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SUMMARY 15

Microorganisms such as bacteria form complex ecological community networks that can be
greatly influenced by diet and other environmental factors. Differential analysis of microbial
community structures aims to elucidate such systematic changes during an adaptive response to
changes in environment. In this paper, we propose a flexible Markov random field model for mi-
crobial network structure and introduce a hypothesis testing framework for detecting differences 20

between networks, also known as differential network analysis. Our global test for differential
networks is particularly powerful against sparse alternatives. In addition, we develop a multiple
testing procedure with false discovery rate control to identify the structure of the differential
network. The proposed method is applied to data from a gut microbiome study on UK twins to
evaluate how age affects the microbial community network. 25

Some key words: Differential network; High dimensional logistic regression; Microbiome; Multiple testing.

1. INTRODUCTION

1·1. Markov random field model for microbial networks
High-throughout sequencing technologies provide comprehensive surveys of the human mi-

crobiome using either 16S rRNA or shotgun metagenomics sequencing (Kuczynski et al., 2012). 30

An important question in microbiome studies is to infer the interactions among various microor-
ganisms (Faust & Raes, 2012). There is growing interest in studying microbial community struc-
tures, because the underlying ecological structures are highly dynamic and undergo differential
changes in response to changes in their environment. An example that motivates this paper is to
understand how age-related physiological changes in the gut and modifications in lifestyle in- 35

C© 2018 Biometrika Trust



2 T. T. CAI, H. LI, J. MA AND Y. XIA

fluence gut microbial interaction structures (Biagi et al., 2010; Claesson et al., 2011). Motivated
by this goal of uncovering changes in microbial interactions associated with age, we develop a
method for detecting differential microbial community networks.

Microbiome data present at least two challenges. First, the observations in sequencing-
based microbiome studies are often relative abundances of different bacteria, and the abso-40

lute microbial abundances are unavailable. The observation from each sample can be repre-
sented by a compositional vector R = (R1, . . . , Rp)

T with p taxa and the unit-sum constraint∑p
j=1Rj = 1 (Rj ≥ 0, j = 1, . . . , p). Because typical microbial communities consist of both

rare and common taxa, the second obstacle is the sparsity of the compositional vector R; many
taxa are absent from the sample or their abundances are below the detection level. There is a lack45

of flexible statistical models that can capture the complex dependency structures among the taxa
in a given community. For instance, methods based on Gaussian graphical models cannot be di-
rectly applied to study the conditional dependence relationships, due to the unit-sum constraint,
and naive application of such models can lead to spurious associations (Aitchison, 1982).

Gaussian graphical models have been applied to centered log-ratio transformed data to study50

conditional dependence relationships among microbes (Kurtz et al., 2015), but this transforma-
tion has difficulty in dealing with zeros and the resulting transformed data are not even close to
being Gaussian or sub-Gaussian. Furthermore, graphical models based on the centered log-ratio
transformation are difficult to interpret. Biswas et al. (2016) proposed studying conditional mi-
crobial interactions by modeling the residuals from a Poisson regression, but their approach does55

not account for the compositional nature of the data. Fang et al. (2017) modeled the conditional
dependence among the latent absolute abundances that generate the compositional data using a
logistic normal distribution, but this method does not address the sparsity issue. Finally, exist-
ing works based on graphical models do not assign uncertainties or statistical significance to the
conditional associations, and are not developed with the focus of differential network analysis.60

To address the above challenges, we propose to discretize the compositional vector R into a
vector X of binary measurements {−1, 1} based on a pre-specified abundance threshold such as
the median relative abundance. In particular, −1 represents absence or a relative abundance be-
low the given threshold, whereas 1 represents presence or a relative abundance above the thresh-
old. After discretizing the data, one can use a binary Markov random field to model conditional65

dependencies between the components of the discretized vector X . The pairwise relationships
can be captured by an undirected graph G = (V,E) whose vertex set is V = {1, . . . , p} and
whose edge set E corresponds to conditional dependencies. The binary Markov random field
associated with graph G has the joint distribution

prΘ(X) ∝ exp

( ∑
(r,t)∈E

θr,tXrXt

)
, (1)

subject to a normalizing constant, where θr,t quantifies the conditional dependence between taxa70

r and t. With binary X , this model has a clear biological interpretation: positive θr,t implies
co-existence and negative θr,t implies co-exclusiveness.

1·2. Differential network analysis
Let Θ1 = (θr,t,1) and Θ2 = (θr,t,2) be the matrices that represent the microbial network

among discretized taxa abundances for two age groups. In this paper, we are interested in the75

global test:

H0 : Θ1 = Θ2 versus H1 : Θ1 6= Θ2. (2)
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If the global null in (2) is rejected, it becomes of interest to test for entrywise changes in the
differential network ∆ = Θ1 −Θ2 = (δr,t),

H0,r,t : δr,t = 0 versus H1,r,t : δr,t 6= 0 (1 ≤ r < t ≤ p), (3)

while controlling the false discovery rate at a pre-specified level.
The gut microbial networks of young adults and the elderly often differ only in a small number 80

of links (Goodrich et al., 2016). Our proposed global test uses the maximum of the standardized
entrywise differences as the test statistic, and is thus particularly powerful against such sparse
alternatives, compared to tests based on the Frobenius norm (Schott, 2007; Li & Chen, 2012).
Our multiple testing procedure for differential network accounts for the multiplicity in testing
the p(p− 1)/2 hypotheses, with both the false discovery proportion and the false discovery rate 85

controlled asymptotically. The proposed global and multiple testing procedures are implemented
in the R package TestBMN, which is available on GitHub. The merits of the proposed tests are
further demonstrated through extensive simulations and a gut microbiome study of UK twins.

