficients in a block. This
variance is approximated by forming a pilot estimate of the densityf and evaluating it at
the center of the block.

Two of the competing estimators examined come from Cai and Silverman[9]. These esti-
mators, NeighCoeff and NeighBlock, are wavelet estimators where the comparison against
a threshold is not based on a single coefficient (as is done in VisuShrink, for example) or on
a single block of coefficients (as is done with DenBlock). Rather, neighboring coefficients
or blocks are considered when making the threshold comparison for a particular coefficient
or block. These estimator’s were devised for nonparametric regression settings, but they are
easily modified to the density estimation problem at hand.

For NeighBlock, the block length isl = log n/2. However, the variance and squared bias
used for thresholding is computed not just from the current block, but includes information
from its neighbors to the immediate left and right (when possible). The total block size used
for making the thresholding decision is logn when the neighboring blocks are added in.
The variance of the coefficients in the extended block is replaced by the pilot estimate off
evaluated in the center of the block as before.

NeighCoeff is NeighBlock with block lengthl = 1. The extended block is of length
3. Again, the appropriate substitution is made in the threshold comparison as before. For
more information on these estimators and the thresholds used see Cai and Silverman[9]
and Chicken[10].
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Fig. 1. Test densities. Solid line issaw, dashed line ismixnorm, and dotted line is the double exponential.

Additionally, other estimators were also looked at. Biased cross-validation and unbiased
cross validation kernel estimators with normal and triangle kernels were all implemented.

These estimators were compared against one another in terms of mean squared error on
the three test densities given in Fig. 1.Sawis a combination of sums of uniform random
variables,mixnormis a mixture of three normal densities, and the last is a double exponential
random variable. Formulas for these densities are in Chicken[10].

Results of simulations for some of these estimators on various sample sizes are given
in Tables 1 and 2. In each table, the MSE of the estimate is given from a repetition of
size 60. Only one of the 4 kernel methods is reported here, the unbiased cross-validation
normal (UCVN) kernel estimator. The other kernel estimators mentioned above generally
performed worse than this one, and the results are not included here. See[10] for additional
simulation results.

Table 1 show MSEs for samples sizesn = 20,50,100,500,1000 and 2000. Forsaw,
the wavelet estimators have lower MSEs than UCVN with the exception of sample size
100. Once the sample size hits 100, all three of the wavelet estimators have the same MSE.
Examination of the thresholded coefficients reveals that for large sample sizes, all the detail
coefficients calculated are 0. Since the coarse coefficients are the same for each wavelet
estimate, the wavelet estimates are identical as well. At the lower sample sizes, NeighCoeff
seems preferable, then DenBlock. This agrees well with the simulation results from Cai and
Silverman[9].

For themixnormdensity, the UCVN is generally the best. This is perhaps not surprising
given that the kernel for UCVN is from the same family as the density being estimated.
Again, NeighCoeff is the best of the wavelet methods, while there is no clear distinction
between NeighBlock and DenBlock.

On the final density, the double exponential, the UCVN is the worst of the estimates.
The three wavelet estimators are approximately equivalent with the exception of the lowest
sample size.

Since the wavelet estimators are approximately equivalent in terms of MSE in large
sample sizes (n�50), it is instructive to examine how the estimators work with respect
to small sample sizes. The results are given in Table 2. Here, the sample sizes aren =
10,15,20,25,30 and 40.
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Table 1
MSE for saw, mixnorm and double exponential densities

Densityn DenBlock NeighBlock NeighCoeff UCVN

Saw
20 10.8811 11.3950 9.15801 15.5913
50 5.2177 5.5801 5.2177 7.0664
100 5.2608 5.2608 5.2608 3.9586
500 1.1692 1.1692 1.1692 1.4283
1000 0.6061 0.6061 0.6061 0.8280
2000 0.3317 0.3317 0.3317 0.4938

Mixnorm
20 23.7321 17.3795 12.7059 13.3004
50 5.8260 5.8558 5.8260 6.9934
100 6.0237 6.0237 6.0236 4.2097
500 1.4189 1.4189 1.4189 1.2991
1000 0.7400 0.7340 0.7400 0.6941
2000 0.4458 0.4458 0.4458 0.4135

Dbl exp
20 16.8195 15.0414 13.7677 20.1013
50 6.9654 6.7317 6.7394 9.6706
100 5.3400 5.3204 5.3203 5.3918
500 1.4070 1.3979 1.3975 1.8868
1000 0.9596 0.9577 0.9576 1.1357
2000 0.6773 0.6763 0.6763 0.7454

For saw, NeighCoeff is clearly the best estimator. It is only surpassed by UCVN at the
very low sizen = 10. NeighBlock has lower MSE than DenBlock for the lower sample
sizes, while DenBlock takes the lead for the larger sample sizes.

As with the sample sizes in Table 1, the UCVN is generally best at approximating
mixnorm. NeighCoeff is the next best, while DenBlock and NeighBlock follow the same
relation as they did forsaw.

