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a b s t r a c t

Motivated by differential co-expression analysis in genomics, we consider in this paper
estimation and testing of high-dimensional differential correlation matrices. An adap-
tive thresholding procedure is introduced and theoretical guarantees are given. Minimax
rate of convergence is established and the proposed estimator is shown to be adaptively
rate-optimal over collections of paired correlationmatrices with approximately sparse dif-
ferences. Simulation results show that the procedure significantly outperforms two other
natural methods that are based on separate estimation of the individual correlation matri-
ces. The procedure is also illustrated through an analysis of a breast cancer dataset, which
provides evidence at the gene co-expression level that several genes, of which a subset has
been previously verified, are associated with the breast cancer. Hypothesis testing on the
differential correlation matrices is also considered. A test, which is particularly well suited
for testing against sparse alternatives, is introduced. In addition, other related problems,
including estimation of a single sparse correlation matrix, estimation of the differential
covariance matrices, and estimation of the differential cross-correlation matrices, are also
discussed.

Published by Elsevier Inc.

1. Introduction

Statistical inference on the correlation structure has a wide array of applications, ranging from gene co-expression
network analysis [10,21,33,12,14] to brain intelligence analysis [26]. For example, understanding the correlations between
the genes is critical for the construction of the gene co-expression network. See [19,20], and [14]. Driven by these and other
applications in genomics, signal processing, empirical finance, and many other fields, making sound inference on the high-
dimensional correlation structure is becoming a crucial problem.

In addition to the correlation structure of a single population, the difference between the correlation matrices of two
populations is of significant interest. Differential gene expression analysis is widely used in genomics to identify disease-
associated genes for complex diseases. Conventional methods mainly focus on the comparisons of the mean expression
levels between the disease and control groups. In some cases, clinical disease characteristics such as survival or tumor stage
do not have significant associations with gene expression, but theremay be significant effects on gene co-expression related
to the clinical outcome [27,16,1]. Recent studies have shown that changes in the correlation networks from different stages
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of disease or from case and control groups are also of importance in identifying dysfunctional gene expressions in disease.
See, for example, [11]. This differential co-expression network analysis has become an important complement to the original
differential expression analysis as differential correlations among the genes may reflect the rewiring of genetic networks
between two different conditions (see [27,1,11,17,13]).

Motivated by these applications, we consider in this paper optimal estimation of the differential correlation matrix.
Specifically, suppose we observe two independent sets of p-dimensional i.i.d. random samples X(t)

= {X(t)
1 , . . . ,X(t)

nt }

with mean µt , covariance matrix Σt , and correlation matrix Rt , where t = 1 and 2. The goal is to estimate the
differential correlation matrix D = R1 − R2. A particular focus of the paper is on estimating an approximately sparse
differential correlation matrix in the high dimensional setting where the dimension is much larger than the sample sizes,
i.e., p ≫ max(n1, n2). The estimation accuracy is evaluated under both the spectral norm loss and the Frobenius norm
loss.

A naive approach to estimating the differential correlation matrix D = R1 − R2 is to first estimate the covariance
matrices Σ1 and Σ2 separately and then normalize to obtain estimators R̂1 and R̂2 of the individual correlation matrices
R1 and R2, and finally take the difference D̂ = R̂1 − R̂2 as the estimator of the differential correlation matrix D. A simple
estimate of a correlation matrix is the sample correlation matrix. However, in the high-dimensional setting, the sample
correlation matrix is a poor estimate. Significant advances have been made in the last few years on optimal estimation
of a high-dimensional covariance matrix. Regularization methods such as banding, tapering, and thresholding have been
proposed. In particular, Cai et al. [8] established the optimal rate of convergence and Cai and Yuan [7] developed an adaptive
estimator of bandable covariance matrices. For sparse covariance matrices where each row and each column has relatively
few nonzero entries, Bickel and Levina [4] introduced a thresholding estimator and obtained rates of convergence; Cai and
Liu [5] proposed an adaptive thresholding procedure and Cai and Zhou [9] established theminimax rates of convergence for
estimating sparse covariance matrices.

Structural assumptions on the individual correlation matrices R1 and R2 are crucial for the good performance of the
difference estimator. These assumptions, however, may not hold in practice. For example, gene transcriptional networks
often contain the so-called hub nodes where the corresponding gene expressions are correlated with many other gene
expressions. See, for example, [3,2]. In such settings, some of the rows and columns of R1 and R2 have many nonzero entries
whichmean that R1 and R2 are not sparse. In genomic applications, the correlationmatrices are rarely bandable as the genes
are not ordered in any particular way.

In this paper, we propose a direct estimation method for the differential correlation matrix D = R1 − R2 without first
estimating R1 and R2 individually. This direct estimation method assumes that D is approximately sparse, but otherwise
does not impose any structural assumptions on the individual correlation matrices R1 and R2. An adaptive thresholding
procedure is introduced and analyzed. The estimator can still perform well even when the individual correlation matrices
cannot be estimated consistently. For example, direct estimation can recover the differential correlation network accurately
even in the presence of hub nodes in R1 and R2 as long as the differential correlation network is approximately sparse. The
key is that sparsity is assumed for D and not for R1 or R2.

Theoretical performance guarantees are provided for direct estimator of the differential correlation matrix. Minimax
rates of convergence are established for the collections of paired correlationmatriceswith approximately sparse differences.
The proposed estimator is shown to be adaptively rate-optimal. In comparison to adaptive estimation of a single sparse
covariancematrix considered in Cai and Liu [5], both the procedure and the technical analysis of ourmethod are different and
more involved. Technically speaking, correlation matrix estimators are harder to analyze than those of covariance matrices
and the two-sample setting in our problem further increases the difficulty.

Numerical performance of the proposed estimator is investigated through simulations. The results indicate significant
advantage of estimating the differential correlation matrix directly. The estimator outperforms two other natural
alternatives that are based on separate estimation of R1 and R2. To further illustrate the merit of the method, we apply
the procedure to the analysis of a breast cancer dataset from the study by van de Vijver et al. [30] and investigate the
differential co-expressions among genes in different tumor stages of breast cancer. The adaptive thresholding procedure is
applied to analyze the difference in the correlation alternation in different grades of tumor. The study provides evidence at
the gene co-expression level that several genes, ofwhich a subset has been previously verified, are associatedwith the breast
cancer.

In addition to optimal estimation of the differential correlation matrix, we also consider hypothesis testing of the
differential correlation matrices, H0 : R1 − R2 = 0 vs. H1 : R1 − R2 ≠ 0. We propose a test which is particularly well
suited for testing again sparse alternatives. The same ideas and techniques can also be used to treat other related problems.
We also consider estimation of a single sparse correlation matrix from one random sample, estimation of the differential
covariance matrices as well as estimation of the differential cross-correlation matrices.

The rest of the paper is organized as follows. Section 2 presents in detail the adaptive thresholding procedure for
estimating the differential correlationmatrix. The theoretical properties of the proposed estimator are analyzed in Section 3.
In Section 4, simulation studies are carried out to investigate the numerical performance of the thresholding estimator and
Section 5 illustrates the procedure through an analysis of a breast cancer dataset. Hypothesis testing on the differential
correlation matrices is discussed in Section 6.1, and other related problems are considered in the rest of Section 6. All the
proofs are given in the Appendix.
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2. Estimation of differential correlation matrix

We consider in this section estimation of the differential correlation matrix and introduce a data-driven adaptive
thresholding estimator. The theoretical and numerical properties of the estimator are investigated in Sections 3 and 4
respectively.

Let X(t)
= (X (t)

1 , . . . , X (t)
p )ᵀ be a p-variate random vector with mean µt , covariance matrix Σt = (σijt)1≤i,j≤p, and

correlation matrix Rt = (rijt)1≤i,j≤p, for t = 1 and 2. Suppose we observe two i.i.d. random samples, {X(1)
1 , . . . ,X(1)

n1 } from
X(1) and {X(2)

1 , . . . ,X(2)
n2 } from X(2), and the two samples are independent. The goal is to estimate the differential correlation

matrix D = R1 − R2 under the assumption that D is approximately sparse.
Given the two random samples, the sample covariancematrices and sample correlationmatrices are defined as, for t = 1

and 2,

Σ̂t = (σ̂ijt)1≤i,j≤p =
1
nt

nt
k=1

(X(t)
k − X̄(t))(X(t)

k − X̄(t))ᵀ, (1)

R̂t = (r̂ijt)1≤i,j≤p = diag(Σ̂t)
−1/2

· Σ̂t · diag(Σ̂t)
−1/2, (2)

where X̄(t)
=

1
nt

nt
k=1 X

(t)
k and diag(Σ̂t) is the diagonal matrix with the same diagonal as Σ̂t . We propose a thresholding

estimator of the differential correlationmatrixD by individually thresholding the entries of the difference of the two sample
correlation matrices R̂1 − R̂2 with the threshold adaptive to the noise level of each entry. A key to the construction of the
procedure is the estimation of the noise levels of the individual entries of R̂1 − R̂2, as these entries are random variables
themselves.