1·3. Our contribution
In an unpublished 2016 technical report from Zhao Ren of the University of Pittsburgh, the 90

author developed a method for estimation of individual entries in Θ for a single binary Markov
random field model. In contrast, this paper studies global and multiple testing of two Markov ran-
dom field models with multiple testing error control. Nodewise logistic regressions are used to
develop the entrywise test statistics, whose dependence structure is much more complicated than
in the Gaussian case (Xia et al., 2015; Cai & Liu, 2016; Xia et al., 2018). The debiased entry- 95

wise estimators for testing Gaussian graphical models are based on the residuals from nodewise
linear regressions whose correlations are straightforward to characterize. However, the estima-
tors in the current paper depend not only on the residual from each nodewise logistic regression
but on carefully defined projection directions needed for bias correction. By overcoming these
challenges, we establish theoretical properties of the proposed testing procedures. 100

2. GLOBAL AND MULTIPLE TESTING OF MARKOV NETWORKS

2·1. Notation and problem setup
Let {X(1), . . . , X(n1)} be the n1 independent binary observations from the first population

and {Y (1), . . . , Y (n2)} the n2 independent binary observations from the second population, of-
ten conveniently written as matrices X ∈ Rn1×p and Y ∈ Rn2×p. For a matrix X ∈ Rn1×p, 105

X−r denotes the n1 × (p− 1) submatrix with the rth column removed. For a matrix Θk =
(θr,t,k)1≤r,t≤p and k = 1, 2, let θr,−r,k = {θr,t,k, t 6= r} denote the (p− 1)-dimensional sub-
vector of parameters. For a symmetric matrix A, φmax(A) and φmin(A) denote the largest and
smallest eigenvalues ofA. For a vector a ∈ Rp, the usual vector `1, `2 and `∞ norms are denoted,
respectively, by ‖a‖1, ‖a‖2 and ‖a‖∞. The indicator function is denoted by I(·). 110

To leverage the sparsity in the differential network ∆, we propose a test based on the maxi-
mum of the standardized entrywise differences between the two matrices (Xia et al., 2015). Our
motivation is that the global null hypothesis in (2) is equivalent to

H0 : max
1≤r<t≤p

|θr,t,1 − θr,t,2| = 0. (4)

Therefore one can construct the test statisticMn,p by first obtaining nearly unbiased estimators of
θr,t,k (k = 1, 2) and then deriving the standardized entrywise difference Wr,t, such that Mn,p = 115

max1≤r<t≤pW
2
r,t.
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If the global null Θ1 = Θ2 is rejected, simultaneous testing of entrywise differences is often of
interest to identify where the two networks differ. To this end, we also consider multiple testing
of all entries in ∆, as formally defined in (3). A natural test statistic for each individual test in
(3) is the standardized entrywise difference Wr,t. For any given threshold level τ > 0, the null120

hypothesis H0,r,t is rejected if |Wr,t| ≥ τ . Our goal is to choose an optimal threshold τ such
that the proposed multiple testing procedure rejects as many true positives as possible while
controlling the false discovery rate at a pre-specified level.

2·2. Derivation of the standardized entrywise statistics
To obtainWr,t, we first derive nearly unbiased estimators of θr,t,k (k = 1, 2) and evaluate their125

variances. Without loss of generality, it suffices to focus on estimation of θr,t,1 from X .
Given X , one can recover the association parameters in a binary Markov random field us-

ing `1 penalized nodewise logistic regression (Ravikumar et al., 2010), because the conditional
distribution of X(i)

r given X(i)
−r is

pr(X(i)
r | X

(i)
−r) =

exp(X
(i)
r
∑

j 6=rX
(i)
j θr,j,1)

exp(−X(i)
r
∑

j 6=rX
(i)
j θr,j,1) + exp(Xr

∑
j 6=rX

(i)
j θr,j,1)

. (5)

Thus the variable Xr can be viewed as the response in a logistic regression where all remaining130

variablesX−r act as covariates. However, θ̂r,t,1 obtained via `1 penalized estimation (Ravikumar
et al., 2010) is biased.

To correct for the bias in θ̂r,t,1, it is instructive to write the rth variable as a nonlinear function
of all remaining variables, i.e., for every node r = 1, . . . , p,

X(i)
r = E(X(i)

r | X
(i)
−r) + ε

(i)
r,1 = ḟ(u

(i)
r,1) + ε

(i)
r,1 (i = 1, . . . , n1), (6)135

where u
(i)
r,1 = X

(i)
−rθr,−r,1, ḟ(u) = tanh(u) and ε

(i)
r,1 are random variables satisfying E(ε

(i)
r,1 |

X
(i)
−r) = 0. We adopt the projection-based de-biasing approach of Zhang & Zhang (2014).