On the double exponential, NeighCoeff is clearly best over the sample sizes in Table 2,
followed by NeighBlock, DenBlock, and lastly, UCVN.

The theorems in this paper show that DenBlock attains optimal convergence rates asymp-
totically. For the sample sizes considered here, however, NeighCoeff seems superior in
terms of MSE. In particular, NeighCoeff is better than DenBlock at low sample sizes. The
distinction between the wavelet estimators becomes blurred as the sample size increases.
This suggests that NeighCoeff should be used for sample sizes under 50, and any of the
three estimators are acceptable for largern.

Some example reconstructions are given in Figs. 2 and 3. Fig. 2 shows a comparison of
DenBlock and UCVN with a sample size of 100 on thesawdensity. DenBlock does well
at attaining the peaks and valleys of the density. UCVN clearly shows a density with four
modes, but does not capture the same highs and lows that DenBlock does. Fig. 3 is a typical
reconstruction of themixnormdensity. Here, DenBlock does a good job at estimating the
peak on the left, but is too irregular over the central smooth portion. UCVN underestimates
the peak, but outperforms DenBlock on the smoother portion of the density.
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Table 2
MSE for saw, mixnorm and double exponential densities

Densityn DenBlock NeighBlock NeighCoeff UCVN

Saw
10 42.8131 32.9332 25.6171 23.3807
15 26.4683 21.5793 18.2141 21.6358
20 11.1075 10.1879 8.0783 16.4509
25 7.5533 8.7975 7.5533 13.9911
30 7.1597 7.3624 7.1597 10.8101
40 5.9266 6.0048 5.9266 9.1613

Mixnorm
10 51.7412 35.8192 24.5506 22.5039
15 25.4060 20.9517 17.5232 17.0204
20 20.2607 17.8310 14.4943 14.3062
25 12.6726 12.6614 11.2159 10.2094
30 8.3123 9.7426 8.3286 9.2793
40 7.2358 7.8616 7.2358 8.2652

Dbl exp
10 44.4253 29.4158 22.4899 24.6614
15 27.8926 17.7815 14.9310 19.5591
20 17.5577 14.0685 12.6403 17.4856
25 11.4431 9.8476 9.7666 13.3411
30 9.9258 9.2269 9.1675 12.9358
40 8.7121 8.1441 8.1549 12.7721

0.0

-1 0 1 2 3

0.2

0.4

0.6

0.8

1.0

Fig. 2. Typical reconstruction ofsaw. n = 100. Solid line is DenBlock estimate, dashed line is UCVN estimate,
and dotted line is actual density.

6. Proofs of theorems

In this section, proofs are given for Theorems 1, 3 and 4. Theorem 2’s proof is omitted
due to its similarity to the proof of Theorem 1. Before beginning, several preliminary results
are necessary.
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0.0

-1 0 1 2 3

0.5

1.0

1.5

Fig. 3. Typical reconstruction ofmixnorm.n = 100. Solid line is DenBlock estimate, dashed line is UCVN estimate
and dotted line is actual density.

6.1. Preliminaries

First, a simple lemma based on Minkowski’s inequality:

Lemma 1. LetY1, Y2, . . . , Yn be random variables. Then

E

(
n∑

i=1

Yi

)2

�
[

n∑
i=1

(EY 2
i )

1/2

]2

.

Second, a theorem from Talagrand[27] as stated in Hall et al.[19].

Theorem 5. LetU1, U2, . . . , Un be independent and identically distributed random vari-
ables. Letε1, ε2, . . . , εn be independent Rademacher random variables that are also inde-
pendent of theUi . Let G be a class of functions uniformly bounded by M. If there exists v,
H > 0 such that for all n,

sup
g∈G

varg(U)�v,

E sup
g∈G

n∑
m=1

εmg(Um)�nH,

then there exist universal constantsC1 andC2 such that for all
 > 0,

P

[
sup
g∈G

(
n−1

n∑
m=1

g(Um) − Eg(U)

)
�
 + C2H

]
�e

−nC1

[
(
2v−1)∧(
M−1)

]
.

Finally, a lemma from Hall et al.[23].
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Lemma 2. If K(x, y) is a kernel satisfying condition(1), Q ∈ L2, and J is a compact
interval, then

E

∫
J

(
K̂0(x) − K0f (x)

)2
dx�‖f ‖∞‖Q‖2

2|J |/n,

and

E

∫
J

(
D̂i(x) − Dif (x)

)2
dx�4‖f ‖∞‖Q‖2

22i |J |/n,

where|J | is the length of the interval J.

6.2. Proof of Theorem 1

We will prove this theorem forq = ∞. For generalq�1, the results will hold since
Bs
pq ⊆ Bs

p∞. Let is be the integer such that 2is �n1/(2s+1) < 2is+1. Minkowski’s inequality
implies that

E‖f̂ − f ‖2
2 � 4E

∥∥∥K̂0 − K0

∥∥∥2

2
+ 4E

∥∥∥∥∥
is∑
i=0

[∑
k

D̂ikI (Jik)I (B̂ik > cn−1) − Dif

]∥∥∥∥∥
2

2

+4E

∥∥∥∥∥∥
R∑

i=is+1

[∑
k

D̂ikI (Jik)I (B̂ik > cn−1) − Dif

]∥∥∥∥∥∥
2

2

+4

∥∥∥∥∥∥
∞∑

i=R+1

Dif

∥∥∥∥∥∥
2

2
= T1 + T2 + T3 + T4

T1 is bounded by Lemma 2:

T1�Cn−1. (13)

Each of the remaining piecesTi will be treated individually in their own sections.