We first provide some intuition before formally introducing the estimate of the noise levels of the individual entries of
R̂1 − R̂2. Note that E


(X (t)

i − µit)(X
(t)
j − µjt)


= σijt and µit ≈ X̄ (t)

i =
1
nt

nt
k=1 Xik. Define

θijt = var

(X (t)

i − µit)(X
(t)
j − µjt)


, 1 ≤ i, j ≤ p, t = 1, 2. (3)

Then one can intuitively write

σ̂ijt =
1
nt

nt
k=1

(X (t)
ik − X̄ (t)

i )(X (t)
jk − X̄ (t)

j ) ≈ σijt +


θijt

nt

1/2

zijt , (4)

where zijt is approximately normal with mean 0 and variance 1. Hence, θijt/nt measures the uncertainty of the sample
covariance σ̂ijt . Based on the first order Taylor expansion of the 3-variate function x

(yz)1/2
for x ∈ R, and y, z > 0,

x̂
(ŷẑ)1/2

=
x

(yz)1/2
+

x̂ − x
(yz)1/2

−
x

(yz)1/2


ŷ − y
2y

+
ẑ − z
2z


+ o(x̂ − x) + o(ŷ − y) + o(ẑ − z), (5)

the entries r̂ijt of the sample correlation matrix R̂t = (r̂ijt) can be approximated by

r̂ijt =
σ̂ijt

(σ̂iit σ̂jjt)1/2
≈

σijt

(σiitσjjt)1/2
+


θijt

ntσiitσjjt

1/2

zijt −
σijt

2(σiitσjjt)1/2

 θiit

ntσ
2
iit

1/2

ziit +


θjjt

ntσ
2
jjt

1/2

zjjt


= rijt +


ξijt

nt

1/2

zijt −
rijt
2


ξiit

nt

1/2

ziit +


ξjjt

nt

1/2

zjjt


, (6)

where we denote

ξijt =
θijt

σiitσjjt
, 1 ≤ i, j ≤ p, t = 1, 2.

It then follows from (6) that

r̂ij1 − r̂ij2 ≈ rij1 − rij2 +


ξij1

n1

1/2

zij1 −
rij1
2


ξii1

n1

1/2

zii1 +


ξjj1

n1

1/2

zjj1



−


ξij2

n2

1/2

zij2 −
rij2
2


ξii2

n2

1/2

zii2 +


ξjj2

n2

1/2

zjj2


, 1 ≤ i, j ≤ p, (7)

where the random variables zij1 and zij2 are approximately normal with mean 0 and variance 1, but not necessarily
independent for 1 ≤ i, j ≤ p.
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Eq. (7) suggests that estimation of rij1 − rij2 is similar to the sparse covariance matrix estimation considered in Cai and
Liu [5], where it is proposed to adaptively threshold entries according to their individual noise levels. However, the setting
here is more complicated as r̂ij1 − r̂ij2 is not an unbiased estimate of rij1 − rij2 and the noise levels are harder to estimate.
These make the technical analysis more involved. The noise levels are unknown here but can be estimated based on the
observed data. Specifically, we estimate θijt and ξijt by the following data-driven quantities,

θ̂ijt =
1
nt

nt
k=1


(X (t)

ik − X̄ (t)
i )(X (t)

jk − X̄ (t)
j ) − σ̂ijt

2
, (8)

ξ̂ijt =
θ̂ijt

σ̂iit σ̂jjt
=

1
nt σ̂iit σ̂jjt

nt
k=1


(X (t)

ik − X̄ (t)
i )(X (t)

jk − X̄ (t)
j ) − σ̂ijt

2
. (9)

We are now ready to introduce the adaptive thresholding estimator of R1 − R2 using data-driven threshold levels. Let
sλ(z) be a thresholding function satisfying the following conditions:

(C1) |sλ(z)| ≤ c|y| for all z, y satisfying |z − y| ≤ λ for some c > 0;
(C2) sλ(z) = 0 for |z| ≤ λ;
(C3) |sλ(z) − z| ≤ λ, for all z ∈ R.

Note that the commonly used soft thresholding function sλ(z) = sgn(z)(z − λ)+ and the adaptive lasso rule sλ =

z(1 − |λ/z|η)+ with η ≥ 1 satisfy these three conditions. See [24] and [5]. Although the hard thresholding function
sλ(z) = z · 1{|z|≥λ} does not satisfy Condition (C1), the technical arguments given in this paper still work with very minor
changes.

We propose to estimate the sparse differential correlationmatrixD by the entrywise thresholding estimator D̂∗
= (d̂∗

ij) ∈

Rp×p defined as

d̂∗

ij = sλij(r̂ij1 − r̂ij2), 1 ≤ i, j ≤ p,

where sλ(z) is a thresholding function satisfying (C1)–(C3) and the threshold level λij is given by λij = λij1 + λij2 with

λijt = τ


log p
nt

1/2 
ξ̂
1/2
ijt +

|r̂ijt |
2


ξ̂
1/2
iit + ξ̂

1/2
jjt


, 1 ≤ i, j ≤ p, t = 1, 2. (10)

Here ξ̂ijt are given by (9) and the thresholding constant τ can be chosen empirically through cross-validation. See Section 4.1
for more discussions on the empirical choice of τ .

3. Theoretical properties

We now analyze the theoretical properties of the data-driven thresholding estimator D̂∗ proposed in the last section. We
will establish the minimax rate of convergence for estimating the differential correlation matrix D over certain classes of
paired correlation matrices (R1,R2) with approximately sparse difference D = R1 − R2 under the spectral norm loss. The
results show that D̂∗ is rate-optimal under mild conditions.

3.1. Rate optimality of the thresholding estimator

We consider the following class of paired correlation matrices in Rp×p with approximately sparse difference

Gq(s0(p)) =


(R1,R2) : R1,R2 ≽ 0; diag(R1) = diag(R2) = 1;max

i


j

|rij1 − rij2|q ≤ s0(p)


(11)

for some 0 ≤ q < 1. Here R1,R2 ≽ 0 and diag(R1) = diag(R2) = 1 mean that R1 and R2 are symmetric, semi-positive
definite, and with all diagonal entries 1. For (R1,R2) ∈ Gq(s0(p)), their difference R1 − R2 is approximately sparse in the
sense that each row vector of R1 − R2 lies in the ℓq ball with radius s0(p) and 0 ≤ q < 1. When q = 0, this constraint
becomes the commonly used exact sparsity condition.

Let

Y (t)
i = (X (t)

i − µit)/(var(X
(t)
i ))1/2, i = 1, . . . , p, t = 1, 2.

We assume that for each i, Yi is sub-Gaussian distributed, i.e. there exist constants K , η > 0 such that for all 1 ≤ i ≤ p and
t = 1, 2,

Eeu(Y
(t)
i )2

≤ K , for |u| ≤ η. (12)
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In addition, we assume for some constant ν0 > 0

min
1≤i,j≤p;t=1,2

var(Y (t)
i Y (t)

j ) ≥ ν0. (13)

The following theorem provides an upper bound for the risk of the thresholding estimator D̂∗ under the spectral norm
loss.

Theorem 3.1 (Upper Bound). Suppose log p = o

min(n1, n2)

1/3

and (12) and (13) hold. Suppose the thresholding function

sλ(z) satisfy Conditions (C1)–(C3). Then the thresholding estimator D̂∗ defined in (2) and (10) with τ > 4 satisfies

sup
(R1,R2)∈Gq(s0(p))

E∥D̂∗
− (R1 − R2)∥

2
≤ C(s20(p) + 1)


log p
n1

+
log p
n2

1−q

(14)

sup
(R1,R2)∈Gq(s0(p))

E∥D̂∗
− (R1 − R2)∥

2
ℓ1

≤ C(s20(p) + 1)

log p
n1

+
log p
n2

1−q

(15)

sup
(R1,R2)∈Gq(s0(p))

E∥D̂∗
− (R1 − R2)∥

2
F ≤ Cp(s0(p) + 1)


log p
n1

+
log p
n2

1−q/2

(16)

for some constant C > 0 that does not depend on n1, n2 or p.

Remark 3.1. Condition (13) holds naturally when X(t) are jointly Gaussian. To see this point, we suppose ρijt is the

correlation between Y (t)
i and Y (t)

j . Then one canwrite Y (t)
j = ρijtY

(t)
i +


1 − ρ2

ijtW , where Y (t)
i ,W are independently standard

Gaussian. It is easy to calculate that Var(Y (t)
i Y (t)

j ) = 1 + ρ2
ijt ≥ 1, which implies (13) holds for ν0 = 1. Condition (13) is

used in Lemma A.1 to show that θ̂ijt is a good estimate of θijt and |σ̂ijt −σijt | can be controlled by C(θ̂ijt log p/nt)
1/2 with high

probability.

Theorem 3.1 gives the rate of convergence for the thresholding estimator D̂∗. The following result provides the lower
bound for the minimax risk of estimating the differential correlation matrix D = R1 − R2 with (R1,R2) ∈ Gq(s0(p)).

Theorem 3.2 (Lower Bound). Suppose log p = o (min(n1, n2)) and s0(p) ≤ M min(n1, n2)
(1−q)/2

× (log p)−(3−q)/2 for some
constant M > 0. Then minimax risk for estimating D = R1 − R2 satisfies

inf
D̂

sup
(R1,R2)∈Gq(s0(p))

E∥D̂ − (R1 − R2)∥
2

≥ cs20(p)

log p
n1

+
log p
n2

1−q

, (17)

inf
D̂

sup
(R1,R2)∈Gq(s0(p))

E∥D̂ − (R1 − R2)∥
2
ℓ1

≥ cs20(p)

log p
n1

+
log p
n2

1−q

, (18)

inf
D̂

sup
(R1,R2)∈Gq(s0(p))

E∥D̂ − (R1 − R2)∥
2
F ≥ cs0(p)p


log p
n1

+
log p
n2

1−q/2

, (19)

for some constant c > 0.

Theorems 3.1 and 3.2 together yield the minimax rate of convergence

s20(p)

log p
n1

+
log p
n2

1−q

for estimatingD = R1−R2 with (R1,R2) ∈ Gq(s0(p)) under the spectral norm loss, and show that the thresholding estimator
D̂∗ defined in (2) and (10) is adaptively rate-optimal.

Remark 3.2. The technical analysis here for the difference of two correlationmatrices ismore complicated in comparison to
the problemof estimating a sparse covariancematrix considered in Cai and Liu [5]. It can be seen in (7), i.e. the ‘‘signal+noise’’
expression of r̂ij1 − r̂ij2, the difference of the sample correlation matrices has six ‘‘noise terms’’. It is necessary to deal with
all these six terms in the theoretical analysis of Theorem 3.1.
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Fig. 1. Average (Spectral, ℓ1 , Frobenius) norm losses for τ ∈ [0, 5]. p = 100, n1 = n2 = 50.