Specifically, for a suitably chosen score vector vr,t,1 ∈ Rn1 and û(i)
r,1 = X

(i)
−rθ̂r,−r,1, one can show

that the estimator

θ̌r,t,1 = θ̂r,t,1 +

∑n1
i=1 v

(i)
r,t,1{X

(i)
r − ḟ(û

(i)
r,1)}∑n1

i=1 v
(i)
r,t,1f̈(û

(i)
r,1)X

(i)
t

(t 6= r), (7)140

is nearly unbiased under mild conditions on the initial estimate θ̂r,−r,1. The second term on the
right-hand side of (7) projects the residual X(i)

r − ḟ(û
(i)
r,1) onto the direction of v(i)

r,t,1, thereby
reducing the bias in θ̂r,t,1 to an acceptable level. As shown in the unpublished 2016 technical
report by Zhao Ren, the desired score vector vr,t,1 (t 6= r) can be defined as

v
(i)
r,t,1 = (X

(i)
t + 1)/2− g(X

(i)
−{r,t}, θ̂r,−r,1, θ̂t,−t,1) (i = 1, . . . , n1), (8)145

where for f̈(u) = 4e2u/(e2u + 1)2,

g(X−{r,t}, θr,−r,1, θt,−t,1) =
E{f̈(X−rθr,−r,1)(Xt + 1)/2 | X−{r,t}}

E{f̈(X−rθr,−r,1) | X−{r,t}}
.

Intuitively, the score vector vr,t,1 resembles the residual for regressingXt onX−{r,t}. The choice
in (8) ensures that vr,t,1 is uncorrelated with εr,1 and that θ̌r,t,1 achieves asymptotic efficiency.
Given Y and the initial estimate Θ̂2, the nearly unbiased θ̌r,t,2 can be derived similarly.
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Remark 1. Inference for high-dimensional models via the `1 penalty typically requires bias 150

correction, because the `1 regularization achieves variable selection by shrinking every compo-
nent of the regression coefficients towards zero (Zhang & Zhang, 2014; van de Geer et al., 2014).
Existing work on bias correction focus primarily on linear models, with the exception of van de
Geer et al. (2014), which is based on inverting the Karush–Kuhn–Tucker conditions and is appli-
cable for generalized linear models. In contrast, our de-biasing approach is based on local Taylor 155

expansion of ḟ(u
(i)
r,1) around û(i)

r,1 in (6), which yields an approximately linear surrogate to the
nonlinear conditional mean and facilitates the construction of entrywise statistics.

The estimators θ̌r,t,1 and θ̌r,t,2 have unequal variances, so we must adjust for their variances
before constructing the test statistic for the global null hypothesis. Denote by v(i),o

r,t,1 the oracle
score vector calculated based on Θ1, 160

v
(i),o
r,t,1 = (X

(i)
t + 1)/2− g(X

(i)
−{r,t}, θr,−r,1, θt,−t,1) (i = 1, . . . , n1),

and

Fr,t,1 = E[{Xt − 2g(X−{r,t}, θr,−r,1, θt,−t,1)}2f̈(ur,1)].

By definition,E{v(i),o
r,t,1 f̈(u

(i)
r,1) | X(i)

−{r,t}} = 0, soE{v(i),o
r,t,1 f̈(u

(i)
r,1)X

(i)
t } = 2E{(v(i),o

r,t,1)2f̈(u
(i)
r,1)} =

Fr,t,1/2. Hence, for a reasonably good initial estimate θ̂r,−r,1, one expects θ̌r,t,1 to be close to

θ̃r,t,1 = θr,t,1 +
1

n1

n1∑
i=1

2v
(i),o
r,t,1ε

(i)
r,1

Fr,t,1
. (9)

Indeed, it can be shown that |θ̌r,t,1 − θ̃r,t,1| = op{(n1 log p)−1/2}, for 1 ≤ r < t ≤ p, under cer-
tain conditions. With sr,t,1 = var(2v

(i),o
r,t,1ε

(i)
r,1/Fr,t,1) = 1/Fr,t,1, one can use sr,t,1/n1 as an ap- 165

proximation to var(θ̌r,t,k).
Finally, let the empirical variance estimates be defined as

šr,t,1 =

{
4n−1

1

n1∑
i=1

(v
(i)
r,t,1)2f̈(û

(i)
r,1)

}−1

, šr,t,2 =

{
4n−1

2

n1∑
i=1

(v
(i)
r,t,2)2f̈(û

(i)
r,2)

}−1

.

The standardized entrywise difference is thus

Wr,t =
θ̌r,t,1 − θ̌r,t,2

(šr,t,1/n1 + šr,t,2/n2)1/2
(1 ≤ r < t ≤ p).

2·3. Implementation of the testing procedure
Once we have the standardized entrywise statistic Wr,t, we can construct the test statistic for 170

the global null in (2):

Mn,p = max
1≤r<t≤p

W 2
r,t = max

1≤r<t≤p

(θ̌r,t,1 − θ̌r,t,2)2

šr,t,1/n1 + šr,t,2/n2
. (10)

Section 3·2 shows that under certain mild conditions, Mn,p − 4 log p+ log log p converges to a
type I extreme value distribution under the null. Indeed,Wr,t (1 ≤ r < t ≤ p) are asymptotically
standard normal under the null and are only weakly dependent. Hence the maximum of p(p−
1)/2 such variables squared, that is Mn,p, should be close to 2 log{p(p− 1)/2} ≈ 4 log p. Let 175

Ψα = I(Mn,p ≥ qα + 4 log p− log log p), (11)
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where qα is the (1− α) quantile of the type I extreme value distribution with the cumulative
distribution function exp{−(8π)−1/2e−z/2}. We reject the hypothesis H0 : Θ1 = Θ2 whenever
Ψα = 1.