6.2.1. Bound onT2
To bound the nonlinear partT2, note that Lemma 1 and Minkowski’s inequality give

T2�C


 is∑

i=0


E ∫

(∑
k

D̂ik(x)I (B̂ik > cn−1) − Dif (x)

)2

dx




1/2



2

.
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For a fixedi� is , the orthogonality of wavelets gives

E

∫ (∑
k

D̂ik(x)I (B̂ik > cn−1) − Dif (x)

)2

dx

�E

∫ (
D̂i(x) − Dif (x)

)2
dx

+E
∑
k

∫
Jik

(Dikf (x))
2 dx I (Bik�2cn−1)

+E
∑
k

∫
Jik

(Dikf (x))
2 dx I (B̂ik�cn−1)I (Bik > 2cn−1)

= T21 + T22 + T23.

As in Hall et al.[19],T21 is bounded by Lemma 2.T22 is bounded by the size of the indicator
function and the fact that the number of intervals overlapping the support off is no more
than a constant times 2i/ l:

T21, T22�C2i/n.

To boundT23, the following lemma from Hall et al.[19] is useful

Lemma 3. If
∫
Jik

(Dikf (x))
2 dx� lc/(2n) then{∫

Jik

(
D̂ik(x)

)2
dx� lc/n

}
⊆
{∫

Jik

(
D̂ik(x) − Dikf (x)

)2
dx�0.08lc/n

}
,

and if
∫
Jik

(Dikf (x))
2 dx > 2lc/n then{∫

Jik

(
D̂ik(x)

)2
dx� lc/n

}
⊆
{∫

Jik

(
D̂ik(x) − Dikf (x)

)2
dx�0.16lc/n

}
.

Using this lemma,

T23�E
∑
k

∫
Jik

(Dikf (x))
2 dx I

(∫
Jik

(
D̂ik(x) − Dikf (x)

)2
dx�0.16lc/n

)
.

Using Young’s inequality with (6), and the fact that the length of the intervalJik is a constant
timesl/2i , ∫

Jik

(Dikf (x))
2 dx �

∫
Jik

‖Dikf ‖2∞dx

� C‖f ‖2∞‖Q‖2
1l/2i .

So,

T23�Cl/2i
∑
k

P

([∫
Jik

(
D̂ik(x) − Dikf (x)

)2
dx

]1/2

�
√

0.16lc/n

)
.

(14)
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To bound the above probability, Talagrand’s theorem (Theorem 5) will be used. Similar to
Hall et al.{∫

jik

(
D̂ik(x) − Dikf (x)

)2
dx

}1/2

= sup
g∈G

{
n−1

n∑
m=1

∫
Jik

g(x)Dik(x,Xm)dx − E

∫
Jik

g(x)Dik(x,X1)dx

}
,

where

G =
{∫

Jik

g(x)Dik(x, ·)I (j ∈ B(k))dx : ‖g‖2�1

}
.

Talagrand’s theorem will be used with

M = 2i/2‖Q‖2, v = ‖f ‖∞‖Q‖2
1, H = ‖Q‖2

√
12l‖f ‖∞/n,

and


 = √
0.16lc/n − C2‖Q‖2

√
12l‖f ‖∞/n > 0.

The probability at (14) is then bounded by

P

([∫
Iik

(
D̂i(x) − Dif (x)

)2
dx

]1/2

�
 + C2‖Q‖2
√

12l‖f ‖∞/n

)

�exp
{
−nC1

[(

2/‖f ‖∞‖Q‖2

1

)
∧
(

/(2i/2‖Q‖2

)]}
.

For 0� i� is , constantc and
 positive,

l

n2s/(2s+1)
� (2L)−2‖Q‖4

1(√
0.16c − C2‖Q‖2

√
12(2L)−1

)2 ‖Q‖2
2

implies


2/
(
‖f ‖∞‖Q‖2

1

)
< 
/

(
2i/2‖Q‖2

)
. (15)

Thus, for large enoughn,

P

([∫
Iik

(
D̂i(x) − Dif (x)

)2
dx

]1/2

�
√

0.16lc/n

)
�Cn−�, (16)

where� is the constant

� =
C1

(√
0.16c − C2‖Q‖2

√
12A

)2

A‖Q‖2
1

andc is large enough to make� > 0. Putting (14) and (16) together with the fact that the
number of intervalsJik that intersect the support off is no more thanC2i/ l,

T23�Cn−�. (17)



92 E. Chicken, T.T. Cai / Journal of Multivariate Analysis 95 (2005) 76–106

All pieces are now available to boundT2.

