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Distributed estimation of a Gaussian mean with unknown variance under
communication constraints is studied. Necessary and sufficient communica-
tion costs under different types of distributed protocols are derived for any
estimator that is adaptively rate-optimal over a range of possible values for
the variance. Communication-efficient and statistically optimal procedures
are developed.

The analysis reveals an interesting and important distinction among dif-
ferent types of distributed protocols: compared to the independent protocols,
interactive protocols such as the sequential and blackboard protocols require
less communication costs for rate-optimal adaptive Gaussian mean estima-
tion. The lower bound techniques developed in the present paper are novel
and can be of independent interest.

1. Introduction. Distributed statistical analysis is becoming increasingly important and
challenging, as distributed data sets naturally arise in a range of applications due to size
constraints, security concerns, or privacy considerations. For large-scale data analysis, com-
munication costs can be expensive and become the main bottleneck in the learning process.
When communication resources are limited, it is important to understand the interplay be-
tween the communication constraints and statistical accuracy in order to construct optimal
estimation and inference procedures under the communication constraints.

Significant recent effort has been made to gain fundamental understanding of distributed
estimation. For example, Barnes, Han and Özgür (2019b), Braverman et al. (2016), Garg, Ma
and Nguyen (2014), Han, Özgür and Weissman (2021), Zhang et al. (2013) developed lower
bound techniques for distributed parametric estimation. Cai and Wei (2020), Cai and Wei
(2022b), Szabó and van Zanten (2020a), Szabó and van Zanten (2020b), Szabó, Vuursteen
and van Zanten (2020), Zhu and Lafferty (2018) considered information-theoretical limits un-
der communication constraints for various distributed problems, such as Gaussian mean esti-
mation, linear regression, nonparametric regression and testing. Optimality results have been
established under different communication constraints. Besides theoretical analysis, progress
has also been made on developing practical methodologies for distributed estimation. See,
for example, Battey et al. (2018), Deisenroth and Ng (2015), Diakonikolas et al. (2017), Fan
et al. (2019), Jordan, Lee and Yang (2019), Kleiner et al. (2014), Lee et al. (2017).

In the present paper, we study distributed adaptive Gaussian mean estimation with un-
known variance in a decision-theoretical framework. This is a basic yet fundamental dis-
tributed estimation problem. Gaussian mean estimation with known variance has been inten-
sively studied in the distributed setting. See, for example, Barnes, Han and Özgür (2019b),
Braverman et al. (2016), Cai and Wei (2020), Garg, Ma and Nguyen (2014). The optimal-
ity results in these papers were established in the nonadaptive setting where the variance of
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Gaussian observations is known a priori, and the estimation procedures and statistical lower
bound arguments critically depend on the knowledge of variance. In a wide range of statisti-
cal applications, the variance of the observations is unknown and the procedures and results
developed in the aforementioned papers are no longer applicable. Adaptive Gaussian mean
estimation with unknown variance is technically challenging, and differs significantly from
the nonadaptive setting. Understanding distributed adaptive Gaussian mean estimation with
unknown variance also provides insight into other related statistical problems including dis-
tributed density estimation and distributed nonparametric regression with random design.

The primary goal of the present paper is to precisely characterize the minimal commu-
nication costs for adaptive Gaussian mean estimation without prior knowledge of variance
under different types of distributed protocols, and construct communication-efficient estima-
tors. Our analysis shows that the case of unknown variance differs significantly from the case
when σ 2 is known. In particular, in sharp contrast to the known variance case, the behaviors
of adaptive Gaussian mean estimation with unknown variance are very different under the
independent and interactive protocols.

1.1. Distributed estimation framework and distributed protocols. We begin by introduc-
ing a general framework for distributed estimation by giving a formal definition of transcript,
distributed estimator, and distributed protocols. Let P = {Pθ,ξ : θ ∈ �,ξ ∈ �} be a paramet-
ric family of distributions supported on space X , where θ ∈ � is the parameter of interest and
ξ ∈ � are nuisance parameters. Suppose there are m local machines and a central machine,
where the local machines contain the observations and each local machine has access only
to data in that machine, and the central machine produces the final estimator of θ under the
communication constraints between the local and central machines. More precisely, suppose
we observe i.i.d. random samples drawn from a distribution Pθ,ξ ∈ P :

Xi
i.i.d.∼ Pθ,ξ , i = 1, . . . ,m,

where the ith local machine has access to Xi only.
On each machine, because of limited communication budget, the observation Xi on the ith

local machine needs to be processed to a uniquely decodable binary string Zi . The resulting
string Zi , which is called the transcript from the ith machine, is transmitted to the central
machine. Finally, after all transcripts Z1, . . . ,Zm are generated, a distributed estimator θ̂ is
constructed on the central machine based on the transcripts Z1, . . . ,Zm,

θ̂ = θ̂ (Z1, . . . ,Zm).

The rules and constraints related to how transcripts can be constructed, which is called
distributed protocol, has a lot of different variety. We are primarily interested in three differ-
ent types of distributed protocols: independent protocol, sequential protocol, and blackboard
protocols:

• Independent protocol. The local machines simultaneously generate transcripts and then
send them to the central machine. The ith transcript only depends on the observation Xi

on the ith machine, so it can be expressed by Zi = �i(Xi) with some (possibly random)
function �i . Let |Zi |l denote the length of transcript Zi . The class of independent protocols
with total communication cost B is defined as

Aind(B) =
{
θ̂ : θ̂ = θ̂ (Z1, . . . ,Zm),Zi = �i(Xi), i = 1, . . . ,m,

m∑
i=1

|Zi |l ≤ B

}
.
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• Sequential protocol. The local machines sequentially send transcripts to the next local
machine, and finally the central machine collects all the transcripts. The transcript Zi sent
by the ith local machine depends on local observation Xi and the previous transcripts
Z1, . . . ,Zi−1, which can be written as

Zi = �i(Xi,Z1, . . . ,Zi−1)

where �i is a (possibly random) function. The class of sequential protocols with total
communication cost B is defined as
Aseq(B)

=
{
θ̂ : θ̂ = θ̂ (Z1, . . . ,Zm),Zi = �i(Xi,Z1, . . . ,Zi−1), i = 1, . . . ,m,

m∑
i=1

|Zi |l ≤ B

}
.

• Blackboard protocol. The local machines communicate via a publicly shown blackboard.
When a local machine writes a message on the blackboard, all other local machines can
see the content. Finally, the central machine collects all the information and outputs the
final estimate. The total length of the messages written by all local machines is at most
B bits. Similarly, we denote the class of blackboard protocols with total communication
cost B as Abb(B), where the estimator is obtained by a blackboard protocol with total
communication cost

∑m
i=1 |Zi |l ≤ B . It is clear by definitions that the sequential protocols

can be considered as a subset of the blackboard protocols.

Independent protocols are considered as noninteractive whereas sequential and black-
board protocols are considered as interactive protocols. See Barnes, Han and Özgür (2019a),
Kushilevitz (1997) for further discussion on these communication protocols.

1.2. Main results and our contribution. If a distributed Gaussian mean estimator
achieves the same mean squared error as the optimal centralized estimator (up to a con-
stant factor) over a range of possible value of the variance, we call it rate-optimal adaptive
Gaussian mean estimator. The present paper first establishes the lower bounds for the com-
munication costs of rate-optimal adaptive Gaussian mean estimators under the independent,
sequential or blackboard protocols, respectively. The lower bounds serve as a benchmark
for the communication-efficiency of any rate-optimal adaptive Gaussian mean estimator. We
then develop estimation algorithms that use the minimal communication cost to achieve the
statistical optimal rate of convergence. With the matching upper and lower bounds, we derive
the necessary and sufficient communication costs for rate-optimal adaptive Gaussian mean
estimators under the independent, sequential or blackboard protocols respectively.

The results exhibit interesting new phenomena. First, the behavior of adaptive Gaussian
mean estimation with unknown variance differs significantly from the distributed estimation
problem with known variance. Compared to the nonadaptive minimax rate in the case of
known variance established in Cai and Wei (2020), there is a cost of adaptation in commu-
nication budget for Gaussian mean estimation under the independent protocols, whereas no
additional communication budget is needed for adaptation under the interactive protocols.
Moreover, it is somewhat surprising that the minimal communication cost for distributed
adaptive Gaussian mean estimation under the noninteractive and interactive protocols are
different. To the best of our knowledge, this is the first example in statistical distributed esti-
mation showing that interactions could help with estimation.

The technical tools developed in the present paper to prove the main theorems are novel
and can be of independent interest. Most of the existing lower bound techniques are universal
for all types of distributed protocols, and also lack the ability to study adaptation over nui-
sance parameters. The proof of the lower bound under the independent protocols (Theorem 1)
are dedicated for adaptive estimation under the independent protocols with a noninformation
theoretic approach.
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1.3. Related literature. As mentioned earlier, distributed Gaussian mean estimation has
been intensively studied in the setting of known variance. Garg, Ma and Nguyen (2014),
Zhang et al. (2013) analyze the distributed estimation problems under the independent pro-
tocols. Braverman et al. (2016) applied a strong data processing inequality to obtain lower
bounds under the blackboard protocols. Kipnis and Duchi (2017) considers distributed esti-
mation with one-bit measurements under the independent and sequential protocols. Barnes,
Han and Özgür (2019b), Han, Özgür and Weissman (2021) proposed noninformation theo-
retic approaches to obtain lower bounds for distributed estimation. Cai and Wei (2020) estab-
lished a sharp minimax rate of convergence for distributed Gaussian mean estimation with
known variance under the independent, sequential, and blackboard protocols. In particular,
the results show that the optimal rates are the same under the three protocols when σ 2 is
known.

The behavior of estimation problems under various types of distributed protocols has been
studied in two different settings. One common setting is that i.i.d. data are distributed over
different machines. For example, Barnes, Han and Özgür (2019b), Braverman et al. (2016)
developed unified approach to establish lower bounds for distributed estimation in this setting
under independent, sequential, and blackboard protocols. More recently, Acharya, Canonne
and Tyagi (2020) proposed private-coin protocol and public-coin protocol and show that they
have different behavior in a distributed Gaussian signal detection problem. Another setting
is that data are drawn from different distributions on different local machines. Various two-
sample estimation and testing problems have been considered in this setting. Liu (2021),
Xiang and Kim (2013) showed that in independence testing problem and two-sample joint
density estimation problem, interactions between local machines improve statistical accu-
racy and communication-efficiency, compared to the classical one-shot communication ap-
proaches.

