OPTIMAL LARGE-SCALE QUANTUM STATE TOMOGRAPHY WITH PAULI MEASUREMENTS

BY TONY CAI*,1, DONGGYU KIM†, YAZHEN WANG†,2, MING YUAN†,3 AND HARRISON H. ZHOU‡,4

University of Pennsylvania*, University of Wisconsin-Madison† and Yale University‡

Quantum state tomography aims to determine the state of a quantum system as represented by a density matrix. It is a fundamental task in modern scientific studies involving quantum systems. In this paper, we study estimation of high-dimensional density matrices based on Pauli measurements. In particular, under appropriate notion of sparsity, we establish the minimax optimal rates of convergence for estimation of the density matrix under both the spectral and Frobenius norm losses; and show how these rates can be achieved by a common thresholding approach. Numerical performance of the proposed estimator is also investigated.

1. Introduction. For a range of scientific studies including quantum computation, quantum information and quantum simulation, an important task is to learn and engineer quantum systems [Aspuru-Guzik et al. (2005), Benenti, Casati and Strini (2004, 2007), Brumfiel (2012), Jones (2013), Lanyon et al. (2010), Nielsen and Chuang (2000), and Wang (2011, 2012)]. A quantum system is described by its state characterized by a density matrix, which is a positive semidefinite Hermitian matrix with unit trace. Determining a quantum state, often referred to as quantum state tomography, is an important but difficult task [Alquier et al. (2013), Artiles, Gill and Guţă (2005), Aubry, Butucea and Meziani (2009), Butucea, Guţă and Artiles (2007), Guţă and Artiles (2007), Häffner et al. (2005), Wang (2013), and Wang and Xu (2015)]. It is often inferred by performing measurements on a large number of identically prepared quantum systems.

More specifically, we describe a quantum spin system by the d-dimensional complex space \mathbb{C}^d and its quantum state by a complex matrix on \mathbb{C}^d. When mea-
suring the quantum system by performing measurements on some observables which can be represented by Hermitian matrices, we obtain the measurement outcomes for each observable, where the measurements take values at random from all eigenvalues of the observable, with the probability of observing a particular eigenvalue equal to the trace of the product of the density matrix and the projection matrix onto the eigenspace corresponding to the eigenvalue. To handle the up and down states of particles in a quantum spin system, a common approach is to employ the well-known Pauli matrices as observables to perform measurements and obtain the so-called Pauli measurements [Britton et al. (2012), Johnson et al. (2011), Sakurai and Napolitano (2010), Shankar (1994), and Wang (2012, 2013)]. Since all Pauli matrices have \(\pm 1 \) eigenvalues, Pauli measurements takes discrete values 1 and \(-1\), and the resulted measurement distributions can be characterized by binomial distributions. The goal is to estimate the density matrix based on the Pauli measurements.

Traditional quantum tomography employs classical statistical models and methods to deduce quantum states from quantum measurements. These approaches are designed for the setting where the size of a density matrix is greatly exceeded by the number of quantum measurements, which is almost never the case even for moderate quantum systems in practice because the dimension of the density matrix grows exponentially in the size of the quantum system. For example, the density matrix for \(b \) spin-\(\frac{1}{2} \) quantum systems is of size \(2^b \times 2^b \). In this paper, we aim to effectively and efficiently reconstruct the density matrix for a large-scale quantum system with a relatively limited number of quantum measurements.

Quantum state tomography is fundamentally connected to the problem of recovering a high-dimensional matrix based on noisy observations [Wang (2013)]. The latter problem arises naturally in many applications in statistics and machine learning and has attracted considerable recent attention. When assuming that the unknown matrix of interest is of (approximately) low-rank, many regularization techniques have been developed. Examples include Candès and Recht (2009), Candès and Tao (2010), Candès and Plan (2009, 2011), Keshavan, Montanari and Oh (2010), Recht, Fazel and Parrilo (2010), Bunea, She and Wegkamp (2011, 2012), Klopp (2011, 2012), Koltchinskii (2011), Koltchinskii, Lounici and Tsybakov (2011), Negahban and Wainwright (2011), Recht (2011), Rohde and Tsybakov (2011), and Cai and Zhang (2015), among many others. Taking advantage of the low-rank structure of the unknown matrix, these approaches can often be applied to estimate unknown matrices of high dimensions. Yet these methods do not fully account for the specific structure of quantum state tomography. As demonstrated in a pioneering article, Gross et al. (2010) argued that, when considering quantum measurements characterized by the Pauli matrices, the density matrix can often be characterized by the sparsity with respect to the Pauli basis. Built upon this connection, they suggested a compressed sensing [Donoho (2006)] strategy...
for quantum state tomography [Gross (2011) and Wang (2013)]. Although promising, their proposal assumes exact measurements, which is rarely the case in practice, and adopts the constrained nuclear norm minimization method, which may not be an appropriate matrix completion approach for estimating a density matrix with unit trace (or unit nuclear norm). We specifically address such challenges in the present paper. In particular, we establish the minimax optimal rates of convergence for the density matrix estimation under both the spectral and Frobenius norm losses when assuming that the true density matrix is approximately sparse under the Pauli basis. Furthermore, we show that these rates could be achieved by carefully thresholding the coefficients with respect to the Pauli basis. Because the quantum Pauli measurements are characterized by the binomial distributions, the convergence rates and minimax lower bounds are derived by asymptotic analysis with manipulations of binomial distributions instead of the usual normal distribution based calculations.