T2 � C

[
is∑
i=0

(T21 + T22 + T23)
1/2

]2

� C

[
is∑
i=0

((
2i/n

)1/2 + n−�/2
)]2

� C
(

2is n−1 + i2
s n

−�
)

= C
[
n−2s/(2s+1) + (log2 n

1/(2s+1))2n−�
]
. (18)

6.2.2. Bound onT3
As with T2 before, write

T3�C


 R∑

i=is+1


E ∫

(∑
k

D̂ik(x)I (B̂ik > cn−1) − Dif (x)

)2

dx




1/2



2

.

For a fixedi, is + 1� i�R,

E

∫ [(∑
k

D̂ik(x)I (x ∈ Jik)I (B̂ik > cn−1)

)
− Dikf (x)

]2

dx

�E
∑
k

∫
Jik

(
D̂ik(x) − Dikf (x)

)2
dx I (B̂ik > cn−1)I (Bik > c/(2n))

+E
∑
k

∫
Jik

(
D̂ik(x) − Dikf (x)

)2
dx I (B̂ik > cn−1)I (Bik�c/(2n))

+E
∑
k

∫
Jik

(Dikf (x))
2 dx I (B̂ik�cn−1)I (Bik�2cn−1)

+E
∑
k

∫
Jik

(Dikf (x))
2 dx I (B̂ik�cn−1)I (Bik > 2cn−1)

= T31 + T32 + T33 + T34.

By Lemma 3,

T32 =
∑
k

E

∫
Jik

(
D̂ik(x) − Dikf (x)

)2
dx I (B̂ik > cn−1)I (Bik�c/(2n))

�
∑
k

E

[∫
Jik

(
D̂ik(x) − Dikf (x)

)2
dx

· I
({∫

Jik

(
D̂ik(x) − Dikf (x)

)2
dx

}1/2

�
√

0.08lc/n

)]
.
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To bound this, we use the fact that for any nonnegative random variableY,

EY 2I (Y > a) = a2P(Y > a) +
∫ ∞

a

2yP (Y > y)dy.

The integrals inT32 are of this form with

Y =
[∫

Jik

(
D̂ik(x) − Dikf (x)

)2
dx

]1/2

�0

anda = √
0.08lc/n. Using Talagrand’s theorem as was done for the pieceT23,

P(Y > y)�exp

[
−nC1

(
(y − C2H)2

‖f ‖∞‖Q‖2
1

∧ y − C2H

2i/2‖Q‖2

)]
,

and therefore

EY 2I (Y > a) � a2exp

[
−nC1

(
(a − C2H)2

‖f ‖∞‖Q‖2
1

∧ a − C2H

2i/2‖Q‖2

)]

+
∫ ∞

a

2y exp

[
−nC1

(
(y − C2H)2

‖f ‖∞‖Q‖2
1

∧ y − C2H

2i/2‖Q‖2

)
dy

]

= T321 + T322.

For is + 1� i�R and(a − C2H) positive

2Rl

n
� (2L)−2‖Q‖4

1(√
0.08c − C2‖Q‖2

√
12(2L)−1

)2 ‖Q‖2
2

(19)

implies (a − C2H)2‖f ‖−1∞ ‖Q‖−2
1 �(a − C2H)2−i/2‖Q‖−1

2 . Note thata − C2H > 0
implies that
 at (15) is positive as well. Therefore,

T321 � Cl/n exp


−C1l



(√

0.08c − C2‖Q‖2
√

12A
)2

A‖Q‖2
1






� Cn−�−1 log n, (20)

where� is the constant

� =
C1

(√
0.08c − C2‖Q‖2

√
12A

)2

A‖Q‖2
1

(21)

andc is large enough to make� positive. ForT322, let a0 = ‖f ‖∞‖Q‖2
1‖Q‖−1

2 2−i/2 +
C2H > 0. Then, ifa�a0,

T322 =
∫ a0

a

2y exp

(
−nC1

(y − C2H)2

‖f ‖∞‖Q‖2
1

)
dy +

∫ ∞

a0

2y exp

(
−nC1

y − C2H

2i/2‖Q‖2

)
dy

= T3221+ T3222.
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To boundT3221, note that by a change of variables and increase in upper limit of integration,

T3221 � ‖f ‖∞‖Q‖2
1n

−1C−1
1 exp

(
−nC1

(a − C2H)2

‖f ‖∞‖Q‖2
1

)

+
∫ ∞

a−C2H

2C2Hy(1/y) exp

(
−nC1

y2

‖f ‖∞‖Q‖2
1

)
dy. (22)

The first term on the right of (22) is bounded byCn−1−�, where� is the constant in (21).
To bound the second term, use integration by parts.∫ ∞

a−C2H

2C2Hy(1/y) exp

(
−nC1

y2

‖f ‖∞‖Q‖2
1

)
dy

= C2H

a − C2H

‖f ‖∞‖Q‖2
1

nC1
exp

(
−nC1

(a − C2H)2

‖f ‖∞‖Q‖2
1

)

−
∫ ∞

a−C2H

C2H
‖f ‖∞‖Q‖2

1

nC1

1

y2
exp

(
−nC1

y2

‖f ‖∞‖Q‖2
1

)
dy.

