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Distributed minimax estimation and distributed adaptive estimation un-
der communication constraints for Gaussian sequence model and white noise
model are studied. The minimax rate of convergence for distributed estima-
tion over a given Besov class, which serves as a benchmark for the cost of
adaptation, is established. We then quantify the exact communication cost
for adaptation and construct an optimally adaptive procedure for distributed
estimation over a range of Besov classes.

The results demonstrate significant differences between nonparametric
function estimation in the distributed setting and the conventional central-
ized setting. For global estimation, adaptation in general cannot be achieved
for free in the distributed setting. The new technical tools to obtain the exact
characterization for the cost of adaptation can be of independent interest.

1. Introduction. Distributed statistical estimation and inference are becoming increas-
ingly important as in many applications data can be necessarily distributed at different loca-
tions due to the size constraint or privacy and security concerns. Such a setting arises in a
range of medical, financial and business applications. With distributed data, separate statisti-
cal analyses need to be carried out at individual sites and then the results are transmitted to
and aggregated at a central location in order to make the final statistical decision. For large-
scale data analysis, communication costs can be expensive and become the main bottleneck in
statistical practice. It is important to understand the interplay between communication con-
straints and statistical accuracy, as well as how to design optimal estimation and inference
procedures under communication constraints.

There has been an increasing amount of recent literature on distributed estimation when the
communication budget is limited. For example, Barnes, Han and Ozgiir (2019), Braverman
et al. (2016), Cai and Wei (2020a), Garg, Ma and Nguyen (2014), Han, Ozgiir and Weissman
(2021), Szabé and van Zanten (2020), Zhang et al. (2013), Zhu and Lafferty (2018), Szabo
and van Zanten (2020) considered information-theoretical limits under communication con-
straints for various distributed estimation problems, such as Gaussian mean estimation, linear
regression and nonparametric regression. Optimality results have been established under dif-
ferent communication constraints. Besides theoretical analysis, progress has also been made
on developing practical methodologies for distributed estimation; see, for example, Battey
et al. (2018), Deisenroth and Ng (2015), Diakonikolas et al. (2017), Jordan, Lee and Yang
(2019), Kleiner et al. (2014), Lee et al. (2017), Fan et al. (2019). Further literature review is
given in Section 1.4.

In this paper, we study distributed minimax and distributed adaptive nonparametric esti-
mation under communication constraints in a decision theoretical framework. In the conven-
tional nondistributed settings, adaptation has been a central goal for nonparametric function
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estimation. It is well known that adaptive estimation can be achieved for free under a range
of global losses such as the integrated squared error over a wide collection of Besov classes
(Donoho and Johnstone (1995), Johnstone (2017)). Indeed, it is possible to adaptively achieve
superefficiency for free (Cai (2008)). However, in the distributed settings, adaptation becomes
more difficult and involved due to the additional communication constraints. A rate-optimal
adaptive algorithm needs to perform well statistically while efficiently compressing the infor-
mation from the local machines to the central learner. Intuitively, the difficulty arises from the
fact that only limited amount of information can be transmitted and information that is criti-
cal for estimation over one function class might not be essential for estimation over another.
In such a setting, it is easy to imagine that achieving adaptation over a collection of function
classes requires more communication budget than what is needed for a given function class
in the minimax setting.

The primary goal of the present paper is to precisely characterize the communication cost
of adaptation for distributed nonparametric function estimation. We first establish the mini-
max rate of convergence for distributed estimation over a given Besov class, which serves as
a benchmark for the cost of adaptation when the smoothness parameters are unknown. We
then quantify the exact cost of adaptation and construct an optimally adaptive procedure for
distributed nonparametric estimation over a range of Besov classes.

1.1. Distributed estimation framework. We begin by introducing a general framework
for distributed estimation by giving a formal definition of transcript, distributed estimator
and independent distributed protocol. Let P = { Py : 8 € ®} be a parametric family of distri-
butions supported on space X', where 8 € ® is the parameter of interest. Suppose there are
m local machines and a central machine, where the local machines contain the observations
and each local machine has access only to data in that machine, and the central machine
produces the final estimator of 6 under the communication constraints between the local and
central machines. More precisely, suppose we observe i.i.d. random samples drawn from a
distribution Py € P:

X Py, i=1,...,m,
where the ith local machine has access to X; only.

On each machine, because of limited communication budget, the observation X; on the
ith local machine needs to be processed to a uniquely decodable string Z; by a (possibly ran-
dom) function Z; : X — [UpZ {0, 1}, The resulting string Z; = Z;(X;), which is called the
transcript from the ith machine, is then transmitted to the central machine. Here, we denote
the length of transcript Z; as |Z;|;, which indicates the communication cost for sending this
transcript. Finally, a distributed estimator 6 is constructed on the central machine based on
the transcripts Z1, Z2, ..., Zm,

0=0(Z1,Z2, ..., Zm).

The above scheme to obtain a distributed estimator 6 is called an independent distributed
protocol. Within an independent distributed protocol, the transcripts from each local machine
only depend on its local observations and no information is exchanged between the local
machines. There are also other types of distributed protocols with more interactive commu-
nication schemes in the literature (Zhang et al. (2013)). In the present work, we focus on
independent distributed protocol. Define L(é) £ "1 1Z;]; as the total communication cost
for distributed estimator 6. The class of distributed protocols with total communication bud-
gets B can be defined as

Ar(B)={0,Z1,Za, ..., Zn): L(O) < B).
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The above classes of distributed protocol imposes uniform hard upper bounds on the length
of transcripts, that is, the (total) length of transcripts are constrained to be less than a certain
value given any possible observations. It is sometimes worthwhile to consider transcripts with
variable length in order to gain possible adaptation to the data. In such settings, we introduce
a class of distributed protocols with the expected total communication budgets for the family
P:

(1) Ap(B,©) = [(é, Z1,Za, ..., Zm) i supEp, L(H) < B],
0ec®

where the expected total communication cost is uniformly bounded by B under any data
generating distribution Py € P.

As usual, the estimation accuracy of a distributed estimator 6 is measured by the mean
squared error (MSE), Ep, ||é — 9|I%, where the expectation is taken over the randomness in
both the data and construction of the transcripts and estimator. As in the conventional decision
theoretical framework, a quantity of particular interest in distributed learning is the minimax
risk for the distributed protocols,

_inf  sup Ep, |10 — 013,

OeAg(B,0) PyeP
which characterizes the difficulty of the distributed learning problem under the expected total
communication constraints Ag (B, ®). Similarly, Ag(B, ®) can be replaced by other class
of distributed protocols to illustrate minimax risk under other kind of communication con-
straints. In a rigorous decision theoretical formulation of distributed learning, the communi-
cation constraints are essential. Without the constraints, one can always output the original
data from the local machines to the central machine and the problem is then reduced to the
usual centralized setting.

1.2. Distributed estimation. We consider distributed minimax and adaptive estimation
for the Gaussian sequence model and white noise model. For the white noise model, the goal
is to recover the unknown function based on the noisy observations collected on m machines,
where on the ith machine, for 1 <i < m, one observes a Gaussian process,

2) dYi(t) = f(t)dt + idW,-(t), tel0,1],i=1,2,...,m.
N
Here, % is the noise level and W;(¢),i =1, 2, ..., m are independent standard Wiener pro-

cess. The ith machine has access to Y;(¢) only. The goal is to recover the unknown function
f based on the distributed observed processes Y1 (t), Y2(t), ..., Y (¢).

In the conventional centralized setting, wavelet methods (Donoho and Johnstone (1994),
Hall, Kerkyacharian and Picard (1999), Cai (1999)) have been shown to be a powerful tool
for nonparametric function estimation as it decomposes a function into a structured wavelet
series and a nonparametric estimation problem is then transformed into a Gaussian sequence
estimation problem. Motivated by the equivalence between the white noise model and Gaus-
sian sequence model, we begin by focusing on the following distributed Gaussian sequence
estimation problem. Suppose there are m machines, on ith machine we have i.i.d. Gaussian
observations

(3) Xijk=0jk+ozijk, j=012,..:k=12,..,2/,

where z; jx iEIN(O, I)fori=1,2,....,m;j=0,1,...; k= 1,2,...,27, the noise level o
known. The ith machine can only access to X; = (Xi,jk) j=0,k=1,,...2; only. The goal is to
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estimate 6 = (6;,jx) j>0,k=1,2,...,2/ under the mean-squared error

co 2/
RO.O=10-015=>> O — 0
j=0k=1
We consider estimation over a collection of Besov classes B% (M) with «, p, g, M > 0,
where BO‘ (M ) is defined as the set of sequences 0 satisfying |9| b, = M with the Besov
sequence semlnorm 16| b, given by

00 . 2/ 1/p\ g\ 1/
“ 10lpg,, = (Z(Z” (Z |9,~k|f’) ) ) .
j=0 k=1

Here,s =a+1/2—1/p>0and 1 < p, g < oo, with the obvious replacement of the cor-
responding £, or £, norms to £, norms when p, g = 0o. The Besov sequence norm |0] be
is equivalent to the Besov function norm on the original function f’; see, for example, Meyer
(1992). Therefore, the distributed Gaussian sequence model (3) is equivalent to the white
noise model (2). In the classical centralized setting, the Gaussian sequence model is also
known to be a good proxy to study estimation of a function under the nonparametric regres-
sion model.