An emerging topic in distributed estimation is the interplay between communication con-
straints and adaptation. The focus so far has been mainly on adaptive nonparametric function
estimation with unknown smoothness in the distributed setting. Cai and Wei (2022b), Szabó
and van Zanten (2020b) showed that additional communication budget is required in order
to achieve adaptation in distributed nonparametric function estimation under the independent
protocols. This is in sharp contrast to the classical centralized setting where global adaptation
can be achieved for free over a wide range of smoothness classes (Donoho and Johnstone
(1995), Johnstone (2017)).

1.4. Organization of the paper. We finish this section with notation and definitions. We
first formulate the problem in Section 2. Then we derive the minimal communication cost
for rate-optimal adaptive Gaussian mean estimation under the independent protocols in Sec-
tion 3 and establish the minimal communication cost for rate-optimal adaptive Gaussian mean
estimation under the sequential and blackboard protocols in Section 4. The numerical perfor-
mance of the proposed distributed estimators is investigated in Section 5. Further research
directions are discussed in Section 6 and the proofs of main theorems are given in Section 7
and the technical lemmas are proved in the Supplementary Material (Cai and Wei (2022b)).

1.5. Notation and definitions. For any a ∈ R, let �a� denote the floor function (the largest
integer not larger than a), and �a� denote the ceiling function (the smallest integer not smaller
than a). Unless otherwise stated, we shorthand loga as the logarithm to the base 2 of a. For
any a, b ∈ R, let a ∧ b � min{a, b} and a ∨ b � max{a, b}. We use a = O(b) or equivalently
b = �(a) to denote there exist a constant C > 0 such that a ≤ Cb, and we use a � b to
denote a = O(b) while b = O(a). We use τ[a,b](x) to denote the truncation function, which
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is the projection of x onto [a, b]. Define the density of a Gaussian distribution with mean 0
and standard deviation σ as

φσ (x) = 1√
2πσ

e
− x2

2σ2

and the tail probability of a standard Gaussian distribution with mean 0 and standard deviation
1 as

�(x) = P
(
N(0,1) > x

) =
∫ ∞
x

1√
2π

e− y2

2 dy.

2. Problem formulation. In this section, we formulate the statistical problem of dis-
tributed Gaussian mean estimation with unknown variance σ 2. Suppose there are m local
machines, on the ith machine there is an i.i.d. normal observation:

Xi
i.i.d.∼ N

(
θ, σ 2).

The goal is to optimally estimate θ ∈ [0,1] with unknown σ 2 under a certain distributed
protocol with a total communication budget B . In other words, the distributed estimator needs
to be adaptive to the unknown variance σ 2.

In the conventional centralized setting, the minimax risk of restricted Gaussian mean esti-
mation is given in Bickel (1981):

inf
θ̂

sup
θ∈[0,1]

E(θ̂ − θ)2 = σ 2

m
− 4π2 σ 4

m2 + o
(
σ 2) � σ 2

m
∧ 1.

The above quantity serves as a benchmark for the Gaussian mean estimation problem. For
a given σ0 > 0, we call distributed estimator θ̂ a rate-optimal adaptive estimator if there
exists a constant C > 0, not depending on σ , σ0 or m, such that for any σ ≥ σ0, we have

sup
θ∈[0,1]

E(θ̂ − θ)2 ≤ C

(
σ 2

m
∧ 1

)
.

Such distributed estimators are consider as statistically optimal and adaptive as they achieve
the optimal rate of convergence in the centralized-setting over a wide range of σ . Let
Pσ0 = {Pθ,σ = N(θ,σ 2) : θ ∈ [0,1], σ ∈ [σ0,∞)} be the Gaussian location family with un-
known variance. The distributed estimation problem of θ is considered with the nuisance
parameter σ .

Setting a lower bound σ ≥ σ0 is necessary. This is due to the fact that no distributed
estimator with a finite total communication cost B is able to achieve the optimal rate of
convergence over all σ > 0. With total communication cost B , the mean squared error of
any distributed estimator is at least of order 2−2B due to discretization error, however, the

optimal rate of convergence for Gaussian mean estimation is of order σ 2

m
. As a result, when

σ is extremely small, any distributed estimator cannot attain optimal rate of convergence.
Therefore, there is no distributed estimator with finite communication cost that can be rate-
optimal adaptive with all possible positive real number σ . A lower bound on σ is needed
here to make the problem well formulated. With smaller lower bound σ0, the distributed
estimator needs more communication cost in order to be adaptive over the range σ ≥ σ0, and
the estimating procedure would be also different. In the real data application, people needs
to choose σ0 as a priori, depending on prior knowledge on the dataset or the communication
budget. See also Remark 5 for further discussion on σ0.

Throughout this paper, we assume 0 < σ0 ≤ 1
2 . When σ0 > 1

2 , the solution to the problem
is essentially identical to the case σ0 = 1

2 . See Remark 3 for further explanation.
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3. Optimal adaptive estimation under the independent protocols. We consider in this
section adaptive distributed estimation under the independent protocols. We begin by estab-
lishing a lower bound for the minimax relative efficiency under the independent protocols
with a given communication budget. A rate-optimal adaptive distributed estimator is then
constructed. It is shown that the proposed estimator achieves the minimum communication
cost among all rate-optimal adaptive estimators, as is shown by the matching lower bound.

3.1. Lower bound analysis. It is difficult to directly derive the minimal communication
cost for rate-optimal adaptive estimators. In our analysis, we first analyze the statistical per-
formance of the estimators in the class Aind(B). Then we argue that only when the communi-
cation budget B is larger than a certain value, a distributed estimator in Aind(B) can possibly
be a rate-optimal adaptive estimator. This leads to a lower bound for the communication cost
among the rate-optimal adaptive estimators.

We use the relative efficiency as a measure for the statistical performance when we derive
the lower bound. The relative efficiency for an estimator θ̂ is defined as

r(θ̂ , θ, σ ) =
(

σ 2

m
∧ 1

)−1
E(θ̂ − θ)2

which indicates the gap between the mean squared error of the estimator θ̂ and the optimal
rate of convergence when data are drawn from N(θ,σ 2).

We consider the minimax relative efficiency under the total communication constraint B:

Rind(σ0,B) = inf
θ̂∈Aind(B)

sup
θ∈[0,1],σ≥σ0

r(θ̂ , θ, σ ).

The quantity Rind(σ0,B) is a benchmark for the limit of estimation accuracy under the inde-
pendent protocols with the total communication constraint B , when σ 2 is unknown.

The relative efficiency is closely related to rate-optimal adaptive estimators. According to
the definition, θ̂ is a rate-optimal adaptive estimator over σ ≥ σ0, if and only if the maximum
relative efficiency for the estimator θ̂ is bounded by some constant C, that is,

sup
θ∈[0,1],σ≥σ0

(
σ 2

m
∧ 1

)−1
E(θ̂ − θ)2 ≤ C.

REMARK 1. As a contrast, the conventional distributed minimax risk

inf
θ̂∈Aind(B)

sup
θ∈[0,1],σ≥σ0

E(θ̂ − θ)2

is not a good proxy to study because the estimation problem becomes more difficult when
σ 2 is large. When σ is sufficiently large, say, σ >

√
m this minimax mean squared risk is

bounded away from zero according to centralized minimax rate given in Bickel (1981).

The following theorem provides a lower bound on the minimax relative efficiency for
estimators in Aind(B).

THEOREM 1. If B >
1
σ0
m

, there exists a constant c > 0, not depending on σ0, σ , θ or m,
such that

Rind(σ0,B) ≥ c

√√√√m log 1
σ0

B
∧ 1.
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The techniques used to prove Theorem 1 are novel and can be of independent interest.
Roughly speaking, our goal is to prove that there must exist σ ≥ σ0 and θ , δ such that the
central machine cannot tell whether the data are drawn from N(θ − δ, σ 2) or N(θ + δ, σ 2)

by only looking at these transcripts. To accomplish this goal, we give an upper bound on the
integrated squared Hellinger distances over different choices of θ and σ :

I =
m∑

i=1

J−1∑
j=0

∫ 1−λσj

λσj

H 2(Zi |Xi ∼ N
(
θ − λσj , σ

2
j

);Zi |Xi ∼ N
(
θ + λσj , σ

2
j

))
dθ

where σ1, σ2, . . . , σJ are carefully chosen different levels of σ , λ is a tuning constant fac-
tor. H 2(Zi |Xi ∼ N(θ − λσj , σ

2
j );Zi |Xi ∼ N(θ + λσj , σ

2
j )) denotes the squared Hellinger

distances between distribution of Zi if Xi ∼ N(θ − λσj , σ
2
j ) and distribution of Zi if

Xi ∼ N(θ + λσj , σ
2
j ). If I is proved to be small, then there must exist some θ and σj such

that

m∑
i=1

H 2(Zi |Xi ∼ N
(
θ − λσj , σ

2
j

);Zi |Xi ∼ N
(
θ + λσj , σ

2
j

))

is small, and then we can conclude that the central machine does not have enough information
to distinguish whether the data are drawn from N(θ − λσj , σ

2
j ) or N(θ + λσj , σ

2
j ). This

will give a lower bound on the relative efficiency Rind(σ0,B). The above technique can be
summarized into the following lemma.

LEMMA 1. Let J > 0 be an integer. Let λ > 0, 0 < σ0 < σ1 < · · · < σJ−1 satisfy
λσJ−1 < 1

6 . If for any distributed estimator θ̂ ∈ Aind(B), we have

I =
m∑

i=1

J−1∑
j=0

∫ 1−λσj

λσj

H 2(Zi |Xi ∼ N
(
θ − λσj , σ

2
j

);Zi |Xi ∼ N
(
θ + λσj , σ

2
j

))
dθ ≤ J

2
,

then there exists a constant c > 0 such that

Rind(σ0,B) ≥ cλ2m.

Theorem 1 gives a lower bound on the relative efficiency for all distributed estimators from
Aind(B). Note that a rate-optimal adaptive estimator should have bounded relative efficiency,
the following Corollary 3.1 can be directly derived from Theorem 1.

COROLLARY 3.1. If an estimator θ̂ ∈ Aind(B) is a rate-optimal adaptive estimator, that
is, there exists a constant C > 0 such that

E(θ̂ − θ)2 ≤ C

(
σ 2

m
∧ 1

)
for all σ ≥ σ0.

Then there exists a constant c > 0 (which only depends on C) such that

B ≥ cm log
1

σ0
.

The above corollary states that the minimum communication cost needed for a rate-optimal
adaptive estimator is of order m log 1

σ0
.
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3.2. Optimal estimator under the independent protocols - θ̂q . We now construct a com-
munication efficient rate-optimal adaptive estimator under the independent protocol. The op-
timal estimator θ̂q makes use of m log 3

σ0
total communication budget to achieve the central-

ized optimal rate of convergence for all σ ≥ σ0.
The estimator θ̂q can be constructed by the following steps.
Step 1: Generating transcripts. Let d = 2�log2 σ0�. Let Sd denote the following grid of

interval d between −1 − d and 2:

Sd = {−1 − d,−1,−1 + d,−1 + 2d, . . . ,2 − d,2}.
Let Zi be the quantized version of Xi and then truncate in [−1,2]. That is,

Zi =

⎧⎪⎪⎨
⎪⎪⎩

−1 − d if Xi ≤ −1,

2 if Xi ≥ 2,

max{z ∈ Sd : z ≤ Xi} if −1 < Xi < 2.