In the multiple testing problem (3), for any given threshold level τ > 0 and 1 ≤ r < t ≤ p,
each individual hypothesis H0,r,t is rejected if |Wr,t| ≥ τ . Let H0 = {(r, t) : θr,t,1 = θr,t,2, 1 ≤180

r < t ≤ p} denote the set of true nulls. Let R0(τ) =
∑

(r,t)∈H0
I(|Wr,t| ≥ τ) be the total num-

ber of false positives and R(τ) =
∑

1≤r<t≤p I(|Wr,t| ≥ τ) the total number of rejections. The
false discovery proportion and false discovery rate are defined, respectively, as

FDP(τ) =
R0(τ)

max{R(τ), 1}
, FDR(τ) = E{FDP(τ)}.

For a pre-specified level α, an ideal choice of τ that is able to control the false discovery propor-
tion and false discovery rate is185

τ0 = inf
{

0 ≤ τ ≤ 2(log p)1/2 : FDP(τ) ≤ α
}
.

Here the choice of τ is restricted to [0, 2(log p)1/2] because the asymptotic null distribution of
Wr,t is standard normal so pr{max(r,t)∈H0

|Wr,t| ≥ 2(log p)1/2} → 0 as n1, n2, p→∞.
However, the ideal τ0 is unavailable because H0 is unknown. To estimate τ0, it is helpful to

understand the properties of Wr,t. Let Φ(τ) be the standard normal cumulative distribution func-
tion and let G(τ) = 2− 2Φ(τ). Under the null hypothesis in (3) and some regularity conditions,190

one can show that, as n1, n2 →∞,

sup
0≤τ≤c(log p)1/2

∣∣∣∣pr(|Wr,t| ≥ τ)

G(τ)
− 1

∣∣∣∣→ 0, (12)

uniformly for all 1 ≤ r < t ≤ p, p = nγk , for any c > 0 and any γ > 0. Therefore one can es-
timate R0(τ) by 2{1− Φ(τ)}|H0| as in Cai & Liu (2016), where |H0| can be estimated by
q = (p2 − p)/2 due to the sparsity of ∆. In fact, for weakly dependent Wr,t, it can be shown that

sup
0≤τ≤bp

∣∣∣∣ R0(τ)

G(τ)|H0|
− 1

∣∣∣∣→ 0, (13)

in probability for bp = {4 log p− 2 log(log p)}1/2 as n1, n2, p→∞. So, we estimate FDP(τ) by195

G(τ)(p2 − p)/2
max{R(τ), 1}

.

This leads to the following estimate of τ0:

τ̂ = inf
[
0 ≤ τ ≤ bp :

G(τ)(p2 − p)/2
max{R(τ), 1}

≤ α
]
. (14)

If the solution to (14) does not exist, we set τ̂ = 2(log p)1/2. For 1 ≤ r < t ≤ p, the null hypoth-
esis H0,r,t : δr,t = 0 is rejected if and only if |Wr,t| ≥ τ̂ .

Remark 2. It is important to restrict τ ∈ [0, bp] in (14) for false discovery proportion control,
because the convergence in (13) may not hold for τ > bp. In such cases, direct thresholding200

on Wr,t with τ̂ = 2(log p)1/2 is used to control the false discovery rate. Without the constraint
τ ≤ bp, our multiple testing procedure reduces to the Benjamini–Hochberg procedure, which
may not control the false discovery proportion with some positive probability if the number of
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true alternatives |Hc0| is fixed as p→∞. An alternative approach for approximating R0(τ) is to
bootstrap, as in Cai & Liu (2016). 205

3. THEORETICAL PROPERTIES

3·1. Assumptions
We make assumptions to establish the theoretical properties of the proposed testing proce-

dures. For r = 1, . . . , p, let

Qr,1 = EΘ1{f̈(X−rθr,−r,1)X−rX
T
−r}, Qr,2 = EΘ2{f̈(Y−rθr,−r,2)Y−rY

T
−r},

denote the Hessians of the likelihood functions associated with the rth logistic regression in the 210

first and second population, respectively. For k = 1, 2, the matrix Qr,k is the Fisher information
matrix associated with the local conditional probability distribution, and is analogous to the
(p− 1)× (p− 1) submatrix of the precision matrix in Gaussian graphical models.

Assumption 1. Assume that log p = o(n
1/3
k ) and n1 � n2. For each r = 1, . . . , p, there exist

constants Cmin, Cmax > 0 such that 215

0 < Cmin ≤ φmin(Qr,k) ≤ φmax(Qr,k) ≤ Cmax <∞.

Further, assume that the initial estimators Θ̂k (k = 1, 2) satisfy

max
1≤r≤p

‖θ̂r,−r,k − θr,−r,k‖1 = op{(log p)−1}, (15)

max
1≤r≤p

‖θ̂r,−r,k − θr,−r,k‖2 = op{(nk log p)−1/4}. (16)

The bounded eigenvalue assumption on Qr,k is standard in inference for high-dimensional
Ising models (Ravikumar et al., 2010), and ensures that the (p− 1) variables do not become 220

overly dependent. It is also crucial for establishing the asymptotic normality of θ̌r,t,k. Initial
estimators satisfying (15) and (16) can be obtained via `1 penalized nodewise logistic regression
if the maximum node degree is dk = o{n1/2

k /(log p)3/2}. The conditions in (15) and (16) are
slightly stronger than those required for entrywise normality in the unpublished 2016 technical
report from Zhao Ren, because smaller biases are required for testing procedures in order to 225

provide significance quantification for each pair of edges.

