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Summary. The problem of detecting heterogeneous and heteroscedastic Gaussian mixtures
is considered. The focus is on how the parameters of heterogeneity, heteroscedasticity and
proportion of non-null component influence the difficulty of the problem.We establish an explicit
detection boundary which separates the detectable region where the likelihood ratio test is
shown to detect the presence of non-null effects reliably from the undetectable region where no
method can do so. In particular, the results show that the detection boundary changes dramat-
ically when the proportion of non-null component shifts from the sparse regime to the dense
regime. Furthermore, it is shown that the higher criticism test, which does not require specific
information on model parameters, is optimally adaptive to the unknown degrees of heterogeneity
and heteroscedasticity in both the sparse and the dense cases.
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1. Introduction

The problem of detecting non-null components in Gaussian mixtures arises in many applica-
tions, where a large number of variables are measured and only a small proportion of them
possibly carry signal information. In disease surveillance, for instance, it is crucial to detect
outbreaks of disease in their early stage when only a small fraction of the population is infected
(Kulldorff et al., 2005). Other examples include astrophysical source detection (Hopkins et al.,
2002) and covert communication (Donoho and Jin, 2004).

The detection problem is also of interest because detection tools can be easily adapted for
other purposes, such as screening and dimension reduction. For example, in genomewide associ-
ation studies, a typical single-nucleotide polymorphism data set consists of a very long sequence
of measurements containing signals that are both sparse and weak. To locate such signals better,
one could break the long sequence into relatively short segments and use the detection tools to
filter out segments that contain no signals.

In addition, the detection problem is closely related to other important problems, such as
large-scale multiple testing, feature selection and cancer classification. For example, the detec-
tion problem is the starting point for understanding estimation and large-scale multiple testing
(Cai et al., 2007). The fundamental limit for detection is intimately related to the fundamental
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limit for classification, and the optimal procedures for detection are related to optimal proce-
dures in feature selection. See Donoho and Jin (2008, 2009), Hall et al. (2008) and Jin (2009).

In this paper we consider the detection of heterogeneous and heteroscedastic Gaussian mix-
tures. The goal is twofold:

(a) to discover the detection boundary in the parameter space that separates the detectable
region, where it is possible to detect reliably the existence of signals on the basis of the
noisy and mixed observations, from the undetectable region, where it is impossible to do
so;

(b) to construct an adaptively optimal procedure that works without the information of sig-
nal features but is successful in the whole detectable region; such a procedure has the
property of what we call optimal adaptivity.

The problem is formulated as follows. Given n independent observation units X= .X1, X2, . . . ,
Xn/. For each 1� i�n, we suppose that Xi has probability " of being a non-null effect and prob-
ability 1−" of being a null effect. We model the null effects as samples from N.0, 1/ and non-null
effects as samples from N.A,σ2/. Here, " can be viewed as the proportion of non-null effects, A
the heterogeneity parameter and σ the heteroscedasticity parameter. A and σ together represent
signal intensity. Throughout this paper, all the parameters ", A and σ are assumed unknown.

The goal is to test whether any signals are present, i.e. we wish to test the hypothesis "=0 or,
equivalently, to test the joint null hypothesis

H0 : Xi
IID∼ N.0, 1/, 1� i�n, .1/

against a specific alternative hypothesis in its complement

H
.n/
1 : Xi

IID∼ .1− "/ N.0, 1/+ " N.A,σ2/, 1� i�n: .2/

The setting here turns out to be the key to understanding the detection problem in more com-
plicated settings, where the alternative density itself may be a Gaussian mixture, or where the Xi

may be correlated. The underlying reason is that the Hellinger distance between the null density
and the alternative density displays certain monotonicity. See Section 6 for further discussion.

Motivated by the examples that were mentioned earlier, we focus on the case where " is small.
We adopt an asymptotic framework where n is the driving variable, whereas " and A are param-
eterized as functions of n (σ is fixed throughout the paper). In detail, for a fixed parameter
0 <β< 1, we let

"= "n =n−β : .3/

The detection problem behaves very differently in two regimes: the sparse regime where 1
2 <β<1

and the dense regime where 0<β� 1
2 . In the sparse regime, "n �1=

√
n, and the most interesting

situation is when A = An grows with n at a rate of
√

log.n/. Outside this range either it is too
easy to separate the two hypotheses or it is impossible to do so. Also, the proportion "n is much
smaller than the standard deviation of typical moment-based statistics (e.g. the sample mean),
so these statistics would not yield satisfactory testing results. In contrast, in the dense case where
"n �1=

√
n, the most interesting situation is when An degenerates to 0 at an algebraic order, and

moment-based statistics could be successful. However, from a practical point, moment-based
statistics are still not preferred as β is in general unknown.

In light of this, the parameter A=An.r;β/ is calibrated as follows: for the sparse case,

An.r;β/=√{2r log.n/}, 0 <r< 1, if 1
2 <β< 1, .4/

and, for the dense case,
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An.r;β/=n−r, 0 <r< 1
2 , if 0 <β� 1

2 : .5/

A similar setting has been studied in Donoho and Jin (2004), where the scope is limited to the
case σ=1 and β∈ . 1

2 , 1/. Even in this simpler setting, the testing problem is non-trivial. A testing
procedure called higher criticism, which contains three simple steps, was proposed. First, for
each 1� i�n, obtain a p-value by

pi = Φ̄.Xi/≡P{N.0, 1/�Xi}, .6/

where Φ̄= 1 −Φ is the survival function of N.0, 1/. Second, sort the p-values in the ascending
order p.1/ <p.2/ < . . .<p.n/. Last, define the higher criticism statistic as

HCÅ
n = max

{1�i�n}
.HCn,i/, HCn,i = i=n−p.i/√{p.i/.1−p.i//}

√
n, .7/

and reject the null hypothesis H0 when HCÅ
n is large. Higher criticism is very different from the

more conventional moment-based statistics. The key ideas can be illustrated as follows. When
X∼N.0, In/, pi ∼IID U.0, 1/ and so HCn,i ≈N.0, 1/. Therefore, by the well-known results from
empirical processes (e.g. Shorack and Wellner (2009)), HCÅ

n ≈√
[2 log{log.n/}], which grows to

∞ very slowly. In contrast, if X ∼ N.μ, In/ where some of the co-ordinates of μ are non-zero,
then HCn,i has an elevated mean for some i, and HCÅ

n could grow to ∞ algebraically fast.
Consequently, higher criticism can separate two hypotheses even in the very sparse case. We
mention that expression (7) is only one variant of higher criticism. See Donoho and Jin (2004,
2008, 2009) for further discussions.

In this paper, we study the detection problem in a more general setting, where the Gaussian
mixture model is both heterogeneous and heteroscedastic and both the sparse and the dense
cases are considered. We believe that heteroscedasticity is a more natural assumption in many
applications. For example, signals can often bring additional variation to the background. This
phenomenon can be captured by the Gaussian hierarchical model:

Xi|μ∼N.μ, 1/, μ∼ .1− "n/δ0 + "n N.An, τ2/,

where δ0 denotes the point mass at 0. The marginal distribution is therefore

Xi ∼ .1− "n/ N.0, 1/+ "n N.An,σ2/, σ2 =1+ τ2,

which is heteroscedastic as σ> 1. In this paper, we consider the general heteroscedastic setting
including σ�1 and σ< 1.

In these detection problems a major focus is to characterize the so-called detection boundary,
which is a curve that partitions the parameter space into two regions: the detectable region and
the undetectable region. The study of the detection boundary is related to classical contigu-
ity theory but is different in important ways. Adapting to our terminology, classical contiguity
theory focuses on dense signals that are individually weak; the current paper, in contrast, focuses
on sparse signals that individually may be moderately strong. As a result, to derive the detection
boundary for the latter, we usually need unconventional analysis. In the case σ=1, the detection
boundary was first discovered by Ingster (1997, 1999), and later independently by Donoho and
Jin (2004) and Jin (2003, 2004).

In this paper, we derive the detection boundaries for both the sparse and the dense cases. It
is shown that, if the parameters are known and are in the detectable region, the likelihood ratio
test (LRT) has the sum of type I and type II error probabilities that tends to 0 as n →∞, which
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means that the LRT can asymptotically separate the alternative hypothesis from the null. We
are particularly interested in understanding how the heteroscedastic effect may influence the
detection boundary. Interestingly, in a certain range, the heteroscedasticity alone can separate
the null and alternative hypotheses (i.e. even if the non-null effects have the same mean as that
of the null effects).

The LRT is useful in determining the detection boundaries. It is, however, not practically
useful as it requires knowledge of the parameter values. In this paper, in addition to the detec-
tion boundary, we also consider the practically more important problem of adaptive detection
where the parameters β, r and σ are unknown. It is shown that a higher-criticism-based test
is optimally adaptive in the whole detectable region in both the sparse and the dense cases, in
spite of the very different detection boundaries and heteroscedasticity effects in the two cases.
Classical methods treat the detections of sparse and dense signals separately. In real practice,
however, the information on the signal sparsity is usually unknown, and the lack of a unified
approach restricts discovery of the full catalogue of signals. The adaptivity of higher criticism
that is found in this paper for both sparse and dense cases is a practically useful property. See
further discussion in Section 3.

The detection of the presence of signals is of interest in its own right in many applications
where, for example, the early detection of unusual events is critical. It is also closely related to
other important problems in sparse inference such as estimation of the proportion of non-null
effects and signal identification. The latter problem is a natural next step after detecting the
presence of signals. In the current setting, both the proportion estimation problem and the sig-
nal identification problem can be solved by extensions of existing methods. See more discussion
in Section 4.

The rest of the paper is organized as follows. Section 2 demonstrates the detection boundaries
in the sparse and dense cases. Limiting behaviours of the LRT on the detection boundary are
also presented. Section 3 introduces the modified higher criticism test and explains its optimal
adaptivity through asymptotic theory and explanatory intuition. Comparisons with other meth-
ods are also presented. Section 4 discusses other closely related problems including estimation
of proportions and signal identification. Simulation examples for finite n are given in Section
5. Further extensions and future work are discussed in Section 6. Main proofs are presented in
Appendix A. Appendix B includes complementary technical details.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://www.blackwellpublishing.com/rss

2. Detection boundary

The meaning of the detection boundary can be elucidated as follows. In the β–r-plane with some
σ fixed, we want to find a curve r =ρÅ.β;σ/, where ρÅ.β;σ/ is a function of β and σ, to separate
the detectable region from the undetectable region. In the interior of the undetectable region,
the sum of type I and type II error probabilities of any test tends to 1 as n →∞. In the interior
of the detectable region, the sum of type I and type II errors of the Neyman–Pearson LRT with
parameters .β, r,σ/ specified tends to 0. The curve r =ρÅ.β;σ/ is called the detection boundary.

