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Comment: Fuzzy and Randomized
Confidence Intervals and P -Values
Lawrence D. Brown, T. Tony Cai and Anirban DasGupta

Professor Geyer and Professor Meeden have given
us an intriguing article with much material for thought
and exploration, and they deserve our congratula-
tions. Although the idea of randomized procedures has
long existed, this paper has revitalized the discussion
on randomized confidence intervals and randomized
P -values.

Interval estimation of a binomial proportion is a very
basic but very important problem with an extensive
literature. Brown, Cai and DasGupta (2001) revisited
this problem and showed that the performance of the
standard Wald interval, which is used extensively in
textbooks and in practice, is far more erratic and in-
adequate than is appreciated. Several natural alterna-
tive confidence intervals forp were recommended in
Brown, Cai and DasGupta (2001). See also Agresti and
Coull (1998). These intervals are all what the authors
call crisp intervals.

The coverage probability of these crisp confidence
intervals contains significant oscillation, which is in-
trinsic in all crisp intervals due to the lattice struc-
ture of the binomial distributions. In the present paper,
Geyer and Meeden introduce the notion of fuzzy con-
fidence intervals with the goal to eliminate oscillation
and to have the exact coverage probability. The con-
fidence intervals are obtained by inverting families of
randomized tests. In addition, the authors introduce the
notion of fuzzyP -values. The introduction of the crit-
ical function φ as a function of three variablesx, α

andθ provides a unified description of fuzzy decision,
fuzzy confidence interval and fuzzyP -values.

Our discussion here will focus on four issues:
(1) What is new in this paper?; (2) exact versus ap-
proximate coverage; (3) expected length; (4) general-
ization of abstract randomized confidence intervals to
simultaneous inference.
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1. WHAT IS NEW IN THIS PAPER?

As the authors observe, the notion of a randomized
confidence interval has a long history. Such intervals
are a natural consequence of the formulation of ran-
domized tests in the Neyman–Pearson lemma, and ap-
pear in Lehmann (1959, page 81; 2nd ed., 1986, page
93), Blyth and Hutchinson (1960) and Pratt (1961). It
is thus important to try to clarify which portions of the
current paper are new, which represent a valuable new
focus on a classical concept and which are an informa-
tive survey of key elements of that concept.

The earlier authors mentioned above, and others, re-
alized that there are several ways to represent random-
ized confidence intervals. Most preferred versions in
which the statistician produces a particular interval. In
view of the discussion in the present Section 1.4, it ap-
pears this is what the authors would call a realized ran-
domized interval, but some preferred what the present
paper would refer to as an abstract randomized in-
terval. For example, Lehmann (1959) created realized
randomized intervals by introducing an auxiliary inde-
pendent uniform random variable. Pratt (1961) created
such intervals for the binomial problem by the equiv-
alent device of constructing nonrandomized intervals
on the basis of observation ofX + U , where X is
binomial andU is an independent uniform(0,1) ran-
dom variable. However, the discussion in Cohen and
Strawderman (1973), Brown and Cohen (1995) and
Brown, Casella and Hwang (1995) is in terms of ab-
stract randomized intervals.

From a formal mathematical perspective there seems
to be nothing about the definition of abstract random-
ized intervals here that is different from the treatment
in these earlier papers. Thus, while the descriptive lan-
guage is different, the formal structure here for “fuzzy
intervals” is the same as that for abstract randomized
intervals. We find one feature in this new descriptive
language to be very appealing: the pictorial represen-
tation in the figure near (1.2). This representation al-
lows the user to think of abstract randomized intervals
as a minor extension of ordinary ones, and helps the
statistician in some circumstances to avoid the need
for more precise but cumbersome statements like “the
probability is 30% that I have 95% confidence in the
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valuep = 0.75.”
We do not recall having seen before a definition of

randomizedP -values like that in the paper. The au-
thors’ clever definition flows in a nice way from their
representation in (1.1) ofφ as a function of three vari-
ables, whereas most authors in the earlier literature
have fixedα and have then writtenφ as a function of
only the two variablesx and θ , depending implicitly
on the fixedα. However, the notion of aP -value as a
distribution or corresponding density, rather than as a
number, is a conceptual complication that many users
may find undesirable.