4. Numerical studies

We investigate in this section the numerical performance of the adaptive thresholding estimator of the differential
correlation matrix through simulations. The method is applied to the analysis of a breast cancer dataset in the next section.

In the previous sections, we proposed the entrywise thresholding method for estimating R1 − R2 and then studied
the theoretical properties of D̂∗ with a fixed τ > 4. However, the theoretical choice of τ may not be optimal in finite
sample performance, as we can see in the following example. Let R1 and R2 be 200 × 200-dimensional matrices such that
R1,ij = (−1)|i−j|

× max(1 − |i − j|/10, 0) × (1{i=j} + fifj1{i≠j}) and R2,ij = max(1 − |i − j|/10, 0) × (1{i=j} + fifj1{i≠j}). Here
1{·} is the indicator function, f1, . . . , f200 are i.i.d. random variables that are uniformly distributed on [0, 1]. In this setting,
both R1 and R2 are sparse, but their difference is even more sparse. We set Σt = Rt and generate 200 independent samples
from X(1)

∼ N(0, Σ1) and 200 independent samples from X(2)
∼ N(0, Σ2). For various values of τ ∈ [0, 5], we implement

the proposed method with hard thresholding and repeat the experiments for 100 times. The average loss in spectral, ℓ1 and
Frobenius norms are shown in Fig. 1. Obviously in this example, τ > 4 is not the best choice.

Empirically, we find that the numerical performance of the estimator can often be improved by using a data-driven choice
of τ based on cross-validation. We thus begin by introducing the following K -fold cross-validationmethod for the empirical
selection of τ .

4.1. Empirical choice of τ

For an integer K ≥ 2,we first divide both samplesX(1)
= {X(1)

1 ,X(1)
2 , . . . ,X(1)

n1 } andX(2)
= {X(2)

1 ,X(2)
2 , . . . ,X(2)

n2 } randomly
into two groups for H times as X(1)

Ih1
, X(1)

Th1
, X(2)

Ih2
and X(2)

Th2
. Here h = 1, . . . ,H represents the hth division. For t = 1 and 2, the

size of the first group X(t)
Iht

is approximately (K − 1)/K · nt and the size of the second group X(t)
Tht

is approximately nt/K . We

then calculate the corresponding sample correlation matrices as R̂(1)
Ih1

, R̂(1)
Th1

, R̂(2)
Ih2

and R̂(2)
Th2

for all four sub-samples. Partition

the interval [0, 5] into an equi-spaced grid {0, 1
N , . . . , 5N

N }. For each value of τ ∈ {0, 1
N , . . . , 5N

N }, we obtain the thresholding
estimator D̂∗

Ih defined in (2) and (10) with the thresholding constant τ based on the subsamples X(1)
Ih1

and X(2)
Ih2

. Denote the

average loss for each τ for the second sub-samples X(1)
Th1

and X(2)
Th2

as

L(τ ) =
1
H

H
h=1

∥D̂∗

Ih − (R̂(1)
Th1

− R̂(2)
Th2

)∥2
F .

We select

τ̂ = argmin
τ∈


0, 1

N ,..., 5NN

 L(τ )

as our empirical choice of the thresholding constant τ , and calculate the final estimator D̂∗(τ̂ )with the thresholding constant
τ̂ based on the whole samples X(1) and X(2).

4.2. Estimation of differential correlation matrix

The adaptive thresholding estimator is easy to implement. We consider the following two models under which the
differential correlation matrix is sparse.
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1. Model 1 (Random sparse difference) R1 and R2 are p-dimensional symmetric positive definite matrices such that R1 =

diag(B1, I p
2 ×

p
2
) is a fixedmatrix, where B1 ∈ R

p
2 ×

p
2 with B1,ij = 1 if i = j and B1,ij = 0·2 if i ≠ j, I p

2 ×
p
2
is the p

2 ×
p
2 identity

matrix, and R2 is randomly generated as R2 = diag(B1 + λD0, I p
2 ×

p
2
), where D0 ∈ R

p
2 ×

p
2 with

Dij,0 =

1, with probability 0·05
0, with probability 0·9
−1, with probability 0·05

and λ is a constant that ensures the positive definiteness of R2.
2. Model 2 (Banded difference). In this setting, p-dimensional matrices R1 and R2 satisfy R1,ij = 0 · 2 × 1{i=j} + 0 · 8 ×

(−1)|i−j|
×max(1−|i− j|/10, 0) and R2,ij = R1,ij +0 ·2×1{i≠j} ×max(1−|i− j|/3, 0). Here 1{·} is the indicator function.

In each of the two settings, we set Σt = diag(|ωt |
1/2)Rtdiag(|ωt |

1/2) for both t = 1, 2, where ω1, ω2 ∈ Rp are two
i.i.d. samples from N(0, Ip). These operations make the covariance matrices Σ1 and Σ2 have different values along the
diagonals.

We generate i.i.d. samples from X(1)
∼ N(0, Σ1) and X(2)

∼ N(0, Σ2) for various values of p, n1, and n2 and then apply
the proposed algorithm with 5-fold cross-validation for the selection of the thresholding constant τ . For each setting, both
the hard thresholding and adaptive-Lasso thresholding [24],

sλ(z) = z · max(1 − |λ/z|η, 0) with η = 4, (20)

are used. For comparison, we also implement three natural estimators of D.

1. The covariance matrices Σ1 and Σ2 are estimated individually by the adaptive thresholding method proposed in Cai and
Liu [5] with 5-fold cross-validation and then Σ̂

∗

1 and Σ̂
∗

2 are normalized to yield estimators of R1 and R2,

R̂∗

1 = diag(Σ̂
∗

1)
−1/2Σ̂

∗

1diag(Σ̂
∗

1)
−1/2, R̂∗

2 = diag(Σ̂
∗

2)
−1/2Σ̂

∗

2diag(Σ̂
∗

2)
−1/2,

and finally D = R1 − R2 is estimated by the difference R̂∗

1 − R̂∗

2 .
2. The correlation matrices R̂•

1 and R̂•

2 are estimated separately using the method proposed in Section 6.2 and then take the
difference.

3. D is estimated directly the difference of the sample correlation matrices R̂1 − R̂2.

The numerical results are summarized in Tables 1 and 2 for the two models respectively. In each case, we compare the
performance of the three estimators D∗, R̂∗

1 − R̂∗

2 and R̂1 − R̂2 under the spectral norm, matrix ℓ1 norm, and Frobenius
norm losses. For both models, it is easy to see that the direct thresholding estimator D∗ significantly outperforms R̂∗

1 − R̂∗

2

and R̂1 − R̂2. Under Model 1, the individual correlation matrices R1 and R2 are ‘‘dense’’ in the sense that half of the rows
and columns contain many non zeros entries, but their difference D is sparse. In this case, R1 and R2 cannot be estimated
consistently and the two difference estimators R̂∗

1 − R̂∗

2 and R̂1 − R̂2 based on the individual estimators of R1 and R2 perform
very poorly, while the direct estimator D∗ performs very well. Moreover, the numerical performance of the thresholding
estimators does not depend on the specific thresholding rules in a significant way. Different thresholding rules including
hard thresholding and adaptive Lasso behave similarly.

5. Analysis of a breast cancer dataset

Identifying gene expression networks can be helpful for conducting more effective treatment based to the condition of
patients. de la Fuente [11] demonstrated that the gene expression networks can vary in different disease states and the
differential correlations in gene expression (i.e. co-expression) are useful in disease studies.

In this section, we consider the dataset ‘‘70pathwaygenes-by-grade’’ from the study by van de Vijver et al. [30] and
investigate the differential co-expressions among genes in different tumor stages of breast cancer. In this dataset, there are
295 records of patientswith 1624 gene expressions, which are categorized into three groups based on the histological grades
of tumor (‘‘Good’’, ‘‘Intermediate’’ and ‘‘Poor’’) with 74, 101 and 119 records, respectively. We denote these three groups of
samples as X(1),X(2) and X(3). In order to analyze the difference in the correlation alternation in different grades of tumor,
we apply our adaptive thresholding method with cross-validation to estimate the differential correlation matrices among
those gene expressions from different stages.

Thenumber of genepairswith significant difference in correlation is listed in Table 3. The results show that the correlation
structures between the ‘‘Good’’ and ‘‘Intermediate’’ groups are similar and there is some significant changes between the
‘‘Good’’ and ‘‘Poor’’ group.