2.1. Detection boundary in the sparse case
In the sparse case, "n and An are calibrated as in expressions (3) and (4). We find the exact
expression of ρÅ.β;σ/ as follows:



Optimal Detection 633

ρÅ.β;σ/=
{

.2−σ2/.β− 1
2 /, 1

2 <β�1−σ2=4,
{1−σ

√
.1−β/}2, 1−σ2=4 <β< 1,

0 <σ<
√

2, (8)

and

ρÅ.β;σ/=
{

0, 1
2 <β�1−1=σ2,

{1−σ
√

.1−β/}2, 1−1=σ2 <β< 1,
σ�√

2: .9/

When σ=1, the detection boundary r =ρÅ.β;σ/ reduces to the detection boundary in Donoho
and Jin (2004) (see also Ingster (1997, 1999) and Jin (2004)). The curve r =ρÅ.β;σ/ is plotted in
Fig. 1(a) for σ=0:6, 1,

√
2,3. The detectable and undetectable regions correspond to r>ρÅ.β;σ/

and r<ρÅ.β;σ/ respectively.
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Fig. 1. (a) Detection boundary r D ρÅ.βIσ/ in the sparse case for σD 0.6,1,
p

2,3 (the detectable region
is r > ρÅ.βIσ/ and the undetectable region is r < ρÅ.βIσ// and (b) detection boundary r D ρÅ.βIσ/ in the
dense case for σD 1 (the detectable region is r < ρÅ.βIσ/ and the undetectable region is r > ρÅ.βIσ/; note
that ρ.βIσ/D∞ in the dense case when σ 6D1)
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When r < ρÅ.β;σ/, the Hellinger distance between the joint density of Xi under the null
hypothesis and that under the alternative tends to 0 as n → ∞, which implies that the sum
of type I and type II error probabilities for any test tends to 1. Therefore no test could suc-
cessfully separate these two hypotheses in this situation. The following theorem is proved in
Appendix A.1.

Theorem 1. Let "n and An be calibrated as in expression (3) and (4) and let σ> 0, β ∈ . 1
2 , 1/,

and r ∈ .0, 1/ be fixed such that r <ρÅ.β;σ/, where ρÅ.β;σ/ is as in expressions (8) and (9).
Then for any test the sum of type I and type II error probabilities tends to 1 as n→∞.

When r>ρÅ.β;σ/, it is possible to separate the hypotheses successfully, and we show that the
classical LRT can do so. In detail, denote the likelihood ratio by

LRn =LRn.X1, X2, . . . , Xn;β, r,σ/,

and consider the LRT which rejects H0 if and only if

log.LRn/> 0: .10/

The following theorem, which is proved in Appendix A.2, shows that, when r > ρÅ.β;σ/,
log.LRn/ converges to ∓∞ in probability, under the null and the alternative hypotheses respec-
tively. Therefore, asymptotically the alternative hypothesis can be perfectly separated from the
null by the LRT.

Theorem 2. Let "n and An be calibrated as in expressions (3) and (4) and let σ> 0, β ∈ . 1
2 , 1/,

and r ∈ .0, 1/ be fixed such that r>ρÅ.β;σ/, where ρÅ.β;σ/ is as in expressions (8) and (9). As
n→∞, log.LRn/ converges to ∓∞ in probability, under the null and the alternative hypoth-
eses respectively. Consequently, the sum of type I and type II error probabilities of the LRT
tends to 0.

The effect of heteroscedasticity is illustrated in Fig. 1(a). As σ increases, the curve r =ρÅ.β;σ/

moves towards the bottom right-hand corner; the detectable region becomes larger which implies
that the detection problem becomes easier. Interestingly, there is a ‘phase change’ as σ varies,
with σ=√

2 being the critical point. When σ<
√

2, it is always undetectable if An is 0 or very
small, and the effect of heteroscedasticity alone would not yield successful detection. When
σ>

√
2, it is, however, detectable even when An = 0, and the effect of heteroscedasticity alone

may produce successful detection.

2.2. Detection boundary in the dense case
In the dense case, "n and An are calibrated as in expressions (3) and (5). We find the detection
boundary as r =ρÅ.β;σ/, where

ρÅ.β;σ/=
{ ∞, σ �=1,

1
2 −β, σ=1,

0 <β< 1
2 : .11/

The curve r =ρÅ.β;σ/ is plotted in Fig. 1(b) for σ=1. Unlike in the sparse case, the detectable
and undetectable regions now correspond to r<ρÅ.β;σ/ and r>ρÅ.β;σ/ respectively.

The following results are analogous to those in the sparse case. We show that, when r >

ρÅ.β;σ/, no test could separate H0 from H
.n/
1 , and, when r<ρÅ.β;σ/, asymptotically the LRT

can perfectly separate the alternative hypothesis from the null. Proofs for the following theorems
are included in Appendices A.3 and A.4.
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Theorem 3. Let "n and An be calibrated as in expressions (3) and (5) and let σ> 0, β ∈ .0, 1
2 /

and r ∈ .0, 1
2 / be fixed such that r>ρÅ.β;σ/, where ρÅ.β;σ/ is defined in expression (11). Then

for any test the sum of type I and type II error probabilities tends to 1 as n→∞.

Theorem 4. Let "n and An be calibrated as in expressions (3) and (5) and let σ> 0, β ∈ .0, 1
2 /,

and r ∈ .0, 1
2 / be fixed such that r < ρÅ.β;σ/, where ρÅ.β;σ/ is defined in expression (11).

Then, the sum of type I and type II error probabilities of the LRT tends to 0 as n→∞.

Comparing expression (11) with expressions (8) and (9), we see that the detection boundary
in the dense case is very different from that in the sparse case. In particular, the non-null com-
ponent is always detectable for any r ∈ .0, 1

2 / when σ �= 1. In the dense case, the proportion of
non-null components is so large that a small heteroscedastic effect can be amplified to make
the non-null component detectable. In contrast, when σ= 1, a small heterogeneous effect also
makes a big difference. This is essentially why the calibrations of "n and An, and the detection
boundary are very different in the dense case from those in the sparse case.

The dividing line between the sparse and dense case is β= 1
2 . In the case when β exactly equals

1
2 , An can be calibrated as a constant. Then, by a similar analysis, it can be shown that in such a
setting the Hellinger distance between the joint density of observations under the null and that
under the alternative hypothesis tends to some constant between 0 and 1. Furthermore, the sum
of type I and type II error probabilities of the LRT also tends to some constant between 0 and
1. Therefore, the non-null effect is only partially detectable when β= 1

2 and An is a constant. In
contrast, if An →∞ at any rate, then the signals can be reliably detected.

2.3. Limiting behaviour of the likelihood ratio test on the detection boundary
In the preceding section, we examined the situation when the parameters .β, r/ fall strictly in the
interior of either the detectable or the undetectable region. When these parameters become very
close to the detection boundary, the behaviour of the LRT becomes more subtle. In this section,
we discuss the behaviour of the LRT when σ is fixed and the parameters .β, r/ fall exactly on
the detection boundary. We show that, up to some lower order term corrections of "n, the LRT
converges to different non-degenerate distributions under the null and under the alternative
hypothesis, and, interestingly, the limiting distributions are not always Gaussian. As a result,
the sum of type I and type II errors of the optimal test tends to some constant α∈ .0, 1/. The
discussion for the dense case is similar to that for the sparse case, but simpler. For brevity, we
present only the details for the sparse case.

We introduce the following calibration:

An =√{2r log.n/}, "n =
{

n−β , 1
2 <β�1−σ2=4,

n−β log.n/1−√
.1−β/=σ, 1−σ2=4 <β< 1:

.12/

Compared with the calibrations in expressions (3) and (4), An remains the same but "n is mod-
ified slightly so that the limiting distribution of the LRT would be non-degenerate. Denote

b.σ/={σ√
.2−σ2/}−1:

We introduce two characteristic functions exp.ψ0
β, σ/ and exp.ψ1

β,σ/, where

ψ0
β,σ.t/= 1

2
√
πσ1=.σ2−1/{σ−√

.1−β/}

∫ ∞

−∞
.exp[it log{1+ exp.y/}]−1

− it exp.y// exp
{
σ−2

√
.1−β/

σ−√
.1−β/

−2
}

y dy

and
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ψ1
β,σ.t/= 1

2
√
πσσ

2=.σ2−1/{σ−√
.1−β/}

∫ ∞

−∞
.exp[it log{1+ exp.y/}]−1/

× exp
{
σ−2

√
.1−β/

σ−√
.1−β/

−1
}

y dy,

and let ν0
β,σ and ν1

β,σ be the corresponding distributions. We have the following theorems, which
address the case of σ<

√
2 and the case of σ�√

2.

Theorem 5. Let An and "n be defined as in expression (12), and let ρÅ.β;σ/ be as in expressions
(8) and (9). Fix σ∈ .0,

√
2/ and β ∈ . 1

2 , 1/, and set r =ρÅ.β,σ/. As n→∞, under hypothesis
H0,

log.LRn/
L→

⎧⎨⎩
N{−b.σ/=2, b.σ/}, 1

2 <β< 1−σ2=4,
N{−b.σ/=4, b.σ/=2}, β=1−σ2=4,
ν0
β,σ, 1−σ2=4 <β< 1,

and, under hypothesis H
.n/
1 ,

log.LRn/
L→

⎧⎨⎩
N{b.σ/=2, b.σ/}, 1

2 <β< 1−σ2=4,
N{b.σ/=4, b.σ/=2}, β=1−σ2=4,
ν1
β,σ, 1−σ2=4 <β< 1,

where →L denotes ‘converges in law’.

The limiting distribution is Gaussian when β�1−σ2=4 and non-Gaussian otherwise.
Next, we consider the case of σ�√

2, where the range of interest is β> 1−1=σ2.

Theorem 6. Let σ∈ [
√

2, ∞/ and β ∈ .1−1=σ2, 1/ be fixed. Set r =ρÅ.β,σ/ and let An and "n

be as in expression (12). Then, as n→∞,

log.LRn/
L→

{
ν0
β,σ, under hypothesis H0,

ν1
β,σ, under hypothesis H

.n/
1 :

In this case, the limiting distribution is always non-Gaussian. This phenomenon (i.e. the weak
limits of the log-likelihood ratio might be non-Gaussian) was repeatedly discovered in the liter-
ature. See for example Ingster (1997, 1999), Jin (2003, 2004) for the case σ=1, and Burnashev
and Begmatov (1991) for a closely related setting.

In Fig. 2, we fix .β,σ/ = .0:75, 1:1/ and plot the characteristic functions and the density
functions corresponding to the limiting distribution of log.LRn/. Two density functions are
generally overlapping each other, which suggests that, when .β, r,σ/ falls on the detection
boundary, the sum of type I and type II error probabilities of the LRT tends to a fixed num-
ber in .0, 1/ as n →∞.

3. Higher criticism and its optimal adaptivity

In real applications, the explicit values of model parameters are usually unknown. Hence it is of
great interest to develop adaptive methods that can perform well without information on model
parameters. We find that higher criticism, which is a non-parametric procedure, is successful in
the entire detectable region for both the sparse and the dense cases. This property is called the
optimal adaptivity of higher criticism. Donoho and Jin (2004) discovered this property in the
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case σ= 1 and β ∈ . 1
2 , 1/. Here, we consider more general settings where β ranges from 0 to 1

and σ ranges from 0 to ∞. Both parameters are fixed but unknown.
We modify the higher criticism statistic by using the absolute value of HCn,i:

HCÅ
n = max

1�i�n
|HCn,i|, .13/

where HCn,i is defined as in expression (7). Recall that, under the null hypothesis,

HCÅ
n ≈√

[2 log{log.n/}]:

So a convenient critical point for rejecting the null hypothesis is when

HCÅ
n �√

[2.1+ δ/ log{log.n/}], .14/

where δ> 0 is any fixed constant. The following theorem is proved in Appendix A.5.