In the third case when −1 < Xi < 2, Zi is the maximum number in Sd that is less than or
equal to Xi . Since Zi has only 3/d + 2 possible values, it can be encoded using at most
log( 3

d
+ 2) ≤ log( 6

σ0
+ 2) bits.

Step 2: Estimation. The central machine receives the transcripts Z1, . . . ,Zm from the local
machines. Let Z(1) ≤ · · · ≤ Z(m) be the order statistics of Z1, . . . ,Zm. First, we calculate σ̂

by

σ̂ =

⎧⎪⎪⎨
⎪⎪⎩

σ0 if Z(�0.84m�) − Z(�0.16m�) < σ0,

Z(�0.84m�) − Z(�0.16m�) if σ0 ≤ Z(�0.84m�) − Z(�0.16m�) ≤ 1,

1 if Z(�0.84m�) − Z(�0.16m�) > 1,

Then, let σ̃ = min{2−k : 1 ≥ 2−k ≥ σ̂ , k is an integer}, that is, the minimum number that
is power of 2 and also larger than σ̂ . Let L = max{kσ̃ : kσ̃ ≤ Z(�0.16m�), k is an integer}, that
is, the largest multiple of σ̃ that is, less than or equal to Z(�0.16m�). Similarly, we define R =
max{kσ̃ : kσ̃ ≥ Z(�0.84m�), k is an integer}, that is, the smallest multiple of σ̃ that is larger
than or equal to Z(�0.84m�). Let p̂L = 1

m

∑m
i=1 I{Zi<L} be the proportion of transcripts that is

less than L, and p̂R = 1
m

∑m
i=1 I{Zi≥R} be the proportion of transcripts that is larger than or

equal to R,
Finally, recall that �(·) denotes the tail probability of a standard Gaussian variable, let

(θ̂q, σ̂q) be the solution to the equations

�

(
θ̂q − L

σ̂q

)
= p̂L ∨ 1

m
,

�

(
R − θ̂q

σ̂q

)
= p̂R ∨ 1

m
.

The above equation always has one unique solution where θ̂q ∈ [L,R], we take this θ̂q as
the final estimate.

It is easy to verify that the above estimator θ̂q ∈ Aind(m log( 1
σ0

+ 5)). The next theorem
establishes an upper bound on its mean squared error, showing that the estimator is rate-
optimal adaptive over σ ≥ σ0.

THEOREM 2. There exists a constant C > 0, not depending on σ0, σ , θ or m, such that

sup
θ∈[0,1],σ≥σ0

E(θ̂q − θ)2 ≤ C

(
σ 2

m
∧ 1

)
.
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REMARK 2. The construction of the estimator θ̂q is involved. A more straightforward
and simpler estimator is the quantization-then-average estimator proposed in Zhang et al.
(2013). However, it can be shown that the quantization-then-average estimator is not even
consistent when each local machine has only limited communication budget, because the
quantization bias (EZi − θ) is not exactly zero if one just rounds the observations to a certain
precision on the local machines. As a result, when the number of machines m → ∞, the
estimation error will not converge to zero. Therefore, a more sophisticated procedure such as
θ̂q is necessary to achieve the optimal rate of convergence with the communication constraint.

REMARK 3. The above estimator θ̂q is designed under the assumption that 0 < σ0 ≤ 1
2 .

When σ0 > 1
2 , we can use the estimator for the case σ0 = 1

2 , which is rate-optimal adaptive
estimator over σ ≥ σ0. The total communication cost is of order m, which cannot be further
reduced because each machine needs to transmit at least one bit in order to involve its obser-
vation into the estimation procedure. The choice of 1

2 is for convenience; it can be changed
to any positive number and all the results hold with minor modifications.

REMARK 4. Corollary 3.1 and Theorem 2 together show that the necessary and suffi-
cient communication cost for a rate-optimal adaptive estimator is of order m log 1

σ0
bits. The

order of communication cost of the estimator θ̂q cannot be further reduced. Compared to
the minimax rate of convergence for nonadaptive Gaussian mean estimation established in
the previous complementary work Cai and Wei (2020), the communication cost for adaptive
Gaussian mean estimation is larger, so there is a cost of adaptation under the independent
protocols.

REMARK 5. The construction of adaptive estimator θ̂q requires knowledge of the lower
bound σ0 for unknown σ , which seems unnatural. However, as Theorem 1 suggests, if one
lets σ0 → 0, the required communication cost for a distributed estimator to achieve the op-
timal rate of convergence will go to infinity. Therefore, there is no rate-optimal adaptive
estimator for all σ > 0 without a lower bound on σ . A similar phenomenon also appears in
the construction of adaptive confidence ball in nonparametric regression. If one assumes the
smoothness β ≥ β0, then it is possible to be adaptive from β0 to 2β0. If one does not assume
any lower bound for the smoothness, then no adaptation is possible. See Theorem 4 and the
discussion thereafter in Cai and Low (2006).

4. Optimal adaptive estimate under interactive protocols. In the previous section,
we show that an order of m log 1

σ0
bits are necessary and sufficient for an adaptive estimator

to achieve its optimal statistical performance under the independent protocols with σ ≥ σ0.
However, under the sequential protocols or blackboard protocols, it may require less com-
munication cost to achieve the same statistical performance, because the local machines can
“communicate” with each other to some extent. This leads to an interesting question: do we
still need m log 1

σ0
bits to achieve the optimal rate of convergence over all σ ≥ σ0 under the

sequential or blackboard protocols?
We consider in this section distributed estimation under two types of interactive protocols,

namely the sequential protocols and the blackboard protocols. We first construct a distributed
estimator under the sequential protocols that is statistical optimal for all σ ≥ σ0. A matching
lower bound is then established to show that the communication cost of the proposed estima-
tor cannot be further improved for all distributed estimators under the blackboard protocols.
Recall that the sequential protocols are a subset of the blackboard protocols, we obtain the
sufficient and necessary communication cost for the statistical optimal estimators under the



DISTRIBUTED GAUSSIAN MEAN ESTIMATION 2001

interactive protocols. The results show an interesting phenomenon. Compared to the inde-
pendent protocols, under the sequential protocols or the blackboard protocols, it requires less
communication cost for the rate-optimal adaptive estimation. So feedback and information
sharing are helpful in distributed Gaussian mean estimation with unknown variance.

4.1. Optimal estimator under the sequential protocols. In the following procedure we
assume m ≥ 12. The case of m ≤ 11 is relatively simple. For example, when m ≤ 11, the
problem can be solved by only looking at the first local machine and outputs its best approx-
imation up to σ0 precision. The estimation process can be divided into three steps.

Step 1: Preliminary estimation of θ and σ . For the first 11 local machines, the ith machine
(i = 1,2,3,4,5,6,7,8,9,10,11) outputs

Zi = ⌊
τ[−1,2](Xi + 1)/σ0

⌋
.

There are at most � 3
σ0

� + 1 possible outputs for each local machine, so each transcript Zi

(i = 1,2, . . . ,11) can be encoded by no larger than log 3
σ0

+ 1 bits.
On the 12th and later local machines, based on Z1,Z2, . . . ,Z11, each machine can calcu-

late a preliminary estimate of θ and σ by

θ̂11 = σ0Z11,

σ̂ = σ0 max

{
1,

(
1

10

10∑
i=1

(
Zi − 1

10

10∑
i=1

Zi

)2)1/2}
.

Step 2: One-bit passing. Starting at the 12th local machine, on the ith local machine, we
output

Zi = sign(Xi − θ̂i−1),

and update the current state θ̂ by

θ̂i = θ̂i−1 + σ̂ γiZi

where γi = i−2/3.
Step 3: Final estimation of θ . On the central machine, because we have access to

Z1,Z2, . . . ,Zm, thus we can calculate θ̂i accordingly for all i = 11, . . . ,m. The final esti-
mator of the mean θ is given by

θ̂sq = 1

m − 10

m∑
i=11

θ̂i .

Since each of first 11 local machines outputs at most log 3
σ0

+ 1 bits, and the later local
machines only output 1 bit per machine, it is easy to verify that the above proposed estimator
θ̂sq ∈ Asq(11 log 3

σ0
+ m). The following theorem gives an upper bound on its mean squared

error for all σ ≥ σ0

THEOREM 3. The estimator θ̂sq ∈ Asq(11 log 3
σ0

+ m) and satisfies

E(θ̂sq − θ)2 ≤ C

(
σ 2

m
∧ 1

)
,

where C is a universal constant not depending on σ0, σ , θ or m.

That is, the proposed sequential protocol estimator θ̂sq is rate-optimal for all σ ≥ σ0, whose
total communication cost is log 3

σ0
+ m bits.
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REMARK 6. The one-bit passing step of the above estimator θ̂sq is established in light
of the previous work Kipnis and Duchi (2017), where the goal is to construct an estimator
using one-bit measurements from local machines. Their proposed estimator was shown to
be asymptotically normal. However, the finite sample mean squared error of their estimator
was not guaranteed, as the finite sample performance is significantly influenced by the initial
position θ̂11 and the initial step size σ̂ .

We introduce in this paper the preliminary estimates θ̂11 and σ̂ , which can be obtained at
a small amount of communication cost, as an approximation for the optimal initial position
and initial step size. This warm start initialization is the key to obtain finite sample bound in
Theorem 3. The hardcode number “11” in the procedure can be set to any larger constants,
but not smaller ones. Due to a technical reason we require the preliminary estimate σ̂ to have
bounded −5 order moment, that is, Eσ̂−5 < ∞.

REMARK 7. The proof of Theorem 3 extends the techniques developed in the previous
seminal work Polyak (1990) on stochastic approximation. Polyak (1990) developed upper
bounds for stochastic approximation with averaging. The additional difficulty to prove The-
orem 3, compared to the previous work, is to control the uncertainty brought to the estimator
θ̂sq from the random initialization θ̂11 and σ̂ . Much more careful calculation is needed here.

4.2. Lower bound under interactive protocols. The above proposed estimator θ̂sq

achieves the optimal rate of convergence for all σ ≥ σ0 with communication cost (11 log 3
σ0

+
m) bits. The next theorem is a direct corollary derived from Theorem 5 in Cai and Wei (2020).
The lower bound argument shows that the communication cost for θ̂sq cannot be improved.