More interestingly, by combining the ‘‘Good’’ and ‘‘Intermediate’’ sub-samples and comparing with the ‘‘Poor’’ group,
we find significant differences between their correlation structure. There are 4526 pairs of genes that have significantly
different correlations between the ‘‘Good + Intermediate’’ and ‘‘Poor’’ groups. For each given gene, we count the number
of the genes whose correlation with this gene is significantly different between these two groups, and rank all the genes
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Table 1
Comparison of D̂∗ with R̂∗

1 − R̂∗

2 and R̂1 − R̂2 under Model 1.

p n1 n2 Hard Adaptive lasso Sample
D̂∗ R̂∗

1 − R̂∗

2 R̂•

1 − R̂•

2 D̂∗ R̂∗

1 − R̂∗

2 R̂•

1 − R̂•

2 R̂1 − R̂2

Spectral norm
100 50 50 0·50(0·41) 1·75(1·37) 6·94(1·07) 0·33(0·31) 1·51(1·75) 6·17(0·98) 7·28(0·93)
100 100 100 0·34(0·21) 3·79(3·17) 4·74(0·55) 0·28(0·23) 3·53(2·71) 4·49(0·71) 5·02(0·65)
100 200 200 0·29(0·19) 4·22(2·14) 3·23(0·47) 0·24(0·13) 4·52(1·86) 3·14(0·54) 3·55(0·47)
100 500 500 0·24(0·10) 1·72(0·35) 2·07(0·32) 0·22(0·08) 1·82(0·35) 1·87(0·26) 2·23(0·25)
500 50 50 0·56(0·77) 3·02(2·76) 31·88(4·04) 0·40(0·65) 3·47(4·63) 29·15(4·26) 34·66(3·84)
500 100 100 0·41(0·48) 8·09(11·02) 23·38(4·52) 0·34(0·39) 12·99(13·26) 21·82(3·23) 24·19(2·77)
500 200 200 0·32(0·40) 22·22(13·06) 15·67(3·30) 0·26(0·34) 21·31(9·29) 14·61(2·24) 16·50(1·97)
500 500 500 0·20(0·19) 7·80(1·37) 7·80(1·29) 0·18(0·14) 8·21(1·69) 8·70(1·39) 10·46(1·31)

Matrix ℓ1 norm
100 50 50 0·89(0·68) 3·63(2·97) 18·91(1·55) 0·78(0·80) 3·14(3·20) 16·88(1·42) 21·33(1·61)
100 100 100 0·64(0·25) 7·34(4·85) 13·42(1·08) 0·70(0·87) 7·03(4·14) 12·72(1·18) 14·97(1·14)
100 200 200 0·64(0·34) 9·63(1·85) 9·22(0·75) 0·61(0·37) 9·37(1·77) 8·67(0·87) 10·60(0·81)
100 500 500 0·58(0·22) 4·54(0·56) 5·92(0·54) 0·56(0·21) 4·85(0·61) 5·33(0·45) 6·69(0·44)
500 50 50 1·69(3·09) 7·85(8·14) 97·28(6·64) 1·37(2·87) 9·49(11·93) 87·02(7·31) 112·40(8·97)
500 100 100 1·06(1·28) 20·12(19·50) 64·98(5·93) 1·17(1·47) 27·95(22·75) 65·60(5·07) 79·66(5·37)
500 200 200 0·97(1·48) 51·64(10·13) 46·74(5·01) 0·95(1·24) 47·87(8·50) 45·54(3·70) 55·77(3·70)
500 500 500 0·68(0·54) 23·19(2·86) 23·47(2·56) 0·69(0·52) 24·67(2·92) 27·21(2·09) 35·32(2·04)

Frobenius norm
100 50 50 1·40(1·32) 4·34(2·51) 19·01(0·37) 1·06(1·04) 3·26(2·61) 16·60(0·42) 19·87(0·38)
100 100 100 0·96(0·59) 7·14(3·67) 13·38(0·23) 0·94(0·81) 6·23(3·31) 12·10(0·27) 14·05(0·25)
100 200 200 0·89(0·57) 9·09(1·03) 9·30(0·20) 0·84(0·50) 8·15(1·07) 8·42(0·25) 9·94(0·18)
100 500 500 0·85(0·32) 4·37(0·27) 5·92(0·11) 0·82(0·30) 4·43(0·25) 5·26(0·11) 6·39(0·10)
500 50 50 3·33(5·63) 11·18(7·71) 95·05(0·91) 2·27(3·92) 9·57(9·31) 83·40(1·24) 99·97(0·93)
500 100 100 2·18(2·98) 20·17(14·55) 61·37(2·09) 2·10(2·47) 22·54(16·69) 60·58(0·85) 70·40(0·67)
500 200 200 1·77(2·39) 45·06(5·89) 42·11(1·67) 1·63(1·96) 39·52(5·14) 41·88(0·73) 49·53(0·49)
500 500 500 1·27(1·09) 20·17(0·99) 21·74(0·65) 1·22(0·84) 20·48(0·91) 25·47(0·41) 31·34(0·33)

Table 2
Comparison of D̂∗ with R̂∗

1 − R̂∗

2 and R̂1 − R̂2 under Model 2.

p n1 n2 Hard Adaptive lasso Sample
D̂∗ R̂∗

1 − R̂∗

2 R̂•

1 − R̂•

2 D̂∗ R̂∗

1 − R̂∗

2 R̂•

1 − R̂•

2 R̂1 − R̂2

Spectral norm
100 50 50 0·98(1·00) 4·61(1·49) 7·25(0·87) 0·71(0·70) 4·47(1·44) 6·05(0·74) 8·29(0·98)
100 100 100 0·70(0·51) 2·88(0·81) 5·01(0·57) 0·62(0·47) 2·93(0·87) 4·25(0·52) 5·83(0·59)
100 200 200 0·60(0·35) 1·93(0·55) 3·53(0·42) 0·48(0·24) 1·98(0·57) 2·98(0·37) 4·07(0·47)
100 500 500 0·47(0·14) 1·23(0·27) 2·32(0·23) 0·46(0·17) 1·30(0·36) 1·98(0·21) 2·66(0·27)
500 50 50 0·97(0·99) 5·03(1·00) 20·61(1·07) 0·80(0·75) 4·55(0·96) 16·91(0·90) 24·96(1·16)
500 100 100 0·79(0·62) 3·17(0·49) 13·64(0·59) 0·59(0·41) 3·14(0·63) 11·13(0·53) 16·39(0·71)
500 200 200 0·60(0·36) 2·13(0·30) 9·12(0·42) 0·51(0·31) 2·11(0·35) 7·44(0·37) 10·94(0·50)
500 500 500 0·51(0·20) 1·34(0·16) 5·63(0·23) 0·49(0·20) 1·35(0·22) 4·65(0·21) 6·78(0·29)

Matrix ℓ1 norm
100 50 50 1·84(2·66) 10·61(3·48) 19·11(1·55) 1·26(1·86) 9·88(3·14) 16·18(1·55) 21·92(1·61)
100 100 100 1·18(1·44) 6·73(2·24) 13·62(1·08) 1·10(1·26) 6·73(2·12) 11·73(1·20) 15·87(1·11)
100 200 200 0·98(0·98) 4·53(1·47) 9·79(0·85) 0·71(0·71) 4·68(1·46) 8·39(0·89) 11·37(0·97)
100 500 500 0·67(0·48) 2·95(0·89) 6·44(0·56) 0·65(0·59) 3·08(1·03) 5·58(0·47) 7·47(0·53)
500 50 50 1·79(2·65) 11·03(2·80) 79·71(2·64) 1·64(2·26) 10·38(3·02) 64·46(2·73) 97·88(2·55)
500 100 100 1·45(1·75) 7·66(1·79) 56·52(2·16) 1·02(1·35) 7·73(2·40) 45·65(1·86) 69·42(1·76)
500 200 200 1·02(1·18) 4·97(1·09) 39·86(1·39) 0·83(1·14) 5·03(1·27) 31·90(1·15) 49·11(1·33)
500 500 500 0·81(0·70) 3·15(0·72) 25·34(0·77) 0·82(0·77) 3·27(1·00) 20·39(0·77) 31·36(0·79)

Frobenius norm
100 50 50 3·36(2·53) 13·82(1·83) 18·46(0·81) 2·66(1·47) 12·13(2·00) 15·87(0·79) 19·92(0·94)
100 100 100 2·67(1·19) 9·46(1·28) 13·26(0·55) 2·54(1·10) 8·77(1·18) 11·51(0·54) 14·32(0·58)
100 200 200 2·43(0·69) 6·94(0·72) 9·75(0·39) 2·26(0·51) 6·68(0·76) 8·59(0·37) 10·49(0·43)
100 500 500 2·24(0·34) 5·29(0·36) 6·96(0·19) 2·25(0·46) 5·28(0·44) 6·33(0·17) 7·39(0·19)
500 50 50 6·77(4·86) 34·24(3·33) 91·09(0·85) 6·18(3·86) 27·39(3·39) 75·97(0·83) 100·71(0·92)
500 100 500 6·19(2·98) 22·76(1·92) 64·37(0·56) 5·30(1·79) 20·12(2·21) 53·72(0·56) 71·23(0·58)
500 200 200 5·32(1·49) 16·34(1·18) 45·79(0·44) 5·10(1·36) 15·01(1·15) 38·36(0·42) 50·61(0·43)
500 500 500 5·00(0·62) 12·14(0·59) 29·77(0·27) 4·99(0·69) 11·76(0·70) 25·27(0·24) 32·80(0·25)

by the counts. That is, we rank the genes by the size of the support of D̂∗ in each row. The top ten genes are listed in
Table 4.
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Table 3
The number of gene pairs that have significant differential correlation between two groups of
different tumor grades.

Good vs. Intermediate Intermediate vs. Poor Good vs. Poor

# of selected pairs 0 2 152

Table 4
The top ten genes that appear for most times in the selected pairs in ‘‘Good +

Intermediate’’ vs. ‘‘Poor’’.

Gene Number of pairs

growth differentiation factor 5 (GDF5) 67
transcription factor 7-like 1 (TCF7L1) 64
3’-phosphoadenosine 5’-phosphosulfate synthase 1 (PAPSS1) 51
secreted frizzled-related protein 1(SFRP1) 43
gamma-aminobutyric acid A receptor, pi (GABRP) 41
mannosidase, alpha, class 2B, member 2 (MAN2B2) 37
desmocollin 2 (DSC2) 36
transforming growth factor, beta 3 (TGFB3) 35
CRADD 35
ELOVL fatty acid elongase 5(ELOVL5) 32

Among these ten genes, six of them, GDF5, TCF7L1, PAPSS1, SFRP1, GABRP, TGFB1, have been previously studied and
verified in the literature that are associated with the breast cancer (see [23,28,31,18,32], and [15], respectively). Take for
example GDF5 and TCF7L1, the overproduction of Transforming growth factor beta-1 (TGFβ), a multifunctional cytokine, is
an important characteristic of late tumor progression. Based on the study by Margheri et al. [23], TGFβ produced by breast
cancer cells brings about in endothelial cells expression of GDF5. The findings in Shy et al. [28] suggested the important
role played by TCF7L1 in breast cancer. Although these biological studies mainly focus on the behavior of the single gene
expression, our study provides evidence in the gene co-expression level that these gene expressions are related with the
breast cancer.