1.3. Main contributions. For estimation under the Gaussian sequence model (3) with
communication constraints, a distributed estimation procedure, called seq-MODGAME, is
proposed, and its rate of convergence under the communication constraints is derived. A
matching lower bound is established to show that the seq-MODGAME procedure is opti-
mal. The upper and lower bounds together yield the sharp optimal rate of convergence for
estimation over a Besov class Bg’ q(M):

Re(B. B2 (M) £ inf sup |0 — 6|3,

0eAp (BB (M) 6B (M)
where Ag (B, BZ’ q(M )) is the set of distributed protocols under the expected total commu-
nication constraints defined in (1). The same optimal rate holds for the white noise model.
To the best of our knowledge, this is the first exact minimax rate of convergence for the dis-
tributed nonparametric function estimation. In comparison, the existing results have at least a
logarithmic gap in the upper and lower bounds and are for more specialized parameter spaces
such as a Holder or Sobolev class.

We then quantify the exact communication cost for adaptation and construct an optimally
adaptive procedure for distributed estimation over a range of Besov classes. Our analysis
shows interesting phenomena. In the classical nondistributed setting, it is well known that
adaptation can be achieved for free in terms of global risk measures such as the mean in-
tegrated squared error over a wide collection of Besov classes; see, for example, Donoho
and Johnstone (1995), Johnstone (2017). However, in the distributed setting, our results
show that there are unavoidable additional communication costs for any adaptive procedure
over a collection of Besov classes. Specifically, the results provide a sharp characterization
for the communication costs for adaptation, where it is shown that O (m?) total additional
bits are necessary and sufficient to achieve the adaptation over a wide collection of Besov
classes. In addition, a local thresholding procedure is constructed and is shown to be the most
communication-efficient among all adaptive distributed estimators. Our newly proposed local
thresholding procedure requires no prior knowledge on the range of the smoothness parame-
ters, and is able to automatically achieve statistical adaptation over a wide collection of Besov
classes By (M) with p > 2 at the guaranteed minimum communication cost. The analysis on
adaptive estimation makes significant improvement over existing results. The new technical
tools used to obtain the exact characterization for the cost of adaptation can be of independent
interest.
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1.4. Related literature. Distributed nonparametric function estimation has been investi-
gated in the recent literature. Zhu and Lafferty (2018) studied distributed minimax rate of
convergence for the white noise model over the Sobolev classes with a logarithmic gap be-
tween the upper and lower bounds. Szabd and van Zanten (2020) derived distributed mini-
max rate for nonparametric regression under the integrated squared error and supnorm error
losses over the Holder classes and Sobolev classes, also with a logarithmic gap between the
upper and lower bounds. The paper also showed that adaptation is possible within the range
o € [0min, ¥max) Where amin depends on the given communication budget.

Szabo and van Zanten (2020) considered a two-point adaptation problem for distributed
nonparametric estimation and showed that two-point adaptation is impossible when the
smoothness indices of the two function classes are both larger than a certain threshold. It also
proposed an adaptive distributed protocol that achieves statistical adaptation over a range of
Sobolev classes with the smoothness indices below a certain threshold, while at the same
time transmitting the minimal number of bits, up to a logarithmic gap. Szabo and van Zanten
(2020) provided a clear solution when two-point adaptation can be achieved without addi-
tional communication cost. However, it is not clear whether adaptation is possible with ad-
ditional communication budgets under the same settings. In comparison, we provide a more
general lower bound for the communication cost for adaptive distributed estimators over a
collection of Besov classes and construct an estimator that is adaptive over a wider range of
parameter spaces at the guaranteed minimum communication cost.

1.5. Organization of the paper. 'We finish this section with notation, definitions and some
assumptions that will be used in the rest of the paper. Section 2 establishes the optimal rate
of convergence for distributed Gaussian sequence estimation and Section 3 characterizes the
communication cost of adaptation and introduces adaptive distributed procedures. The nu-
merical performance of the proposed distributed estimators is investigated in Section 4 and
further research directions are discussed in Section 5. For reasons of space, we only prove
lower bounds for communication cost of adaptive estimators in Section 6 and defer the proofs
of other main results and the technical lemmas to the Supplementary Material Cai and Wei
(2022).

1.6. Notation, definitions and assumptions. For simplicity, in later sections we denote
nj= 2/ be the number of coefficients at the jth resolution level. For any positive integers
n,N,let[n] £ {1,2,...,n} and n mod N be the remainder of n divided by N. For any a € R,
let |a] denote the floor function (the largest integer not larger than a). Unless otherwise
stated, we shorthand loga as the base 2 logarithmic of a. For any a,b € R, let a A b 2
min{a, b} and a v b £ max{a, b}. We use a = O(b) or equivalently b = Q(a) to denote
there exist a constant C > 0 such that a < Cb, and we use a =< b to denote a = O(b) while
b = O(a). For any vector a, denote by |la|| £ /3" (@®)?2 its I norm. For any finite set S, let
card(S) denote the cardinality of S. Define the density of a Gaussian distribution with mean
0 and standard deviation o as

1 x?
e 27,
N2mo

Throughout the paper, we shall assume s =« + 1/2 — 1/p > 0. This condition is neces-
sary for the estimation problem to be well formulated. When s < 0, the closure of the Besov
ball BY (M) is not compact and the compactness of the closure of the parameter space is
a necessary condition for consistent estimation under the homoskedastic Gaussian sequence
model; see Ibragimov and Khasminskii (1997) and Johnstone (2017), Theorem 5.7. More-
over, we assume M > o. Otherwise, estimation over the Besov ball Bg’ q(M ) is trivial as the

o (x) =

simple estimator 6=0is optimal.
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2. Minimax optimal rate of convergence. In this section, we study the minimax rate of
convergence for estimating the mean of a Gaussian sequence ¢ € 57 ¢(M) under the expected
total communication constraint:

(5) inf sup E|6—0>,

éGAE (BvB%,q (M) QGB%J] (M)

where we assume the parameters «, p, g, M are known in an oracle setting.

If there is no communication constraint, or equivalently we are in a centralized setting,
Donoho and Johnstone (1998) pointed out the minimax rate of convergence over Besov
classes is

. A ) o fo?\ %
inf  sup K0 — 0] < M2 (—) .
0 9eBg (M) m

However, when the communication constraints take effect, there will be a loss of statistical
accuracy thus the optimal rate of convergence (5) will further depend on the expected total
communication cost B.

We first introduce a distributed estimation procedure satisfying the communication-
constraint and provide an upper bound for its statistical performance. A matching lower
bound on its minimax risk is then established. The upper and lower bounds together unveil a
sharp minimax rate of convergence and the optimality of the proposed estimator.

2.1. Optimal procedure. We begin with the construction of an estimation procedure un-
der the communication constraints and provide a theoretical analysis of the proposed pro-
cedure. The construction of the following procedure, called seq-MODGAME, is inspired by
the MODGAME procedure proposed in Cai and Wei (2020a) for distributed Gaussian mean
estimation. However, unlike the simple Gaussian mean estimation problem considered in Cai
and Wei (2020a), the magnitude of each coordinate of 6 is not known as a priori because
within Besov space Bg’ p (M), the constraint on the Besov norm (4) is imposed on the whole
vector, but not individual entries. Therefore, to estimate a mean vector 6 € 8%7 q (M) under
Gaussian sequence model (3), one needs a more sophisticated quantization strategy than the
MODGAME procedure proposed in Cai and Wei (2020a).

We first define several useful functions and quantities. Define localization encoding func-
tion g : Z — (U210, 1}* by the following rule:

o g(0)="-0"

e When x is a positive integer, let k be the length of its binary representation, and define
g(x) to be a string starting with “1,” followed by k zeros and then followed by the binary
representation of x. For example, g(1) = “101” and g(8) = “100001000.”

e When x is a negative integer, let k be the length of the binary representation of —x, and
define g(x) to be a string starting with “11,” followed by k — 1 zeros and then followed by
the binary representation of —x. For example, g(—1) = “111” and g(—8) = “110001000.”