Assumption 2. For each r = 1, . . . , p, there exists a constant Cw > 0 such that the maximum
neighborhood weight satisfies

max
1≤r≤p

∑
t:(r,t)∈E

|θr,t,k| ≤ Cw <∞.

Assumption 2 implies that X−rθr,−r,1 and Y−rθr,−r,2 are sub-exponential random variables,
and therefore min1≤r<t≤p Fr,t,k > c∗ > 0, for k = 1, 2 and some c∗ > 0. In view of the condi- 230

tional distribution (5), violation of Assumption 2 may lead to degenerate marginal distributions.
This assumption is crucial for controlling the dependence in Lemma 1, and is also used in San-
thanam & Wainwright (2012).

To ensure good performance of the proposed testing procedures, it is important to characterize
the dependence between the standardized entrywise statistics Wr,t and Wr′,t′ for (r, t) 6= (r′, t′), 235

and understand when such dependences are weak. The reason for Wr,t and Wr′,t′ being depen-
dent is due to the correlation among vor,t,kεr,k, for 1 ≤ r < t ≤ p and k = 1, 2. In contrast to the
Gaussian case (Xia et al., 2015), it is difficult to evaluate these correlations analytically in the
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current setting due to the unknown normalizing constant in (1). However, the following lemma
says that these correlations are bounded under mild conditions.240

LEMMA 1. Under Assumption 2, for r 6= r′, t 6= t′ and k = 1, 2,

|cor(vor,t,kεr,k, v
o
r′,t,kεr′,k)| ≤

4C0

c∗
{| sinh(2θr,r′,k)|+ | sinh(2θr,t,k) sinh(2θr′,t,k)|},

|cor(vor,t,kεr,k, v
o
r,t′,kεr,k)| ≤

4C0

c∗
{| sinh(2θt,t′,k)|+ | sinh(2θr,t,k) sinh(2θr,t′,k)|},

|cor(vor,t,kεr,k, v
o
r′,t′,kεr′,k)| ≤

C1

c∗

{ ∑
a=r′,t′

| sinh(2θr,a,k)|

}{ ∑
b=r′,t′

| sinh(2θt,b,k)|

}
,

where C0 and C1 are absolute constants that depend only on Cw.245

Lemma 1 implies that the correlation among the nearly unbiased estimators θ̃r,t,k, or
equivalently the correlation among Wr,t, is bounded above by a function of sinh(2θr,t,k)
for 1 ≤ r < t ≤ p and k = 1, 2. However, establishing such results for high-dimensional bi-
nary Markov random fields is challenging. The proof of Lemma 1 requires careful analysis
based on the conditional distributions pr(Xr, Xr′ | X−{r,r′}),pr(Xr, Xt, Xr′ | X−{r,t,r′}) and250

pr(Xr, Xt, Xr′ , Xt′ | X−{r,t,r′,t′}).
The next assumption requires that the entrywise conditional associations are not too large and

ensures that Wr,t (1 ≤ r < t ≤ p) are only weakly dependent.

Assumption 3. For a constant ξ > 0, let

At(ξ) = {r : | sinh(2θr,t,1)| ≥ (log p)−2−ξ or | sinh(2θr,t,2)| ≥ (log p)−2−ξ},

be small enough that max1≤t≤p |At(ξ)| = o(pγ) for 0 < γ < 1/3.255

Variants of Assumption 3 are commonly used (Cai et al., 2013; Cai & Liu, 2016; Xia et al.,
2015, 2018). This assumption is also mild for microbial networks because evolutionary stability
and robustness often result in only a small number of strong microbial interactions (Leclerc,
2008).

3·2. Limiting null distribution and optimality of the global test260

For 0 < η < 1, let

Λ(η) = {1 ≤ r ≤ p : | sinh(2θr,t,1)| > η or | sinh(2θr,t,2)| > η for some t 6= r},

denote the set of indices r such that either Xr is highly correlated with some Xt

or Yr is highly correlated with some Yt, given all remaining variables. Let η∗ =
min{0.5(c∗/C1)1/2, 0.125c∗/C0}.

THEOREM 1. Suppose that Assumptions 1–3 hold. If there exist 0 < η < η∗ and a sequence265

of numbers Λp,η > 0 such that |Λ(η)| ≤ Λp,η = o(p), then under the null hypothesis in (2), for
any z ∈ R,

pr(Mn,p − 4 log p+ log log p ≤ z)→ exp{−(8π)−1/2e−z/2}, (17)

as n1, n2, p→∞, where Mn,p is defined in (10). Under the null hypothesis, the convergence in
(17) is uniform for all X and Y satisfying Assumptions 1–3.