Theorem 7. Suppose that "n and An either satisfy expressions (3) and (4) and r>ρÅ.β;σ/ with
ρÅ.β;σ/ defined as in expressions (8) and (9), or "n and An satisfy expressions (3) and (5) and
r<ρÅ.β;σ/ with ρÅ.β;σ/ defined as in expression (11). Then the test which rejects H0 if and
only if HCÅ

n �√
[2.1+ δ/ log{log.n/}] satisfies

PH0.reject H0/+P
H

.n/
1

.reject H
.n/
1 /→0 as n→∞:

Theorem 7 states, somewhat surprisingly, that the optimal adaptivity of higher criticism con-
tinues to hold even when the data pose an unknown degree of heteroscedasticity, both in the
sparse regime and in the dense regime. It is also clear that the type I error tends to 0 faster
for a higher threshold. Higher criticism can successfully separate two hypotheses whenever it is
possible to do so, and it has full power in the region where LRT has full power. But, unlike the
LRT, higher criticism does not need specific information of the parameters σ, β and r.

In practice, we would like to pick a critical value so that the type I error is controlled at a
prescribed level α. A convenient way to do this is as follows. Fix a large number N such that
Nα�1 (e.g. Nα=50). We simulate the HCÅ

n -scores under the null hypothesis for N times, and
let t.α/ be the top α percentile of the simulated scores. We then use t.α/ as the critical value.
With a typical office desktop computer, the simulation experiment can be finished reasonably
fast. We find that, owing to the slow convergence of the iterative logarithmic law, critical values
determined in this way are usually much more accurate than

√
[2.1+ δ/ log{log.n/}].

3.1. How higher criticism works
We now illustrate how higher criticism manages to capture the evidence against the joint null
hypothesis without information on model parameters .σ,β, r/.

To begin with, we rewrite the higher criticism in an equivalent form. Let Fn.t/ and F̄ n.t/ be the
empirical cumulative distribution function and empirical survival function of Xi respectively,

Fn.t/= 1
n

n∑
i=1

1{Xi<t},

F̄ n.t/=1−Fn.t/,

and let Wn.t/ be the standardized form of F̄ n.t/− Φ̄.t/,

Wn.t/= F̄ n.t/− Φ̄.t/√
[Φ̄.t/{1− Φ̄.t/}]

√
n: .15/
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Consider the value t that satisfies Φ̄.t/=p.i/. Since there are exactly i p-values less than or equal
to p.i/, so there are exactly i samples from {X1, X2, . . . , Xn} that are greater than or equal to t.
Hence, for this particular t, F̄ n.t/= i=n, and so

Wn.t/= i=n−p.i/√{p.i/.1−p.i//}
√

n:

Comparing this with equation (13), we have

HCÅ
n = sup

−∞<t<∞
|Wn.t/|: .16/

The proof of equation (16), which we omit, is elementary. Now, note that, for any fixed t,

E[Wn.t/]=
{0, under H0,

√
n

F̄.t/− Φ̄.t/√
[Φ̄.t/{1− Φ̄.t/}]

, under H
.n/
1 :

The idea is that, if, for some threshold tn,∣∣∣∣∣√n
F̄.tn/− Φ̄.tn/√

[Φ̄.tn/{1− Φ̄.tn/}]

∣∣∣∣∣�√
[2 log{log.n/}] .17/

then we can test H0 against H
.n/
1 by merely applying thresholding on Wn.tn/. This guarantees

the success of detection of higher criticism.
For the case 1

2 <β< 1, we introduce the notion of the ideal threshold, tideal
n .β, r,σ/, which is

a functional of .β, r,σ, n/ that maximizes |E[Wn.t/]| under the alternative:

tideal
n .β, r,σ/=arg max

t

∣∣∣∣∣√n
F̄.t/− Φ̄.t/√

[Φ̄.t/{1− Φ̄.t/}]

∣∣∣∣∣ : .18/

The leading term of tideal
n .β, r,σ/ turns out to have a rather simple form. In detail, let

tÅn .β, r,σ/=
⎧⎨⎩min

[
2

2−σ2 An,
√{2 log.n/}

]
, σ<

√
2,

√{2 log.n/}, σ�√
2:

.19/

The following lemma is proved in Appendix B.

Lemma 1. Let "n and An be calibrated as in expressions (3) and (4). Fix σ> 0, β ∈ . 1
2 , 1/ and

r ∈ .0, 1/ such that r>ρÅ.β, r,σ/, where ρÅ.β, r,σ/ is defined in expressions (8) and (9). Then

tideal
n .β, r,σ/

tÅn .β, r,σ/
→1 as n→∞:

In the dense case when 0 <β< 1
2 , the analysis is much simpler. In fact, condition (17) holds

under the alternative if An � t �C for some constant C. To show the result, we can simply set
the threshold as

tÅn .β, r,σ/=1; .20/

then it follows that

|E[Wn.1/]|�√
[2 log{log.n/}]:

We might have expected An to be the best threshold as it represents the strength of the signal.
Interestingly, this turns out to be not so: the ideal threshold, as derived in the oracle situation
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when the values of .σ,β, r/ are known, is nowhere near An. In fact, in the sparse case, the ideal
threshold is either near {2=.2−σ2/}An or near

√{2 log.n/}; both are larger than An. In the
dense case, the ideal threshold is near a constant, which is also much larger than An. The elevated
threshold is due to sparsity (note that, even in the dense case, the signals are outnumbered by
noise): one must raise the threshold to counter the fact that there is merely much more noise
than signals.

Finally, the optimal adaptivity of higher criticism comes from the ‘sup’ part of its defini-
tion (see expression (16)). When the null hypothesis is true, by the study on empirical processes
(Shorack and Wellner, 2009), the supremum of Wn.t/ over all t is not substantially larger than
that of Wn.t/ at a single t. But, when the alternative is true, simply because

HCÅ
n �Wn{tideal

n .σ,β, r/},

the value of higher criticism is no smaller than that of Wn.t/ evaluated at the ideal threshold
(which is unknown to us!). In essence, higher criticism mimics the performance of Wn{tideal

n .σ,β,
r/}, although the parameters .σ,β, r/ are unknown. This explains the optimal adaptivity of
higher criticism.

Does the higher criticism continue to be optimal when .β, r/ falls exactly on the boundary,
and how do we improve this method if it ceases to be optimal in such a case? The question is
interesting but the answer is not immediately clear. In principle, given the literature on empir-
ical processes and law of iterative logarithms, it is possible to modify the normalizing term of
HCn,i so that the resultant higher criticism statistic has a better power. Such a study involves
the second-order asymptotic expansion of the higher criticism statistic, which not only requires
substantially more delicate analysis but also is comparably less important from a practical point
of view than the analysis that is considered here. For these reasons, we leave the exploration
along this line to the future.

3.2. Comparison with other testing methods
A classical and frequently used approach for testing is based on the extreme value

Maxn =Maxn.X1, X2, . . . , Xn/= max
{1�i�n}

{Xi}:

The approach is intrinsically related to multiple-testing methods including that of Bonferroni
and that of controlling the false discovery rate.

Recall that, under the null hypothesis, Xi are independent and identically distributed (IID)
samples from N.0, 1/. It is well known (e.g. Shorack and Wellner (2009)) that

lim
n→∞[Maxn=

√{2 log.n/}]→1, in probability:

Additionally, if we reject H0 if and only if

Maxn �√{2 log.n/}, .21/

then the type I error tends to 0 as n →∞. For brevity, we call the test in inequality (21) Maxn.
Now, suppose that the alternative hypothesis is true. In this case, Xi splits into two groups,

where one contains n.1 − "n/ samples from N.0, 1/ and the other contains n"n samples from
N.An,σ2/. Consider the sparse case first. In this case, An =√{2r log.n/} and n"n =n1−β . It fol-
lows that, except for a negligible probability, the extreme value of the first group is approximately√{2 log.n/}, and that of the second group approximately

√{2r log.n/}+σ
√{2.1−β/ log.n/}.

Since Maxn equals the larger of the two extreme values,
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Maxn ≈√{2 log.n/}max{1,
√

r +σ
√

.1−β/}:

So, as n →∞, the type II error of test (21) tends to 0 if and only if
√

r +σ
√

.1−β/> 1:

This is trivially satisfied when σ
√

.1−β/ > 1. The discussion is summarized in the following
theorem, the proof of which is omitted.

Theorem 8. Let "n and An be calibrated as in expressions (3) and (4). Fix σ> 0 and β∈ .1
2 , 1/.

As n → ∞, the sum of type I and type II error probabilities of test (21) tends to 0 if r >

{.1−σ
√

.1−β//+}2 and tends to 1 if r<{.1−σ
√

.1−β//+}2.

Note that the region where Maxn is successful is substantially smaller than that of higher
criticism in the sparse case. Therefore, the extreme value test is only suboptimal. Although the
comparison is for the sparse case, we note that the dense case is even more favourable for higher
criticism. In fact, as n →∞, the power of Maxn tends to 0 as long as An is algebraically small
in the dense case.

Other classical tests include tests based on the sample mean, Hotelling’s test and Fisher’s
combined probability test. These tests have the form of Σn

i=1 f.Xi/ for some function f. In fact,
Hotelling’s test can be recast as Σn

i=1 X2
i , and Fisher’s combined probability test can be recast as

−2 Σn
i=1 Φ̄.Xi/. The key fact is that the standard deviations of such tests usually are of the order

of
√

n. But, in the sparse case, the number of non-null effects is much less than
√

n. Therefore,
these tests cannot separate the two hypotheses in the sparse case.

4. Detection and related problems

The detection problem that is studied in this paper has close connections to other important
problems in sparse inference including estimation of the proportion of non-null effects and sig-
nal identification. In the current setting, both the proportion estimation problem and the signal
identification problem can be solved easily by extensions of existing methods. For example,
Cai et al. (2007) provided rate optimal estimates of the signal proportion "n and signal mean
An for the homoscedastic Gaussian mixture Xi ∼ .1−"n/ N.0, 1/+"n N.An, 1/. The techniques
developed by Cai et al. (2007) can be generalized to estimate the parameters "n, An and σ in the
current heteroscedastic Gaussian mixture setting, Xi ∼ .1−"n/ N.0, 1/+"n N.An,σ2/, for both
sparse and dense cases.

After detecting the presence of signals, a natural next step is to identify the locations of the
signals. Equivalently, we wish to test the hypotheses

H0,i : Xi ∼N.0, 1/ versus H1,i : Xi ∼N.An,σ2/ .22/

for 1 � i � n. An immediate question is when are the signals identifiable? It is intuitively clear
that it is more difficult to identify the locations of the signals than to detect the presence of
the signals. To illustrate the gap between the difficulties of detection and signal identification,
we study the situation when signals are detectable but not identifiable. For any multiple-testing
procedure T̂ n = T̂ n.X1, X2, . . . , Xn/, its performance can be measured by the misclassification
error

Err.T̂ n/=E[#{i : H0,i is either falsely rejected or falsely accepted , 1� i�n}]:

We calibrate "n and An by
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"n =n−β ,

An =√{2r log.n/}:

The above calibration is the same as in the sparse case (β> 1
2 ) (see expression (4)), but different

from the dense case (β< 1
2 ) (see expression (5)). The following theorem is a straightforward

extension of Ji and Jin’s (2010) theorem 1.1, so we omit the proof. See also Xie et al. (2011).