2. EXACT VERSUS APPROXIMATE COVERAGE

It is traditionally required that confidence proce-
dures should have coverage probability with a mini-
mum at least the nominal level. We feel that this is
an overly conservative requirement and take a differ-
ent perspective. Most statistical models are only ap-
proximately correct and many inferential procedures
are only asymptotically valid. So the coverage prob-
ability of confidence intervals can only be expected
to be approximately the nominal value. Thus, when
we claim a certain nominal level of coverage proba-
bility, we clearly intend to convey that the coverage of
the confidence procedure is close to the nominal level,
rather than to guarantee it is at least or exactly the nom-
inal level. Once one accepts that all confidence level
statements are only approximate, there seems to be no
point in introducing the additional complications inher-
ent in randomization.

As we noted in Brown, Cai and DasGupta (2001), it
is true that the binomial model has a somewhat special
feature relative to this general discussion. There are in-
deed practical situations where one is confident that the
binomial model holds with very high precision, and as-
ymptotics are not required to construct practical proce-
dures or evaluate their properties, although asymptotic
calculations can be useful in both regards. However,
the lattice structure of the binomial distribution intro-
duces a related barrier to the construction of exact con-
fidence procedures.

In the Introduction the authors present the continuity-
corrected Wilson interval as an example to show the
“bad behavior” of conventional confidence intervals.
However, this continuity-corrected interval is not a
good choice of nonrandomized procedure. Figure 1
in the paper plots the coverage probability of the
continuity-corrected Wilson interval forn = 10. It is
clear that the nominal coverage probability of 95%
is misleading as a statement about the average cov-
erage probability and not very helpful as a statement

about the minimum coverage. This example reiterates
a point made in Brown, Cai and DasGupta (2001)
and DasGupta and Zhang (2005) that these continuity-
corrected Wilson intervals are not desirable from any
perspective. They have extremely conservative cover-
age properties, though they are also not, in principle,
guaranteed to be conservative everywhere. This lack of
conservativity can be clearly seen from the two sharp
downward spikes in Figure 1 of the paper. These con-
fidence intervals are not precise in the sense that they
are unnecessarily long in terms of the expected length.
Even if one’s goal is to produce conservative intervals,
the continuity-corrected intervals will be very ineffi-
cient relative to Blyth–Still or even Clopper–Pearson.

Figure 1 herein plots the coverage probability for
n = 10 of the ordinary 95% Wilson interval with mod-
ification at the boundaries as described in Brown, Cai
and DasGupta (2001). The coverage probability of this
interval is centered at around 95% and has an average
value of 0.959, whereas the coverage probability of the

FIG. 1. Coverage probability of the nominal 95% modified
Wilson interval for n = 10.The boundary modifications are as de-
scribed in Brown, Cai and DasGupta (2001).



FUZZY CONFIDENCE INTERVALS ANDP -VALUES 377

continuity-corrected version as given in Figure 1 of the
paper centers around approximately 98% and has an
average value of 0.982.

3. EXPECTED LENGTH

In this paper the authors focus on the coverage prob-
ability of the confidence intervals. In addition to the
coverage probability, the expected length is also very
important in evaluation of a confidence interval. For a
crisp interval the length of the interval can be defined
easily as the difference between the upper and lower
limits. For an abstract randomized interval, as observed
in Cohen and Strawderman (1973), a pseudo length can
be defined similarly as

Ln(x,α) =
∫ 1

0

(
1− φ(x,α,p)

)
dp

and the expected length is defined as

expected length= En,pLn(X,α)

=
n∑

x=0

Ln(x,α)

(
n

x

)
px(1− p)n−x.

The average expected length is then just the integral∫ 1
0 En,pLn(X,α)dp.
Even if one plans to use a nonrandomized interval, it

is worth investigating the performance of randomized
intervals to provide a benchmark for performance of
potential nonrandomized procedures. Within the class
of (1− α)-level abstract randomized confidence inter-
vals, it is natural to seek the one which minimizes the
average expected length. The question is, “Which fam-
ily of randomized tests should be used for the con-
struction of abstract randomized confidence intervals?”
Although the UMPU tests have the desirable unbiased-
ness property as hypothesis tests, their inversion does
not yield shortest confidence intervals. A similar phe-
nomenon occurs for point estimators. An optimal point
estimator (e.g., the sample proportionp̂) is not nec-
essarily a good choice for the center of a confidence
interval.

Pratt (1961) showed that the optimal confidence pro-
cedure which minimizes the average expected length is
the inversion of the family of tests

H0 :p = p0 versus Ha :p is uniform(0,1).