Remark 3. The bounded cardinality condition on Λ(η) is similar to that in Cai et al. (2013),270

and is mild because the magnitude of sinh(2θr,t,k) reflects the conditional association between



Detecting differential microbial networks 9

each pair of microbial taxa. Most of the entries in Θk should be bounded from above, or the
rare taxa might go extinct, which is undesirable for maintaining a robust ecological system.
This condition together with Assumptions 2 and 3 guarantee weak dependence among Wr,t, and
allows us to apply strategies for extreme values in the Gaussian case. 275

In addition to the limiting null distribution, our global testing procedure also maintains rate-
optimal power. Consider the matrices

U(c) =
{

(Θ1,Θ2) : max
1≤r<t≤p

|θr,t,1 − θr,t,2|
(sr,t,1/n1 + sr,t,2/n2)1/2

≥ c(log p)1/2
}
. (18)

Let Tα be the set of all α-level tests, that is, pr(Tα = 1) ≤ α for any Tα ∈ Tα.

THEOREM 2. (i) Suppose that Assumptions 1–3 hold. The test Ψα defined in (11) satisfies

inf
(Θ1,Θ2)∈U(4)

pr(Ψα = 1)→ 1, n1, n2, p→∞.

(ii) Let log p = o(nk) for k = 1, 2, α, β > 0 and α+ β < 1. Then there exists a constant c0 > 280

0 such that for all sufficiently large n1, n2 and p,

inf
(Θ1,Θ2)∈U(c0)

sup
Tα∈Tα

pr(Tα = 1) ≤ 1− β.

Remark 4. Statement (i) in Theorem 2 says that Ψα rejects the null hypothesis in (2) with
high probability when (Θ1,Θ2) ∈ U(4), and statement (ii) says that the lower bound of order
(log p)1/2 in (18) cannot be further improved.

3·3. False discovery rate control in multiple testing 285

Let q0 = |H0|, let q = (p2 − p)/2, and let

Sρ =

{
(r, t) : 1 ≤ r < t ≤ p, |θr,t,1 − θr,t,2|

(sr,t,1/n1 + sr,t,2/n2)1/2
≥ (log p)1/2+ρ

}
.

The following theorem shows that our multiple testing procedure ensures asymptotic control of
the false discovery proportion and false discovery rate at the pre-specified level α.

THEOREM 3. Suppose |Sρ| ≥ {(8π)−1/2α−1 + ζ}(log log p)1/2 for some ρ > 0 and ζ > 0.
Assume further that q0 ≥ c1p

2 for some c1 > 0 and p ≤ c2n
γ
k for some c2 > 0 and γ > 0. Then 290

under the assumptions of Theorem 1,

lim
(n1,n2,p)→∞

FDR(τ̂)

αq0/q
= 1,

FDP(τ̂)

αq0/q
→ 1

in probability, as n1, n2, p→∞.

Remark 5. The condition on the size of Sρ is mild in that it only requires a few standardized
entrywise differences to be at least of order (log p)1/2+ρ, which is necessary to ensure that (13)
holds. The proof of Theorem 3 again relies heavily on knowledge of the dependence among the 295

Wr,t’s as characterized in Lemma 1.

4. SIMULATIONS

4·1. Data and model selection
We consider (a) the Erdős–Rényi random graph GER(p, d/p) (Erdős & Rényi, 1960) with

average degree d = 4, (b) the Watts–Strogatz model GWS (Watts & Strogatz, 1998) which forms 300
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Fig. 1: Illustrations of different graphs used in our simulations: random graph (GER(p, d/p),
left), small-world network (GWS, middle), and scale-free network (GBA, right).

networks with small-world properties, and (c) the Barabasi–Albert scale-free network model
GBA (Barabási & Albert, 1999), as illustrated in Figure 1. In all comparisons, the graph sizes and
the sample sizes are taken as p ∈ {50, 100} and n1 = n2 = 100. For a given graph, the nonzero
entries θr,t,k were drawn uniformly from [−0.5,−0.1] ∪ [0.1, 0.5]. Given the two matrices Θ1

and Θ2, binary data {X(i)}n1
i=1 ∼ prΘ1

(X) and {Y (i)}n2
i=1 ∼ prΘ2

(Y ) were generated by Gibbs305

sampling.
To get an initial estimator of Θk, we run nodewise `1 regularized logistic regression with

penalty parameter λr,k, using the R package glmnet (Friedman et al., 2010). Symmetric es-
timates were obtained by averaging the nodewise estimates. The optimal tuning parameters
λr,k (r = 1, . . . , p; k = 1, 2) were chosen to maximize the performance of the global and the310

multiple testing procedures. For the global test, the tuning parameter λr,k in each logistic regres-
sion was selected based on the extended Bayesian information criterion (Barber & Drton, 2015).
As the multiple testing procedure relies on the approximation of 2{1− Φ(τ)}|H0| to R0(τ), the
tuning parameters needed in multiple testing were chosen by ensuring 2{1− Φ(τ)}|H0| was as
close to

∑
(r,t)∈H0

I(|Wr,t| ≥ τ) as possible.315

4·2. Results
We compare our approach with two-sample testing based on Gaussian graphical models (Xia

et al., 2015), and two other permutation-based methods for global testing. The first permutation
method uses the same θ̌r,t,k and šr,t,k as in our approach and takes the minimum p-value of
the entry-wise test H0,r,t in (3) as the test statistic. The significance of the global test is then320

calibrated using a permutation approach. The second permutation method differs from the first
only in the way the parameters θr,t,k and sr,t,k are estimated. Specifically, it estimates θr,t,k
and its variance using maximum likelihood with specified support of Θk and finite sample bias
correction (Firth, 1993). In our comparisons, the per replication p-values for both permutation
methods were evaluated over 1000 permutations.325

Table 1 presents the empirical type I errors of the global test, and confirms that our method
and the two permutation tests control the type I errors well in all settings. In comparison, the
type I errors of Xia et al. (2015) are slightly inflated, which is not surprising because the data are
not multivariate normal.