The function g(x), as an encoding mechanism, has two main properties. First, it is a prefix
code, thus uniquely decodable (Blahut and Blahut (1987)). We denote g_1 as its inverse
function (decoding function). Second, the length of g(x) is guaranteed to be no larger than
2log(|x| 4+ 1) 4 3, which means that its length is adaptive to the magnitude of x. We will see
that g(x) plays an important role in the construction of the transcripts with variable length
under the communication constraints.

As in the conventional centralized setting, we estimate the coordinates of the vector
0= € Bg’ q(M ) from its noisy observation up to a certain resolution level jpn.x and
truncate all the components above jmyax to zero. Note that when the communication budget is
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insufficient, the estimation accuracy in the distributed setting is not as good as in the central-
ized setting. So we first decide the maximal resolution level jnax, and precision parameter
8 according to communication budget B and other model parameters. At those resolution
levels lower than jnax, we estimate each entry in an optimal way so that the stochastic error
is roughly O (). At those higher resolution levels, we just truncate all entries to zero. The
advanced communication strategy used in the procedure is the key to the optimality results.
We are now ready to introduce the seq-MODGAME procedure in detail. It is divided into

2 2
two cases: B < (%)W and B > (%)m,
. AoM 2
Case 1: B < (=) %1,
Let § be a precision parameter calculated by

5 L AQMB_(a+1/2),

where Ag > 0 is a large tuning parameter. Let jnax be the maximal resolution level, defined
as

Jmax 2 max{j: M .27/ @D > 5}

In this case, only one local machine is needed to sent transcripts to the central machine.

First step: Generate the transcripts on the first local machine. On the first local machine
(who can access to data X 1), the output transcript Z; is the collection of the “crude localiza-
tion” strings Z1 jx, 0 < j < jmax, k € [n;] where Z;_ji is defined as

Z1,jk = g(1X1,jk/8]).

Second step: Generate the distributed estimator 69 on the central machine. The central
machine can receive Zy jk, 0 < j < jmax, k € [n;] from the first local machine. The final

estimate 69 is given by
=g ' (Z1,j1) -8 0= < jmax, k €lnl,
03=0 if j > jmax. k €1[n;].

Case 2: B > (%)ﬁ

Let u be a parameter and § be the precision parameter. They are calculated by

w2 (AoM/jo) # Bat2) Am, §=0/u,
and let jmax be the maximal resolution level, defined as
Jmax =max{j: M - 2 ietl/2) 5 8.

In this case, with the help of communication strategy introduced in Cai and Wei (2020a),
each entry of 6 at lower resolution levels can be estimated in the most communication-
efficient way so that their estimation errors is roughly of order &.

First step: Generate the transcripts on the local machines.

1. On the first machine (which has access to data X ), the output transcript Z; is the col-
lection of the “crude localization” strings Z1 jr, 0 < j < jmax,k € [n;] where Z; ji is
defined as

Zy1jk=g(LX1.k/o));

2. On the ith machine where 2 <i < 1+ [log?u|, the output transcript Z; is the collection
of the “finer localization” strings Z; jr, 0 < j < jmax, k € [nj] where Z; ji is defined as

Z; ik = g(1Xi, jx/o ] mod [logu]);
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3. On the ith machine where 2 + Llog2 u] <i < u the output transcript Z; is the collection
of the ‘refinement” strings Z; jr, 0 < j < jmax, k € [n] where Z; i is defined as

Z; jk = | Xi jk/o | mod 8.

4. On the ith machine where u < i < m, the local machine does not output anything.

Second step: Generate the distributed estimator 6 on the central machine. The central
machine receives the transcripts Z1, Z», ..., Z, from the local machines. Note that the code
wordsin Zy, Z», ..., Z, are all uniquely decodable, thus those transcripts can be decomposed
into short strings Z; j; fori € [u], j € J;, k € [n;].

The final estimator € is constructed as follows:

e Foreach 0 < j < jmax, k € [n/]:

1. Because g(x) is uniquely decodable, from Z; jix = g(| X; jx/o]) one can recover the
value of | X; ji/o]. Let I ;‘k be an left-closed, right-open interval of length u defined as

|1 ] —1 |1 ] +1
[in,,,-k/aj - B Xiwfo) + Og”f)

if [logu ] is an odd number,
[logu] [logu]
Xijelo) = S5 i)+ 25 )

if [logu] is an even number.

2
2. Denote zf-’k = argmax Zitlzog ul+l [z, =z be the mode statistic among the Z; jk,2 <

i < [log?u] + 1. Note that the length of Ij‘.’k is [logu], so there will be exactly one

integer xj? €1 qu that satisfies

xb, mod [logu] = g7 (z7,).

Let 1 ]l-’k be an interval of length 3 defined by

Ij}-’k £ [xj?k — l,xj?k +1].

3. Let p” be the proportion of those refinement strings whose value is equal to g(xj’ e

2 mod 8):

P

1 u
> Ly

{Z,qjk_g(xjk 2 mod 8)}
i=llog?u)+2

h &

u—1—[log?u]

Define a function

- b —1481
INOERY /b $1(x — y)dx
xb —2+81

I=—00

Itis easy to see that & j; () is a strictly decreasing function on / jbk. Let h;kl (y) be the

inverse function of 4 jx (y), which maps & j; (1 Jl?k) tol ][.’k. The estimate is calculated by

(xj?k +1)o if pl < h,-k(xj?k +1),

éﬁ: h (p")o ifhjk(ij-k+1)<ph<hjk(xj-’k— ).

J
(xj.’k — 1o ifpt> hjk(xj?k —1).
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e Foreach j > jmax + 1,k € [n;], set
40

The following theorem provides the theoretical guarantee for the communication cost of
69, as well as an upper bound for its statistical performance.

THEOREM 1. If Ag is set to be a sufficient large constant such that Ao > (4o +
64)* /2 then the estimator 6° € Ag(B, Bg"q (M) and there exists a constant C > 0 such
that

sup E[4° -6

0eBs (M)
252, M 20(2+1
M~B™ sz<<—> ,
(6) . g
2 02\ a+t M\ 2a+1 M\ 2a+1 2042
o () () o ()T
B , o R o
L(ﬂ)zail , (M)Zaﬂ 2042
M2a+1 | — lfBZ — m2e+T |
m o

forall2 <p<o00,0<qg<o0c,aa>0,M>0.

REMARK 1. The proposed distributed estimator 69 satisfies expected total communica-
tion constraint, which is weaker than other types of constraint considered in the literature.
The reason we work on this type of communication constraint is to illustrate the main idea
and omit unnecessary complication when presenting the estimator. With suitable modifica-
tion, the estimator can be made to satisfy other kinds of communication constraint, say, a
fixed/hard total communication constraint or an equally assigned communication constraint
on each single local machines.

For example, the following proposition provides a quick look on how 60 satisfies
fixed/hard total communication constraint with high probability.

PROPOSITION 1. With probability at least 1 — exp(—B/18), we have

L(0°) <2B.

That is, the proposed estimator 60 satisfies the total communication constraint 2B with
high probability. Note that the additional factor on the communication constraint does not
affect the rate of convergence given in Theorem 1; therefore the estimator is still rate optimal.

2.2. Lower bound analysis. Section 2.1 gives a detailed construction of the seq-
MODGAME procedure for distributed Gaussian sequence estimation and provides a the-
oretical guarantee for the estimator in Theorem 1. In this section, we shall show that the
estimator H€ is indeed rate optimal among all estimators satisfying the total communication
constraints by proving that the upper bound in equation (6) cannot be improved. The follow-
ing theorem gives a lower bound on the minimax risk under the expected total communication
constraints.
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THEOREM 2. There exists a constant ¢ > 0 such that

2
M 2a+1
M2B~2 if B < (—) o
o
2\ % 2 2
(7) RE(B,Bg,q(M))ZO Ma%l(%)‘” l:f<%>2a+l §B<<K>Za+lmggﬁ,
o o
L(02>2§$1 . ( >2a2+l 2042
M2+T1 | — lfBZ — m 2a+1

forall0 < p<00,0<qg <o00,0¢>0,M > 0.

The lower bound given in Theorem 2 is proved by constructing simultaneous tests 6 =0
vsfjp=4forall j <J,k=1,2,..., 2/, with prespecified choices of 8§ and J. Then by
strong data processing inequalities, we can prove that at least a proportion of entries cannot
be accurately estimated. The detailed proof is deferred to the Supplementary Material (Cai
and Wei (2022)).