Theorem 9. Fix β ∈ .0, 1/ and r ∈ .0,β/. For any sequence of multiple-testing procedures
{T̂ n}∞

n=1,

lim inf
n→∞

{
Err.T̂ n/

n"n

}
�1:

Theorem 9 shows that, if the signal strength is relatively weak, i.e. An = √{2r log.n/} for
some 0 < r <β, then it is impossible to separate the signals from noise successfully: no identifi-
cation method can essentially perform better than the naive procedure which simply classifies
all observations as noise. The misclassification error of the naive procedure is obviously n"n.

Theorems 7 and 9 together depict a picture as follows. Suppose that

An <
√{2β log.n/}, if 1

2 <β< 1,

nβ−1=2 �An <
√{2β log.n/}, if 0 <β< 1

2 :
.23/

Then it is possible to detect the presence of the signals reliably but it is impossible to identify
the locations of the signals simply because the signals are too sparse and weak. In other words,
the signals are detectable, but not identifiable.

A practical signal identification procedure can be readily obtained for the current setting from
the general multiple-testing procedure that was developed in Sun and Cai (2007). By viewing
test (22) as a multiple-testing problem, we wish to test the hypotheses H0,i versus H1,i for all
i=1, . . . , n. A commonly used criterion in multiple testing is to control the false discovery rate
FDR at a given level, say, FDR �α. Equipped with consistent estimates ."̂n, Ân, σ̂/, we can
specialize the general adaptive testing procedure that was proposed in Sun and Cai (2007) to
solve the signal identification problem in the current setting. Define

L̂fdr.x/= .1− "̂n/ φ.x/

.1− "̂n/ φ.x/+ "̂n φ{.x− Ân/=σ̂} :

The adaptive procedure has three steps. First calculate the observed L̂fdr.Xi/ for i = 1, . . . , n.
Then rank L̂fdr.Xi/ in an increasing order: L̂fdr.1/ � L̂fdr.2/ � . . .� L̂fdr.n/. Finally reject all
H

.i/
0 , i=1, . . . , k, where k =max{i : .1=i/Σi

j=1 L̂fdr.j/ �α}. This adaptive procedure asymptoti-
cally attains the performance of an oracle procedure and thus is optimal for the multiple-testing
problem. See Sun and Cai (2007) for further details.

We conclude this section with another important problem that is intimately related to sig-
nal detection: feature selection and classification. Suppose that there are n subjects that are
labelled into two classes, and for each subject we have measurements of p features. The goal is
to use the data to build a trained classifier to predict the label of a new subject by measuring
its feature vectors. Donoho and Jin (2008) and Jin (2009) showed that the optimal threshold
for feature selection is intimately connected to the ideal threshold for detection in Section 3.1,
and the fundamental limit for classification is intimately connected to the detection boundary.
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Although the scope in these works is limited to the homoscedastic case, extensions to hetero-
scedastic cases are possible. From a practical point of view, the latter is in fact broader and more
attractive.

5. Simulation

In this section, we report simulation results, where we investigate the performance of four tests:
the LRT, higher criticism, Max and the sample mean SM, which is defined below. The LRT is
defined in expression (10); higher criticism is defined in expression (14) where the tuning param-
eter δ is taken to be the optimal value in 0:2 × [0, 1, . . . , 10] that results in the smallest sum of
type I and type II errors; Max is defined in expression (21). In addition, denoting

X̄n = 1
n

n∑
j=1

Xj,
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Fig. 3. Sum of type I and type II errors of the LRT, 100 replications ( , n D 107; – – –, n D 105;
� – � – �, n D 104;

:::, critical point of r D pÅ.βIσ/): (a) .β,σ2/ D .0.7, 0.5/, r D 0.05, 0.10,. . . ,1; (b) .β,σ/ D .0.2, 1/,
r D1=30, 1=15,. . . ,0.5
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let SM be the test that rejects H0 when
√

nX̄n >
√

[log{log.n/}] (note that
√

nX̄n ∼N.0, 1/ under
hypothesis H0). SM is an example in the general class of moment-based tests. Note that the
use of the LRT needs specific information of the underlying parameters .β, r,σ/, but higher
criticism, Max and SM do not need such information.

The main steps for the simulation are as follows. First, fixing parameters .n,β, r,σ/, we
let "n = n−β , An =√{2r log.n/} if β> 1

2 and An = n−r if β< 1
2 as before. Second, for the null

hypothesis, we drew n samples from N.0, 1/; for the alternative hypothesis, we first drew n.1−"n/

samples from N.0, 1/ and then draw n"n samples from N.An, 1/. Third, we implemented all four
tests for each of these two samples. Last, we repeated the whole process 100 times independently
and then recorded the empirical type I error and type II errors for each test. The simulation
contains four experiments below.

5.1. Experiment 1
In experiment 1, we investigate how the LRT performs and how relevant the theoretic detection
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Fig. 4. Sum of type I and type II errors of higher criticism ( ), LRT (– – –) and Max (� – � – �) (in (a)) or SM
(� – � – �) (in (b)), 100 replications: (a) .n,β,σ2/D .106, 0.7, 0.5/, r D0.05, 0.10,. . . ,1; (b) .n,β,σ2/D .106, 0.2, 1/,
r D1=30, 1=15,. . . ,0.5
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boundary is for finite n (the theoretic detection boundary corresponds to n=∞). We investigate
both a sparse case and a dense case.

For the sparse case, fixing .β,σ2/= .0:7, 0:5/ and n∈{104, 105, 107}, we let r range from 0.05
to 1 with an increment of 0.05. The sum of type I and type II errors of the LRT is reported
in Fig. 3(a). Recall that theorems 1 and 2 predict that, for sufficiently large n, the sum of type
I and type II errors of the LRT is approximately 1 when r < ρÅ.β;σ/ and is approximately 0
when r >ρÅ.β;σ/. In the current experiment, ρÅ.β;σ/=0:3. The simulation results show that,
for each of n ∈ {104, 105, 107}, the sum of type I and type II errors of the LRT is small when
r �0:5 and is large when r �0:1. In addition, if we view the sum of type I and type II errors as a
function of r, then, as n grows larger, the function becomes increasingly close to the indicator
function 1{r<0:3}. This is consistent with theorems 2.

For the dense case, we fix .β,σ2/= .0:2, 1/ and n∈{104, 105, 107}, and let r range from 1=30 to
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Fig. 5. Sum of type I and type II errors of higher criticism ( ), the LRT (– – –) and Max (� – � – �)
(in (a)) or SM (� – � – �) (in (b)), 100 replications: (a) .n,β, r/ D .106, 0.7, 0.25/, σD 0.2, 0.4,. . . ,2; (b) .n,β, r/ D
.106, 0.2, 0.4/, σD0.2, 0.4,. . . ,2 (the spike is because, in the dense case, the detection problem is intrinsically
different when σD1 and σ 6D1)
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0.5 with an increment of 1=30. The results are displayed in Fig. 3(b), where a similar conclusion
can be drawn.

5.2. Experiment 2
In experiment 2, we compare higher criticism with the LRT, Max and SM, focusing on the effect
of the signal strength (calibrated through the parameter r). We consider both a sparse case and
a dense case.

For the sparse case, we fix .n,β,σ2/ = .106, 0:7, 0:5/ and let r range from 0.05 to 1 with an
increment of 0.05. The results are displayed in Fig. 4(a), which illustrates that higher criticism
has a similar performance with that of the LRT and outperforms Max. We also note that SM
usually does not work in the sparse case, so we leave it out of the comparison.

We note that the LRT has optimal performance, but the implementation of which needs
specific information of .β, r,σ/. In contrast, higher criticism is non-parametric and does not
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Fig. 6. Sum of type I and type II errors of higher criticism ( ), the LRT (– – –) and Max (� – � – �)
(in (a)) or SM (� – � – �) (in (b)), 100 replications: (a) .n, r,σ2/ D .106, 0.25, 0.5/, β D 0.55, 0.60,. . . ,1; (b)
.n, r,σ2/D .106, 0.3, 1/, βD0.05, 0.10,. . . ,0.5
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need such information. Nevertheless, higher criticism has comparable performance to that of
the LRT.

For the dense case, we fix .n,β,σ2/ = .106, 0:2, 1/ and let r range from 1=30 to 0.5 with an
increment of 1=30. In this case, Max usually does not work well, so we compare higher criticism
with the LRT and SM only. The results are summarized in Fig. 4(b), where a similar conclusion
can be drawn.

5.3. Experiment 3
In experiment 3, we continue to compare higher criticism with the LRT, Max and SM, but with
the focus on the effect of the heteroscedasticity (calibrated by the parameter σ). We consider a
sparse case and a dense case.

For the sparse case, we fix .n,β, r/= .106, 0:7, 0:25/ and let σ range from 0.2 to 2 with an incre-
ment of 0.2. The results are reported in Fig. 5(a) (that for SM is left out as it would not work
well in the very sparse case), where the performance of each test becomes increasingly better as
σ increases. This suggests that the testing problem becomes increasingly easier as σ increases,
which fits well with the asymptotic theory in Section 2. In addition, for the whole region of σ,
higher criticism has a comparable performance to that of the LRT, and it outperforms Max
except for large σ, where higher criticism and Max perform comparably.

For the dense case, we fix .n,β, r/ = .106, 0:2, 0:4/ and let σ range from 0.2 to 2 with an
increment of 0.2. We compare the performance of higher criticism with that of the LRT and
SM. The results are displayed in Fig. 5(b). It is noteworthy that higher criticism and the LRT
perform reasonably well when σ is bounded away from 1 and effectively fail when σ= 1. This
is because the detection problem is intrinsically different in the cases of σ �=1 and σ=1. In the
former, the heteroscedasticity alone could yield successful detection. In the latter, signals must
be sufficiently strong for successful detection. Note that, for the whole range of σ, SM has poor
performance.

5.4. Experiment 4
In experiment 4, we continue to compare the performance of higher criticism with that of the
LRT, Max and SM, but with the focus on the effect of the level of sparsity (calibrated by the
parameter β).

First, we investigate the case β> 1
2 . We fix .n, r,σ2/= .106, 0:25, 0:5/ and let β range from 0.55

to 1 with an increment of 0.05. The results are displayed in Fig. 6(a), which illustrates that the
detection problem becomes increasingly more difficult when β increases and r is fixed. Neverthe-
less, higher criticism has a comparable performance with that of the LRT and outperforms Max.

Second, we investigate the case β< 1
2 . We fix .n, r,σ2/= .106, 0:3, 1/ and let β range from 0.05

to 0.5 with an increment of 0.05. Compared with the previous case, a similar conclusion can be
drawn if we replace Max by SM.

In the simulation experiments, the estimated standard errors of the results are in general
small. Recall that each point on the curves is the mean of 100 replications. To estimate the
standard error of the mean, we use the following popular procedure (Zou, 2006). We generated
500 bootstrap samples out of the 100 replication results and then calculated the mean for each
bootstrap sample. The estimated standard error is the standard deviation of the 500 bootstrap
means. Owing to the large scale of the simulations, we pick several examples in both sparse
and dense cases in experiment 3 and demonstrate their means with estimated standard errors
in Table 1. The estimated standard errors are in general smaller than the differences between
means. These results support our conclusions in experiment 3.
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Table 1. Means with their estimated standard errors in parentheses for various methods†

σ Results for the sparse case Results for the dense case

LRT HC Max LRT HC SM

0.5 0.84 (0.037) 0.91 (0.031) 1 (0) 0 (0) 0 (0) 0.98 (0.013)
1 0.52 (0.051) 0.62 (0.050) 0.81 (0.040) 0.93 (0.025) 0.98 (0.0142) 0.99 (0.010)

†Sparse, .n, β, r/= .106, 0:7, 0:25/; dense, .n, β, r/= .106, 0:2, 0:4/.