THEOREM 4. For any θ̂ ∈ Abb(B), if θ̂ is rate-optimal when σ = σ0, that is, there is a
constant C > 0 such that

sup
θ∈[0,1]

E(θ̂ − θ)2 ≤ C

(
σ 2

0

m
∧ 1

)
.

Then there exists a constant c > 0 (depends on C) such that

B ≥ c

(
log

1

σ0
+ m

)
.

The above theorem establishes a lower bound on the communication cost for any dis-
tributed estimator under the blackboard protocols that achieves optimal rate of convergence
when σ = σ0. The same lower bound also holds for any estimator that achieves the optimal
rate of convergence for σ ≥ σ0, as those estimators afeedbackre under more strict conditions.
Recall that the sequential protocols are a subset of the blackboard protocols. Therefore, the
lower bound in Corollary 4, together with the proposed adaptive estimator θ̂sq , shows that
order log 1

σ0
+ m communication cost is necessary and sufficient for rate-optimal adaptive

estimation under the interactive protocols, including the sequential and blackboard protocols.

REMARK 8. Recall that for any rate-optimal adaptive estimator under the independent
protocols, the minimal communication cost is of order m log 1

σ0
, which is larger than that

for a rate-optimal adaptive estimator under the interactive protocols. Feedback and informa-
tion sharing are necessary to improve communication-efficiency in adaptive Gaussian mean
estimation. See Table 1 for a comparison of the optimal communication costs for three dis-
tributed protocols—independent, sequential, and blackboard protocols—under adaptive and
nonadaptive settings.
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TABLE 1
Optimal communication cost for different distributed protocols under adaptive and nonadaptive settings.

Adaptive setting: minimal communication cost for rate-optimal adaptive estimator over σ ≥ σ0. Nonadaptive
setting: minimal communication cost for rate-optimal estimator with known σ = σ0

Protocol Adaptive estimator Nonadaptive estimator

Independent O(m log 1
σ0

) O(m + log 1
σ0

)

Sequential O(m + log 1
σ0

) O(m + log 1
σ0

)

Blackboard O(m + log 1
σ0

) O(m + log 1
σ0

)

REMARK 9. The lower bound on communication cost in Corollary 4 holds for the non-
adaptive case when σ = σ0 is known in advance. Since the adaptive estimator θ̂sq is con-
structed with no more communication cost than the nonadaptive case, there is no cost of
adaptation for Gaussian mean estimation under the two types of the interactive protocols. In
contrast, under the independent protocols, as more communication cost is needed to establish
a rate-optimal adaptive estimator, there is a cost of adaptation for Gaussian mean estimation.

5. Numerical results. The proposed adaptive estimators under independent protocol and
under interactive protocols are easy to implement. In this section, we conduct simulation
studies to investigate the numerical performance of these two estimators. The numerical re-
sults show that the proposed estimators are practically useful, having high statistical accuracy
while only requiring a small amount of communication cost.

We consider in the simulation study a setting where σ0 = 2−12, that is, we know a pri-
ori σ ≥ σ0 = 2−12. Assume there are m = 100 machines, where each machine has ac-
cess to a univariate normal variable X ∼ N(θ,σ 2), with θ = 0.3 and choices of σ ∈
{2−2,2−4,2−6,2−8,2−10,2−12}. We compare the following three estimators: the classical
sample-mean estimator (under the centralized setting), the adaptive estimator under the in-
dependent protocol, and the adaptive estimator under the sequential protocol. The average
mean squared errors (MSEs) of the three different estimators over 100 simulation runs, and
the communication costs (in bits) of the two distributed estimators are given in Table 2.

The numerical results shown in Table 2 are interesting and consistent with the theoretical
analysis given earlier. The adaptive estimator under the sequential protocol uniformly outper-
forms the one under the independent protocol, in terms of both the MSE and communication
cost. This shows the clear advantage of the sequential protocol over the independent protocol.
Comparing with the classical centralized sample-mean estimator, the MSEs of the adaptive

TABLE 2
MSEs and the communication costs of the three methods. σ0 = 2−12, m = 100, θ = 0.3. For the two distributed

estimators, total communication costs (in bits) are given in the parentheses

σ Sample-mean Independent Protocol Sequential Protocol

2−2 6.17 × 10−4 4.14 × 10−3(1500) 2.12 × 10−3(266)

2−4 4.04 × 10−5 1.45 × 10−4(1500) 1.28 × 10−4(266)

2−6 2.14 × 10−6 9.02 × 10−6(1500) 8.31 × 10−6(266)

2−8 1.46 × 10−7 5.23 × 10−7(1500) 4.85 × 10−7(266)

2−10 8.59 × 10−9 5.00 × 10−8(1500) 2.66 × 10−8(266)

2−12 5.68 × 10−10 5.10 × 10−9(1500) 2.47 × 10−9(266)
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estimator under the sequential protocol and under the independent protocol are respectively
within a factor of 4 and a factor of 10 times of the corresponding MSEs of the sample mean.
This is consistent with the theoretical results that the statistical accuracy of both distributed
estimators is within a constant factor of the centralized optimality. Indeed, the simulation
results show that the actual constant gaps are relatively small. In particular, it is interesting
to see that the adaptive estimator under the sequential protocol achieves such a good perfor-
mance with only 266 bits. Considering their low communication costs, we find the proposed
adaptive estimators could be practically useful in real distributed estimation applications.

6. Discussion. We studied in the present paper the problem of distributed adaptive Gaus-
sian mean estimation with unknown σ . In the conventional centralized setting, Gaussian mean
estimation with unknown σ is arguably one of the most basic and fundamental problems in
classical statistics. As seen in this paper, the theoretical analysis is rich and difficult in the
distributed setting.

The insights gained from the analysis can be used to solve other related problems where
the variance is unknown. One such problem is nonparametric regression with random de-
sign. As pointed out in Cai and Wei (2022b), despite being asymptotically equivalent in the
centralized setting, the problem of distributed nonparametric regression with random design
is significantly different from that with fixed design. For example, when wavelet methods
are used, the empirical wavelet coefficients in this case have unknown variance due to the
unknown design distribution and the techniques developed in this paper can potentially be
used to construct a wavelet estimator in that problem. More discussion on the connections
and differences among various distributed nonparametric function estimation problems can
be found in Cai and Wei (2022b).

In the present paper, the focus is on the optimal estimation of the mean θ . A closely related
problem is statistical inference for the mean including the construction of optimal confidence
intervals for θ . This involves optimal estimation of the variance σ 2 in the same setting, which
is a challenging problem by itself. We leave the inference problem for future work.

The results in this paper reveal an interesting phenomenon: the communication costs re-
quired under different types of distributed protocols can be substantially different. This is in
sharp contrast to Gaussian mean estimation with known variance. It is interesting to investi-
gate further the differences among various types of distributed protocols for other distributed
statistical problems. It is technically challenging to develop a general optimality theory under
different types of communication constraints. More generally, it is of significant interest to
understand the interplay between communication cost, statistical accuracy, adaptation, and
different types of distributed protocols for a wide range of problems. This is an important
topic in data science that is wide open and merits further study.

7. Proofs. We prove the main results in this section. For reasons of space, some of the
technical lemmas are proved in the Supplementary Material (Cai and Wei (2022b)). Through-
out this section, L1

x denotes the L1 function space with respect to the x variable and I{} de-
notes the indicator function taking values in {0,1}. We use shorthand a � b to denote there
exists a universal constant C > 0 such that a ≤ Cb. With slight abuse of notation, we define
φ be the standard Gaussian density, φσ be the density of N(0, σ 2), and φθ,σ be the density of
N(θ,σ 2).

7.1. Proof of Theorem 1. We first define several quantities. They play important roles to
establish the proof.

Let P , Q be two distributions that are absolutely continuous with respect to a Lebesgue
measure on the measurable space Z . p, q are the density functions of P , Q respectively.
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Define squared Hellinger distance H 2(P,Q) as

H 2(P,Q)� 1

2

∫
Z
(
√

p − √
q)2 dx.

Define total variation distance TV(P,Q) as

TV(P,Q) � 1

2

∫
Z

|p − q|dx.

Let Z be a finite set, h : R → Z a random function, and f,g ∈ L1(R) are nonnegative
functions. Define “generalized squared Hellinger distance” for Z be

H 2(h;f,g) � 1

2

∑
z∈Z

(√∫ ∞
−∞

f (x)P
(
h(x) = z

)
dx −

√∫ ∞
−∞

g(x)P
(
h(x) = z

)
dx

)2
.

Note that when f , g are densities, H 2(h;f,g) is exactly the squared Hellinger distance
between distribution of h(X) when X ∼ f , and distribution of h(X) when X ∼ g. This is
why we call this quantity generalized squared Hellinger distance.

Similarly, we define “generalized total variation distance” as

TV(h;f,g)� 1

2

∑
z∈Z

∣∣∣∣
∫ ∞
−∞

f (x)P
(
h(x) = z

)
dx −

∫ ∞
−∞

g(x)P
(
h(x) = z

)
dx

∣∣∣∣.
Also when f , g are densities, TV(h;f,g) is exactly the total variation distance between
distribution of h(X) when X ∼ f , and distribution of h(X) when X ∼ g.

The following lemma provides two basic but useful inequalities for H 2(h;f,g) and
TV(h;f,g).

LEMMA 2. For any random function h : R→ Z , the following two inequalities hold:

(a) Sub-additivity of H 2(h;f,g): if f (x, s), g(x, s) ∈ L1
x(R) are nonnegative functions

for each s ∈ (sl, sr ), and
∫ sr
sl

f (x, s) ds,
∫ sr
sl

g(x, s)ds ∈ L1
x(R). Then we have

(1) H 2
(
h;

∫ sr

sl

f (·, s) ds,

∫ sr

sl

g(·, s) ds

)
≤
∫ sr

sl

H 2(h;f (·, s), g(·, s))ds.

(b) Bound between TV(h;f,g) and H 2(h;f,g): if f and g have the same support (i.e.,
{x : f (x) > 0} = {x : g(x) > 0}) and there exist M ≥ 1 such that 1/M ≤ f (x)/g(x) ≤ M for
all x ∈ {x : g(x) > 0}. Then we have

(2) H 2(h;f,g) ≤
√

M − 1√
M + 1

TV(h;f,g).

Besides, we define φθ,σ as the density function of N(θ,σ 2), that is,

φθ,σ (x) = 1√
2πσ

e
− (x−θ)2

2σ2 .

Now we move back to the main proof. Let λ = cλ(
log 3

σ0
mB

)1/4 where cλ is a positive constant
that will be specified later. Let J be the maximum integer such that 2−J ≥ σ0. Let σj = 2j σ0,
j = 1,2, . . . , J − 1.