Theorems 1 and 2 together establish the minimax rate for distributed Gaussian sequence
estimation:

_2
M2B~2 if B < (M)z"“,
o
2\ % 2 2
(8) /RE(B,Bg’q(M)) = Ma%l (U_)aﬂ " (%)MH “B- <%>2a+1m§gﬁ’
B , o _2 o
2(02>ﬁ ) <M)m 2042
M 2a+1 | — ifB>[— m2e+1
m o

where 2 < p <00, q <00, > 0, M > 0. The results also show that the distributed estimator
69 proposed in Section 2.1 is rate optimal under the total communication constraints.
The theorem also suggests that in order to achieve the centralized rate of convergence,

L. 2 52 2 .. 2 2042, .
which is of order M 2a+T (7-)%+T, a communication cost of order (%) 20+1 2041 g sufficient
and necessary.

REMARK 2. Similar as the optimal rate of convergence for distributed univariate Gaus-
sian mean estimation (Cai and Wei (2020a)), the minimax rate (8) can be divided into three

. M2 M2 M2 2042 .
phases: localization (B < () 2+T), refinement ((‘;-) 21 < B < (‘7)) 2FTm2+1) and opti-

mal rate (B > (%) ﬁm %). The minimax rate decreases quickly in the localization phase,
when the communication constraints are extremely severe; then it decreases slower in the
refinement phase, when there are more communication budgets; finally, the minimax rate co-
incides with the centralized optimal rate (Donoho and Johnstone (1998)) and stays the same,
when there are sufficient communication budgets. The value for each additional bit decreases
as more bits are allowed.

REMARK 3. As mentioned in the Introduction, distributed minimax estimation was con-
sidered in Zhu and Lafferty (2018) for the Holder classes and in Szabo and van Zanten (2020)
for the Sobolev classes. These two types of function classes are special cases of the Besov
classes with the Holder class being BZ, , and Sobolev class being B . Furthermore, in
both Zhu and Lafferty (2018) and Szabo and van Zanten (2020), the existing upper bound
and lower bound are suboptimal (with a polylogarithmic gap to the optimal rate of conver-
gence (8)). In contrast, the minimax rate given in (8) is sharp for a wide collection of Besov
spaces.
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3. Adaptive Gaussian sequence estimation. The minimax rate of convergence estab-
lished in Section 2 provides an important benchmark for the evaluation of the performance of
distributed Gaussian sequence estimators. However, the estimator 69, in spite of its statisti-
cal optimality and communication efficiency, requires explicit knowledge of the smoothness
parameters, which are typically unknown in practice. The optimal seq-MODGAME proce-
dure proposed in Section 2 highly depends on the prior knowledge on the parameter space
B;",, q(M ) so that local machines efficiently transmit useful information when the communi-
cation budget is limited. It is evident from the construction and theoretical analysis that the
estimator ¢ designed for one Besov class By (M) with a given smoothness parameter «

would perform poorly over another Besov class B;‘,‘/ 4 (M) with a different smoothness param-

eter o’. Therefore, the estimator 6€ is not practical for real applications because the model
parameters are typically unavailable.

This naturally leads to the important question of adaptive distributed estimation: Is it pos-
sible to construct a single distributed estimator, satisfying the communication constraints and
not depending on the smoothness parameters, that achieves the optimal rate of convergence
simultaneously over a wide collection of Besov classes B;’,‘, q(M )? In the conventional cen-
tralized setting, the answer is affirmative. That is, one can achieve adaptation for free for
estimating a Gaussian sequence over a collection of Besov classes B;‘j, ¢(M) under the mean
squared error.

Adaptive estimation in the centralized setting has been a major goal in the classical non-
parametric function estimation literature. In particular, wavelet thresholding is well known to
be a powerful technique to achieve adaptivity. For example, Donoho and Johnstone (1995),
Abramovich et al. (2006) proposed adaptive term-by-term thresholding methods and Cai
(1999), Cai and Zhou (2009) introduced data-driven block thresholding procedures to achieve
optimal rate of convergence over a wide collection of Besov spaces. In contrast, little has
been understood on how to construct a communication-efficient adaptive estimator for most
distributed estimation problems, including but not limited to distributed Gaussian sequence
estimation. It is interesting and practically important to investigate the interplay between
communication constraints and adaptation for distributed estimation problems.

In this section, we address the following questions: how to construct a data-driven dis-
tributed estimation procedure that can achieve the centralized optimal rate with communica-
tion cost as small as possible? Can adaptation be achieved for free? If not, what is the cost of
adaptation?

It was shown in Section 2 that, for distributed estimation over the Besov class B;",, q(M ),

one needs at least 2 ((%) 2a+Tm 2e+1) total bits to communicate in order to achieve the cen-
2 2
o

2«
tralized optimal rate O (M 2«1 (7-)2+T). It is tempting to consider the question: Is there a

distributed estimator with a total communication budget 0((%)ﬁm%) that adaptively
achieves the centralized optimal rate over a wide collection of Besov classes 0 € Bgy ¢(M)?

To rigorously formulate this problem, let Sc (0, 00) x (0, Qo) x (0, 00] x (0,00] be a
collection of B§s0~v parameter combinations («, M, p, g), and C(-) is a function (0, co) —
(0, 00). Let G(S, C) be the set of adaptive distributed estimators that achieve thg centralized
optimal rate of convergence over Besov classes B, (M) for all (o, M, p, q) € S. To be pre-
cise, G(S, C) is the collection of distributed estimators 6 who satisfy the following property:
for any (o, M, p,q) € S,

2 2a

N 2 ~ 2 o 2a+1
sup E|6 —0|° < Cla)M2utT1| —
0€Bg (M) m
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Estimators in G(S, C) are called statistically-optimal adaptive estimators over parameter set
S. We are interested in the minimum expected communication cost among all statistically-
optimal adaptive estimators:

Q($.C.B% (M) = inf  sup EyL(H)
’ 6eG(8,C) 0eBs (M)

The above quantity, which is called the minimax communication cost for statistically-
optimal adaptive estimators, serves as a benchmark for the communication-efficiency of
estimators in G(S, C). For any statistically-optimal adaptive estimators, its expected com-
munication cost is at least Q(S, C, Bg’ q(M )) when estimating a function in B‘;‘,’ q(M ). The

analysis of the minimax communication cost Q(S‘ ,C, Bﬁ, q(M )) is divided into two steps:
upper bound and lower bound. We first propose in Section 3.1 an adaptive distributed estima-
tor éA, which can achieve the centralized optimal rate of convergence when 2 < p < oo, and
provide a upper bound on the expected communication cost. We then derive in Section 3.2
a lower bound for the rate of convergence of Q(S‘o, C, Bg’ q (M)) where 5’0 is collection of
all Besov class parameters with p > 2. The lower bound provides a fundamental limit on the
communication cost for a statistically-optimal adaptive estimator, while it matches the upper
bound for 64 on the expected communication cost. Therefore, the proposed distributed esti-
mator 64 is shown to be the most communication-efficient one among all statistically-optimal
adaptive estimators over a wide range of Besov classes.

3.1. Optimal adaptive procedure by local thresholding. In order to establish an upper
bound on Q(S’ ,C, B%’ q(M )), we first construct a statistically-optimal adaptive distributed
procedure, which simultaneously achieves the optimal rate of convergence over a wide col-
lection of Besov classes, while the rate of convergence for its expected communication cost
matches that of the minimax lower bound given in Section 3.2.

Wavelet thresholding methods have been shown to be a powerful tool for adaptive non-
parametric function estimation problems in the conventional centralized settings. Estimators
derived from data-driven thresholding rules can automatically adapt to a wide collection of
Besov spaces; see Abramovich et al. (2006), Cai (1999), Cai and Zhou (2009), Donoho and
Johnstone (1995), Johnstone (2017) and the references therein. However, in the distributed
settings, due to the communication constraints, it is typically impossible to estimate individ-
ual coordinates accurately by thresholding them all together on the central machine. In such
a setting, it is unclear how to optimally threshold on each local machine and efficiently trans-
mit the information to the central machine with minimal communication cost such that a final
aggregated estimator is statistically-optimal adaptive. Indeed, it is unclear if this goal is even
achievable.

Fortunately, the answer is affirmative. The following “local thresholding” procedure is
proposed for adaptive distributed Gaussian sequence estimation. We should emphasize that
here “local thresholding” referred to the fact that the thresholding step is carried out on indi-
vidual local machines, not on the central machine. The meaning is different from that in the
conventional wavelet estimation literature in the centralized setting. The general strategy can
be summarized as follows. On each local machine, we first select “significant resolution lev-
els” by certain a thresholding rule. Only information about the significant resolution levels is
transmitted to the central machine, where an estimation subroutine called “ada-MODGAME”
is applied to generate good estimates for individual coordinates based on the transcripts col-
lected from the local machines. These estimates will be further processed to yield a final
estimate 6.