Since the integrand in second term on the right side above is strictly positive, this integral
is also bounded byCn−�−1. Using integration by parts onT3222,

T3222�C

(
n−1 + n−1

√
2i log n/n + 2in−2

)
e−nd/2i ,

whered is the constant

d = C1‖f ‖∞‖Q‖2
1/‖Q‖2

2. (23)

If a > a0, thenT322�T3222. Therefore,

T32 =
∑
k

(T321 + T3221+ T3222)

� 2i/ log n
(
n−�−1 log n

)
+2i/ log n

(
n−1 + n−1

√
2i log n/n + 2in−2

)
e−nd/2i . (24)

To boundT34, observe that the only difference betweenT23 andT34 is the range of the
index i. Therefore, by repeating the argument forT23, the bound forT34 is the same as at
(17)

T34�Cn−�. (25)

This bound requires that

2R log n/n� (2L)−2‖Q‖4
1(√

0.16c − C2‖Q‖2

√
12(2L)−1

)2 ‖Q‖2
2

= Dc (26)

which implies the condition at (19).
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The bound onT3 is found in a similar manner to (18).

T3 � C


 R∑
i=is+1

(T31 + T32 + T33 + T34)
1/2




2

� C




 R∑

i=is+1

(T31 + T33)
1/2




2

+

 R∑

i=is+1

T
1/2

32




2

+

 R∑

i=is+1

T
1/2

34




2

 .

Observe that fori�R,

2ie−nd/2i �2Re−nd/2R �Dcn(log n)−1e−d log n/Dc = Dcn(log n)−1n−d/Dc .

Therefore, 2ie−nd/2i is less than or equal to some constant ifd�Dc. This condition is met
if

c�(0.32L)−1
(
C2‖Q‖2

√
12+ ‖Q‖1C

−1/2
1

)2
. (27)

Therefore, using the bound forT32 given at (24),


 R∑

i=is+1

T
1/2

32




2

�C
(
n−� + n−1 log n

)
. (28)

Using the bound forT34 found at (25),


 R∑

i=is+1

T
1/2

34




2

�
(
log2 R

)2
n−�. (29)

In Hall et al.[19] it is shown that
 R∑

i=is+1

(T31 + T33)
1/2




2

�Cn−2s/(2s+1). (30)

Therefore, using (28)–(30),

T3�C
[
n−2s/(2s+1) + n−� + (

log2 R
)2

n−�
]
. (31)

6.2.3. Bound onT4
The final pieceT4 is easily bounded

T4 = C

∥∥∥∥∥∥
∞∑

i=R+1

Dif

∥∥∥∥∥∥
2

2

= C

∞∑
i=R+1

∑
j

�2
ij . (32)
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Sincef = f1 + f2 wheref1 ∈ Bs
2,∞ andf2 ∈ B

s1
(s+1/2)−1,∞ ⊆ B

s1−s
2∞ ,

�ij =
∫

f (x)�ij (x)dx

=
∫

(f1(x) + f2(x))�ij (x)dx

= �1ij + �2ij ,

and (32) becomes

T4�C


 ∞∑
i=R+1

∑
j

(
�2

1ij + �2
2ij

) .

From the bounds on wavelet coefficients given at (3) and (4),
∑

j �2
1ij �C2−2is , and∑

j �2
2ij �C2−2i(s1−s). Therefore, usingR = Dcn/l,

T4�Cn−2s/(2s+1), (33)

provided thats1 − s > s/(2s + 1).

6.2.4. Determination of constants�, �, D, and c
Using the bounds from (13), (18), (31), and (33)

E‖f − f̂ ‖2
2 � C

[
n−2s/(2s+1) + (

log2 R
)2

n−� + n−�
]
.

For �, n−��n−2s/(2s+1) for all 1
2 < s < N if and only if ��2N/(2N + 1). The above

constraint is met for allf in the space interest if the value of the thresholdc is set accordingly:

c�A(0.08)−1

(
C2

√
12‖Q‖2 + ‖Q‖1

√
2N

C1(2N + 1)

)2

. (34)

Note that the condition at (19) and (15) thata−C2H and
 be positive are met if (34) holds.
Sincecmust satisfy both (34) and (27), and(2L)−1�‖f ‖∞ �A, the value may be set as

c = A(0.08)−1

(
C2

√
12‖Q‖2 + ‖Q‖1

√
1

C1

)2

.

Let

D = ‖Q‖−4
1

(
‖Q‖2(2L){C2

√
24‖Q‖2(A

1/2 − L−1/2) + (2A)1/2‖Q‖1C
−1/2
1 }

)2
.

(35)
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The value for the constantDc can then be taken to beDc = D−1. For�, note that� − � is
a positive constant, so(

log2 R
)2

n−� = (
log2 R

)2
n−�n−(�−�)�Cn−2s/(2s+1).