In conclusion, higher criticism has a comparable performance with that of the LRT. But,
unlike the LRT, higher criticism is non-parametric. Higher criticism automatically adapts to
different strengths of signal, levels of heteroscedasticity and levels of sparsity, and outperforms
Max and SM.

6. Discussion

In this section, we discuss extensions of the main results in this paper to more general settings.
We discuss the case where the strengths of signal may be unequal, the case where the noise may
be correlated or non-Gaussian and the case where the heteroscedasticity parameter σ has a more
complicated source.

6.1. When the signal strength may be unequal
In the preceding sections, the non-null density is a single normal N.An,σ2/ distribution and the
signal strengths are equal. More generally, we could replace the single normal distribution by a
location Gaussian mixture, and the alternative hypothesis becomes

H
.n/
1 : Xi

IID∼ .1− "n/ N.0, 1/+ "n

∫
1
σ
φ

(
x−u

σ

)
dGn.u/, .24/

where φ.x/ is the density of N.0, 1/ and Gn.u/ is some distribution function.
Interestingly, the Hellinger distance that is associated with the testing problem is monotone

with respect to Gn. In fact, fixing n � 1, if the support of Gn is contained in [0, An], then the
Hellinger distance between N.0, 1/ and the density in expression (24) is no greater than that
between N.0, 1/ and .1− "n/ N.0, 1/+ "n N.An,σ2/. The proof is elementary so we omit it.

At the same time, similar monotonicity exists for higher criticism. In detail, fixing n, we apply
higher criticism to n samples from

.1− "n/ N.0, 1/+ "n

∫
1
σ
φ

(
x−u

σ

)
dGn.u/,

as well as to n samples from .1−"n/ N.0, 1/+"n N.An,σ2/, and obtain two scores. If the support
of Gn is contained in [0, An], then the former is stochastically smaller than the latter (we say that
random variable X is less than or equal to random variable Y stochastically if the cumulative
distribution function of the former is no smaller than that of the latter pointwise). The claim
can be proved by elementary probability and mathematical induction, so we omit it.

These results shed light on the testing problem for general Gn. As before, let "n = n−β and
τp =√{2r log.p/}. The following results can be proved.
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(a) Suppose that r <ρÅ.β;σ/. Consider the problem of testing H0 against H
.n/
1 as in expres-

sion (24). If the support of Gn is contained in [0, An] for sufficiently large n, then two
hypotheses are asymptotically indistinguishable (i.e., for any test, the sum of type I and
type II errors tends to 1 as n→∞).

(b) Suppose that r >ρÅ.β;σ/. Consider the problem of testing H0 against H
.n/
1 as in expres-

sion (24). If the support of Gn is contained in [An, ∞/, then the sum of type I and type II
errors of the higher criticism test tends to 0 as n→∞.

6.2. When the noise is correlated or non-Gaussian
The main results in this paper can also be extended to the case where the Xi are correlated or
non-Gaussian.

We discuss the correlated case first. Consider a model X=μ+Z, where the mean vector μ is
non-random and sparse, and Z ∼N.0, Σ/ for some covariance matrix Σ=Σn,n. Let supp.μ/ be
the support of μ, and let Λ=Λ.μ/ be an n × n diagonal matrix the kth co-ordinate of which is
σ or 1 depending on whether k ∈ supp.μ/ or not. We are interested in testing a null hypothesis
where μ= 0 and Σ=ΣÅ against an alternative hypothesis where μ �= 0 and Σ=ΛΣÅΛ, where
ΣÅ is a known covariance matrix. Note that our preceding model corresponds to the case where
ΣÅ is the identity matrix. Also, a special case of the above model was studied in Hall and Jin
(2008, 2010), where σ= 1 so that the model is homoscedastic in a sense. In these works, we
found that the correlation structure in the noise is not necessarily a curse and could be a bless-
ing. We showed that we could better the testing power of higher criticism by combining the
correlation structure with the statistic. The heteroscedastic case is interesting but has not yet
been studied.

We now discuss the non-Gaussian case. In this case, how to calculate individual p-values
poses challenges. An interesting case is where the marginal distribution of Xi is close to normal.
An iconic example is the study of gene microarrays, where Xi could be the Studentized t-scores
of m different replicates for the ith gene. When m is moderately large, the moderate tail of Xi

is close to that of N.0, 1/. Exploration along this direction includes Delaigle et al. (2011) where
we learned that higher criticism continues to work well if we use bootstrapping correction on
small p-values. The scope of this study is limited to the homoscedastic case, and extension to
the heteroscedastic case is both possible and of interest.

6.3. When the heteroscedasticity has a more complicated source
In the preceding sections, we model the heteroscedasticity parameter σ as non-stochastic. The
setting can be extended to a much broader setting where σ is random and has a density h.σ/.
Assume that the support of h.σ/ is contained in an interval [a, b], where 0 < a < b < ∞. We
consider a setting where, under hypothesis H

.n/
1 , Xi ∼IID g.x/, with

g.x/=g.x; "n, An, h, a, b/

= .1− "n/ φ.x/+ "n

∫ b

a

1
σ
φ

(
x−An

σ

)
h.σ/ dσ: .25/

Recall that, in the sparse case, the detection boundary r =ρÅ.β;σ/ is monotonically decreas-
ing in σ when β is fixed. The interpretation is that a larger σ always makes the detection problem
easier. Compare the current testing problem with two other testing problems: whereσ=νa (point
mass at a) and σ=νb. Note that h.σ/ is supported in [a, b]. In comparison, the detection prob-
lem in the current setting should be easier than the case σ= νa and be more difficult than the
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case σ=νb. In other words, the ‘detection boundary’ that is associated with the current case is
sandwiched by two curves r =ρÅ.β; a/ and r =ρÅ.β; b/ in the β–r-plane.

If additionally h.σ/ is continuous and is non-zero at the point b, then there is a non-vanishing
fraction of σ, say δ∈ .0, 1/, that falls close to b. Heuristically, the detection problem is at most
as hard as the case where g.x/ in equation (25) is replaced by g̃.x/, where

g̃.x/= .1− δ"n/ N.0, 1/+ δ"n N.An, b2/: .26/

Since the constant δ has only a negligible effect on the testing problem, the detection boundary
that is associated with equation (26) will be the same as in the case σ=νb. For brevity, we omit
the proof.

We briefly comment on using higher criticism for real data analysis. One interesting applica-
tion of higher criticism is for high dimensional feature selection and classification (see Section
4). In a related paper (Donoho and Jin, 2008), the method was applied to several by now stan-
dard gene microarray data sets (leukaemia, prostate cancer and colon cancer). The results that
were reported are encouraging and the method is competitive with many widely used classifiers
including random forests and the support vector machine. Another interesting application of
higher criticism is for non-Gaussian detection in the so-called Wilkinson microwave anisotropy
probe data (Cayon et al., 2005). The method is competitive with the kurtosis-based method,
which is the most widely used method by cosmologists and astronomers. In these real data
analyses, it is difficult to tell whether the assumption of homoscedasticity is valid or not. How-
ever, the current paper suggests that higher criticism may continue to work well even when the
assumption of homoscedasticity does not hold.

To conclude this section, we mention that this paper is connected to that by Jager and Wellner
(2007), who investigated higher criticism in the context of goodness of fit. It is also connected to
Meinshausen and Buhlmann (2006) and Cai et al. (2007), who used higher criticism to motivate
lower bounds for the proportion of non-null effects.
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Appendix A: Proofs

We now prove the main results. In this section we shall use PL.n/ > 0 to denote a generic poly-log-
term which may be different from one occurrence to another, satisfying limn→∞{PL.n/n−δ} = 0 and
limn→∞{PL.n/nδ}=∞ for any constant δ> 0.

A.1. Proof of theorem 1
By the well-known theory on the relationship between the L1-distance and the Hellinger distance, it suffices
to show that the Hellinger affinity between N.0, 1/ and .1− "n/ N.0, 1/+ "n N.An,σ2/ behaves asymptot-
ically as 1 + o.1=n/. Denote the density of N.0,σ2/ by φσ.x/ (we drop the subscript when σ= 1), and
introduce

gn.x/=gn.x; r,σ/= φσ.x−An/

φ.x/
: .27/
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The Hellinger affinity is then E[
√{1− "n + "n gn.X/}], where X ∼ N.0, 1/. Let Dn be the event of |X|�√{2 log.n/}. The following lemma is proved in Appendix B.

Lemma 2. Fix σ> 1, β ∈ . 1
2 , 1/, and r ∈ .0, ρÅ.β;σ//. As n →∞,

"n E[gn.X/ 1{Dc
n}]=o.1=n/,

"2
n E[g2

n.X/ 1{Dn}]=o.1=n/:

We now proceed to show theorem 1. First, since E[
√{1− "n + "n gn.X/ 1{Dn}}]�E[

√{1− "n + "n gn.X/}]
�1, all we need to show is that

E[
√{1− "n + "n gn.X/ 1{Dn}}]=1+o.1=n/:

Now, note that, for x�−1, |√.1+x/−1−x=2|�Cx2. Applying this with x= "n{gn.X/ 1{Dn} −1} gives

E
√{1− "n + "n gn.X/ 1{Dn}}=1− "n

2
E[gn.X/ 1{Dc

n}]+ err, .28/

where, by the Cauchy–Schwarz inequality,

|err|�C"2
n E[gn.X/ 1{Dn} −1]2 �C"2

n{E[g2
n.X/ 1{Dn}]+1}: .29/

Recall that "2
n =n−2β =o.1=n/. Combining lemma 2 with expressions (28) and (29) gives the claim.

A.2. Proof of theorem 2
Since the proofs are similar, we show only that under the null hypothesis. By Chebyshev’s inequality, to
show that − log.LRn/→∞ in probability, it is sufficient to show that, as n →∞,

−E[log.LRn/]→∞, .30/

and
var{log.LRn/}
E[log.LRn/]2

→0: .31/

Consider assumption (30) first. Recalling that gn.x/=φσ.x−An/=φ.x/, we introduce

LLRn.X/=LLRn.X; "n, gn/= log{1− "n + "n gn.X/}, .32/

and

fn.x/=fn.x; "n, gn/= log{1+ "n gn.x/}− "n gn.x/: .33/

By definitions and elementary calculus, log.LRn/=Σn
i=1LLRn.Xi/, and E[LLRn.X/]=E[log{1+"ngn.X/}−

"n gn.X/]+O."2
n/=E[fn.X/]+O."2

n/. Recalling that "2
n =n−2β =o.1=n/,

E[log.LRn/]=n E[LLRn.X/]=n E[fn.X/]+o.1/: .34/

Here, X and Xi are IID N.0, 1/, 1 � i � n. Moreover, since there is a constant c1 ∈ .0, 1/ and a generic
constant C > 0 such that log.1 + x/� c1x for x > 1 and log.1 + x/− x �−Cx2 for x � 1, there is a generic
constant C> 0 such that

E[fn.X/]�−C{"nE[gn.X/ 1{"ngn.X/>1}]+ "2
n E[g2

n.X/1{"ngn.X/�1}]}: .35/

The following lemma is proved in Appendix B.