Now we are ready to introduce the local thresholding procedure in detail. Let g : Z —
U2, {0, 1}* denote the localization encoding function defined in Section 2.1. The estimation
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procedure is divided into two steps, with the subroutine ada-MODGAME in the second step
of the procedure.

First step: Generate the transcripts on the local machines by thresholding. For 1 <i <m,
on the ith machine:

1. Define the set of “significant resolution levels” on the ith machine by

nj
Ji=10,1,2,...,([2logm])} U {j > [2logm|+1: )" X7 znjaz<1 + %)}
k=1
where A1 > 0 is a prespecified parameter. Only those coordinates at the resolution levels
in the set J; are processed as part of the transcript outputs from the ith machine. All the
resolution levels that are not in J; are considered to be “locally thresholded,” because the
signal strength on those resolution levels is weak.
2. If i =1, the output transcript Z; is the collection of the “crude localization™ strings
Z1,jk» j € J1,k € [nj] where Zy ji is defined as

Z1jk=g(LX1,jk/0]);

If 2 <i < 14 [log?m |, the output transcript Z; is the collection of the “finer localization”
strings Z; jk, j € Ji, k € [n;] where Z; j is defined as

Zi ik =g(LXi jx/o ] mod [logm]);

If i > 2 + |log?m], the output transcript Z; is the collection of the “refinement” strings
Zijk, ] € Ji,k € [nj] where Z; ji is defined as

Zi,jk = LXi,jk/UJ mod 8.

Second step: Generate the distributed estimator 6 on the central machine. The central ma-
chine receives the transcripts Z1, Z», ..., Z,, from the local machines. Note that the code
words in Zy, Z», ..., Z, are all uniquely decodable, thus the central machine is able to re-
cover short strings Z; jx for i € [m], j € J;i,k € [nj]. Also, note that the total number of
short strings from the ith machine is 3 ;¢ ;. 2/, so from the binary representation of the total
number of short strings from the ith machine, one can recover significant resolution level J;.

To warp up, from those transcripts that the central machine receives

e significant resolution levels on the local machines Ji, J3, ..., J;.
o short strings Z; jx fori € [m], j € J;, k € [n;].

Let J be defined as

14(log? m | 2 m 2
R o [log”m| m—1— [log“m]
Jé{J:JGJl: > Wenz=—F— 2 Tyjem= 5
i=2 i=2+4|log?m]

Intuitively, J is the set of resolution levels that are significant on most local machines.
The resolution levels within J will be estimated whereas those not in J will be zeroed out
(thresholded).

The final estimator 4 is constructed as follows: For j=12,...,

o If j ¢ J,let
0% =0 forallkeln;].
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o If j <[2logm],let §; =[m] and

(031,65, .-+, 0%,) = faaa(Sj, (Ziju 20 € Sy, k € Injl})

be the output of the subroutine “ada-MODGAME.” Then apply the thresholding rule to get
the final estimate

nj 2
5% 0 jo
H ( >Fl’ %27'--,9*” if Z k >A2
(9,1,912,...,9}:,): J J j j
! k=1
0,0,0,...,0) otherwise,

where A > 0 is a prespecified parameter.
o If j>[2logm|+1and j € J,define S; ={i € [m]: j € J;}, and let
(074,672,075, = faaa(Sj {Zijuzi € Sy k €[n;1})
be the output of the subroutine “ada-MODGAME.”

Subroutine: ada-MODGAME
Input: o, m, j, nj, Sj, {Zi,jk ‘i€ Sj,k € [nj]}
For each k € [n;], do the following steps:

1. Because g(x) is uniquely decodable, from Z; jx = g(|X; jx/o|) one can recover the
value of | X; ji/o|. Let Ij?k be a left-closed, right-open interval of length m defined as

[logm] — 1 [logm]| + 1
| Wifo) = S 1 o)+ B2
N if [logm] is an odd number,
I = Llog m| Llogm
| Xi,jx/o] — X jr/o ]+ 5
if [logm ] is an even number.

2. Let S]b- & SiNnfi:2<i=< Llog2 m] + 1} be the set of machines that output the
finer localization strings. Let zf’k = argmax, » st [z =z be the mode statistic among
Z, ksl € Sl.’ Note that the length of I]‘?k is |logm], so there will be exactly one integer

]k el Tk satlsfymg

x?k mod [logm] =g~ !(z5).
Let / ka be an interval of length 3 defined by

1Jk£[ 1xj,<+1]

3. Let S;’ =5 infii> Llog m]| + 2} be the set of machines that output the refinement

strings. Let p” be the proportion of those refinement strings whose value is equal to g(x?k —
2 mod 8):

h
pha £ card( S Z(H 1Zi ji=g(x},—2 mod 8)}
leS

Define a function

b —1+481

e Y / $1(x — y)do.

= o0 jk—2 +-8/
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It is easy to see that &, (y) is a strictly decreasing function on / ;’k. Let h;kl () be the

inverse function of /2 (y), which maps 4 jx (1 JI-’,() to/ ;’k. Finally, the estimate can be calculated
by

A (b + Do i p" < hji(xb + 1),
0% =1h (P")o it hju(xl +1) < p" <hju(xly — 1),
(xj’k —1)o if P> hjk(x?k —1).

Output: é;-‘k for k € [n]].

We have given above a detailed construction of the local thresholding estimator 64. The
following theorem provides a theoretical guarantee for the statistical performance and com-
munication cost of the proposed procedure over the Besov classes B;",’ (M) witha >0, M >
o,1<g<ocand2 < p <oo.

THEOREM 3 (Upper bound for the communication cost). If A1 > 10 and Aj is chosen
sufficiently large, there exists a constant C > 0 such that, the local thresholding estimator 64
is adaptively rate optimal, that is,

2 22a
sup B|i4 6] < carw (2 )
6eBs (M) m

and we also have

2
N M\ 2a+1 o
sup EgL(QA) < C(m3 + (—)2 +lmgaﬁ)
0By (M) o

oralloo >0, M >0,1l <g<oocand?2 < p < oo.
fe q p

REMARK 4. The proof of Theorem 3 is involved due to the fact that, after threshold-
ing on the local machines, the conditional distribution of the observations given that their
resolution level is selected into the significant set J; is no longer Gaussian. Lemma 8 (from
the Supplementary Material (Cai and Wei (2022)) is the key to the proof, which shows that
the ada-MODGAME subroutine is robust even if the additive noise is slightly different from
Gaussian distribution.

REMARK 5. One of the merits of the local thresholding estimator 64 is its
“communication-adaptivity,” which means the communication cost of the estimation proce-
dure is also adaptive to the smoothness of the underlying function. Compared to the two-point
adaptive procedure proposed in the previous work (Szabo and van Zanten (2020), which is
able to achieve adaptation with smoothness less than certain threshold, our newly proposed
local thresholding procedure requires no prior knowledge on the range of the smoothness pa-
rameters, and is able to achieve statistical adaptation over a wide collection of Besov classes.
The user can apply local thresholding procedure to obtain adaptation over the Besov classes
B3 ,(M) as long as p > 2 with guaranteed minimum communication cost.

3.2. Lower bound analysis. In this subsection, we are going to obtain a lower bound
for the minimax communication cost for statistically-optimal adaptive estimators, which is
instrumental in establishing the optimal rate of convergence. Before we establish a lower
bound for the minimax communication cost Q(S, C, Bg’ q(M)), we first state the following
theorem, which gives a lower bound for the communication cost when the estimator achieves
statistical-optimal rate of convergence in two different Besov classes.
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THEOREM 4 (Lower bound for communication cost for two-point adaptation). For any
distributed estimator 0, let B\ 4, (M1) and B2 4,(M>) be two different Besov classes. If there

1
exists a constant C > 0 such that M| < C6m2a1+§, and

) sup  E|6 — 0> < CM; (G—) " fori=1,2.
0eBy) ¢ (M) m

Then there exists a constant ¢ > 0 (depending on C) such that

2 2
A M\ 2a;F1  2q+2 Mo\ 2ap+1  2e0+2
sup  EL@) = o (B1) 7w 4 (B2) ),
o

o
0€B2 4, (M)

REMARK 6. If one sets o0 = /m/n, Mj = M, =1 and oy > o) > 4112%7“ — %, the
above Theorem 4 recovers the result of Theorem 2.4 in Szabo and van Zanten (2020)
which shows that two-point adaptation is impossible without additional communication
cost when m***2 > n. Comparing with the previous result, the result given in Theo-
rem 4 here is stronger because we prove the lower bound for the communication cost

sup, B2 4, (M) EL(6) under the only assumption that 6 is adaptive. In particular, no up-

per bound is imposed on sup,,_ B2, (My) EgL(6), which is in fact necessary to obtain Theo-
1-91
rem 2.4 in Szabo and van Zanten (2020).