Therefore, using the bound forc at (27),

E‖f − f̂ ‖2
2�Cn−2s/(2s+1),

and the Theorem 1 is proved.

6.3. Proof of Theorem 3

To simplify the proof, assume thatf is in �s(M) rather than in the local Hölder classes
�s(M, x0, �) for pointsx0 in the support off. Write f̂ (x0) − f (x0) as

f̂ (x0) − f (x0) =
∑
j

(
�̂j − �j

)
�j (x0)

+
is∑
i=0

∑
k

∑
j∈B(k)

(
�̂ij�ij (x0)I (B̂ik > cn−1) − �ij�ij (x0)

)

+
R∑

i=is+1

∑
k

∑
j∈B(k)

(
�̂ij�ij (x0)I (B̂ik > cn−1) − �ij�ij (x0)

)

+
∞∑

i=R+1

∑
j

�ij�ij (x0)

= L1 + L2 + L3 + L4,

whereis is as before. Then

E
(
f̂ (x0) − f (x0)

)2
�C

(
EL2

1 + EL2
2 + EL2

3 + EL2
4

)
.

In each of these sums, the total number of indicesj where the support of�ij or�j intersects
the pointx0 is no more than 2q0 + 1, whereq0 is as in (5). This fact will be used several
times in the following proof.

6.3.1. Bound onL1
Recalling that

∫
�2 = 1 and that� is bounded,

EL2
1 � CE

∑
j

[(
�̂j − �j

)
�j (x0)

]2

� C‖�‖2∞E
∑
j

(
�̂j − �j

)2

= CE
∑
j

∫ (
�̂j − �j

)2 �2
j (x).
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Using the orthogonality of the�j ,

EL2
1 � CE

∫ 
∑

j

�̂j�j (x) − �j�j (x)




2

= CE

∫ {
K̂0(x) − K0f (x)

}2
dx.

By applying Lemma 2,

EL2
1�Cn−1. (36)

6.3.2. Bound onL2
To boundL2, break it into the following sums:

EL2
2 = E


 is∑

i=0

∑
k

∑
j∈B(k)

(
�̂ij − �ij

)
�ij (x0)I (B̂ik > cn−1)

+
is∑
i=0

∑
j

�ij�ij (x0)I (B̂ik�cn−1)




2

= E(L21 + L22)
2�CEL2

21 + CEL2
22.

To boundL21, first apply Lemma 1:

EL2
21 � E


 is∑

i=0

∑
k

∑
j∈B(k)

(
�̂ij − �ij

)
�ij (x0)I (B̂ik > cn−1)




2

�


 is∑

i=0


E


∑

k

∑
j∈B(k)

(
�̂ij − �ij

)
�ij (x0)I (B̂ik > cn−1)




2



1/2


2

� ‖�‖2∞


 is∑

i=0

2i/2


E∑

j

(
�̂ij − �ij

)2




1/2



2

. (37)

Now,E
∑

j (�̂ij − �ij )
2 is of ordern−1:

E
∑
j

(�̂ij − �ij )
2 =

∑
j

var �̂ij

�
∑
j

n−1var�ij (X1)

� Cn−1
∫

�2
ij (x) dx. (38)
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Using this result, (37) becomes

EL2
21 � C

[
is∑
i=0

2i/2
(
n−1

)1/2
]2

� Cn−2s/(2s+1).

The bound forL22 is found by breaking it in to two pieces.

L22 =
is∑
i=0

∑
k

∑
j∈B(k)

�ij�ij (x0)I (B̂ik�cn−1)I (Bik > 2cn−1)

+
is∑
i=0

∑
k

∑
j∈B(k)

�ij�ij (x0)I (B̂ik�cn−1)I (Bik�2cn−1)

= L221 + L222.

The pieceL221 is bounded using Talagrand’s theorem. First, note that by Lemma 3 and the
fact thatf ∈ �s(M) ⇒ �2

ij �C2−2i(s+1/2), we have

E


∑

k

∑
j∈B(k)

�ij�ij (x0)I (B̂ik�cn−1)I (Bik > 2cn−1)




2

�CE


∑

k

∑
j∈B(k)

2−i(s+1/2)2i/2‖�‖∞I (B̂ik�cn−1)I (Bik > 2cn−1)




2

�C2−2is
∑
k

∑
j∈B(k)

P

(∫ (
D̂ik(x) − Dikf (x)

)2
dx > 0.16c log n/n

)
.

Then

P

(∫ (
D̂ik(x) − Dikf (x)

)2
dx > 0.16c log n/n

)
�Cn−�,

where� is as before. Therefore, using this bound on the probability and Lemma 1,

EL2
221 �


 is∑

i=0


E


∑

k

∑
j∈B(k)

�ij�ij (x0)I (B̂ik�cn−1)I (Bik > 2cn−1)




2



1/2


2

� C

(
is∑
i=0

2−isn−�/2

)2

� Cn−�.
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To boundL222, observe that

E


∑

k

∑
j∈B(k)

�ij�ij (x0)I (B̂ik�cn−1)I (Bik�2cn−1)




2

�C2i‖�‖2∞
∑
k

∑
j∈B(k)

�2
ij I (Bik�2cn−1).