Lemma 3. Fix σ> 0, β ∈ . 1
2 , 1/ and r ∈ .0, 1/ such that r>ρÅ.β;σ/; then, as n →∞, we have either

n"n E[gn.X/ 1{"ngn.X/>1}]→∞ .36/

or

n"2
n E[g2

n.X/ 1{"ngn.X/�1}]→∞: .37/

Combining lemma 3 with expressions (34) and (35) gives the claim in assumption (30).
Next, we show assumption (31). Recalling that log.LRn/=Σn

i=1LLRn.Xi/, we have

var{log.LRn/}=n var{LLRn.X/}=n.E[LLR2
n]−E[LLRn]2/:
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Comparing this with expression (31), it is sufficient to show that there is a constant C> 0 such that

E[LLR2
n.X/]�C|E[LLRn.X/]|: .38/

First, by the Schwartz inequality, for all x,

log2{1− "n + "ngn.x/}=
[

log
{

1− "n

1+ "n gn.x/

}
+ log{1+ "n gn.x/}

]2

�C["2
n + log2{1+ "n gn.x/}]:

Recalling that "2
n =o.1=n/,

E[LLR2
n]�CE[log2{1+ "ngn.X/}]+o.1=n/:

Second, note that log.1+x/<C
√

x for x> 1 and log.1+x/<x for x> 0. By a similar argument to that in
the proof of result (35),

E[log2{1+ "n gn.X/}]�C{"n E[gn.X/1{"ngn.X/>1}]+ "2
n E[g2

n.X/1{"ngn.X/�1}]}:

Since the right-hand side has an order that is much larger than o.1=n/,

E[LLR2
n]�C{"n E[gn.X/1{"ngn.X/>1}]+ "2

n E[g2
n.X/ 1{"ngn.X/�1}]}:

Comparing this with inequality (35) gives the claim.

A.3. Proof of theorem 3
By a similar argument to that in Appendix A.1, all that we need to show is that, when σ=1 and r> 1

2 −β,

E[
√{1− "n + "n gn.X/}]=1+o.n−1/, .39/

where X∼N.0, 1/, and gn.X/ is as in equation (27). By Taylor series expansion,

E[
√{1− "n + "n gn.X/}]�E

[
1+ "n

2
{gn.X/−1}− "2

n

8
{gn.X/−1}2

]
:

Note that E[gn.X/]=1; then

E[
√{1− "n + "n gn.X/}]�1− "2

n

8
{E[g2

n.X/]−1}: .40/

Write

E[g2
n.X/]=

∫
1√

.2π/σ2
exp

{(
1
2

− 1
σ2

)
x2 + 2Anx

σ2
− A2

n

σ2

}
dx

=
∫

1√
.2π/σ2

exp
{

− 2−σ2

2σ2

(
x− 2An

2−σ2

)2

+ A2
n

2−σ2

}
dx:

In the current case, σ=1, and An =n−r with r>β− 1
2 . By direct calculations, E[g2

n.X/]= exp .A2
n/, and

"2
n

8
{E[g2

n.X/]−1}∼ "2
nA2

n =o.n−1/: .41/

Inserting expressions (40) and (41) into equation (39) gives the claim.

A.4. Proof of theorem 4
Recall that LLRn.x/ = log[1 + "n{gn.x/ − 1}] and log.LRn/ = Σn

j=1LLRn.Xj/. By similar arguments to
those in Appendix A.2 it is sufficient to show that for X∼N.0, 1/, when n→∞,

nE[LLRn.X/]→−∞, .42/

and
var{log.LRn/}
E[log.LRn/]2

→0: .43/
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Consider assumption (42) first. Introduce the event Bn ={X : "n gn.X/�1}. Note that log.1+x/�x for
all x and log.1+x/�x−x2=4 when x�1, and that E[gn.X/]=1. It follows that

E[LLRn.X/]�E["n{gn.X/−1}]− 1
4 E["2

n{gn.X/−1}2 1Bn ]=− 1
4 "2

n E[{gn.X/−1}2 1Bn ]: .44/

Since E[gn.X/ 1Bn ]�E[gn.X/]=1, it is seen that

E[{gn.X/−1}2 1Bn ]�E[g2
n.X/ 1Bn ]−2+P.Bn/=E[g2

n.X/1Bn ]−1−P.Bc
n/: .45/

We now discuss for the case of σ=1 and σ �=1 separately.
Consider the case σ=1 first. In this case, gn.x/= exp.Anx−A2

n=2/. By direct calculations,

P.Bc
n/=o.A2

n/,

E[g2
n.X/ 1Bn ]= exp.A2

n/√
.2π/

∫
{x:"ngn.x/�1}

exp
{

− .x−2An/2

2

}
dx=1+A2

n{1+o.1/}:

Combining this with expressions (44) and (45), E[LLRn.X/]�− 1
4 "2

nA2
n =− 1

4 n−2.β+r/. The claim follows by
the assumption r< 1

2 −β.
Consider the case σ �=1. It is sufficient to show that, as n→∞,

E[g2
n.X/1Bn ]∼

{ 1=σ
√

.2−σ2/, σ<
√

2,
C

√
log.n/, σ=√

2,
{C=

√
log.n/}nβ.σ2−2/=.σ2−1/, σ>

√
2,

.46/

where we note that 1=σ
√

.2−σ2/ > 1 when σ <
√

2. In fact, once this has been shown, noting that
P.Bc

n/ = o.1/, it follows from expression (45) that there is a constant c0.σ/ > 0 such that, for sufficiently
large n, E[{gn.X/−1}2 1Bn ]−1�4 c0.σ/. Combining this with expression (44), E[LLRn.X/]�−c0.σ/"2

n =
−c0.σ/n−2β . The claim follows from the assumption β< 1

2 .
We now show result (46). Write

E[g2
n.X/ 1Bn ]= 1√

.2π/σ2

∫
{x:"ngn.x/�1}

exp
{(

1
2

− 1
σ2

)
x2 + 2Anx

σ2
− A2

n

σ2

}
dx: .47/

Consider the case σ<
√

2 first. In this case, 1
2 −1=σ2 < 0. Since An =n−r, it is seen that

E[g2
n.X/1Bn ]∼ 1√

.2π/σ2

∫
exp

{(
1
2

− 1
σ2

)
x2

}
dx= 1

σ
√

.2−σ2/
,

and the claim follows. Consider the case σ�√
2. Let x±.n/=x±.n;σ, "n, An/, x− <x+, be the two solutions

of "n gn.x/=1, and let x0.n/=x0.n;σ,β/=√{2σ2β log.n/=.σ2 −1/}. By elementary calculus, "n gn.x/�1
if and only if x−.n/�x�x+.n/ and x±.n/=±x0.n/+o.1/, where o.1/→ 0 algebraically fast as n→∞. It
follows that

E[g2
n.X/1Bn ]= 1√

.2π/σ2

∫ x+.n/

x−.n/

exp
{(

1
2

− 1
σ2

)
x2 + 2Anx

σ2
− A2

n

σ2

}
dx

∼ 1√
.2π/σ2

∫ x+.n/

x−.n/

exp
{(

1
2

− 1
σ2

)
x2

}
dx: .48/

When σ=√
2, 1

2 −1=σ2 =0. By equation (48),

E[g2
n.X/1Bn ]∼ 1√

.2π/σ2
2 x0.n/∼ 2

σ

√{
β log.n/

π.σ2 −1/

}
,

which gives the claim. When σ>
√

2, 1
2 −1=σ2 > 0. By equation (48) and elementary calculus,

E[g2
n.X/ 1Bn ]∼ 1√

.2π/σ2. 1
2 −1=σ2/ x0.n/

exp
{(

1
2

− 1
σ2

)
x2

0.n/

}
∼

√
.σ2 −1/

.σ2 −2/σ
√{πβ log.n/}nβ.σ2−2/=.σ2−1/,
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and the claim follows.
We now show assumption (43). By similar arguments to those in Appendix A.2, it is sufficient to show

that

E[LLR2
n.X/]�C|E[LLRn.X/]|: .49/

Note that it is proved in expression (44) that

|E[LLRn.X/]|� 1
4 E["2

n{gn.X/−1}2 1Bn ]: .50/

Recall that LLRn.x/ = log[1 + "n{gn.x/ − 1}]. Since log2.1 + a/ � a for a > 1 and | log2.1 + a/| � a2 for
−"n �a�1,

E[LLR2
n.X/]�E["n{gn.X/−1}1Bc

n
]+E["2

n{gn.X/−1}2 1Bn ]: .51/

Compare expression (51) with expression (50). To show inequality (49), it is sufficient to show that

E["n{gn.X/−1}1Bc
n
]�CE["2

n{gn.X/−1}2 1Bn ]: .52/

This follows trivially when σ< 1, in which case Bc
n =∅. This also follows easily when σ=1, in which case

gn.x/= exp.Anx−A2
n=2/ and Bn ={X : |X|�nβ+r exp.A2

n/}.
We now show inequality (52) for the case σ> 1. By the proof of assumption (42),

E["2
n{gn.X/−1}2 1Bn ]�

{Cn−2β , 1 <σ<
√

2,
C

√
log.n/n−2β , σ=√

2,
{C=

√
log.n/}n−βσ2=.σ2−1/, σ>

√
2:

.53/

At the same time, by the definitions and properties of x±.n/ and Mills’s ratio (Wasserman, 2006),

"n E[gn.X/ 1Bc
n
]∼2"n

∫ ∞

x0.n/

1
σ
φ

(
x−An

σ

)
dx� C√

log.n/
n−βσ2=.σ2−1/: .54/

Note that σ2=.σ2 −1/�2 when σ�√
2. Comparing expressions (53) and (54) gives inequality (52).

A.5. Proof of theorem 7
It is sufficient to show that, as n →∞,

PH0 .HCÅ
n �√

[2.1+ δ/ log{log.n/}]/→0, .55/

and

P
H

.n/
1

.HCÅ
n <

√
[2.1+ δ/ log{log.n/}]/→0: .56/

Recall that, under the null hypothesis, HCÅ
n equals in distribution the extreme value of a normalized

uniform empirical process and

HCÅ
n√

[2 log{log.n/}]
→1, in probability:

So, the first claim follows directly. Consider the second claim. By expressions (3.16), (3.19) and (3.20),
HCÅ

n = sup−∞<t<∞ |Wn.t/| � |Wn{tÅn .σ,β, r/}|, so all we need to show is that, under the assumptions in
theorem 7,

P
H

.n/
1

.|Wn{tÅn .σ,β, r/}|<√
[2.1+ δ/ log{log.n/}]/→0: .57/

For this, we write for short t = tÅn .σ,β, r/.
In the sparse case with 1

2 <β< 1, direct calculations show that

E[Wn.t/]=√
n"n

{
Φ̄
(

t −An

σ

)
− Φ̄.t/

}/√
[Φ̄.t/{1− Φ̄.t/}]∼√

n"n

{
Φ̄
(

t −An

σ

)
− Φ̄.t/

}/√
Φ̄.t/, .58/

and

var{Wn.t/}= F̄ .t/{1− F̄ .t/}
Φ̄.t/{1− Φ̄.t/} ∼ F̄ .t/

Φ̄.t/
: .59/
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By Mills’s ratio (Wasserman, 2006),

Φ̄.
√{2q log.n/}=PL.n/n−q,

Φ̄
[√{2q log.n/}−An

σ

]
=PL.n/n−.