The above Theorem 4 only considers two-point adaptation between two specific Besov
classes. However, in real data application, we are more interested in developing estimators
that are able to adapt to a wide range of parameter spaces, such as our adaptive estimator 64,
It is necessary to extend the above Theorem 4 to a general lower bound on Q (S' ,C, Bg’ q (M)).

We define S'o ={(a,M,p,q):a>0,M>0,2<p<00,1 <qg <oo}a wide collection
of Besov class parameters. The following lower bound on Q(S’o, C, Bg’ q (M)) shows a funda-
mental limit on the communication cost of statistically-optimal estimators over Besov classes
B3, ¢(M) where (a, p,q, M) € So. In view of the upper bound to be given in Section 3.1 that

is achieved by the adaptive distributed estimator 64, the lower bound is rate optimal.

THEOREM 5 (Lower bound for the communication cost over Besov ball collection So).
For any C : (0, 00) — (0, 00) and (o, M, p, q) € So, there exists a constant ¢ > 0 such that

2
L M\ % 2
(10) 0(So, C, Bj, q(M)) > C(m3 + (-)2 Hmiaﬁ).
’ o2

REMARK 7. The lower bound in Theorem 5 shows that, if a distributed estimator adap-
tively achieves the optimal rate of convergence over the all Besov classes where p > 2, the
minimum required expected communication cost for estimating functions in B (M) is of

order m3 + (%) %+1m 2+1 . The additional communication cost, which is of order m> and not
depending on the values of «, M, p, g and o, is required and necessary for constructing an

2
adaptive estimator. When m 2, (%)W , the cost of adaptation is significant.

REMARK 8. Although in Theorem 5 we provide a lower bound on Q(S, C, B3, (M)

where § = Sy, the same lower bound also holds when § is other sufficiently large Besov ball
collections. With the help from Theorem 4, we are able to establish lower bounds for other
Besov ball collection S.
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REMARK 9. The techniques used to prove Theorems 4 and 5 can be of independent
interest. Roughly speaking, if the algorithm aims to perform well on both B! L) (My) and
B P02 (M>) where o1 < ap, since we cannot tell whether each local sample is drawn from
Bj! 41 (M) or Bp3 4, (M>) on the local machines, the algorithm needs to transmit more
blts than nonadaptive estimation for Bj? ;,(M>), because it also needs to estimate well in

B}! 4 (My). More specifically, we prove that the local machines cannot “distinguish” sam-
ples that is drawn from a null model (6 = O) or drawn from a mixture of models with 6
having m? nonzero elements. If the observations are truly drawn from the mixture, the mini-
mum communication cost required to achieve the statistical optimal rate of convergence is of
order m3. Tnus one can further show that the minimax communication cost is at least § (m?)
even if & = 0. This is a key step in the argument for establishing Theorems 4 and 5.

A similar technique was also used in Szabo and van Zanten (2020). But a finer analysis is
needed here, especially for the key Claim 3 where we first prove a conditional strong data
processing inequality and use it to establish a stronger result without unnecessary assump-
tions.

LEMMA 1 (Conditional strong data processing inequality). Fort > 0 and k € Z4, let 6
be a random vector uniformly distributed on the set {—to, ta}k and let X ~ N0, 0%1;). Let
D C R be a k-dimensional region such that the event X € D is independent with 0 and let
Z be a random variable such that 6 — X — Z forms a Markov chain. Then

1(Z;0]X € D)P(X € D) <256:>(H(Z|X € D)P(X € D) + H({X € D})),

where 1(-; +|-), H(-), and H(-|-) denote conditional mutual information, entropy and condi-
tional entropy, respectively.

The definitions of the conditional mutual information 7 (-; -|-), entropy H(-) and condi-
tional entropy H (-|-) are given in Section 6.1. Note that the classical strong data processing
inequality for the Gaussian channels serves as a special case if we set D = R¥. The above
inequality is the key to the proof of Theorem 4. We omit the proof of Lemma 1 since it is
similar to the proof of Claim 3 in the proof of Theorem 4.

The upper and lower bounds given in Theorems 3 and 5 together establish the minimax
rate of communication cost for statistically-optimal adaptive estimators:

2042

T~ M\ 241
(1 0(30. €, B2, (M) =< m® + <_) T E
' o

where C is large enough and recall that So = {(o, M, p,q):a >0, M >0,2<p <00, 1 <
q < oo}. The minimax rate (11) also implies that 64 is the optimal adaptive distributed esti-
mator with respect to both statistical performance and communication cost.

1. The estimator 64 simultaneously achieves the centralized optimal rate over the Besov
classes B /(M) foralla >0,M >0, 1 <g <00 and 2 < p < oo. There is no statistical
cost of adaptation in terms of the rate of convergence.

2. Among all the statistically-optimal adaptive estimators, the expected communication
cost for A4 is rate optimal over the Besov classes B%’q M) foralla >0, M >0,1 <g <00
and 2 < p < oo.

REMARK 10. Compared with the minimum communication cost (%)2w+lm2w+1 for
achieving the optimal rate of convergence in the minimax setting in (8), an additional com-
munication cost of order m?> bits is needed to achieve the adaptation over a collection of
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(a) B =100, MSE = 31.47 (b) B = 2400, MSE = 12.54 (¢) B =16000, MSE = 5.10

FI1G. 1. Estimate given by the optimal seq-MODGAME estimator 99 under the communication constraints. For
different choices of total communication budgets B = 100, 2400, 16,000, we illustrate an example of estimated
function f 0 in each figure. The mean squared error through 1000 trials are also given below each figure.

Besov classes. The term m> can be viewed as the communication cost of adaptation. This

interplay between communication and statistical adaptation in the distributed setting is an
interesting phenomenon: It costs more bits to communicate in order to achieve adaptivity. In
contrast, statistical adaptation can be achieved for free in the centralized setting (Donoho and
Johnstone (1995), Johnstone (2017)).

4. Numerical studies. The proposed seq-MODGAME estimator 69 and the adaptive
local thresholding estimator 04 are easily to implement. In this section, we conduct simu-
lation studies to investigate the numerical performance of these two estimators in various
settings.

4.1. The seqg-MODGAME estimator 60. We first study the se-MODGAME estimator
60 proposed in Section 2. We generate i.i.d. data according to the distributed Gaussian se-
quence model (3) on m = 100 different virtual machines, where the mean vector 6 is the
wavelet coefficients of certain specified underlying function. The underlying function f is
chosen as

f (@) =sin(4xt) +0.7cos(18wt), te]0,1]

and the noise level 0 = 1/16.

We apply the optimal seq-MODGAME estimator 6 to estimate wavelet coefficients of
f given their noisy observations on virtual machines. Afterwards, we transform estimated
wavelet coefficients back to estimated smooth functions f O The results are shown in Fig-
ure 1. As more and more bits are allowed to communicate, the mean squared error are de-
creasing so that the estimate is becoming more and more accurate.

4.2. The local thresholding estimator .  Similar to the setting in Section 4.1, we gener-
ate i.i.d. data according to the distributed Gaussian sequence model (3) and set m = 100, 0 =
1/16. However, in this simulation study we work on three different choices for the underlying
functions f = fi, f> or fa:

fi(t) =1.5sin4nt), te][0,]1];
fa2(t) =sin(4rwt) +0.7cos(18mt), te][0,1];
f3(t) =0.8sin(4mt) + 0.5cos(18m¢t) + 0.5cos(44mt), te][0,1].

The three functions given above are designed to have different smoothness. f; is the
smoothest function among the three functions whereas f3 is the most “wiggly” one. We
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(a) f1 : EL = 3330, MSE = 2.06 (b) fo : EL = 8083, MSE = 5.03 (c) fs : EL = 15862, MSE = 8.9

FIG. 2.  Estimate given by the local thresholding estimator 64, Under different choices of ground truth functions
f1, f2, f3, we illustrate an example of estimated function f A in each figure. The expected communication cost
and their mean squared error through 1000 trials are also given below each figure.

expect to see a data-driven estimator can adapt to their smoothness automatically during the
estimation.

Similarly, given random distributed data generated by adding noise to the wavelet coeffi-
cients of f1, f> and f3, respectively, we apply the local thresholding estimator 64 to estimate
the wavelet coefficients. The estimated smooth functions f A are obtained by reversed discrete
wavelet transform on the estimated wavelet coefficients. The results are shown in Figure 2. It
can be clearly seen from simulation that, when the underlying function are relatively smooth,
the local thresholding estimator requires less communication cost while achieves better sta-
tistical accuracy. The numerical results are consistent with the theory, which shows the local
thresholding estimator can adapt to the smoothness of the underlying function.