Now,Bik�2cn−1 implies that∑
k

∑
j∈B(k)

�2
ij �Cl/n.

By virtue of f being in�s(M),∑
k

∑
j∈B(k)

�2
ij �C2−2i(s+1/2).

Therefore,∑
k

∑
j∈B(k)

�2
ij I (Bik�2cn−1)�C

(
n−1 log n ∧ 2−2i(s+1/2)

)
,

and so

E


∑

k

∑
j∈B(k)

�ij�ij (x0)I (B̂ik�cn−1)I (Bik�2cn−1)




2

�C2i
(
n−1 log n ∧ 2−2i(s+1/2)

)
.

Therefore, the bound onL222 is (after an application of Lemma 1)

EL2
222 � C

[
is∑
i=0

2i/2
(
n−1 log n ∧ 2−2i(s+1/2)

)1/2
]2

.

Now,n−1 log n�2−2i(s+1/2) whenever 2i �
(
n(log n)−1

)1/(2s+1)
. Therefore, lettingi∗ be

the integer such that 2i∗ �
(
n(log n)−1

)1/(2s+1)
< 2i∗+1,

EL2
222 � C


 i∗∑

i=0

2i/2
√

log n/n +
is∑

i=i∗+1

2i/22−i(s+1/2)




2

� C

(
log n

n

)2s/(2s+1)

.

The bound onEL2
22 is therefore

C
(
n−� + (n−1 log n)2s/(2s+1)

)
,
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and hence

EL2
2�C

[
n−� +

(
n−1 log n

)2s/(2s+1)
]
. (39)

6.3.3. Bound onL3
As with L2, breakL3 into the following parts:

EL2
3 = E


 R∑

i=is+1

∑
k

∑
j∈B(k)

(
�̂ij − �ij

)
�ij (x0)I (B̂ik > cn−1)

+
R∑

i=is+1

∑
k

∑
j∈B(k)

�ij�ij (x0)I (B̂ik�cn−1)




2

= E(L31 + L32)
2�CEL2

31 + CEL2
32.

Additionally,L31 must be divided as well.

EL2
31 � CE


 R∑
i=is+1

∑
k

∑
j∈B(k)

(
�̂ij − �ij

)
�ij (x0)I (B̂ik > cn−1)I (Bik > cn−1/2)




2

+CE


 R∑
i=is+1

∑
k

∑
j∈B(k)

(
�̂ij − �ij

)
�ij (x0)I (B̂ik > cn−1)I (Bik�cn−1/2)




2

= CEL2
311 + CEL2

312.

To take care ofL311, notice that

E


∑

k

∑
j∈B(k)

(
�̂ij − �ij

)
�ij (x0)I (B̂ik > cn−1)I (Bik > cn−1/2)




2

�C
∑
k

2nc−1BikE


 ∑
j∈B(k)

(
�̂ij − �ij

)
�ij (x0)




2

.

As in (38)

E


 ∑
j∈B(k)

(
�̂ij − �ij

)
�ij (x0)




2

� 2i‖�‖2∞E
∑

j∈B(k)

(
�̂ij − �ij

)2

� C2i/n.

Since

Bik = l−1
∑

j∈B(k)
�2
ij �C2−2i(s+1/2),
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the bound forEL2
311 then follows from an application of Lemma 1

EL2
311 � C


 R∑
i=is+1

(∑
k

2n

c

2i

n
2−2i(s+1/2)

)1/2



2

� C


 R∑

i=is+1

2−is




2

� Cn−2s/(2s+1).

To boundEL2
312, Talagrand’s theorem will be used. To begin, note that by Lemma 3

E


∑

k

∑
j∈B(k)

(
�̂ij − �ij

)
�ij (x0)I (B̂ik > cn−1)I (Bik�cn−1/2)




2

�C2i‖�‖2∞E
∑
k

∑
j∈B(k)

(
�̂ij − �ij

)2
I (B̂ik > cn−1)I (Bik�cn−1/2)

�C2iE
∑
k

∫
Jik

(
D̂ik(x) − Dikf (x)

)2
dx

·I
(∫

Jik

(
D̂ik(x) − Dikf (x)

)2
dx > 0.08c log n/n

)

= C2iT32.

This is bounded just asT32 was at (24). The number of indicesk is here no more than a
constant, giving a bound of

C2i
[
n−�−1 log n +

(
n−1 + n−1

√
2i log n/n + 2in−2

)
exp

(
−nd

2i

)]
,

where� is as in (21) andd is as in (23). Therefore, repeating the argument for the pieceT32
at (28),

EL2
312�C(n−� + n−1R2).

Only L32 still needs bounding.

EL2
32 � C


 R∑

i=is+1

∑
k

∑
j∈B(k)

∣∣�ij�ij (x0)
∣∣



2

� C


 R∑

i=is+1

2i/2‖�‖∞2−i(s+1/2)




2

� Cn−2s/(2s+1).
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The bound forL3 is then

EL2
3�C

(
n−2s/(2s+1) + n−�

)
. (40)

6.3.4. Bound onL4
L4 is bounded much likeL32 was. The only difference is the range of the indexi and the

lack of an indicator function.