We are interested in the following integrated squared Hellinger distances:

(3) I �
m∑

i=1

J−1∑
j=0

∫ 1−λσj

λσj

H 2(�i;φ(θ−λσj ),σj
, φ(θ+λσj ),σj

)dθ.

The following subsection is dedicated to show that under proper choice of the constant cλ,
we have I ≤ 1

2m.
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7.1.1. Bound integrated integrated squared Hellinger distances I . We first “slice”
φ(θ−λσj ),σj

and φ(θ+λσj ),σj
in (3) into pieces so that we can apply Lemma 2(a) to give an

upper bound for I . Let

s∗ = sup
x∈R

∣∣φ−λ,1(x) − φλ,1(x)
∣∣,

A(s) = {
x : ∣∣φ−λ,1(x) − φλ,1(x)

∣∣ ≥ s
}
, 0 < s < s∗,

xs = supA(s),

f (x, s) = I{x∈A(s)}
φ−λ,1(x)

|φ−λ,1(x) − φλ,1(x)| , x �= 0,0 < s < s∗,

g(x, s) = I{x∈A(s)}
φλ,1(x)

|φ−λ,1(x) − φλ,1(x)| , x �= 0,0 < s < s∗.

When x = 0 we set f (0, s) = g(0, s) = φλ,1(0)/s∗. It is easy to verify that

φ−λ,1(x) =
∫ s∗

0
f (x, s) ds and φλ,1(x) =

∫ s∗

0
g(x, s)ds.

The reason why we design the function f and g is for a good property: g(x, s)−f (x, s) =
I{x∈A(s)} sign(x), which is a compact supported piecewise function only taking values in
{−1,0,1}. By this way we “discretize” the problem and is able to adopt combinatoric tech-
niques (in Lemma 9).

Note that φ(θ−λσj ),σj
(x) = 1

σj
φ−λ,1((x−θ)/σj ) and φ(θ+λσj ),σj

(x) = 1
σj

φλ,1((x−θ)/σj ),
so we have

φ(θ−λσj ),σj
(x) =

∫ s∗

0

1

σj

f
(
(x − θ)/σj , s

)
ds,

φ(θ+λσj ),σj
(x) =

∫ s∗

0

1

σj

g
(
(x − θ)/σj , s

)
ds.

The above equations and Lemma 2(a) imply

I =
m∑

i=1

J−1∑
j=0

∫ 1−λσj

λσj

H 2(�i;φ(θ−λσj ),σj
, φ(θ+λσj ),σj

)dθ(4)

≤
m∑

i=1

J−1∑
j=0

∫ 1−λσj

λσj

dθ

∫ s∗

0
H 2

(
�i(x); 1

σj

f
(
(x − θ)/σj , s

)
,

1

σj

g
(
(x − θ)/σj , s

))
ds(5)

=
m∑

i=1

J−1∑
j=0

1

σj

∫ 1−λσj

λσj

dθ

∫ s∗

0
H 2(�i(x);f (

(x − θ)/σj , s
)
, g

(
(x − θ)/σj , s

))
ds.(6)

Note that f (x, s) and g(x, s) both are supported on A(s) and when x ∈ A(s),

f (x, s)/g(x, s) = φ−λ,1(x)/φλ,1(x) = e2λx ∈ [
e−2λxs , e2λxs

]
.

Applying Lemma 2(b), we have

H 2(�i(x);f (
(x − θ)/σj , s

)
, g

(
(x − θ)/σj , s

))
≤ eλxs − 1

eλxs + 1
TV

(
�i(x);f (

(x − θ)/σj , s
)
, g

(
(x − θ)/σj , s

))
.
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Substitute into (4) and apply Fubini’s theorem, we get

I ≤
∫ s∗

0
ds

eλxs − 1

eλxs + 1

m∑
i=1

J−1∑
j=0

1

σj

×
∫ 1−λσj

λσj

TV
(
�i(x);f (

(x − θ)/σj , s
)
, g

(
(x − θ)/σj , s

))
dθ.

(7)

The following lemma bridges the partial total variation distances and communication costs,
which is crucial to our proof.

LEMMA 3. If � : R → {0,1}b takes value in {0,1}b, then there exist a constant C1 > 0
such that

J−1∑
j=0

1

σj

∫ 1−λσj

λσj

TV
(
�(x);f (

(x − θ)/σj , s
)
, g

(
(x − θ)/σj , s

))
dθ

≤ C1xs(1 + xs)
√

J (b ∧ J ).

Another Lemma gives an upper bound on the integral by analysis.

LEMMA 4. If λ ≤ 1/6 then there exists a constant C2 > 0 such that∫ s∗

0

eλxs − 1

eλxs + 1
xs(1 + xs)ds ≤ C2λ

2.

Apply Lemmas 3 and 4 on (7), we have

I ≤ C1C2
√

Jλ2
n∑

i=1

√
(bi ∧ J ).

Jensen’s inequality implies that
∑m

i=1
√

bi ≤ m
√

1/m
∑n

i=1 bi = √
mB , therefore we have

I ≤ C1C2
√

mJBλ2.

Recall that λ = cλ(
log 3

σ0
mB

)1/4. Note that log 3
σ0

≤ 2J , so when cλ is a sufficiently small

constant such that 0 < cλ < 1√
8C1C2

, we have

I ≤ J

2
.

Recall the definition of I in (3):

I =
J−1∑
j=0

∫ 1−λσj

λσj

m∑
i=1

H 2(�i;φ(θ−λσj ),σj
, φ(θ+λσj ),σj

)dθ.

The above upper bound I ≤ J/2 holds for any distributed estimator θ̂ . Note that we have

B >
1
σ0
m

thus λσJ−1 < 1/6 if we set cλ < 1/6. Apply Lemma 1, we can conclude the desired
lower bound:

Rind(σ0,B) ≥ cλ2m ≥ c1c
2
λ

√√√√m log 3
σ0

B
.
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7.2. Proof of Theorem 2. For simplicity of notations, we define Z(−) = Z(�0.16m�) and
Z(+) = Z(�0.84m�). Before we proceed to the proof, we give a lemma showing large deviation
bounds on Z(−) and Z(+). These bounds can be directly derived using Gaussian tail bounds
so we omit the proof.

LEMMA 5. There exists universal constants C,c > 0 such that for any k ≥ 2, we have

P(Z(−) < θ − kσ) ≤ C exp
(−ck2m

)
,

P(Z(−) > θ − σ/2) ≤ C exp(−cm),

P(Z(+) > θ + kσ) ≤ C exp
(−ck2m

)
,

P(Z(+) < θ + σ/2) ≤ C exp(−cm).

We first define several events:

E1 = {
θ /∈ [Z(−),Z(+)]},

E2 =
{
θ ∈ [Z(−),Z(+)], σ̂ /∈

[
min

{
1,

1

2
σ

}
,4σ

]}
,

E3 =
(
E1 ∪ E2

)c =
{
θ ∈ [Z(−),Z(+)],min

{
1,

1

2
σ

}
≤ σ̂ ≤ 4σ

}
.

Note that we have

E(θ̂q − θ)2 =
3∑

k=1

E(θ̂q − θ)2
I{Ek}.

Therefore, the proof can be divided into showing E(θ̂q −θ)2
I{Ek} ≤ Ck

σ 2

m
with some universal

constant Ck respectively for k = 1,2,3.
1. Bound on E(θ̂q − θ)2

I{E1}.
Under E1, we have either E11 = {Z(−) > θ} or E12 = {Z(+) < θ} happens.
Define E11,k = {Z(−) > θ, θ + kσ < Z(+) ≤ θ + (k + 1)σ }. Under E11,k , note that we

have Z(+) − Z(−) ≤ (k + 1)σ , this implies σ̂ ≤ (k + 1)σ , then σ̃ ≤ 2(k + 1)σ , thus R ≤
θ + 3(k + 1)σ . Note that the final estimate θ̂q must lie in the interval [L,R], So we have
|θ̂q − θ | ≤ 3(k + 1)σ under event E11,k .

Apply Lemma 5, when k = 0,1 we have P(E11,k) ≤ P(E11) ≤ C exp(−cm). When
k ≥ 2 we have P(E11,k) ≤ P(Z(+) > θ + kσ) ≤ C exp(−ck2m). Therefore, note that E11 =⋃∞

k=0 E11,k , we have

E(θ̂q − θ)2
I{E11} ≤

∞∑
k=0

E(θ̂q − θ)2
I{E11,k}

≤ (6σ)2 · 2C exp(−cm) +
∞∑

k=2

(
3(k + 1)σ

)2 · C exp
(−ck2m

)

≤ C′ σ 2

m

with some universal constant C′ > 0.
By a symmetric argument, we can also prove that E(θ̂q − θ)2

I{E12} ≤ C′ σ 2

m
. Therefore, we

conclude that

E(θ̂q − θ)2
I{E1} ≤ E(θ̂q − θ)2

I{E11} +E(θ̂q − θ)2
I{E12} ≤ 2C′ σ 2

m
.
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2. Bound on E(θ̂q − θ)2
I{E2}.

Let E21 = {θ ∈ [Z(−),Z(+)], σ̂ < min{1, 1
2σ }} and E22,k = {θ ∈ [Z(−),Z(+)], kσ < σ̂ ≤

(k + 1)σ } (k ≥ 4).
Under E21 we have |θ̂ − θ | < 3

2σ , under E22,k we have |θ̂ − θ | < 3(k + 1)σ . Moreover,
we have the probability bounds

P(E21) ≤ P(Z(+) < θ + σ/2) ≤ C exp
(−ck2m

)
,

P(E22,k) ≤ P

(
Z(+) > θ + k

2
σ

)
+ P

(
Z(−) < θ − k

2
σ

)
≤ 2C exp

(−ck2m/4
)
.

Note that E2 = E21 ∪⋃∞
k=4 E22,k , we have

E(θ̂q − θ)2
I{E2} ≤ E(θ̂q − θ)2

I{E21} +
∞∑

k=4

E(θ̂q − θ)2
I{E22,k}

≤
(

3

2
σ

)2
· C exp

(−ck2m
)+

∞∑
k=4

(
3(k + 1)σ

)2 · 2C exp
(−ck2m/4

)

≤ C′′ σ 2

m

with some universal constant C′′ > 0.
3. Bound on E(θ̂q − θ)2

I{E3}.
Under event E3, because we have min{1, 1

2σ } ≤ σ̂ ≤ 4σ , also note that σ̂ ≤ 1 almost
surely, so there are at most 5 possible values of σ̃ , whose range is between min{1, 1

2σ } to
min{1,8σ } (recall that σ̃ is chosen only from powers of 2).