5. Discussion. In the present paper, both distributed minimax and distributed adaptive
estimation under the communication constraints were studied for the Gaussian sequence
model and white noise model. Optimal minimax rate of convergence is established and the
cost of adaptation is characterized. In addition, a data-driven adaptive distributed estimator
with theoretical guarantees is constructed. Several technical tools and the formulation for the
study of the interplay between adaptation and communication cost can be of independent
interest.

Distributed nonparametric function estimation is still very much a new area with a range
of interesting open problems. One such problem is the construction of an adaptive distributed
procedure for Gaussian sequence estimation under a fixed communication constraint. It is
notable that the communication cost for the local thresholding procedure 64 is related to the
smoothness of the underlying function. When the communication budget is tight, there is not
enough budget to implement the local thresholding procedure. Therefore, it will be useful to
have an estimator whose communication cost is controlled, while its estimation accuracy is
adaptive to the smoothness of underlying function.

In the present paper, we focused on estimation over the Besov classes with p > 2. Another
direction is the study of distributed Gaussian sequence estimation over the Besov classes with
p < 2. Similar to the centralized setting, the case p < 2 is very different from the case p > 2
in the distributed setting. The techniques developed in the present paper are not sufficient for
the case p < 2 and we leave this case for future work.

Besides the white noise model considered in the present paper, it is also interesting to study
other related nonparametric function estimation problems, including nonparametric density
estimation, nonparametric regression with fixed design and nonparametric regression with
random design, which have all been well studied in the centralized setting. In particular, it is
shown that these three models are asymptotic equivalent to the white noise model (Brown and
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Low (1996), Nussbaum (1996), Brown et al. (2002, 2004)) in the centralized setting under
mild regularity conditions when the smoothness parameter o > % Practically, for example,
by applying the root-unroot algorithm to the binned data (Brown et al. (2010)), the density es-
timation problem can essentially be turned into the problem of nonparametric regression with
fixed design. However, in the distributed settings, these four problems may exhibit different
asymptotic behaviors due to the communication constraints. In the distributed setting, non-
parametric density estimation, nonparametric regression with fixed design and nonparametric
regression with random design merit careful and separate investigations. We leave them for
future work.

Broadly speaking, virtually any problem studied in the classical centralized setting has its
counterpart in the distributed setting. Examples include minimax and adaptive estimation of
linear and quadratic functionals as well as hypothesis testing under these nonparametric func-
tion models. It is challenging to develop a general optimality theory and construct statistically
optimal distributed procedures under the communication constraints. New technical tools for
both the lower bound and upper bound analyses are needed.

6. Proofs. We prove Theorems 4 and 5 in this section. For reasons of space, the proofs
of the other theorems, propositions and additional technical lemmas are given in the Supple-
mentary Material (Cai and Wei (2022)).

6.1. Notation and definitions. For any finite S, denote U(A) be a uniform distribution on
S. For any a, b, let a < b denote there exists a universal constant C > 0 such that a < Cb,
whereas a 2 b denotes there exists a universal constant ¢ > 0 such that a > c¢b. For any
discrete random variables X, Y supported on &', ), the entropy H (X), conditional entropy
H(X|Y), and mutual information / (X; Y) are defined as

HX)2-) P(X=x)logP(X =x),

xeX
HXIY)E— > PX=x,Y=ylogP(X=x|V=y),
xeX,yey
P(X =x|Y =Yy)
I(X;Y)& PX=x,Y =yl
KGNS 3 PX=xY=ylog—p =

xeX,ye)y

6.2. Proof of Theorem 4. It follows from Theorem 2 that for any estimator 6 satisfying
SUPgesy (M) EyL(6) < B, we have

~ ’ 2 (0% et

sup E|6—-0||"=cMe+T| —

0eBe (M) B
for some constant ¢ > 0. By the assumption,

20

2 2\ o2

A 20,51 [ O 20y +1

sup K6 —0)*> <M, (—) :

0eB}2 4, (M) n

So it follows that
]‘42 2 20942

) s
sup  EgL@O) | — m2e2+l,
0EB}2 4, (M) o
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To prove Theorem 4, it now suffices to show

2

~ M\ 2a 71 2¢+2
sup  EgL(9) 2 (—1) B ETEa
B2 4 (M>) o

The remaining part of the proof aims to prove the above inequality.
Define the constant A (only depends on C) and variable u as follows:

A = max{10, 32+/C},

2
M1\ 2o+ 1
U= m2a1+1_
fog

Define the set of sequences

A A A
Smué{(11—0,7:2—0,...,ru—G,O,O,...>:rl,rg,...,tue{—l,—l—l}}.

Since for any 6 € S, , and p1, g1 < 0o, we have

o [ 2/ 1/p1y a1\ 1/q1
|9|bz},q1 - (Z (2](a1+1/2—1/171)<z |9jk|p]> ) )

j=0 k=1
Llogu|+1 1/q
- ( 3 2/q1<a1+1/2>) Ao
j=0 Vm

Qu)n(1+1/2) N1/ar ) o
= <1 _2—q1<a1+1/2>) N

2q1(a1+1/2) 1/q1
( )

a+172 9
[ o—ai@+12) =M.

m

When p; = oo or g1 = 00, the above inequality also holds by similar argument. Therefore,
we have Sy, C Bp! 4, (My).
Since we have assumed

A 2 1 o
sup  El6—6|> <cMm"" (—) .
0Byl 4 (M) m

Note that the maximum risk is lower bounded by the Bayesian risk, assign to 6 a uniform
prior 8 ~ U(S,,.,), then we have

A 2 %‘Fl o? % o?
Bouis 0 - 017 = (T ) =
m m

In the following proof, we are going to provide several claims and prove each claim accord-
ingly. Let Q¢ denote the probability law of X; when 6 = (0,0,0,...,0,...). Let Q,, denote
the probability law of X; when 6 ~ U(S,, ,). Note that there are multiple distributions we
need to consider, we shorthand the probability, expectation, entropy and mutual information
when 6 = (0,0,0,...,0,...) as Py, Eg, Hy and Iy, respectively. Similarly, we use shorthand

Py, En, Hy, and I, to denote those quantities when 6 ~ U(Sy, ;).

CLAIM 1. We have 1,(9,6) > u.
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PROOF OF CLAIM 1. Define §* £ Py (é) be the nearest point in S, , to 6. Then we have

2
(12) EmHé*—9”254Em||é—9||2§4Cu6—.
m

Note that 6* € S, thus we can reparametrize 6* to

A . AC . AO . AC A A N
0" = rlﬁ,rgﬁ,...,rmzﬁ,o,&... where 71, 72, ..., 7,2 € {—1, +1}

Then we can simplify (12) to

m2

(13) Em Y (F — m)* <4CA 2u.
k=1

Recall that A = max{10, 32+4/C}. Substitute into (13), we have

_ <
mZ(Tk ) _256u

Applying Fano’s inequality, we can conclude

m2

Z Hyn (ti| %) < —u

k=1

The following lemma is instrumental to establish later results.

LEMMA 2. If A is a random variable and Y1, Y, ..., Y are independent random vari-
ables, then

I(A; (Y1, Y2, ..., YD) = > I(A; Yp).
k=1

Note that 71, 12, ..., 7 are i.i.d. Rademacher variables, apply Lemma 2 we have

m2

m
In(0%:0) = 1n(0%; (t1. 72, ..., T,2)) = Y I (0% 1) = D L (B ™)

=1

=

m

Lo 15
Z i (T) = Hin () = Tom”.

The second inequality above is due to data processing inequality applied to the fact fk only
depends on 6*. Finally, the claim can be concluded by data processing inequality 7,,(6; 0) >
1,(0%;9).