We should point out that the two well-known genes related to the breast cancer, BRCA1 and BRCA2, were not detected
by our method. This is mainly due to the fact that our method focus on the differential gene co-expressions, not the changes
in the gene expression levels.

6. Other related problems

We have so far focused on optimal estimation of the differential correlation matrix. In addition to optimal estimation,
hypothesis testing of the differential correlation matrix is also an important problem. In this section we consider testing the
hypotheses H0 : R1 − R2 = 0 vs. H1 : R1 − R2 ≠ 0 and propose a test which is particularly well suited for testing again
sparse alternatives.

Similar ideas and techniques can also be used to treat several other related problems, including estimation of a single
sparse correlationmatrix from one random sample, estimation of the differential covariancematrices, and estimation of the
differential cross-correlation matrices. We also briefly discuss these problems in this section.

6.1. Testing differential correlation matrices

Suppose we are given two sets of independent and identical distributed samples X(t)
= {X(t)

1 , . . . ,X(t)
nt } with the mean

µt , covariance matrix Σt and correlation matrix Rt , where t = 1 and 2, and wish to test the hypotheses

H0 : R1 − R2 = 0 vs. H1 : R1 − R2 ≠ 0. (21)

This testing problem is similar to, but also different from, testing the equality of two high-dimensional covariance matrices,
which has been considered in several recent papers. See, for example, [25,29,22], and [6]. Herewe are particularly interested
in testing against sparse alternatives and follow similar ideas as those in Cai et al. [6].

To construct the test statistic, we need more precise understanding of the sample correlation coefficients r̂ijt . It follows
from (5) that

r̂ijt =
σ̂ijt

(σ̂iit σ̂jjt)1/2
≈

σijt

(σiitσjjt)1/2
+

σ̂ijt − σijt

(σiitσjjt)1/2
−

σijt

2(σiitσjjt)1/2


σ̂iit − σiit

(σiitσiit)1/2
+

σ̂jjt − σjjt

(σjjtσjjt)1/2


= rijt +

1
nt

nt
k=1


(X (t)

ik − X̄ (t)
i )(X (t)

jk − X̄ (t)
j ) − σijt

(σiitσjjt)1/2
−

rijt
2


(X (t)

ik − X̄ (t)
i )2 − σiit

σiit
+

(X (t)
jk − X̄ (t)

j )2 − σjjt

σjjt


.
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Since X̄ (t)
i ≈ µit , X̄

(t)
j ≈ µjt , E


X (t)
ik − X̄ (t)

i

 
X (t)
jk − X̄ (t)

j


≈ σijt , we introduce

ηijt = var


(X (t)

i − µit)(X
(t)
j − µjt)

(σiitσjjt)1/2
−

rijt
2


(X (t)

i − µit)
2

σiit
+

(X (t)
j − µjt)

2

σjjt


.

Then asymptotically as n, p → ∞,

r̂ijt − rijt ≈


ηijt

nt

1/2

zijt , where zijt ∼ N(0, 1).

The true value of ηijt is unknown but can be estimated by

η̂ijt =
1
nt

nt
k=1


(X (t)

ik − X̄ (t)
i )(Xjk − X̄ (t)

j ) − σ̂ijt

(σ̂iit σ̂jjt)1/2
−

r̂ijt
2


(X (t)

ik − X̄ (t)
i )2 − σ̂iit

σ̂iit
+

(X (t)
jk − X̄ (t)

j )2 − σ̂jjt

σ̂jjt

2

=
1
nt

nt
k=1


(X (t)

ik − X̄ (t)
i )(Xjk − X̄ (t)

j )

(σ̂iit σ̂jjt)1/2
−

r̂ijt
2


(X (t)

ik − X̄ (t)
i )2

σ̂iit
+

(X (t)
jk − X̄ (t)

j )2

σ̂jjt

2

.

We define the test statistic by

Tn = max
1≤i≤j≤p

Tij

where

Tij =
(r̂ij1 − r̂ij2)2

η̂ij1/n1 + η̂ij2/n2
, 1 ≤ i, j ≤ p.

Under regularity conditions (similar to (C1)–(C3) in Cai et al. [6]), the asymptotic distribution of Tn can be shown to be the
type I extreme value distribution. More precisely,

P (Tn − 4 log p + log log p ≤ t) → exp

−(8π)−1/2 exp (−t/2)


(22)

for any given t ∈ R.
The asymptotic null distribution (22) can then be used to construct a test for testing the hypothesis H0 : R1 − R2 = 0.

For a given significance level 0 < α < 1, define the test Ψα by

Ψα = I(Mn ≥ 4 log p − log log p + τα) (23)

where τα = − log(8π)−2 log log(1−α)−1 is the 1−α quantile of the type I extreme value distributionwith the cumulative
distribution function exp(−(8π)−1/2 exp(−x/2)). The hypothesisH0 : R1−R2 = 0 is rejectedwheneverΨα = 1. As the test
proposed in Cai et al. [6] for testing the equality of two covariance matrices, the test Ψα defined in (23) can also be shown
to be particularly well suited for testing H0 : R1 − R2 = 0 against sparse alternatives.

6.2. Optimal estimation of a sparse correlation matrix

The ideas and technical tools can also be used for estimation of a single correlation matrix from one random sample,
which is a simpler problem. Suppose we observe an independent and identical distributed sample X = (X1, . . . ,Xn)
from a p-dimensional distribution with mean µ ∈ Rp, covariance matrix Σ, and correlation matrix R ∈ Rp×p. When R
is approximately sparse, it can be naturally estimated by a thresholding estimator R̂ as follows. Let X̄i =

1
n

n
k=1 Xik. Define

the sample covariance matrix Σ̂ = (σ̂ij)1≤i,j≤p and the sample correlation matrix R̂ = (r̂ij)1≤i,j≤p respectively by

σ̂ij =
1
n

n
k=1

(Xik − X̄i)(Xjk − X̄j) and r̂ij =
σ̂ij

(σ̂iiσ̂jj)1/2
.

Same as in (8) and (9), we define

θ̂ij =
1
n

n
k=1


(Xik − X̄i)(Xjk − X̄j) − σ̂ij

2
, (24)

ξ̂ij =
θ̂ij

σ̂iiσ̂jj
=

1
nσ̂iiσ̂jj

n
k=1


(Xik − X̄i)(Xjk − X̄j) − σ̂ij

2
, (25)

λij = τ


log p
n

1/2 
ξ̂
1/2
ij +

|r̂ij|
2


ξ̂
1/2
ii + ξ̂

1/2
jj


, (26)
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where τ is the thresholding constant that can be chosen empirically through cross-validation. The correlation matrix R is
then estimated by R̂∗

= (r̂∗

ij )1≤i,j≤p with

r̂∗

ij = sλij(r̂ij).

We consider the following class of approximately sparse correlation matrices

G1
q(s0(p)) =


R = (rij) : R ≻ 0; diag(R) = 1;max

j

p
i=1,i≠j

|rij|q ≤ s0(p)


, 0 ≤ q < 1.

The following theoretical results for R̂∗ can be established using a similar analysis.

Proposition 6.1. Suppose log p = o(n1/3) and X satisfies (12), (13). For τ > 6, there exists some constant C does not depend
on n or p such that

sup
R∈G1

q(s0(p))
E∥R̂∗

− R∥
2

≤ C(s20(p) + 1)

log p
n

1−q

(27)

sup
R∈G1

q(s0(p))
E∥R̂∗

− R∥
2
ℓ1

≤ C(s20(p) + 1)

log p
n

1−q

(28)

sup
R∈G1

q(s0(p))
E∥R̂∗

− R∥
2
F ≤ Cp(s0(p) + 1)


log p
n

1−q/2

. (29)

Moreover, when log p = o(n), s0(p) ≤ Mn(1−q)/2(log p)−(3−q)/2 for some constant M > 0, the rate in (27) is optimal as we also
have the lower bound

inf
R̂

sup
R∈G1

q(s0(p))
E∥R̂ − R∥

2
≥ cs20(p)


log p
n

1−q

(30)

inf
R̂

sup
R∈G1

q(s0(p))
E∥R̂ − R∥

2
ℓ1

≥ cs20(p)

log p
n

1−q

(31)

inf
R̂

sup
R∈G1

q(s0(p))
E∥R̂ − R∥

2
F ≥ cps0(p)


log p
n

1−q/2

. (32)

Remark 6.1. Cai and Liu [5] proposed an adaptive thresholding estimator Σ̂
∗

of a sparse covariancematrixΣ. This estimator
leads naturally to an estimator R̃ = (r̃ij) of a sparse correlation matrix R by normalizing Σ̂

∗

= (σ̂ ∗

ij ) via r̃ij = σ̂ ∗

ij (σ
∗

ii σ
∗

jj )
−1/2.

The correlation matrix estimator R̃ has similar properties as the estimator introduced above. For example, R̃ and R̂∗ achieve
the same rate of convergence.