To evaluate the power of the global test, we constructed the differential network ∆330

such that five entries in the upper triangular part of ∆ were uniformly drawn from
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Table 1: Empirical type I errors and powers (%) of the global test with α = 5% and n1 = n2 =
100. The type I errors were evaluated over 500 replications, and the powers were calculated over
200 replications.

GER GWS GBA GER GWS GBA

p Method type I error power

50

Proposed method 3·0 1·6 3·6 94·5 88·0 91·5
Xia et al. (2015) 8·4 9·4 7·2 69·5 70·0 91·0

PermBMN 5·8 5·8 5·0 97·0 93·5 96·5
PermMLE 4·6 5·2 3·8 98·5 97·0 99·5

100

Proposed method 2·0 3·0 2·4 95·5 94·0 97·5
Xia et al. (2015) 6·2 7·8 7·4 80·0 87·0 94·5

PermBMN 5·4 5·0 4·2 98·0 97·0 99·0
PermMLE 4·6 4·8 4·6 97·0 99·0 100·0

PermBMN, permutation-based test using Θ̌k; PermMLE, permutation-based test
using the modified maximum likelihood estimator of Θk assuming that the true
graph structures are known.

{−1.5(log p/nk)
1/2, 1.5(log p/nk)

1/2}. Let Θ0 be generated from one of the three models
GER, GWS or GBA, and let Θ1 = Θ0 −∆ and Θ2 = Θ0 + ∆. The empirical powers, which
are proportions of rejected null hypothesis, are shown in Table 1. Our method yields very high
powers for all settings and uniformly outperforms Xia et al. (2015). The two permutation-based 335

methods, especially the second one based on the modified maximum likelihood estimator of Θk,
demonstrate superior performance in terms of power. The downside is that both permutation
methods require heavy computation.

Finally, using the same design Θ1 = Θ0 −∆ and Θ2 = Θ0 + ∆, we examined multiple test-
ing of individual entries in the differential network ∆ while controlling the false discovery 340

rate at α = 10%. The true differential network ∆ was constructed to be sparse such that the
number of edges is approximately 0.01p(p− 1), with nonzero entries drawn uniformly from
[−0.5,−0.1] ∪ [0.1, 0.5]. The empirical false discovery and true positive rates of our method
and that in Xia et al. (2015) were estimated by

Average

[∑
(r,t)∈H0

I(|Wr,t| ≥ τ̂)

max{R(τ̂), 1}

]
, Average

{ ∑
(i,j)∈H1

I(|Wr,t| ≥ τ̂)∑
1≤r<t≤p I(θr,t,1 6= θr,t,2)

}
,

where H1 denotes the set of nonzero locations. Permutation-based methods are inapplicable for 345

multiple testing. Table 2 shows that our multiple testing procedure controls the false discovery
rates well in all scenarios, and returns reasonably high true positive rates. In contrast, the multiple
testing method of Xia et al. (2015) yields slightly higher false positive and lower true positive
rates. The difference in true positive rates between the methods increases with p.

5. APPLICATION TO GUT MICROBIOME DATA IN UK TWINS 350

We applied the proposed testing procedures to data from a gut microbiome study of UK twins.
The original study (Goodrich et al., 2016) investigates whether host genotype shapes the gut
microbiome composition, using 16S rRNA sequencing data collected from fecal samples of
2731 individuals. The data are available at http://www.ebi.ac.uk/ena/data/view/
PRJEB13747. We are interested in whether the microbial community structures summarized 355
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Table 2: Empirical false discovery rates and true positive rates (%) for multiple testing with false
discovery rate α = 10%, n1 = n2 = 100 over 200 replications

GER GWS GBA GER GWS GBA

p Method false discovery rate true positive rate

50
Proposed method 10·0 9·1 10·6 52·9 59·9 61·0
Xia et al. (2015) 13·8 13·7 13·5 51·7 54·9 59·9

100
Proposed method 8·3 9·4 9·2 56·1 57·7 62·9
Xia et al. (2015) 12·2 12·3 11·7 50·5 49·6 57·2

as conditional dependence relationships among the microbial taxa are associated with age of the
host.

To ensure robust detection of microbial interactions, samples with total read counts less than
20 were first removed. For each of the remaining 2714 samples, the relative abundance of each
genus was calculated by dividing the read count for each genus by the total number of reads in360

the sample. Of the 294 genera, only those with at least 0.001% of relative abundance in at least
75% of the 2714 samples were used, which reduces the total number of genera to p = 59. To
examine the association of microbial interactions with host age, we selected 286 young adults
who were at most 43 years and 284 elderly subjects aged at least 74 years. Since these samples
included twins, we randomly chose one individual from each pair of twins, which gave n1=171365

independent young adults and n2=180 elderly subjects in our analysis.
Due to possible errors in sequencing reads, genera with relative abundance lower than 0.001%

are expected to be due to noise or sequencing errors. We therefore first discretized the relative
abundances using a cutoff of 0.001%, where for a given genus, −1 represents absence or ex-
tremely low abundance of the genus and 1 represents presence. However, some more abundant370

genera are present in over 75% of the samples. For these genera, we used the 25th percentile as
the cutoff to discretize the data, so −1 represents low abundance of the genus and 1 represents
high abundance. One should keep the definitions in mind when interpreting the Θ parameters.