EL2
4 = E


 ∞∑

i=R+1

∑
k

∑
j∈B(k)

�ij�ij (x0)




2

� C


 ∞∑

i=R+1

2−is




2

� Cn−2s/(2s+1). (41)

6.3.5. Determination of constants�, �, and c
From the bounds derived at (36), (39), (40), and (41),

E
(
f (x0) − f̂ (x0)

)2
�C

(
n−� + (log n/n)2s/(2s+1) + n−�

)
.

As before, we need� and� to be larger than 2N/(2N + 1) and (27) to hold, so

c�A(0.08)−1

(
C2‖Q‖2 + ‖Q‖1

√
1

C1

)2

will suffice, as well as imply the necessary conditions on� and�. This implies

E
(
f (x0) − f̂ (x0)

)2
�C(log n/n)2s/(2s+1)

and the proof is complete.

6.4. Proof of Theorem 4

Suppose the block lengthl in the wavelet estimator (11) is taken to be of order larger than
log n, sayl = (log n)1+r for somer > 0. Then, assume thatf ∗ is a density function with
one “detail” coefficient,�i′j ′ , which is as large as possible, and no other non-zero coefficients
�ij overlapping the support of�i′j ′ . Outside this support,f ∗ has sufficient mass to ensure
it integrates to one. This functionf ∗ is desired to be in the space�s(M, x0, �), so let
�i′j ′ = 2−i′(s+1/2). Let i′ be such that 2i

′ = (n/l)1/(2s+1), andj ′ an integer such that
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|�(2i′x0 − j ′)|�c′ > 0 for some constantc′. Let

S =
(

sup
f∈�s (M)

E(f̂ (x0) − f (x0))
2

)1/2

�
(
E(f̂ ∗(x0) − f ∗(x0))

2
)1/2

=

E


∑

j∈B ′
(�̂i′j I (B̂

′ > c/n) − �i′j )�i′j (x0) +
∑
j

(�̂j − �j )�j (x0)

+
R∑
i=0

∑
k


 ∑

j∈B(k)
(�̂ij I (B̂ik > c/n) − �ij )�ij (x0)




+
∑
i>R


∑

j

(−�ij )�ij (x0)






2



1/2

,

whereB ′ is the block containing the nonzero “detail” coefficient, and the final sum is over
the remaining blocks. Since

(E(Y +
∑

Xi)
2)1/2�(EY 2)1/2 −

∑
(EX2

i )
1/2

for random variablesXi andY [19],

S �


E


∑

j∈B ′
(�̂i′j I (B̂

′ > c/n) − �i′j )�i′j (x0)




2



1/2

−

E


∑

j

(�̂j − �j )�j (x0)




2



1/2

−

E


 R∑

i=0

∑
k


 ∑

j∈B(k)
(�̂ij − �ij )�ij (x0)


 I (B̂ik > c/n)




2



1/2

−

E


∑

i>R

∑
j

�ij�ij (x0)




2



1/2

= U1 − U2 − U3 − U4.

Now, U2�C
√
n−1 by Lemma 2.U3 is easily seen to be bounded beC

√
n−2s/(2s+1) by

noting that in the previous sections,EL2
21�Cn−2s/(2s+1), EL2

31�C((n�(log n)1+r )−1 +
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n−2s/(2s+1)) and the other relevant pieces are zero. The values of� and� may be taken the
same as in the case wherel = log n. U4�C

√
n−2s/(2s+1) by repeating the argument for

L4. For � large enough (i.e., thresholdc as chosen),U2 + U3 + U4�C
√
n−2s/(2s+1). For

U1,

U1 =
[
E(�̂i′j ′ − �i′j ′)2�2

i′j ′(x0)I (B̂
′ > c/n) + E�2

i′j ′�2
i′j ′(x0)I (B̂

′ �c/n)
]1/2

�
(
E�2

i′j ′�2
i′j ′(x0)I (B̂

′ < c/n)I (B�c/n)
)1/2

=
[
�2
i′j ′�2

i′j ′(x0)EI (B̂ ′ < c/n)I (B�c/(2n))
]1/2

,

whereB is the mean of the true squared coefficients in the block containing the nonzero
coefficient. By Talagrand’s theorem and Lemma 3,

EI (B̂ ′ �c/n)I (B�c/(2n))�Cn−�,

where� is as before. For suitablen, this is less than1
2. Therefore, the expectation of the

indicators in the lower bound forU1 is at least 1/2. So,

U1 � C
(
�2
i′j ′�2

i′j ′(x0)
)1/2

= C

√
(l/n)2s/(2s+1).

Therefore,

S = U1 − U2 − U3�C

√
(l/n)2s/(2s+1)

or

sup
f∈�s (M,x0,�)

E(f̂ (x0) − f (x0))
2�C(log n/n)2s/(2s+1)(log n)2rs/(2s+1).
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