6.3. Optimal estimation of sparse differential covariance matrices

Our analysis can also be used for estimation of sparse differential covariance matrices, ∆ = Σ1 − Σ2. Define θijt as in
(3) and its estimate θ̂ijt as in (8). Similar to the estimation of the differential correlation matrix D = R1 − R2, we estimate
∆ = Σ1 − Σ2 by adaptive entrywise thresholding. Specifically, we define the thresholding estimator ∆̂

∗

= (δ̂∗

ij) ∈ Rp×p by

δ̂∗

ij = sγij(σ̂ij1 − σ̂ij2), 1 ≤ i, j ≤ p (33)

where γij is the thresholding level given by

γij = τ


log p
n1

θ̂ij1

1/2

+


log p
n2

θ̂ij2

1/2


. (34)

Same as in the last section, here sλ(z) belongs to the class of thresholding functions satisfying Conditions (C1)–(C3) and the
thresholding constant τ can be taken chosen empirically by cross-validation.
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We consider the following class of paired covariance matrices with approximately sparse differences, for 0 ≤ q < 1,

Fq(s0(p)) ,


(Σ1, Σ2) : Σ1, Σ2 ≽ 0, max

1≤i≤p,t=1,2
σiit ≤ B,max

i

p
j=1

|σij1 − σij2|
q
≤ s0(p)


. (35)

Under the same conditions as those in Theorems 3.1 and 3.2, a similar analysis can be used to derive the minimax upper
and lower bounds. It can be shown that the estimator ∆̂

∗

given in (33) with τ > 4 satisfies

sup
(Σ1,Σ2)∈Fq(s0(p))

E∥∆̂
∗

− (Σ1 − Σ2)∥
2

≤ C(s20(p) + 1)

log p
n1

+
log p
n2

1−q

(36)

for some constant C > 0. Furthermore, the following minimax lower bound holds,

inf
∆̂

sup
(Σ1,Σ2)∈Fq(s0(p))

E∥∆̂ − (Σ1 − Σ2)∥
2

≥ cs20(p)

log p
n1

+
log p
n2

1−q

(37)

for some constant c > 0. Eqs. (36) and (37) together show that the thresholding estimator ∆̂
∗

defined in (33) and (34) is
rate-optimal.

6.4. Estimate differential cross-correlation matrices

In many applications such as phenome-wide association studies (PheWAS) which aim to study the relationship between
a set of genomicmarkersX and a range of phenotypesY, themain focus is on the cross-correlations between the components
of X and those of Y. That is, the object of interest is a submatrix of the correlation matrix of the random vector


X
Y


. More

specifically, let X = (X1, . . . , Xp1)
′ be a p1-dimensional random vector and Y = (Y1, . . . , Yp2)

′ be a p2-dimensional random
vector. In the PheWAS setting, Xmay be all phenotypic disease conditions of interest and Y is a vector of genomic markers.

Suppose we have two independent and identical distributed samples of the (X, Y) pairs, one for the case group and one
for the control group,


X (1)
k

Y (1)
k


=



X (1)
1k
...

X (1)
p1k
Y1k
...

Y (1)
p2k


, k = 1, . . . , n1;


X (2)
k

Y (2)
k


=



X (2)
1k
...

X (2)
p1k
Y1k
...

Y (2)
p2k


, k = 1, . . . , n2.

Here for t = 1, 2, (X (t)T
k , Y (t)T

k )T , k = 1, . . . , n1 are independent and identical distributed samples generated from some
distribution with mean µt , covariance matrix Σt and correlation matrix Rt given by

µt =


µXt
µYt


, Σt =


ΣXXt ΣXYt
ΣYXt ΣYYt


, Rt =


RXXt RXYt
RYXt RYYt


.

In applications such as PheWAS, it is of special interest to estimate the differential cross-correlation matrix of X and Y,
i.e. DXY = RXY1 − RXY2 ∈ Rp1×p2 . Again, we introduce the following set of paired correlation matrices with sparse cross-
correlations,

Gq(s0(p1, p2)) =


(R1,R2) : R1,R2 ≽ 0, diag(R1) = diag(R2) = 1;

max
1≤i≤p1

p2
j=1

|(rXY )ij1 − (rXY )ij2|q ≤ s0(p1, p2)

, 0 ≤ q < 1.

The thresholding procedure proposed in Section 2 can be applied to estimate DXY ,

(d̂∗

XY )ij = sλij((r̂XY )ij1 − (r̂XY )ij2), 1 ≤ i ≤ p1, 1 ≤ j ≤ p2 (38)

where R̂XY is sample cross-correlationmatrix of X and Y ;λij is given by (10). Similar to Theorem3.1, the following theoretical
results hold for the estimator D̂∗

XY = (d̂∗

XY ).
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Proposition 6.2. Suppose p = p1 + p2, log(p) = o(min(n1, n2)
1/3) and (12) and (13) hold. Suppose the thresholding function

sλ(z) satisfies Conditions (C1)–(C3). Then D̂∗ defined in (38) with the thresholding constant τ > 4 satisfies

sup
(R1,R2)∈Gq(s0(p1,p2))

E∥D̂∗

XY − (RXY1 − RXY2)∥
2

≤ C(s20(p) + 1)

log p
n1

+
log p
n2

1−q

(39)

sup
(R1,R2)∈Gq(s0(p1,p2))

E∥(D̂∗

XY − (RXY1 − RXY2))
ᵀ
∥
2
ℓ1

≤ C(s20(p) + 1)

log p
n1

+
log p
n2

1−q

(40)

sup
(R1,R2)∈Gq(s0(p1,p2))

E∥D̂∗

XY − (RXY1 − RXY2)∥
2
F ≤ Cp(s0(p) + 1)


log p
n1

+
log p
n2

1−q/2

(41)

for some constant C > 0 that does not depend on n1, n2 or p.

The proof of Proposition 6.2 is similar to that of Theorem 3.1 by analyzing the block D̂XY − (RXY1 − RXY2) instead of the
whole matrix D∗

− (R1 − R2). We omit the detailed proof here.

Appendix. Proofs

We prove the main theorems in the Appendix. Throughout the Appendix, we denote by C a constant which does not
depend on p, n1 and n2, and may vary from place to place.

Proof of Theorem 3.1. To prove this theorem, we consider the following three events separately,

A1 =

max
ijt

|σ̂ijt − σijt |
θ̂ijt log p/nt

1/2 ≤
τ

4
+ 3, and max

ijt

|θ̂ijt − θijt |

σiitσjjt
≤ ε

 (42)

A2 =

max
ijt

|σ̂ijt − σijt |
θ̂ijt log p/nt

1/2 >
τ

4
+ 3, max

ijt

|θ̂ijt − θijt |

σiitσjjt
≤ ε, and max

ijt

|σ̂ijt − σijt |

(σiitσjjt)1/2
≤ min(0.5, C1C3)

 (43)

A3 = (A1 ∪ A2)
c . (44)

Here ε is the fixed constant which satisfies 0 < ε < ν0/2 where ν0 is introduce in (13); C1 and C3 are constants which
do not depend on p, n1, n2 and shall be specified later in Lemma A.1.

1. First we would like to show that under the event A1,

∥D̂∗
− (R1 − R2)∥

2
≤ Cs20(p)


log p
n1

+
log p
n2

1−q

, (45)

∥D̂∗
− (R1 − R2)∥

2
ℓ1

≤ Cs20(p)

log p
n1

+
log p
n2

1−q

, (46)

∥D̂∗
− (R1 − R2)∥

2
F ≤ Cps0(p)


log p
n1

+
log p
n2

1−q/2

. (47)

In fact,

EY (t)4
i ≤

2E exp(ηY (t)2
i )

η2
≤

2K
η2

for all 1 ≤ i ≤ p, so

θijt = Var(X (t)
i − µi)(X

(t)
j − µj) ≤ E(X (t)

i − µi)
2(X (t)

j − µj)
2

≤


E(X (t)

i − µi)
4E(X (t)

j − µj)
4
1/2

= σiitσjjt


EY (t)4

i EY (t)4
j

1/2
≤ Cσiitσjjt ,

θijt = Var(YiYj) · σiitσjjt
(13)
≥ ν0σiitσjjt . (48)

So by the definition of A1, we have

θ̂ijt ≤ θijt + |θ̂ijt − θijt | ≤ Cσiitσjjt , for all i, j, t, (49)
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θ̂ijt ≥ θijt − |θ̂ijt − θijt | ≥ ν0σiitσjjt − εσiitσjjt ≥
ν0

2
σiitσjjt . (50)

Hence, σ̂iit

σiit
− 1

 ≤
|σ̂iit − σiit |

σiit

(42)
≤

τ/4 + 3
σiit


log p

θ̂iit

nt

1/2
(49)
≤ C


log p
nt

1/2

(51)

σiit

σ̂iit
− 1

 ≤
|σ̂iit − σiit |

σ̂iit

(42)
≤ (τ/4 + 3)


log p
nt

1/2
θ̂
1/2
iit

σ̂iit
. (52)

Suppose x = σiit/σ̂iit , y = σjjt/σ̂jjt . By (51) and


log p
nt

1/2
→ 0, we have max {|x − 1|, |y − 1|} ≤ C


log p
nt

1/2
when nt is

large enough. Thus for large nt , we obtain


σiitσjjt

σ̂iit σ̂jjt

1/2

− 1

 =
(xy)1/2 − 1

 =
|xy − 1|

(xy)1/2 + 1
≤

|x − 1| + x|y − 1|
2 − max (|x − 1|, |y − 1|)

≤
max(1, x)

2 − max(|x − 1|, |y − 1|)
(|x − 1| + |y − 1|)

≤


1
2

+ O


log p
nt

1/2


(|x − 1| + |y − 1|) . (53)

It then follows from the assumption log p = o(n1/3
t ) that for large nt ,

ξ̂ijt =
θ̂ijt

σ̂iit σ̂jjt

(49)
≤

Cσiitσjjt

σ̂iit σ̂jjt

(51)
≤ C (54)

and

|r̂ijt − rijt | =

 σ̂ijt

(σ̂iit σ̂jjt)1/2
−

σijt

(σiitσjjt)1/2

 ≤
|σ̂ijt − σijt |

(σ̂iit σ̂jjt)1/2
+

|σijt |

(σiitσjjt)1/2




σiitσjjt

σ̂iit σ̂jjt

1/2

− 1


(42)(53)

≤

τ

4
+ 3

 log p
nt

θ̂ijt

σ̂iit σ̂jjt

1/2

+ |rijt |


1
2

+ O


log p
nt

1/2
σiit

σ̂iit
− 1

+ σjjt

σ̂jjt
− 1


(52)
≤

τ

4
+ 3

 log p
nt

1/2
 θ̂ijt

σ̂iit σ̂jjt

1/2

+ |rijt |


1
2

+ O


log p
nt

1/2


θ̂
1/2
iit

σ̂iit
+

θ̂
1/2
jjt

σ̂jjt


≤

τ

2
+ 2

 log p
nt

1/2 
ξ̂
1/2
ijt +

|rijt |
2


ξ̂
1/2
iit + ξ̂

1/2
jjt


≤

τ

2
+ 2

 log p
nt

1/2 
ξ̂
1/2
ijt +

|r̂ijt |
2


ξ̂
1/2
iit + ξ̂

1/2
jjt


+ |r̂ijt − rijt |

τ

4
+ 1

 log p
nt

1/2 
ξ̂
1/2
iit + ξ̂

1/2
jjt


(54)
≤

τ

2
+ 2

 log p
nt

1/2 
ξ̂
1/2
ijt +

|r̂ijt |
2


ξ̂
1/2
iit + ξ̂

1/2
jjt


+ C


log p
nt

1/2

|r̂ijt − rijt |.