We applied the global testing procedure to the two groups of subjects and obtained a p-value
of 0.009, indicating that the microbial networks for the two age groups are significantly differ-375

ent. To assess the stability of our method and perform power comparisons, we generated 1000
subsamples within each age group, with sampling proportions ranging from 0.35 to 0.95. The
empirical powers of our method and the permutation method using Θ̌k are presented in Fig. 2.
Our method performs slightly worse than the permutation method, but we believe that the gap
reduces with larger samples. Another advantage of our method is that it runs much faster than380

the permutation method. We also performed back-testing for the global null hypothesis by ran-
domly splitting the pooled data into two groups with n1 and n2 subjects over 1000 replications.
Fig. 2 shows the resulting p-values, which are slightly skewed toward the right, indicating that
the proposed test is conservative.

To recover the differential microbial network, we applied the proposed multiple testing proce-385

dure with FDR=15% and show the results in Fig. 3. The same differential links were selected by
FDR between 14% to 16%. For FDR between 12% to 14%, all edges in Fig. 3 except Bacteroides–
Blautia were selected. Here the two values associated with each differential edge represent the
estimated odds ratios between the two genera for the two age groups. For example, the odds ratio
between Faecalibacterium and Campylobacter among young adults is 0.51, indicating that high390

abundance in Faecalibacterium is associated with lower odds of high abundance in Campylobac-
ter. In other words, Faecalibacterium and Campylobacter have a competitive relationship within
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Fig. 2: The left panel shows the empirical power curves of the proposed method (circles) and
the permutation method using Θ̌k (triangles) by subsampling the two data sets at different pro-
portions. The right panel shows histogram of the p-values from our method in back-testing by
randomly generating two data sets 1000 times.

the microbial community, which could be due to their competition in space, nutrients, etcetera. In
contrast, the relationship between Faecalibacterium and Campylobacter is collaborative for the
elderly group, since the odds ratio is 1.31. A collaborative relationship between two microbes 395

can be due to cross-feeding, co-colonization or other reasons (Faust & Raes, 2012). Each pair
of values associated with each edge shows a significant difference, suggesting changes in the
microbial community structure as people age. Indeed, the abundance of Faecalibacterium has
been found to be negatively associated with age (Franceschi et al., 2017). Further, Ruminococ-
cus was significantly enriched in immune-mediated inflammatory diseases (Forbes et al., 2016), 400

and Oscillospira was enriched in inflammatory diseases (Konikoff & Gophna, 2016). Thus Ru-
minococcus and Oscillospira may also play an important role in the aging process, because age
is characterized by chronic low-grade inflammation. Fig. 3 provides additional evidence on how
these genera are implicated in the aging process. More importantly, genera involved in the dif-
ferential network may be potential microbial targets that can be manipulated through dietary 405

or medical interventions for healthy aging. As the true differential network is unknown, further
experimental validation is needed to confirm these results.

Since the method of Xia et al. (2015) does not perform well for discrete data, we applied
their method to the centered log-ratio transformed relative abundance data and obtained a p-
value of 0.007 for the global test, which is consistent with the conclusion from the proposed 410

global test. At 15% false discovery rate, application of the multiple testing procedure of Xia
et al. (2015) only gave one differential edge between Holdemania from the phylum Firmicutes
and Butyricimonas from Bacteroidetes. The difference is largely due to the fact that the centered
log-ratio transformed data are far from being normally distributed.
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(Y) 1.78; (E) 0.84

(Y) 1.11; (E) 0.5

(Y) 1.65; (E) 0.77

(Y) 1.22; (E) 0.57

(Y) 1.4; (E) 0.63

(Y) 0.51; (E) 1.31

●

●

Faecalibacterium
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Oscillospira

Anaerofustis Blautia

Ruminococcus

Actinomyces

Bifidobacterium
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Actinobacteria
Bacteroidetes
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Proteobacteria

Fig. 3: Estimated differential microbial network between young and elderly individuals using
our multiple testing procedure with FDR = 15%, where isolated genera are not shown. Each node
represents a genus colored by phylum, and node size is proportional to the prevalence of 1’s
among all samples for the corresponding genus. Edge width is proportional to the magnitude of
the entrywise test statistic.

6. DISCUSSION415

To deal with excessive zeros and the unit sum constraint, in this paper we proposed using a
binary Markov random field to study microbial interactions characterized by their conditional
dependence relationships. Such models are robust and largely free of distributional assumptions
of the data and have a natural interpretation in terms of co-existence or co-exclusiveness of the
microbial communities. For very rare taxa, we suggest using a very small cutoff to discretize the420

data. For more common taxa, sample median or quartiles can be used. Using different cutoffs
may lead to different results and thus to models with different interpretations. One may explore
different ways of dichotomizing the data to see whether consistent results can be obtained.

The proposed methodology for testing the binary Markov random fields can be applied to
other data with binary observations, such as cancer somatic mutation data in cancer genomics or425

characterization of neural firing patterns and the reconstruction of neural connections in neuro-
science. Our methods can be extended to study more general Markov random fields with each
node taking more than two discrete values.
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