√
q−√

r/2=σ2
:

.60/

Inserting expression (60) into expression (58) gives

√
n"n

{
Φ̄
(

t −An

σ

)
− Φ̄.t/

}/√
Φ̄.t/=

{
PL.n/nr=.2−σ2/−.β−1=2/, σ<

√
2, r<.2−σ2/2=4,

PL.n/n1−β−.1−√
r/2=σ2

, otherwise:
.61/

It follows from r>ρÅ.σ,β, r/ and basic algebra that E[Wn.t/] →∞ algebraically fast. Especially,

E[Wn.t/]=
√

[2.1+ δ/ log{log.n/}]→∞: .62/

Combining expressions (58) and (59), it follows from Chebyshev’s inequality that

P
H

.n/
1

.|Wn{tÅn .σ,β, r/}|<√
[2.1+ δ/ log{log.n/}]/�C

var{Wn.t/}
E[Wn.t/]2

�CF̄.t/

/
n"2

n

{
Φ̄
(

t −An

σ

)
− Φ̄.t/

}2

:

Applying expression (61), the above expression is approximately equal to

n−2r=.2−σ2/+2β−1 +nσ
2r=.2−σ2/2+β−1, σ<

√
2, r<.2−σ2/2=4,

n−1+β+.1−√
r/2=σ2

, otherwise,

which tends to 0 algebraically fast as r>ρÅ.σ,β, r/.
In the dense case with 0 <β< 1

2 , recall that tÅn .σ,β, r/=1. Therefore,

E[Wn.1/]=√
n"n

{
Φ̄
(

1−An

σ

)
− Φ̄.1/

}/√
[Φ̄.1/{1− Φ̄.1/}]∼C

√
n"n

{
Φ̄
(

1−An

σ

)
− Φ̄.1/

}
,

and

var{Wn.1/}= F̄ .1/{1− F̄ .1/}
Φ̄.1/{1− Φ̄.1/} ∼ constant: .63/

Furthermore,

√
n"n

{
Φ̄
(

1−An

σ

)
− Φ̄.1/

}
=−Cn1=2−β

(
1
σ

−1− An

σ

)
{1+o.1/}:

So, when σ> 1, or σ=1 and r< 1
2 −β,

E[Wn.1/]∼nγ .64/

for some γ> 0 and

E[Wn.1/]=
√

[2.1+ δ/ log{log.n/}]→∞:

In contrast, when σ< 1,

E[Wn.1/]∼−nγ .65/

for some γ> 0 and

E[Wn.1/]=
√

[2.1+ δ/ log{log.n/}→−∞:

Combining expressions (63), (64) and (65), it follows from Chebyshev’s inequality that

P
H

.n/
1

{|Wn{tÅn .σ,β, r/}|<√
[2.1+ δ/ log{log.n/}]�C

var{Wn.1/}
E[Wn.1/]2

�Cn−2γ →0:

Appendix B

B.1. Proof of theorem 5 and theorem 6
We consider the case σ ∈ .0,

√
2/ first. Since the proofs are similar, we show only that under the null
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hypothesis. Recall that log.LRn/=Σn
j=1 LLRn.Xj/ (see Section 6.2). It is sufficient to show that

E[exp{it LLRn.X/}]=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1+
(

− it + t2

2

)
1

σ
√

.2−σ2/

1
n

{1+o.1/},
1
2

<β< 1− σ2

4
,

1+
(

− it+ t2

2

)
1

2σ
√

.2−σ2/

1
n

{1+o.1/}, β=1− σ2

4
,

1+ .1=n/ψ0
β,σ.t/{1+o.1/}, 1− σ2

4
<β< 1:

Note that E[exp{it LLRn.X/}] = exp{it log.1 − "n/}E[exp[it log{1+ "n gn.X/}]] + O."2
n/, exp{it log.1 −

"n/} = 1 − it"n + O."2
n/, and E[exp[it log{1+ "n gn.X/}]] = 1 + it"n + E[exp[it log{1+ "n gn.X/}] − 1 −

it"n gn.X/]. Therefore,

E[exp{itLLRn.X/}]=1+E[exp[it log{1+ "n gn.X/}]−1− it"n gn.X/]+o.1=n/: .66/

We now analyse the limiting behaviour of E[exp[it log{1− "n + "n gn.X/}] − 1 − i"nt gn.X/] for the case
1�σ<

√
2. The case 0 <σ< 1 is similar to that of 1�σ<

√
2 and thus is omitted.

In the case 1 �σ<
√

2, we discuss three subcases separately: β� .1 −σ2=4/, β= .1 −σ2=4/ and β>
.1−σ2=4/.

When β< 1−σ2=4, we have

r = .2−σ2/.β− 1
2 /, so 0 <r< 1

4.2−σ2/2: .67/

Write

"ngn.x/=C"n exp
{(

1
2

− 1
2σ2

)
x2 + Anx

σ2
− A2

n

2σ2

}
:

We first show that max{|x|�√{2 log.n/}}|"n gn.x/|}=o.1/. When σ� 1, the exponent is a convex function in
x, and the maximum is reached at x=√{2 log.n/} with the maximum value of

n1−{β+.1−√
r/2=σ2}: .68/

By expression (67), the exponent 1−{β+ .1−√
r/2=σ2}< 0. When σ< 1, the exponent is a concave func-

tion in x. We further consider two sub-subcases:
√{2 log.n/}�An=.1−σ2/ and

√{2 log.n/}>An=.1−σ2/.
For the first case, the maximum is reached at x=√{2 log.n/} with the maximum value of expression (68),
where the exponent is less than 0. For the second case, we have

√
r< 1−σ2, and the maximum is reached

at x=An=.1−σ2/ with the maximum value of

n−β+r=.1−σ2/:

Together, expression (67) and the fact that r < .1 −σ2/2 < .1 −σ2=2/.1 −σ2/ imply that β< 1 −σ2=2. So,
using expression (67) again,

−β+ r

1−σ2
= β

1−σ2
+ 2−σ2

2.1−σ2/
< 0:

Combining all these gives that

max
{|x|�√{2 log.n}}

|"n gn.x/|= exp
[

max
{|x|�√{2 log.n/}}

{(
1
2

− 1
2σ2

)
x2 + Anx

σ2
− A2

n

2σ2

}]
=o.1/: .69/

Now, introduce

fn.x/=f.x; t,β, r/= exp[it log{.1+ "ngn.X/}]−1− it"n gn.x/,

and the event Dn ={|X|�√{2 log.n}}. We have

E[fn.X/]=E[fn.X/1{Dn}]+E[fn.X/1{Dc
n}]:

On one hand, by equation (69) and Taylor series expansion,

E[fn.X/1{Dn}]∼ .−t2=2/E["2
n g

2
n.X/1{Dn}]:
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On the other hand,

|fn.X/|�1+ "ngn.X/:

Compare this with the desired claim; it is sufficient to show that

E["2
n g

2
n.X/1{Dn}]∼ 1√{σ2.2−σ2/}

1
n

, .70/

and that

E[{1+ "n gn.X/}1{Dc
n}]=o.1=n/: .71/

Consider assumption (70) first. By a similar argument to that in the proof of lemma 2,

"2
n E[g2

n.X/1{Dn}]= 1√
.2π/σ2

n−2β+2r=.2−σ2/

√{2 log.n/}−An=.1−σ2=2/∫
−√{2 log.n/}−An=.1−σ2=2/

exp
{

−
(

1
σ2

− 1
2

)
y2

}
dy: .72/

Note that
√{2 log.n/}− An

1−σ2=2
=√{2 log.n/}

(
1− 2

√
r

2−σ2

)
,

where 1−2
√

r=.2−σ2/> 0 as r< 1
4 .2−σ2/2. Therefore,

√{2 log.n/}−An=.1−σ2=2/∫
−√{2 log.n/}−An=.1−σ2=2/

exp
{

−
(

1
σ2

− 1
2

)
y2

}
dy ∼

√(
2πσ2

2−σ2

)
:

Moreover, by expression (67), 2β−2r=.2−σ2/=1, so

"2
n E[g2

n.X/ 1{Dn}]∼ 1√{σ2.2−σ2/}n−2β+2r=.2−σ2/ = 1√{σ2.2−σ2/}
1
n

,

and, therefore,

E[fn.X/1{Dn}]∼− t2

2
1√{σ2.2−σ2/}

1
n

, .73/

which gives expression (70).
Consider equation (71). Recalling that gn.x/=φσ.x−An/=φ.x/,

E[{1+ "n gn.X/} 1{Dc
n}]�

∫
|x|>√{2 log.n/}

{φ.x/+ "n φσ.x−An/}dx: .74/

It is seen that ∫
|x|>√{2 log.n/}

φ.x/=o.1/ φ[
√{2 log.n/}]=o.1=n/,

and that ∫
|x|>√{2 log.n/}

"nφσ.x−An/ dx=o.1/n−β φ[.1−√
r/

√{2 log.n/}]=o.n−β+.1−√
r/2=σ2

/:

Moreover, by expression (67), β+ .1−√
r/2=σ2 > 1, so it follows that inequality (74) gives that

E[{1+ "n gn.X/}1{Dc
n}]=o.1=n/: .75/

This gives equation (71) and concludes the claim in the case β< 1−σ2=4.



658 T. T. Cai, X. J. Jeng and J. Jin

Consider the case β=1−σ2=4. The claim can be proved similarly provided that we modify the event of
Dn by

D̃n =
{

|X|�√{2 log.n/}− log1=2{log.n/}√{2 log.n/}

}
:

For brevity, we omit further discussion.
Consider the case β> 1−σ2=4. In this case, we have

"n =n−β log.n/1−√
.1−β/=σ,

and

r ={1−σ
√

.1−β/}2, so
√

r> 1−σ2=2: .76/

Equate "nφσ.x−An/=φ0.x/= 1=σ. Direct calculations show that we have two solutions; using expression
(76), it is seen that one of them is approximately

√{2 log.n/} and we denote this solution by x0 =x0.n/=√{2 log.n/}− log{log.n/}=
√{2 log.n/}. By the way that "n is chosen, we have .1=x0/ exp .−x2

0=2/∼1=n.
Now, change variable with x=x0 +y=x0. It follows that

"n gn.x/= 1
σ

exp
{(

1− 1−√
r

σ2

)
y

}
exp

{
− y2

2x2
0

(
1
σ2

−1
)}

,

φ.x/= 1√
.2π/

x0
1
n

exp.−y/ exp
(

− y2

2x2
0

)
:

Therefore,

E[fn.X/]= 1√
.2π/n

∫ {
exp

(
it log

[
1+ 1

σ
exp

{(
1− 1−√

r

σ2

)
y

}

×exp
{

− y2

2x2
0

(
1
σ2

−1
)}])

−1− it
σ

exp
{(

1− 1−√
r

σ2

)
y

}

×exp
{

− y2

2x2
0

(
1
σ2

−1
)}

exp.−y/ exp
(

− y2

2x2
0

)
dy:

Denote the integrand (excluding 1=n) by

hn.y/=
{

exp
(

it log
[

1+ 1
σ

exp
{(

1− 1−√
r

σ2

)
y

}

×exp
{

− y2

2x2
0

(
1
σ2

−1
)}])

−1− 1
σ

exp
{(

1− 1−√
r

σ2

)
y

}

×exp
{

− y2

2x2
0

(
1
σ2

−1
)}

exp.−y/ exp
(

− y2

2x2
0

)
:

It is seen that, pointwise, hn.u/ converges to

h.y/=
{

exp
(

it log
[

1+ 1
σ

exp
{(

1− 1−√
r

σ2

)
y

}])
−1− 1

σ
exp

{(
1− 1−√

r

σ2

)
y

}
exp.−y/:

At the same time, note that

|exp[it{1+ exp.y/}]−1− it exp.y/|�C min{exp.y/, exp.2y/}:

It is seen that

|hn.y/|�C exp.−y/ min
[

exp
{(

1− 1−√
r

σ2

)
y

}
, exp

{
2
(

1− 1−√
r

σ2

)
y

}]
:
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The key fact here is that, by expression (76), 0 <.1−√
r/=σ2 < 1

2 . Therefore,

exp.−y/ min
[

exp
(

1− 1−√
r

σ2

)
, exp

{
2
(

1− 1−√
r

σ2

)
y

}]
=

⎧⎪⎨
⎪⎩

exp
(

−1−√
r

σ2
y

)
, y �0,

exp
{(

1−2
1−√

r

σ2

)
y

}
, y< 0,

where the right-hand side is integrable. It follows from the dominated convergence theorem that

n E[fn.X/]→ .2π/−1=2
∫

h.x/ dx,

which proves the claim.
Consider the case σ�√

2. The proof is similar to the case σ<
√

2 and β> 1−σ2=4 so we omit it. This
concludes the claim.

B.2. Proof of lemma 1
Consider the first claim. Fix r<q�1, by Mills’s ratio (Wasserman, 2006),

Φ̄[
√{2q log.n/}]=PL.n/n−q,

Φ̄
[√{2q log.n/}−An

σ

]
=PL.n/n−.

√
q−√

r/2=σ2
:

It follows that
√

n
F̄.t/− Φ̄.t/√{Φ̄.t/ Φ.t/} =PL.n/nδ.q;β,r,σ/,

where

δ.q;β, r,σ/= .1+q/=2−β− .
√

q−√
r/2=σ2:

It suffices to show that δ.q;β, r,σ/ reaches its maximum at

q=min
{(

2
2−σ2

)2

r, 1
}

when σ<
√

2 and at q=1 otherwise.
For this, we note that, first, whenσ<

√
2 and r<.2−σ2/2=4, δ.q;β, r,σ/ maximizes at q=4r=.2−σ2/2 <1

and is monotonically decreasing on both sides, and the claim follows. Second, when either σ<
√

2 and
r � .2−σ2/2=4 or σ�√

2, δ.q;β, r,σ/ is monotonically increasing. Combining these gives the claim.

B.3. Proof of lemma 2
Consider the first claim. Direct calculations show that

"n E[gn.X/ 1{Dc
n}]= "n

∫
|x|>√{2 log.n/}

φσ.x−An/dx

= "n

(
Φ̄

[
1−√

r

σ

√{2 log.n/}
]

+ Φ̄
[

1+√
r

σ

√{2 log.n/}
])

:

Note that Φ̄.x/�Cφ.x/ for x> 0; the last term is no greater than

C"n

(
φ

[
1−√

r

σ

√{2 log.n/}
]

+φ

[
1+√

r

σ

√{2 log.n/}
])

=Cn−{β+.1−√
r/2=σ2}:

By the assumption, r<{1−σ
√

.1−β/}2. The claim follows by

β+ .1−√
r/2

σ2
=1−

{
1−β− .1−√

r/2

σ2

}
> 1:
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Consider the second claim. We discuss the case σ�√
2 and the case σ<

√
2 separately. When σ�√

2,
write

g2
n.x/ φ.x/=C exp

{(
1
2

− 1
σ2

)
x2 + 2Anx

σ2
− A2

n

σ2

}
,

which is a convex function of x. Therefore, the extreme value over the range of |x|�√{2 log.n/} occurs
at the end points, which is seen to be

g2
n{

√{2 log.n/}φ.
√{2 log.n/}=Cn1−2.1−√

r/2=σ2
:

Therefore,

"2
n E[g2

n.X/1{Dn}]�C
√

log.n/n1−2{β+.1−√
r/2=σ2}:

By the assumption of r<{1−σ
√

.1−β/}2, β+ .1−√
r/2=σ2 > 1, and the claim follows.

When σ<
√

2, we similarly have

"2
n E[g2

n.X/1{Dn}]�C"2
n

∫
x�√{2 log.n/}

exp
{(

1
2

− 1
σ2

)
x2 + 2Anx

σ2
− A2

n

σ2

}
dx:

Write (
1
2

− 1
σ2

)
x2 + 2Anx

σ2
− A2

n

σ2
=−

(
1
σ2

− 1
2

)(
x− An

1−σ2=2

)2

+ A2
n

2−σ2
,

By a change of variables,

"2
n E[g2

n.X/1{Dn}]�Cn−2β+2r=.2−σ2/

∫
y�√{2 log.n/}−An=.1−σ2=2/

exp
{

−
(

1
σ2

− 1
2

)
y2

}
dy

=Cn−2β+2r=.2−σ2/Φ
(√

.2−σ2/

σ

[√{2 log.n/}− An

1−σ2=2

])
:

Rewrite

√{2 log.n/}− An

1−σ2=2
=√{2 log.n/}

(
1− 2

√
r

2−σ2

)
,

and note that Φ.x/�Cφ.x/ when x< 0 and Φ.x/�1 otherwise; we have

"2
n E[g2

n.X/1{Dn}]�C

{
n−2β+2r=.2−σ2/, r � 1

4 .2−σ2/2,

n−2β+2r=.2−σ2/−.2−σ2/=σ2{1−2
√

r=.2−σ2/}2
, otherwise:

.77/

We now discuss the two cases r � min{ 1
4 .2 −σ2/2, ρÅ.β,σ/} and 1

4 .2 −σ2/2 < r < ρÅ.β,σ/ separately.
In the first case, r<.2−σ2/.β− 1

2 / and r< 1
4 .2−σ2/2, and so

−2β+2r=.2−σ2/<−2β+2.β− 1
2 /=−1;

the claim follows directly from expression (77).
In the second case, note that this case is only possible whenβ>1−σ2=4. Therefore, r<{1−σ√

.1−β/}2,
and

−2β+ 2r

2−σ2
− 1
σ2

.2−σ2/

(
1− 2

√
r

2−σ2

)2

=1−2
{
β+ 1

σ2
.1−√

r/2

}
<−1:

Applying expression (77) gives the claim.

B.4. Proof of lemma 3
It is not necessary that expressions (36) and (37) are simultaneously true. We prove the claim for three
cases separately:
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(a) 1
2 <β< 1 and r>{1−σ

√
.1−β/}2 and σ<

√
2; or 1

2 <β< 1 and r>ρÅ.β;σ/ and σ�√
2,

(b) 1
2 <β< 1−σ2=4 and .2−σ2/.β− 1

2 /<r<{1−σ
√

.1−β/}2 and 1 <σ<
√

2, and
(c) 1

2 <β< 1−σ2=4 and .2−σ2/.β− 1
2 /<r<{1−σ

√
.1−β/}2 and σ< 1.

The discussion for cases where .β, r,σ/ fall right on the boundaries of the partition of these subregions is
similar, so we omit it.

For case (a), we show that expression (36) holds. For .β, r,σ/ in this range, by elementary algebra and
the definition of ρÅ.β,σ/,

1−β− .1−√
r/2

σ2
> 0: .78/

Also, "n gn{√
2 log.n/}= .1=σ/n1−β−.1−√

r/2=σ2
, which is larger than 1 for sufficiently large n, so

n"n E[gn.X/1{"n gn.X/>1}]�n"n E[gn.X/1{X�√{2 log.n/}]=n"n

∫ ∞

√{2 log.n/}

1
σ
φ

(
x−An

σ

)
dx:

By elementary calculus and Mills’s ratio (Wasserman, 2006), the right-hand side equals PL.n/n1−β−.1−√
r/2=σ2

.
The claim follows directly from inequality (78).

For case (b), we show that expression (37) holds. It is seen that sup{0�x�√{2 log.n/}{"n gn.x/}= o.1/ for
.β, r,σ/ in this range, so

n"2
n E[g2

n.X/1{"n gn.X/�1}]�n"2
n E[g2

n.X/1{0�X�√{2 log.n/}]:

Direct calculations show that

n"2
n E[g2

n.X/1{0�X�√{2 log.n/}]=n"2
n exp

(
A2

n

2−σ2

)
Φ
[√

.2−σ2/

σ

(
1−

√
r

1−σ2=2

)√{2 log.n/}
]
:

By basic algebra, for .β, r,σ/ in the current range,
√

.2−σ2/

σ

(
1−

√
r

1−σ2=2

)
> 0:

Combining these gives

n"2
n E[g2

n.X/1{"n gn.X/�1}]�n"2
n exp

(
A2

n

2−σ2

)
=n1−2β+2r=.2−σ2/:

The claim follows as 1−2β+2r=.2−σ2/> 0.
For case (c), we consider two subcases separately:

(i) 1
2 <β< 1−σ2=4 and r < .1−σ2/β and σ< 1; or 1−σ2 <β< 1−σ2=4 and r � .1−σ2/β and σ< 1,
and

(ii) 1
2 <β< 1−σ2 and r � .1−σ2/β and σ< 1.

We show that expression (36) holds in cases (a) and (ii), whereas expression (37) holds in cases (b) and (i).
For case (i), we show that expression (37) holds. Similarly, for .β, r,σ/ in this range, sup{0<x<

√{2 log.n/}{"n×
gn.x/}=o.1/ and so

n"2
n E[g2

n.X/1{"n gn.X/�1}]�n"2
n E[g2

n.X/1{0<X�√{2 log.n/}]:

For .β, r,σ/ in the current range, n"2
n E[g2

n.X/1{0<X�√{2 log.n/}] ∼ n1−2β+2r=.2−σ2/, where the exponent is
positive. The claim follows.

Consider case (ii). Introduce

Δ=Δ.β, r,σ/= [
√

r −σ
√{r − .1−σ2/β}]2

.1−σ2/2
:

For .β, r,σ/ in this range elementary calculus shows that
√

r < Δ < 1, and that, for sufficiently large n,
"n gn.x/�1 for

√{2Δ log.n/}�x�√{2Δ log.n/}+√
log{log.n/}. It follows that
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n"n E[gn.X/1{"ngn.X/>1}]�n"n

√{2Δ log.n/}+√
log{log.n/}∫

√{2Δ log.n/}

1
σ
φ

(
x−An

σ

)
dx� C√

log.n/
n1−β−.

√
Δ−√

r/2=σ2
,

where we have used Δ>r. Fixing .β,σ/,
√

Δ−√
r is decreasing in r. So, for all r � .1−σ2/β,

1−β− .
√

Δ−√
r/2

σ2
�1−β− .

√
Δ−√

r/2

σ2

∣∣∣∣
{r=.1−σ2/β}

=1− β

1−σ2
,

which is larger than 0 since β< 1−σ2. Combining these gives the claim.
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