We shall note the difference between |rijt |
2 and |r̂ijt |

2 above. Next, we rearrange the inequality above and write it into an
inequality for |r̂ijt − rijt |,

|r̂ijt − rijt | ≤


τ
2 + 2

  log p
nt

1/2 
ξ̂
1/2
ijt +

|r̂ijt |
2


ξ̂
1/2
iit + ξ̂

1/2
jjt


1 − C


log p
nt

1/2
≤ τ


log p
nt

1/2 
ξ̂
1/2
ijt +

|r̂ijt |
2


ξ̂
1/2
iit + ξ̂

1/2
jjt


(10)
= λijt . (55)
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(55) implies

|(r̂ij1 − r̂ij2) − (rij1 − rij2)| ≤ λij1 + λij2 = λij holds for all 1 ≤ i, j ≤ p. (56)

Next, by (56) and (C1) and (C3) of sλ(z),sλij(r̂ij1 − r̂ij2) − (rij1 − rij2)
 ≤

sλij(r̂ij1 − r̂ij2)
+ (rij1 − rij2)


≤ (1 + c)|rij1 − rij2|, (57)sλij(r̂ij1 − r̂ij2) − (rij1 − rij2)

 ≤
sλij(r̂ij1 − r̂ij2) − (r̂ij1 − r̂ij2)

+ (r̂ij1 − r̂ij2) − (rij1 − rij2)
 ≤ 2λij, (58)

which impliessrij(r̂ij1 − r̂ij2) − (rij1 − rij2)
 ≤ (2λij)

1−q(1 + c)q|rij1 − rij2|q, (59)srij(r̂ij1 − r̂ij2) − (rij1 − rij2)
2 ≤ (2λij)

2−q(1 + c)q|rij1 − rij2|q, (60)

where 0 ≤ q < 1. Hence,

∥D̂∗
− (R1 − R2)∥ℓ1 = max

i

p
j=1

sλij(r̂ij1 − r̂ij2) − (rij1 − rij2)


(59)
≤ max

i
21−q(1 + c)q

p
j=1

λ
1−q
ij |rij1 − rij2|q

(10)
≤ max

i
21−q(1 + c)q

p
j=1


τ 1−q(log p)(1−q)/2

×


ξ̂
1/2
ij1 + |r̂ij1|(ξ̂

1/2
ii1 + ξ̂

1/2
jj1 )/2

n1/2
1

+
ξ̂
1/2
ij2 + |r̂ij2|(ξ̂

1/2
ii2 + ξ̂

1/2
jj2 )/2

n1/2
2

1−q

|rij1 − rij2|q


(54)
≤ max

i
C

p
j=1


(log p)(1−q)/2


1
n1

+
1
n2

(1−q)/2

|rij1 − rij2|q


≤ Cs0(p)

log p
n1

+
log p
n2

(1−q)/2

which yields (46). (45) also holds due to the fact that ∥A∥2 ≤ ∥A∥L1 for any symmetric matrix A. Similarly,D̂∗
− (R1 − R2)

2
F

=

p
i=1

p
j=1

sλij(r̂ij1 − r̂ij2) − (rij1 − rij2)
2

(60)
≤ 22−q(1 + c)q

p
i=1

p
j=1

λ
2−q
ij |rij1 − rij2|q

(10)
≤ 22−q(1 + c)q

p
i=1

p
j=1


τ 2−q(log p)(2−q)/2

×


ξ̂
1/2
ij1 + |r̂ij1|(ξ̂

1/2
ii1 + ξ̂

1/2
jj1 )/2

n1/2
1

+
ξ̂
1/2
ij2 + |r̂ij2|(ξ̂

1/2
ii2 + ξ̂

1/2
jj2 )/2

n1/2
2

2−q

|rij1 − rij2|q


(54)
≤ Cpmax

i

p
j=1


(log p)(2−q)/2


1
n1

+
1
n2

(2−q)/2

|rij1 − rij2|q


≤ Cps0(p)

log p
n1

+
log p
n2

1−q/2

which implies (47).
2. For A2, we wish to prove,

A2
∥D̂∗

− (R1 − R2)∥
2dP ≤ C(p−τ/4+1 log p)


1
n1

+
1
n2


(61)

A2
∥D̂∗

− (R1 − R2)∥
2
ℓ1
dP ≤ C(p−τ/4+1 log p)


1
n1

+
1
n2


(62)
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A2

∥D̂∗
− (R1 − R2)∥

2
FdP ≤ C(p−τ/4+1 log p)


1
n1

+
1
n2


. (63)

In order to prove these probability bounds, we introduce the following lemma, which revealed the relationship between
θ̂ijt , θijt and σ̂ijt , σijt .

Lemma A.1. For any τ > 0,

pr

max
i,j,t

|σ̂ijt − σijt | > (τ/4 + 3)

θ̂ijt log p/nt

1/2
≤ C(log p)−1/2p−τ/4−1. (64)

There exist constants C1, C2, C3 which do not depend on p, n1, n2 such that

pr


max
i,j

|σ̂ijt − σijt |
σiitσjjt

1/2 > C1x


≤ C2p2


exp(−ntx2)


, for all 0 < x ≤ C3, t = 1, 2. (65)

For any ε > 0 and M > 0,

pr

max
i,j,t

|θ̂ijt − θijt |/(σiitσjjt) > ε


≤ Cp−M (1/n1 + 1/n2) . (66)

The proof of Lemma A.1 is given later. Note that (64) immediately leads to

pr(A2) ≤ C(log p)−1/2p−τ/4−1. (67)

By the definition of A2 (43), we still have (49). Besides, by the definition of A2,
|σ̂iit−σiit |

σiit
≤ 0.5, which leads to σ̂iit ≥ 0.5σiit .

Thus,

ξ̂ijt =
θ̂ijt

σ̂iit σ̂jjt
≤

Cσiitσjjt

(0.5σiit)(0.5σjjt)
= 4C . (68)

For convenience, we denote the random variable

T = max
ijt

|σ̂ijt − σijt |
σiitσjjt

1/2 . (69)

Under A2, we have T ≤ 0.5. Then for all 1 ≤ i, j ≤ p, t = 1, 2,

r̂ijt − rijt =
σ̂ijt

σ̂iit σ̂jjt
1/2 −

σijt
σiitσjjt

1/2
=

σ̂ijt

(σiitσjjt)
1/2

σ̂iit/σiit
1/2

×

σ̂jjt/σjjt

1/2 −
σijt

σiitσjjt
1/2

≤

σijt

(σiitσjjt)
1/2 + T

(σiit/σiit − T )1/2 ×

σjjt/σjjt − T

1/2 −
σijt

σiitσjjt
1/2

=
rijt + T
1 − T

− rijt

≤ (1 + 2T )(rijt + T ) − rijt
≤ 4T .

Similarly calculation also leads to r̂ijt − rijt ≥ −4T . Then, by (C3) of sλij(z),

∥D̂∗
− (R1 − R2)∥

2
ℓ1

= max
i


p

j=1

|sλij(r̂ij1 − r̂ij2) − (rij1 − rij2)|

2

≤ max
i


p

j=1


|sλij(r̂ij1 − r̂ij2) − (r̂ij1 − r̂ij2)| + |(r̂ij1 − r̂ij2) − (rij1 − rij2)|

2

≤ max
i


p

j=1


λij + 8T

2
(10)(68)

≤ Cp2

log p
n1

+
log p
n2

+ T 2


. (70)
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In addition, due to ∥ · ∥ℓ1 ≥ ∥ · ∥, we also have ∥D̂∗
− (R1 − R2)∥

2
≤ Cp2


log p
n1

+
log p
n2

+ T 2


. Similarly,

∥D̂∗
− (R1 − R2)∥

2
F =

p
i=1

p
j=1

|sλij(r̂ij1 − r̂ij2) − (rij1 − rij2)|2

≤ 2
p

i=1

p
j=1


|sλij(r̂ij1 − r̂ij2) − (r̂ij1 − r̂ij2)|2 + |(r̂ij1 − r̂ij2) − (rij1 − rij2)|2


≤ Cp2


log p
n1

+
log p
n2

+ T 2


. (71)

Therefore,
A2

∥D̂∗
− (R1 − R2)∥

2
ℓ1
dP

(70)
≤


A2

Cp2

log p
n1

+
log p
n2

+ T 2

dP

≤ Cp2

log p
n1

+
log p
n2


pr(A2) + Cp2

 min(0.5,C1C3)

0
2xpr({T ≥ x} ∩ A2)dx

≤ Cp2

log p
n1

+
log p
n2


pr(A2) + Cp2

 C1(M log p(1/n1+1/n2))1/2

0
2xpr(A2)dx

+

 min(0.5,C1C3)

C1(M log p(1/n1+1/n2))1/2
2xpr(T ≥ x)dx

(65)
≤ Cp2


log p
n1

+
log p
n2


pr(A2) + Cp2


log p
n1

+
log p
n2


pr(A2)

+


+∞

C1(M log p(1/n1+1/n2))1/2
2xC2


exp(−n1(x/C1)

2) + exp(−n2(x/C1)
2)

dx

≤ Cp2

log p
n1

+
log p
n2


pr(A2)

+ C


1
n1

exp(−n1(x/C1)
2) +

1
n2

exp(−n2(x/C1)
2)

 C1(M log p(1/n1+1/n2))1/2

+∞

(67)
≤ Cp−τ/4+1


log p
n1

+
log p
n2


+ Cp−M


1
n1

+
1
n2


. (72)

Similarly, we have
A2

∥D̂∗
− (R1 − R2)∥

2dP ≤ Cp−τ/4+1

log p
n1

+
log p
n2


+ Cp−M


1
n1

+
1
n2


,

A2
∥D̂∗

− (R1 − R2)∥
2
FdP ≤ Cp−τ/4+1


log p
n1

+
log p
n2


+ Cp−M


1
n1

+
1
n2


,

which finishes the proof of (61), (62) and (63) when we chooseM > τ/4 − 1.