For each possible value of σ̃ , the length of the interval [L,R] is either σ̃ or 2σ̃ . Recall we
have requirements that L, R are multiples of σ̃ and event E3 suggest θ ∈ [L,R], so there are
at most 5 possible values of (L,R) pairs for each possible value of σ̃ . Putting together, we
can conclude that under event E3, the possible values of the pair (L,R) is at most 25. We use
(L1,R1), (L2,R2), . . . , (L25,R25) to denote these 25 possible values of the (L,R) pair. Thus
we have the following decomposition:

E(θ̂q − θ)2
I{E3} =

25∑
k=1

E(θ̂q − θ)2
I{E3,(L,R)=(Lk,Rk)}

≤
25∑

k=1

E(θ̂q − θ)2
I{(L,R)=(Lk,Rk)}.

(8)

For each possible pair (Lk,Rk) (k = 1,2, . . . ,25), we have Rk − Lk ≤ 2σ̃ ≤ 16σ . Define
the function Fk : (−∞,∞) × (0,∞) → (0,1) × (0,1) as

Fk(t, s) =

⎛
⎜⎜⎝

�

(
t − Lk

s

)

�

(
Rk − t

s

)
⎞
⎟⎟⎠ .

When (L,R) = (Lk,Rk), we have

E
∥∥Fk(θ̂sq, σ̂sq) − Fk(θ, σ )

∥∥2

= E

(
max

{
p̂L,

1

m

}
− P(X1 < L)

)2
+E

(
max

{
p̂R,

1

m

}
− P(X1 > R)

)2

≤ 4

m

(9)
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where the last inequality is due to mpL is binomial distributed with mean mP(X1 < L), and
mpR is binomial distributed with mean mP(X1 > R).

Note that Rk − θ ≤ Rk − Lk ≤ 16σ , therefore t−Lk

σ
< 16 and Rk−t

σ
< 16 for t ∈ [Lk,Rk].

Then it is easy to prove that there exists a constant c′ = |d�(x)
x

|x=16| > 0 such that for any
t,∈ [Lk,Rk], ∣∣∣∣�

(
t − Lk

σ

)
− �

(
θ − Lk

σ

)∣∣∣∣ ≥ c′ |t − θ |
σ

;
∣∣∣∣�

(
Rk − t

σ

)
− �

(
Rk − θ

σ

)∣∣∣∣ ≥ c′ |t − θ |
σ

.

Besides, note that for any t ∈ [L,R] and s > 0, at least one of the following inequalities
holds: ∣∣∣∣�

(
t − Lk

s

)
− �

(
θ − Lk

σ

)∣∣∣∣ >
∣∣∣∣�

(
t − Lk

σ

)
− �

(
θ − Lk

σ

)∣∣∣∣;∣∣∣∣�
(

Rk − t

s

)
− �

(
Rk − θ

σ

)∣∣∣∣ ≥
∣∣∣∣�

(
Rk − t

σ

)
− �

(
Rk − θ

σ

)∣∣∣∣.
Combine the two observations above, we have

∥∥Fk(θ̂sq, σ̂sq) − Fk(θ, σ )
∥∥2 ≥ (c′)2

σ 2 (θ̂sq − θ)2.

Substitute above inequality into (9), when (L,R) = (Lk,Rk) we have

E(θ̂sq − θ)2 ≤ 4

(c′)2

σ 2

m
.

Substitute the above inequality into (8) we obtained the desired bound

E(θ̂q − θ)2
I{E3} ≤

25∑
k=1

E(θ̂q − θ)2
I{(L,R)=(Lk,Rk)} ≤ 100

(c′)2

σ 2

m
.

7.3. Proof of Theorem 3. The proof of Theorem 3 will be carried out by several stages.

Throughout the proof, we define δk = θ̂k−θ
σ

, φ(x) = 1√
2π

e−x2/2 is standard Gaussian density.

�(x) = P(X > x) where X ∼ N(0,1), and �(x) = 1 − 2�(x). We also define μk = 1
k−10 .

We first give a lemma that will be useful in the proof.

LEMMA 6. Let {Ak}∞k=0 be a positive sequence, and {bk}∞k=0, {dk}∞k=0 be two decreasing
positive sequences that satisfy

Ak ≤ (1 − αbk)Ak−1 + βbkdk, k = 1,2, . . .

where α,β > 0. If there exists K > 0 such that

dk−1

dk

≤ 1 + α

2
bk for all k ≥ K.

Then we have, for all k ≥ 0,

(10) Ak ≤
(

A0 + β
∑K

i=1 bidi

dK

+ 2β

α

)
dk.

Then we provide several claims and show the proof to each claim directly after their state-
ment.



DISTRIBUTED GAUSSIAN MEAN ESTIMATION 2011

CLAIM 1. There exists a constant C1 > 0 (doesn’t depend on θ , σ or σ̂ ) such that for all
k ≥ 11, we have

(11) E
[
(θ̂k − θ)2|σ̂ ] ≤ C1

(
(σ̂ /σ )−2 + (σ̂ /σ )2)σ 2γk.

PROOF OF CLAIM 1. Define the Lyapunov function

L(x) =
{
x2 if − 2 < x < 2,

4e|x|/2−1 if |x| ≥ 2.

Note that x2 � L(x), therefore to prove Claim 1, it suffices to show that

(12) E

[
L

(
θ̂k − θ

σ

)∣∣∣σ̂]� (
(σ̂ /σ )−2 + (σ̂ /σ )2)γk.

We have the following lemma.

LEMMA 7.

(a) If γkσ̂ /σ ≥ 2, we have

(13) E
[
L(δk)|σ̂ ] ≤ 11eγkσ̂ /(2σ).

(b) If γkσ̂ /σ ≤ 2 and k ≥ 12, we have

(14) E
[
L(δk)|σ̂ ] ≤ (1 − 0.25γkσ̂ /σ )E

[
L(δk−1)|σ̂ ]+ (γkσ̂ /σ )2.

Case 1: When γkσ̂ /σ ≥ 2. Consider surrogate function

L̃(x) =
{

4 if 0 ≤ y ≤ 4,

4e
√

x/2−1 if x ≥ 4.

Note that L̃(δ2
k ) ≤ L(δk)+4 and L̃(x) is convex, apply Lemma 7(a) and Jensen’s inequality

we have

L̃
(
E
[
δ2
k |σ̂

]) ≤ E
[
L̃
(
δ2
k

)|σ̂ ] ≤ E
[
L(δk)|σ̂ ]+ 4 ≤ 11eγkσ̂ /(2σ) + 4

which suggests that

E
[
δ2
k |σ̂

]
� (γkσ̂ /σ )2 ≤ (σ̂ /σ )2γk.

Case 2: When γkσ̂ /σ < 2. Let k0 be the largest k such that γkσ̂ /σ ≥ 2 (if there is no
such k, set k0 = 0). Given Lemma 7(b), we can apply Lemma 6 with Ai = E[L(δk0+i )|σ̂ ],
bi = di = γk0+i σ̂ /σ , α = 0.25, β = 1, and K = �83(σ̂ /σ )−3� − k0. This is a valid K value
because

di−1/di = (1 − 1/k)−2/3 ≤ 1 + 1/k ≤ 1 + k−2/3σ̂

8σ
= 1 + α

2
bk when i ≥ 83(σ̂ /σ )−3

where k = k0 + i.
Also note that we have γk0 σ̂ /σ ≤ 4 due to the definition of k0, thus A0 ≤ 11e2 according to

Lemma 7(a). And note that
∑K

i=1 bidi <
∑∞

i=1 bidi = (σ̂ /σ )2 ∑∞
i=1+k0

γ 2
i < ∞. Therefore,

apply Lemma 6, we have

E
[
L(δk)|σ̂ ]�

(11e2 + (σ̂ /σ )2 ∑∞
i=1+k0

γ 2
i

(σ̂ /σ )3 + 8
)
dk �

(
(σ̂ /σ )−3 + 1

)
σ̂ /σγk.

Combine the two cases above, we prove the desired bound (11).
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CLAIM 2. There exists a constant C2 > 0 (doesn’t depend on θ , σ or σ̂ ) such that for all
k ≥ 11, we have

(15) E
[
(θ̂k − θ)4|σ̂ ] ≤ C2

(
(σ̂ /σ )−4 + (σ̂ /σ )4)σ 4γ 2

k .

PROOF OF CLAIM 2. The proof is very similar to Claim 1. We will omit some details in
the proof. Redefine the Lyapunov function

L(x) =
{
x4 if − 2 < x < 2,

16e|x|/2−1 if |x| ≥ 2.

We have the following lemma.

LEMMA 8.

(a) If γkσ̂ /σ ≥ 2, we have

(16) E
[
L(δk)|σ̂ ] ≤ 44eγkσ̂ /(2σ).

(b) If γkσ̂ /σ ≤ 2 and k ≥ 12, we have

(17) E
[
L(δk)|σ̂ ] ≤ (1 − 0.25γkσ̂ /σ )E

[
L(δk−1)|σ̂ , δk−1

]+ (6C1 + 1)
(
(σ̂ /σ )4 + 1

)
γ 3
k .

Case 1: When γkσ̂ /σ ≥ 2. Similarly, we can conclude that

E
[
δ4
k |σ̂

]
� (γkσ̂ /σ )4 ≤ (σ̂ /σ )4γ 2

k .

Case 2: When γkσ̂ /σ < 2. Let i = k − k0 where k0 is defined as in the proof of Claim 1.
Given Lemma 8(b), we can apply Lemma 6 with bi = γkσ̂ /σ , di = γ 2

k , α = 0.25, β = (6C1 +
1)((σ̂ /σ )−1 + (σ̂ /σ )3), and K = �163(σ̂ /σ )−3� − k0, then we have

E
[
L(δk)|σ̂ ]�

(
44e2 + (σ̂ /σ )4 + 1

(σ̂ /σ )4 + 8
(
(σ̂ /σ )−1 + (σ̂ /σ )3))γ 2

k

�
(
(σ̂ /σ )−4 + (σ̂ /σ )3)γ 2

k .

Combine the two cases above, and note that E[(θ̂k − θ)4 � E[L(δk)|σ̂ ], we can conclude
(15).

CLAIM 3. Let θ̄k = 1
k

∑k
i=1 θ̂i . There exists a constant C3 > 0 (doesn’t depend on θ , σ

or σ̂ ) such that

E
[
(θ̄k − θ)2|σ̂ ] ≤ C3

(
(σ̂ /σ )−2 + (σ̂ /σ )2)σ 2γk.

PROOF OF CLAIM 3. Let μk = 1
k−10 , note that

θ̄k+1 − θ = (1 − μk)(θ̄k − θ) + μk(θ̂k+1 − θ).