The abstract randomized interval given in the present
paper is obtained by inversion of the two-sided UMPU
test. We plot in Figure 2 herein forn = 5–20 the av-
erage expected lengths of three 95% confidence inter-
vals: Pratt’s interval, the modified Wilson interval, and

the abstract randomized interval obtained from the in-
version of the UMPU test.

The comparison is clear and consistent asn changes.
For small n, the average expected length of the ab-
stract randomized interval inverted from the UMPU
test is noticeably larger than those of Pratt’s interval
and the modified Wilson interval. For example, forn

up to 10, the average expected length of the interval in-
verted from the UMPU test is larger than that of Pratt’s
interval by 0.065 (atn = 5) to 0.025 (atn = 10), and
this can be significant in practice. Thus if one insists on
using a randomized confidence procedure so as to have
precise coverage probability, Pratt’s interval is much
preferred to the inversion of the UMPU test. In ad-
dition, Figure 2 also shows that the modified Wilson
interval dominates the UMPU randomized interval in
terms of the expected length and is nearly competitive
in this sense with Pratt’s interval. We also note that its
average coverage probability is 0.959, so that in this

FIG. 2. The average expected lengths of Pratt’s interval (bottom
solid line), the modified Wilson interval (middle dotted line) and
the abstract randomized interval inverted from the UMPU test (top
dashed line) for n = 5–20 and α = 0.05.
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sense it is more conservative than either the Pratt or
UMPU intervals.

[Pratt noted that his intervals can fail to have the in-
tuitively desirable property that 1− φ(x,α, θ) is a uni-
modal function inθ for every fixedx andα. However,
it is possible to make small modifications to his inter-
vals so that they have this property, and are only very
slightly conservative in terms of coverage and average
length.]

This example demonstrates that nonrandomized in-
tervals can be very competitive in performance with
the best choice of randomized intervals as long as the
statistician adopts the objective that confidence levels
are only approximate rather than exact. Given this fact,
we see no point in using randomized procedures either
in their original form or in the fuzzy interpretation in-
troduced in the present paper.

4. GENERALIZATION TO
SIMULTANEOUS INFERENCE

The idea of abstract randomized confidence intervals
can be extended to that of a simultaneous confidence
region for multiple binomial proportions. Suppose that
Xi ∼ Binom(ni,pi) for i = 1,2, andX1 andX2 are
not necessarily independent. We wish to construct a
(1 − α)-level confidence region for the proportions
(p1,p2). The idea of abstract randomized confidence
intervals can be used via the randomization version of
Bonferroni’s inequality to construct such an abstract
randomized confidence region for(p1,p2). Indeed, the
randomized confidence region can be simply set via(

1− φn1

(
X1,

α

2
,p1

))(
1− φn2

(
X2,

α

2
,p2

))
,

whereφni
(Xi,

α
2 ,pi), i = 1,2, are the critical functions

for the corresponding one-parameter problem. Here we
use the subscriptni to indicate the dependence of the
critical function on the parametersni . Note that indi-
vidually φni

(Xi,
α
2 ,pi) are α

2 -level critical functions
for i = 1,2. SinceEpi

φni
(Xi,

α
2 ,pi) = α

2 for i = 1,2,
the coverage probability of the abstract randomized
confidence region satisfies

E

{(
1− φn1

(
X1,

α

2
,p1

))(
1− φn2

(
X2,

α

2
,p2

))}

= 1− α + Eφn1

(
X1,

α

2
,p1

)
φn2

(
X2,

α

2
,p2

)

≥ 1− α

and thus the confidence region has coverage proba-
bility of at least 1− α. Let us look at one example.

FIG. 3. Perspective plot (top) and contour plot (bottom) of the
95% abstract randomized confidence region for (p1,p2) with
n1 = n2 = 10,X1 = 3 and X2 = 4.

Supposen1 = n2 = 10, X1 = 3 andX2 = 4. Figure 3
presents a perspective plot of the 95% confidence re-
gion for (p1,p2) as constructed above as well as a cor-
responding contour plot of the fuzzy set.

Note that if the univariate functionspi → 1 −
φni

(Xi,
α
2 ,pi), i = 1,2, are both concave inpi over

their support, then it is easy to show that the level
sets of the abstract randomized confidence region
(1 − φn1(X1,

α
2 ,p1))(1 − φn2(X2,

α
2 ,p2)) are convex.

Consequently, all realized randomized confidence re-
gions are convex. See, for example, the contour plot in
Figure 3. This is an appealing property in applications.
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