3. For A3, (66) and log p = o(n1/3) leads to

pr(A3) ≤ pr


max
ijt

|θ̂ijt − θijt |

σiitσjjt
> ε


+ pr


max
ijt

|σ̂ijt − σijt |
σiitσjjt

1/2 > min(0.5, C1C3)



≤ Cp−M(1/n1 + 1/n2) + C2p2

exp


−n1 min


1

2C1
, C3

2


+ exp


−n2 min


1

2C1
, C3

2


= Cp−M(1/n1 + 1/n2). (73)

Besides, since rijt , r̂ijt are the population and sample correlations, |rijt | ≤ 1, |r̂ijt | ≤ 1. By (C1) of thresholding sλ(z), we
have |sλ(x) − x| ≤ c|x| for all x ∈ R. Thus,

|sλij(r̂ij1 − r̂ij2) − (rij1 − rij2)| ≤ |rij1| + |rij2| + |sλij(r̂ij1 − r̂ij2)|

≤ 2 + c|r̂ij1 − r̂ij2| ≤ 2 + 2c
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which yields

∥D̂∗
− (R1 − R2)∥

2
ℓ1

= max
i


p

j=1

|sλij(r̂ij1 − r̂ij2) − (rij1 − rij2)|

2

≤ (2 + 2c)2p2. (74)

Similarly, ∥D̂∗
− (R1 − R2)∥

2
≤ (2 + 2c)2p2, ∥D̂∗

− (R1 − R2)∥
2
F ≤ (2 + 2c)2p2. Therefore,

A3
∥D̂∗

− (R1 − R2)∥
2dP

(73)
≤ Cp−M+2


1
n1

+
1
n2


(75)

A3
∥D̂∗

− (R1 − R2)∥
2
ℓ1
dP

(73)
≤ Cp−M+2


1
n1

+
1
n2


(76)

A3
∥D̂∗

− (R1 − R2)∥
2
FdP

(73)
≤ Cp−M+2


1
n1

+
1
n2


. (77)

Finally, we combine the situations of A1, A2 and A3. When τ > 4 andM > 2, we have

E∥D̂∗
− (R1 − R2)∥

2
=


A1

+


A2

+


A3


∥D̂∗

− (R1 − R2)∥
2dP

(45)(61)(75)
≤ C


s20(p) + 1

  log p
n1

+
log p
n2

1−q

(78)

which has proved (14). (15) and (16) can be proved similarly by (46), (62), (47) and (76), (63), (77). �

Proof of Lemma A.1. (64) is directly from (25) in Cai and Liu [5]. For (66), the proof is essentially the same as the proof of
(26) in Cai and Liu [5] as long as we use x = ((M + 2) log p + log n)1/2 instead of x = ((M + 2) log p)1/2 in their proof. Now
we mainly focus on the proof of (65). Without loss of generality, we can translate X and assume that µ1 = µ2 = 0. Note
that we have the following formulation,

σ̂ijt − σijt
σiitσjjt

1/2 =
1
nt

nt
k=1

(X (t)
ik X (t)

jk − σijt)
σiitσjjt

1/2 −
X̄ (t)
i X̄ (t)

j
σiitσjjt

1/2 =


1
nt

nt
k=1

(Y (t)
ik Y (t)

jk − rijt) − Ȳ (t)
i Ȳ (t)

j


. (79)

Since

E(Y (t)
i Y (t)

j − rijt)2e
η
2 |Y (t)

i Y (t)
j −rijt | ≤

4
η2

Eeη|Y (t)
i Y (t)

j −rijt | ≤
4
η2

Eeη(Y (t)
i Y (t)

j −rijt ) +
4
η2

Ee−η(Y (t)
i Y (t)

j −rijt )

≤
8
η2


Ee|η|Y (t)2

i + Ee|η|Y (t)2
j


e|ηrijt | ≤ C4

where C4 is a constant which does not depend on n1, n2, p. Thus, we set B̄2
n = ntC1; based on Lemma 1 in Cai and Liu [5], we

have

pr

 1nt

nt
k=1

(Y (t)
ik Y (t)

jk − rijt)

 ≥ Cη/2C
1/2
4 x


≤ exp(−ntx2). (80)

for all 0 < x ≤ C1/2
1 , where Cη/2 = η/2 + 2/η. Next for Ȳ (t)

i , we similarly apply Lemma 1 in Cai and Liu [5] and get

pr

|Ȳ (t)

i | ≥ C5x


≤ exp(−ntx2) (81)

for all 0 < x ≤ C1/2
5 . Combining (80) and (81),

pr


max

ij

 1nt

nt
k=1

(Y (t)
ik Y (t)

jk − rijt)

 ≤ Cη/2C
1/2
4 x and max

i,t
|Ȳ (t)

i | ≤ C5x


≤ 1 − 2p2 exp(−ntx2) (82)

for all 0 < x ≤ min

C1/2
1 , C1/2

5


. Finally, (79) and (82) yield (65). �

Proof of Theorem 3.2. Without loss of generality, we assume n1 ≤ n2. For (R1,R2) ∈ Gq(s0(p)), setΣ2 = R2 = Ip×p andwe
have already known this information. The estimation of sparse difference immediately becomes the estimation of the sparse
correlation matrix R1. Then the lower bound result for estimating single sparse covariance matrix can be used to prove this
theorem.
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We follow the idea of Cai and Zhou [9] and define the set of diagonal-1 covariance matrices as

Fq(s0(p)) =


Σ : Σ ≽ 0, diag(Σ) = 1,max

i

p
j=1

|σij|
q
≤ s0(p)


.

We have

(R1, I) : R1 ∈ Fq(s0(p))


⊆ Gq(s0(p)). Besides, the proof of Theorem 2 in Cai and Zhou [9] shows that

inf
Σ̂

sup
Σ∈Fq(s0(p))

E∥Σ̂ − Σ∥
2

≥ Cs0(p)

log p
n

1−q

. (83)

Since the correlation matrix is equal to covariance matrix (i.e. R = Σ) when diag(Σ) = 1, then

inf
D̂

sup
(R1,R2)∈Gq(s0(p))

E∥D̂ − (R1 − R2)∥
2

≥ inf
D̂

sup
(R1,I):R1∈Fq(s0(p))

E∥D̂ − (R1 − I)∥2

≥ inf
R̂1

sup
R1∈Fq(s0(p))

E∥R̂1 − R1∥
2

≥ inf
Σ̂

sup
Σ1∈Fq(s0(p)),diag(Σ1)=1

E∥Σ̂1 − Σ1∥

≥ Cs20(p)

log p
n1

1−q

≥
C
2
s20(p)


log p
n1

+
log p
n2

1−q

(84)

which implies (17). By ∥ · ∥ℓ1 ≥ ∥ · ∥ for symmetric matrices, (18) also follow immediately.
Similarly, (19) follows from Theorem 4 of Cai and Zhou [9]. �

Proof of Proposition 6.1. The proof of Proposition 6.1 is similar to Theorem 3.1. For the upper bound, again, we split the
whole events into three,

A1 = {max
ij

|σ̂ij − σij|
log pθ̂ij/n

1/2 ≤ τ/4 + 3, and max
ij

|θ̂ij − θij|

σiiσjj
≤ ε}, (85)

A2 =


max

ij

|σ̂ij − σij|
log pθ̂ij/n

1/2 > τ/4 + 3, max
ij

|θ̂ij − θij|

σiiσjj
≤ ε and max

ij

|σ̂ij − σij|
σiiσjj

1/2 ≤ min(0.5, C1C3)


(86)

A3 = (A1 ∪ A2)
c . (87)

Here ε is the fixed constant which satisfies 0 < ε < ν0/2 where ν0 was introduced in (13); C1, C3 are constants specified in
Lemma A.1. Similarly to the proof of Theorem 3.1, we can prove the following statements.

1. Under A1,

∥R̂∗
− R∥

2
≤ Cs20(p)


log p
n

1−q

,

∥R̂∗
− R∥

2
ℓ1

≤ Cs20(p)

log p
n

1−q

,

∥R̂∗
− R∥

2
F ≤ Cs0(p)


log p
n

1−q/2

.

2. For A2,
A2

∥R̂∗
− R∥

2dP ≤ C(p−τ/4+1 log p)
1
n

A2
∥R̂∗

− R∥
2
ℓ1
dP ≤ C(p−τ/4+1 log p)

1
n

A2
∥R̂∗

− R∥
2
FdP ≤ C(p−τ/4+1 log p)

1
n
.

3. For A3,
A3

∥R̂∗
− R∥

2dP ≤ C
p−M+2

n
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A3

∥R̂∗
− R∥

2
ℓ1
dP ≤ C

p−M+2

n
A3

∥R̂∗
− R∥

2
FdP ≤ C

p−M+2

n
.

The rest of proof, including the lower bound results, are omitted here as they are essentially the same as Theorem 3.1. �
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