This implies

(18) E
[
(θ̄k+1 − θ)2|σ̂ ]1/2 ≤ (1 − μk)E

[
(θ̄k − θ)2|σ̂ ]1/2 + μkE

[
(θ̂i − θ)2|σ̂ ]1/2

.

From the above inequality we can show

(19) E
[
(θ̄k − θ)2|σ̂ ]1/2 ≤ 3

(
C1

(
(σ̂ /σ )−2 + (σ̂ /σ )2)σ 2γk

)1/2

holds for all k ≥ 1 by induction, which suggest Claim 3 holds with C3 = 9C1. The induction
is concluded by:
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1. From Claim 1, we have

E
[
(θ̄11 − θ)2|σ̂ ]1/2 = E

[
(θ̂11 − θ)2|σ̂ ]1/2 ≤ (

C1
(
(σ̂ /σ )−2 + (σ̂ /σ )2)σ 2γ11

)1/2
,

therefore (19) holds when k = 11.
2. If (19) holds for k, from (18) and Claim 1, we have

E
[
(θ̄k+1 − θ)2|σ̂ ]1/2 ≤

(
3(1 − μk)

√
γk

γk+1
+ μk

)(
C1

(
(σ̂ /σ )−2 + (σ̂ /σ )2)σ 2γk+1

)1/2
.

Note that
√

γk

γk+1
< (1 − μk)

−1/3 and 3(1 − μk)
2/3 + μk ≤ 3 for all k. So we have (19)

holds for k + 1.

CLAIM 4. Let θ̄k = 1
k

∑k
i=1 θ̂i . There exists a constant C4 > 0 (doesn’t depend on θ , σ

or σ̂ ) such that

(20) E
[
(θ̄k − θ)(θ̂k − θ)|σ̂ ] ≤ C4

(
(σ̂ /σ )−5 + (σ̂ /σ )3)σ 2μk.

PROOF OF CLAIM 4. We have

E
[
(θ̄k+1 − θ)(θ̂k+1 − θ)|σ̂ , θ̂k

]
= (1 − μk)E

[
(θ̄k − θ)(θ̂k+1 − θ)|σ̂ , θ̂k

]+ μkE
[
(θ̂k+1 − θ)2|σ̂ , θ̂k

]
.

Take expectation with respect to θ̂k we have

E
[
(θ̄k+1 − θ)(θ̂k+1 − θ)|σ̂ ]
= (1 − μk)E

[
(θ̄k − θ)

(
θ̂k − θ − σ̂ γk�(δk)

)|σ̂ ]+ μkE
[
(θk+1 − θ)2|σ̂ ]

= (1 − μk)
(
1 − 2σ̂ /σγkφ(0)

)
E
[
(θ̄k − θ)(θ̂k − θ)|σ̂ ]

+ (1 − μk)σ̂ γkE
[
(θ̄k − θ)

(
2φ(0)δk − �(δk)

)|σ̂ ]
+ μkE

[
(θ̂k+1 − θ)2|σ̂ ].

Note that 2φ(0)δk − �(δk)� δ2
k . The Cauchy–Schwarz inequality suggests

E
[
(θ̄k − θ)

(
2φ(0)δk − �(δk)

)|σ̂ ]2 ≤ E
[
(θ̄k − θ)2|σ̂ ]E[((2φ(0)δk − �(δk)

)2|σ̂ ]
� E

[
(θ̄k − θ)2|σ̂ ]E[δ4

k |σ̂
]

�
(
(σ̂ /σ )−2 + (σ̂ /σ )2)σ 2γk · ((σ̂ /σ )−4 + (σ̂ /σ )4)γ 2

k

�
(
(σ̂ /σ )−6 + (σ̂ /σ )6)σ 2γ 3

k .

Thus we have

E
[
(θ̄k+1 − θ)(θ̂k+1 − θ)|σ̂ ]
≤ (1 − μk)

(
1 − 2σ̂ /σγkφ(0)

)
E
[
(θ̄k − θ)(θ̂k − θ)|σ̂ ]

+ C′
4(1 − μk)

(
(σ̂ /σ )−3 + (σ̂ /σ )3)σ̂ σγ

5/2
k

+ μkC1
(
(σ̂ /σ )−2 + (σ̂ /σ )2)σ 2γk

≤ (
1 − 2σ̂ /σγkφ(0)

)
E
[
(θ̄k − θ)(θ̂k − θ)|σ̂ ]+ (

C′
4 + C1

)(
(σ̂ /σ )−2 + (σ̂ /σ )4)σ 2μkγk

with some constant C′
4 > 0. The last inequality is due to the fact that γ

5/2
k ≤ μkγk .
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Now we apply Lemma 6 with bk = σ̂ /σγk , dk = μk , α = 2φ(0), β = (C′
4+C1)((σ̂ /σ )−3+

(σ̂ /σ )3)σ 2, and K = (φ(0)σ̂ /σ )−3. We have

E
[
(θ̄k − θ)(θ̂k − θ)|σ̂ ]� (

σ 2 + ((σ̂ /σ )−2 + (σ̂ /σ )4)σ 2

(σ̂ /σ )3 + (
(σ̂ /σ )−3 + (σ̂ /σ )3)σ 2

)
μk.

Then we can conclude (20). �

CLAIM 5. There exists a constant C5 > 0 such that

(21) E
[
(θ̄k − θ)2|σ̂ ] ≤ C5

(
(σ̂ /σ )−5 + (σ̂ /σ )3)σ 2μk.

PROOF OF CLAIM 5. Note that we have

E
[
(θ̄k+1 − θ)2|σ̂ ]
= (1 − μk)

2E
[
(θ̄k − θ)2|σ̂ ]+ 2μk(1 − μk)E

[
(θ̄k − θ)(θ̂k+1 − θ)|σ̂ ]

+ μ2
kE

[
(θ̂k+1 − θ)2|σ̂ ]

≤ (
1 − 2μk + μ2

k

)
E
[
(θ̄k − θ)2|σ̂ ]

+ 2C4
(
(σ̂ /σ )−5 + (σ̂ /σ )3)σ 2μ2

k

+ C3
(
(σ̂ /σ )−2 + (σ̂ /σ )2)σ 2γkμ

2
k

≤ (
1 − 2μk + μ2

k

)
E
[
(θ̄k − θ)2|σ̂ ]+ (2C4 + C3)

(
(σ̂ /σ )−5 + (σ̂ /σ )3)σ 2μ2

k

which implies there exists a constant C5 > 0 such that

E
[
(θ̄k+1 − θ)2|σ̂ ] ≤ C5

(
(σ̂ /σ )−5 + (σ̂ /σ )3)σ 2μk. �

PROOF OF THE THEOREM. Now we are ready to prove the theorem. Take expectation
on (21) with respect to σ̂ , we have

E
[
(θ̄k − θ)2] ≤ C5E

[(
(σ̂ /σ )−5 + (σ̂ /σ )3)]σ 2μk.

Note that σ̂ is the empirical estimate of σ over 10 observations. Thus, we have
E((σ̂ /σ )−5) < ∞ and E(σ̂ /σ )3 < ∞, therefore there exists a constant C6 > 0 such that

E
[
(θ̄k − θ)2] ≤ C6σ

2μk.

Substitute k = m into the above equation, also note that (θ̂sq − θ)2 ≤ (θ̄k − θ)2 and (θ̂sq −
θ)2 ≤ 1, we conclude the theorem. �

7.4. Proof of Lemma 1. Note that the length of each integral interval (λσj ,1 − λσj )

is at least 2/3. Therefore, for any distributed estimator θ̂ , there exists 0 ≤ j∗ ≤ J − 1 and
θ∗ ∈ [0,1] such that

m∑
i=1

H 2(Zi |Xi ∼ N
(
θ∗ − λσj∗, σ 2

j∗
)
,Zi |Xi ∼ N

(
θ∗ + λσj∗, σ 2

j∗
)) ≤ 3

4

where Zi |Xi ∼ P denotes the distribution of �i(Xi) when Xi ∼ P , H 2 denotes the squared
Hellinger distances.

Note that Zi, i = 1,2, . . . ,m are independent, by sub-additivity of squared Hellinger dis-
tances for product measures, we have

H 2((Zi)
m
i=1|Xi∼N(θ∗−λσj∗ ,σ 2

j∗ ), for i=1,2,...,m, (Zi)
m
i=1|Xi∼N(θ∗−λσj∗ ,σ 2

j∗ ), for i=1,2,...,m

) ≤ 3

4
where (Zi)

m
i=1 is a shorthand for (Z1,Z2, . . . ,Zm).
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Note that the distributed estimator θ̂ is a (possibly random) function of (Zi)
m
i=1. Given that

the squared Hellinger distance between the distribution of (Zi)
m
i=1 under N(θ∗ − λσj∗, σ 2

j∗)

and N(θ∗ −λσj∗, σ 2
j∗) are bounded by 3/4, which means we cannot “distinguish” whether the

data are drawn from N(θ∗ − λσj∗, σ 2
j∗) or N(θ∗ − λσj∗, σ 2

j∗) by looking at those transcripts,
we can apply Le Cam’s method to conclude a minimax lower bound: when σ = σj∗ , there
exists a constant c1 > 0 such that

sup
θ∈{θ∗−λσj∗ ,θ∗+λσj∗ }

E(θ̂ − θ)2 ≥ c1λ
2σ ∗2

,

which is equivalent to

sup
θ∈{θ∗−λσj∗ ,θ∗+λσj∗ }

(
σ ∗2

m

)−1
E(θ̂ − θ)2 ≥ c1λ

2m.

Thus we can conclude that

Rind(σ0,B) ≥ cλ2m.

7.5. Proof of Lemma 2. PROOF OF (1). For any z ∈ Z , define

Fz(s) =
∫ ∞
−∞

f (x, s)P
(
h(x) = z

)
dx,

Gz(s) =
∫ ∞
−∞

g(x, s)P
(
h(x) = z

)
dx.

By definition, we have

H 2
(
h;

∫ sr

sl

f (·, s)ds,

∫ sr

sl

g(·, s)ds

)

= 1

2

∑
z∈Z

(√∫ sr

sl

Fz(s)ds −
√∫ sr

sl

Gz(s)ds

)2

= 1

2

∑
z∈Z

(∫ sr

sl

Fz(s)ds +
∫ sr

sl

Gz(s)ds − 2

√∫ sr

sl

Fz(s)ds

∫ sr

sl

Gz(s)ds

)
,

∫ sr

sl

H 2(h;f (·, s), g(·, s))ds

= 1

2

∑
z∈Z

∫ sr

sl

(√
Fz(s) −

√
Gz(s)

)2 ds

= 1

2

∑
z∈Z

(∫ sr

sl

Fz(s)ds +
∫ sr

sl

Gz(s)ds − 2
∫ sr

sl

√
Fz(s)Gz(s)ds

)
.