CLAIM 2. Let § > 0 be a parameter that will be specified later. For any § > 0, there exist
a constant C3 > 0 (depending on C, a1 and §) such that

(14) P, (%’“(chg)
(15) (X0 ‘—(X1)>C3> i dg’“ ()= C) = 50
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PROOF OF CLAIM 2. We first prove (14) holds with large enough constant C3. Let X7
denote the kth coordinate of X . Note that

d u 2, Jmo Jmo
&(Xl) = l_[(e_% . i)
dQo Pl 2

Using the basic inequality ln(etJr—ﬂ) < ﬁ, we have

d
P, (ﬁ(xl) > C3> <ln (X)) > 111C3>
dQ
A.Xl k A.Xl k
u mo mo )\‘2
= Pm ( e te ) ) > In C3)
= 2 2m
u
SPm(k 1 m0’2 1k—o)>1nC3>
“O ,  Ao? A
:Pm(22m62<X — 0 —7>>1ﬂc3—ﬁ .
Note that )} _; 2 Py (X —0?%— —) has mean 0 and variance at most (1 +A2)A4u/m

Note that we have assumed M| < Com?i+3 , this impliesu < C %071 m?. So by Chebyshev’s
inequality, as long as

20 +1 )\'4 2
InC; > — C2+T (14 22)A4/8,
we have

P, (%(Xo -G <5,

We now prove the second inequality (15). Note that when 6 ~ U(S;, ,), 6 and event

{dQ’" (X1) > C3} are independent (due to symmetry of S, ,,). Define
0 ( ro Ao rO 0> cs
C\mym «/_ ’ "

By symmetry, it is easy to show that
dQ dQ
1 (X0:6| G200 = s B (G > €3)
p(x110 =6q)

= p(x1|0 =6,) log ———dxy,
40 (x,)>C @O T (k1)

where p(x1|6 = 6,) denote the density of x; when 6 = 6y, and g,,(x1) denote the density of
law Q.
Further, note that we have following decomposition for p(x1|60 = 6,) and g, (x1):

X1 k 9 )2
1 ’7«/3
p(x110 =6,) = 200,
l_[ 2710
u 1 (Xl,k*%)z Gt f/i)z

X110 =6,) = e
qm(x1] ) 51;[12«/%0
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So we can get
(x110 = 04)
ﬁ p(x116 = 8, log P =2 g,
G (X1)>C3 gm(x1)

_ Ao \2
1 (6% \/—)

e 262

1 P, = _\y
8 Og<1+exp(_%)) (dQ (X1) > C3lx1, 1=y )dy

o-22
Jm
(16) <u L =5
ve[—2r/mo,2h/mo] 2no

2 Om
xlo( )IP’ ( X)) >C = )d
g 1+exp(_j%ya) 400 (X1) 3lxi, 1=y |dy

)2

1 ()—T
+ u/ T 202
yE[—2x/mo,20/mo] A/ 27T o

2 dQm
X 10g<1 Fexp(— Qky ))P (E(Xl) > C3]x1,1 —)7) dy.

Now we bound the first term of the rlght—hand side in (16). It can be shown that when C3
is a large enough constant, we could get

dQnm In2
P (G X1) > Cabor =20 ) = 5.
(we omit the proof here because it is similar to the proof of (14)).
Thus it is easy to show

I A
20
ye[—2x/mo,2h/mao] A/ 27O

1 ( 2 )IP (de(X) Cs| )d
X log 1+exp(—2ky) 400 )= L3 x1=y)ay

_n2 f v 2{) | ( 2 >d
< o2 -log y
=2 \/70 1+ exp(— 2” )

_Im2 1 ( A )2 1

~4x2 2\m/)  4m’
where the second inequality is due to the entropy bound given in Michalowicz, Nichols and
Bucholtz (2008).

Next, we are going to bound the second term of the right-hand side in (16). Because A > 10,
it is easy to show

)2

/ 1 _ (V—T—
202
yE[—21/mo,2h/mo] A/ 27m

2 Om
Xlog(l—l—exp( 2xy ))]P (dQ (X1)>C3|x11—y)dy
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1 _(y—k—\/%)2 (2)\\/% _ ﬁﬁ 1
<log?2- e 27 dnyexp(——) <
yeE[—2r/mo,20/ma] A/ 27T O 2 4dm
Applying the above two bounds to (16), we can get
0=26
/ Pl =6y log PO =0 o
T (X1)>Cs gm (x1) 2m

when C3 is a large enough constant. This directly implies inequality (15).
Denote the set R = {x ¢ R*: ‘fiLQ’(’)’(x) < C3} and random variable W; =[x, cgy.

CLAIM 3. Foreachi=1,2,...,m,we have
2

256
In(Zi;01X; € R)Pp(X; € R) < (Em(Lilix,ery) + Hn(W)).

PROOF OF CLAIM 3. Let Z; defined as

- [z ifxeRr,
Zi = :
« ifX¢R,

where * is a unique symbol which is different with any 0-1 string.
The following lemma is instrumental to establishing later results.

LEMMA 3 (Multidimensional strong data processing inequality). Suppose T = (TD,
T, ..., TDY be a collection of random variables where each entry is an i.i.d. Bernoulli
random variable with mean % Let g be a d-dimensional vector and A > 0 be a positive real
number. Let X be a d-dimensional Gaussian random variable where XV, X® ... XD gre
independent with distribution

X0~ N +T7OA, o).
Let Z be a discrete random variable such that T — X — Z is a Markov chain, that is,
Z L T|X. Then the following multidimensional strong data processing inequality holds:

A 2
(17) I(T;Z2) 564(—) 1(X; Z).
o

Lemma 3 has been proved in Cai and Wei (2020a). For sake of completeness, we provide
its proof in the present Supplementary Material.
Apply Lemma 3 on Markov chain 8 — X; — Z; where 8 ~ U(S,,), we have

2

~ 256\ ~
1,0; Z;) < In(Zi; Xi).

Note that W; L 6 when 6 ~ U(S,.,), and W; is determined given Z, we have

In(0; Zi) = 1n (0 (Zi, W) = Ln (05 Zi|Wy) + 1n (65 W)
= 1(8; Zi|Xi € RPu(X; € R) + 1 (8; Zi| X ¢ R)Pu(X; & R) + Ln(6; W)
=1,0; Zi|X; € R)P,,(X; € R).
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For similar reasons, we have
In(Zi; Xi) < Hu(Zi) = Hu(Zi, W;) = Hy(Zi\W;) + Hu (W)
= Hu(Zi|X; € AP(X; € R) + Hu(Z;i|X; ¢ RP(X; & R) + Hu(W))
=H,(Zi|X; € R)P(X; € R) + H, (W;)
<En(Li|X; € R)P(X; € R) + Hu(W)),

where the latter inequality is due to Shannon’s source coding theorem (Shannon (1948)).
Combining the above three formulas yields the desired inequality.

PROOF OF THE MAIN THEOREM. Note that the region R is “symmetric” where x € R
is equivalent to |x| € R (]x| is entrywise absolute value). So P(X € R|0) is invariant for all
0 € S,,, therefore, W; L. 6 when 6 ~ U(S,,). Based on this, foreachi = 1,2, ..., m we have

Ln(Zi50) < Ln((Zi, W) 0) = Ln(Zi3 0IW) + Ln(W; 6)
= In(Zi; 0|W)
=1In(Zi; 01X; € R)Pp(Xi € R) + In(Zi; 01X ¢ R)Pi(Xi ¢ R)
<In(Zi;01X; € )Py (Xi € R) + 1n(Xi; 01X ¢ R)Pn(Xi ¢ R)

(18)

2562 u
< (Em (Lilix;ery) + Hn(W) + —,
m 2m

where the second inequality is due to data processing inequality and the last inequality is
derived from Claim 2 and Claim 3.
Taking summation over (18), we have

2
19) 256 (

" u & N 15
mH,, (Wy) + ZEm(LiH{X,-eR})> + 5 > Zlm(zi; 0) > 1,(0;0) > T
i=1

i=1

where the last inequality is due to Claim 1.
Note that foreachi =1, 2, ..., m, we have

dQ
Enm(Lilix;ery) =Eo <LiH{X[eR}d—Q’Z(Xi)> < G3Eo(LiIix,ery) < C3Eo(L;).

Substituting the above inequality into (19), we can get

n 1
Eo(L) =Y Eo(Li) > ~mH, (W) ).

7
< c_3<4o96x2m”
Note that H,, (W) < —élogdé — (1 — §)log(l — 8). We can always set § to a sufficient

small constant so that H,,(W;) < W. Note that # > 1, then we can conclude that

7
Eo(L) > ———mu.
olL) = grorcp2

Finally, for any «, p, M > 0, given the fact that (0,0,0,...,0,...) € B‘;‘,,q(M), we have

2

7 M\ 2 +1 202
sup gL >Fo(l)> ——mu > (_> .
0eBs (M) 8192C312 bl
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6.3. Proof of Theorem 5. This theorem can be viewed as an extension of Theorem 4.
Note that there exists (g, Mo, po, qo) € So such that

(20) Moy = om20+s,

Note that for any 6 eG(S,C()) and (o, M, p.q) € S, we have

A ) = 2 (o2 T
sup MW—M|sQMMwH(—) ,
0eBs (M) m

R . 2 a2
sup B - 017 = Claonty ™ (2) 7

B} 40 (M) m

Based on above two inequalities and (20), apply Theorem 4, then apply (20) again, and we
can conclude
saar] 20042 2T 2 2 o
sup EL()> (%)2 A (ﬁy s — 3 4 (K) -
0eBy (M) o o o
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Distributed nonparametric function estimation: Optimal rate of con-
vergence and cost of adaptation” (DOI: 10.1214/21-A0S2124SUPP; .pdf). In this supple-
mentary material, we prove Theorems 1, 2, 5, Proposition 1 and the technical lemmas.
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