Therefore, from the Cauchy–Schwarz inequality√∫ sr

sl

Fz(s)ds

∫ sr

sl

Gz(s)ds ≥
∫ sr

sl

√
Fz(s)Gz(s)ds,

we can conclude (1). �
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PROOF OF (2). Define

Fz =
∫ ∞
−∞

f (x)P
(
h(x) = z

)
dx,

Gz =
∫ ∞
−∞

g(x)P
(
h(x) = z

)
dx.

1/M ≤ f (x)/g(x) ≤ M for all x ∈ {x : g(x) > 0} implies that 1/M ≤ Fz/Gz ≤ M when
F(z) > 0 or G(z) > 0. This suggests that∣∣∣∣

√
Fz − √

Gz√
Fz + √

Gz

∣∣∣∣ ≤
√

M − 1√
M + 1

.

By definition we have

H 2(h;f,g) = 1

2

∑
z∈Z

(
√

Fz −
√

Gz)
2

= 1

2

∑
z∈Z

∣∣∣∣
√

Fz − √
Gz√

Fz + √
Gz

∣∣∣∣|
√

Fz −
√

Gz|

≤
√

M − 1√
M + 1

TV(h;f,g). �

7.6. Proof of Lemma 3. First, note that by definition we have

TV
(
�(x);f (

(x − θ)/σj , s
)
, g

(
(x − θ)/σj , s

)) ≤ xsσj .

So we have

J−1∑
j=0

1

σj

∫ 1−λσj

λσj

TV
(
�(x);f (

(x − θ)/σj , s
)
, g

(
(x − θ)/σj , s

))
dθ ≤ xsJ.

Therefore, it only remains to prove

J−1∑
j=0

1

σj

∫ 1−λσj

λσj

TV
(
�(x);f (

(x − θ)/σj , s
)
, g

(
(x − θ)/σj , s

))
dθ ≤ C1xs(1 + xs)

√
Jb.

The next technical lemma is the key to prove Lemma 3.

LEMMA 9. Let {ak}, k = 1,2, . . . ,2J be a nonnegative sequence such that

0 ≤ ak ≤ 1, k = 1,2, . . . ,2J .

Then there exists a constant C3 > 0 such that

J∑
j=1

2J−j∑
l=1

∣∣∣∣∣
(l−1)2j+2j−1∑
k=(l−1)2j+1

ak −
l·2j∑

k=(l−1)2j+2j−1+1

ak

∣∣∣∣∣ ≤ C32J
√

J

∫ w

0

√
− log t dt

where w = 2−J ∑2J

k=1 ak is the mean of the sequence.

Let x′
s = infx∈A(s) |x|. For any real number θ , z ∈ {0,1}b and k ∈ [2J ], let ak(θ, z) =∫ θ+kxsσ0

θ+(k−1)xsσ0
P(�(x) = z)dx and a′

k(θ, z) = ∫ θ+kx′
sσ0

θ+(k−1)x′
sσ0

P(�(x) = z)dx. Note that it is easy
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to check A(s) = [−xs,−x′
s] ∪ [x′

s, xs], so we have

TV
(
�(x);f (

(x − θ)/σj , s
)
, g

(
(x − θ)/σj , s

))
= 1

2

∑
z∈{0,1}b

∣∣∣∣
∫ θ−σj x′

s

θ−σj xs

P
(
�(x) = z

)
dx −

∫ θ+σj xs

θ+σj x′
s

P
(
�(x) = z

)
dx

∣∣∣∣
≤ 1

2

∑
z∈{0,1}b

∣∣∣∣
∫ θ

θ−σj xs

P
(
�(x) = z

)
dx −

∫ θ+σj xs

θ
P
(
�(x) = z

)
dx

∣∣∣∣

+ 1

2

∑
z∈{0,1}b

∣∣∣∣
∫ θ

θ−σj x′
s

P
(
�(x) = z

)
dx −

∫ θ+σj x′
s

θ
P
(
�(x) = z

)
dx

∣∣∣∣

= 1

2J−j

∑
z∈{0,1}b

2J−j−1∑
r=1

∣∣∣∣∣
2j+1(r−1)+2j∑

k=2j+1(r−1)+1

ak

(
θ − σjxs − 2j+1(r − 1)xsσ0, z

)

−
2j+1r∑

k=2j+1(r−1)+2j+1

ak

(
θ − σjxs − 2j+1(r − 1)xsσ0, z

)∣∣∣∣∣

+ 1

2J−j

∑
z∈{0,1}b

2J−j−1∑
r=1

∣∣∣∣∣
2j+1(r−1)+2j∑

k=2j+1(r−1)+1

a′
k

(
θ − σjx

′
s − 2j+1(r − 1)x′

sσ0, z
)

−
2j+1r∑

k=2j+1(r−1)+2j+1

a′
k

(
θ − σjx

′
s − 2j+1(r − 1)x′

sσ0, z
)∣∣∣∣∣.

Substitute the above inequality and rewrite the integral variable, also recall that σj = 2j σ0,
we have

J−1∑
j=0

1

σj

∫ 1−λσj

λσj

TV
(
�(x);f (

(x − θ)/σj , s
)
, g

(
(x − θ)/σj , s

))
dθ

≤ 1

2J σ0

J−1∑
j=0

∑
z∈{0,1}b

2J−j−1∑
r=1

∫ 1−λσj−σj xs−2j+1(r−1)xsσ0

λσj−σj xs−2j+1(r−1)xsσ0

∣∣∣∣∣
2j+1(r−1)+2j∑

k=2j+1(r−1)+1

ak(θ, z)

−
2j+1r∑

k=2j+1(r−1)+2j+1

ak(θ, z)

∣∣∣∣∣dθ

+ 1

2J σ0

J−1∑
j=0

∑
z∈{0,1}b

2J−j−1∑
r=1

∫ 1−λσj−σj x′
s−2j+1(r−1)x′

sσ0

λσj−σj x′
s−2j+1(r−1)x′

sσ0

∣∣∣∣∣
2j+1(r−1)+2j∑

k=2j+1(r−1)+1

a′
k(θ, z)

−
2j+1r∑

k=2j+1(r−1)+2j+1

a′
k(θ, z)

∣∣∣∣∣dθ

≤ 1

2J σ0

J−1∑
j=0

∑
z∈{0,1}b

2J−j−1∑
r=1

∫ 1

−xs

∣∣∣∣∣
2j+1(r−1)+2j∑

k=2j+1(r−1)+1

ak(θ, z)
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−
2j+1r∑

k=2j+1(r−1)+2j+1

ak(θ, z)

∣∣∣∣∣dθ(22)

+ 1

2J σ0

J−1∑
j=0

∑
z∈{0,1}b

2J−j−1∑
r=1

∫ 1

−x′
s

∣∣∣∣∣
2j+1(r−1)+2j∑

k=2j+1(r−1)+1

a′
k(θ, z)

−
2j+1r∑

k=2j+1(r−1)+2j+1

a′
k(θ, z)

∣∣∣∣∣dθ

= xsσ0

2J σ0

∫ 1

−xs

dθ
∑

z∈{0,1}b

J−1∑
j=0

2J−j−1∑
r=1

∣∣∣∣∣
2j+1(r−1)+2j∑

k=2j+1(r−1)+1

ak(θ, z)/(xsσ0)

−
2j+1r∑

k=2j+1(r−1)+2j+1

ak(θ, z)/(xsσ0)

∣∣∣∣∣

+ x′
sσ0

2J σ0

∫ 1

−x′
s

dθ
∑

z∈{0,1}b

J−1∑
j=0

2J−j−1∑
r=1

∣∣∣∣∣
2j+1(r−1)+2j∑

k=2j+1(r−1)+1

a′
k(θ, z)/

(
x′
sσ0

)

−
2j+1r∑

k=2j+1(r−1)+2j+1

a′
k(θ, z)/

(
x′
sσ0

)∣∣∣∣∣.
Define w(θ, z) � 2−J ∑2J

k=1 ak(θ, z)/(xsσ0) = 1
2J xsσ0

∫ θ+2J xsσ0
θ P(�(x) = z). Note that

ak(θ, z)/(xsσ0) ∈ [0,1], apply Lemma 9 gives

∑
z∈{0,1}b

J−1∑
j=0

2J−j−1∑
r=1

∣∣∣∣∣
2j+1(r−1)+2j∑

k=2j+1(r−1)+1

ak(θ, z)/(xsσ0)

−
2j+1r∑

k=2j+1(r−1)+2j+1

ak(θ, z)/(xsσ0)

∣∣∣∣∣
≤ C32J

√
J

∑
z∈{0,1}b

∫ w(θ,z)

0

√
− log t dt.

Then note that
∫ w

0
√− log t dt is a concave function of w and

∑
z∈{0,1}b w(θ, z) = 1, we

can apply Jensen’s inequality to get

∑
z∈{0,1}b

∫ w(θ,z)

0

√
− log t dt ≤ 2b

∫ 2−b

0

√
− log t dt.

It is not difficult to prove that there exists a constant C1,1 such that∫ 2−b

0

√
− log t dt ≤ C1,12−b

√
b.

Combine the three inequalities above we can conclude

xsσ0

2J σ0

∫ 1

−xs

dθ
∑

z∈{0,1}b

J−1∑
j=0

2J−j−1∑
r=1

∣∣∣∣∣
2j+1(r−1)+2j∑

k=2j+1(r−1)+1

ak(θ, z)/(xsσ0)
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−
2j+1r∑

k=2j+1(r−1)+2j+1

ak(θ, z)/(xsσ0)

∣∣∣∣∣
≤ C3C1,1xs

∫ 1

−xs

√
Jb dθ = C3C1,1xs(1 + xs)

√
Jb.

By a similar argument, we also have

x′
sσ0

2J σ0

∫ 1

−x′
s

dθ
∑

z∈{0,1}b

J−1∑
j=0

2J−j−1∑
r=1

∣∣∣∣∣
2j+1(r−1)+2j∑

k=2j+1(r−1)+1

ak(θ, z)/
(
x′
sσ0

)

−
2j+1r∑

k=2j+1(r−1)+2j+1

ak(θ, z)/
(
x′
sσ0

)∣∣∣∣∣
≤ C3C1,1x

′
s

(
1 + x′

s

)√
Jb.

Substitute the above two inequalities into (22) and note that x′
s ≤ xs , we conclude

Lemma 3.
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SUPPLEMENTARY MATERIAL

Supplement to “Distributed adaptive Gaussian mean estimation with unknown vari-
ance: Interactive protocol helps adaptation” (DOI: 10.1214/21-AOS2167SUPP; .pdf). In
this supplementary material, we present proofs for several technical lemmas, namely Lem-
mas 4, 6, 7, 8 and 9.
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