The rest of paper proceeds as follows. Section 2 gives some background on quantum state tomography and introduces a thresholding based density matrix estimator. Section 3 develops theoretical properties for the density matrix estimation problem. In particular, the convergence rates of the proposed density matrix estimator and its minimax optimality with respect to both the spectral and Frobenius norm losses are established. Section 4 features a simulation study to illustrate finite sample performance of the proposed estimators. All technical proofs are collected in Section 5.

2. Quantum state tomography with Pauli measurements. In this section, we first review the quantum state and density matrix and introduce Pauli matrices and Pauli measurements. We also develop results to describe density matrix representations through Pauli matrices and characterize the distributions of Pauli measurements via binomial distribution before introducing a thresholding based density matrix estimator.

2.1. Quantum state and measurements. For a d-dimensional quantum system, we describe its quantum state by a density matrix ρ on d dimensional complex space \mathbb{C}^d, where density matrix ρ is a d by d complex matrix satisfying (1) Hermitian, that is, ρ is equal to its conjugate transpose; (2) positive semidefinite; (3) unit trace, that is, $\text{tr}(\rho) = 1$.

For a quantum system, it is important but difficult to know its quantum state. Experiments are conducted to perform measurements on the quantum system and obtain data for studying the quantum system and estimating its density matrix. In physics literature, quantum state tomography refers to reconstruction of a quantum state based on measurements for the quantum systems. Statistically, it is the problem of estimating the density matrix from the measurements. Common quantum
measurements are on observable M, which is defined as a Hermitian matrix on \mathbb{C}^d. Assume that the observable M has the following spectral decomposition:

$$M = \sum_{a=1}^{r} \lambda_a Q_a,$$

where λ_a are r different real eigenvalues of M, and Q_a are projections onto the eigenspaces corresponding to λ_a. For the quantum system prepared in state ρ, we need a probability space (Ω, \mathcal{F}, P) to describe measurement outcomes when performing measurements on the observable M. Denote by R the measurement outcome of M. According to the theory of quantum mechanics, R is a random variable on (Ω, \mathcal{F}, P) taking values in $\{\lambda_1, \lambda_2, \ldots, \lambda_r\}$, with probability distribution given by

$$P(R = \lambda_a) = \text{tr}(Q_a \rho), \quad a = 1, 2, \ldots, r, \quad E(R) = \text{tr}(M \rho).$$

We may perform measurements on an observable for a quantum system that is identically prepared under the state and obtain independent and identically distributed observations. See Holevo (1982), Sakurai and Napolitano (2010), and Wang (2012).

2.2. Pauli measurements and their distributions. The Pauli matrices as observables are widely used in quantum physics and quantum information science to perform quantum measurements. Let

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$\sigma_2 = \begin{pmatrix} 0 & -\sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

where σ_1, σ_2 and σ_3 are called the two-dimensional Pauli matrices. Tensor products are used to define high-dimensional Pauli matrices. Let $d = 2^b$ for some integer b. We form b-fold tensor products of σ_0, σ_1, σ_2 and σ_3 to obtain d dimensional Pauli matrices

$$(2.3) \quad \sigma_{\ell_1} \otimes \sigma_{\ell_2} \otimes \cdots \otimes \sigma_{\ell_b}, \quad (\ell_1, \ell_2, \ldots, \ell_b) \in \{0, 1, 2, 3\}^b.$$

We identify index $j = 1, \ldots, d^2$ with $(\ell_1, \ell_2, \ldots, \ell_b) \in \{0, 1, 2, 3\}^b$. For example, $j = 1$ corresponds to $\ell_1 = \cdots = \ell_b = 0$. With the index identification we denote by B_j the Pauli matrix $\sigma_{\ell_1} \otimes \sigma_{\ell_2} \otimes \cdots \otimes \sigma_{\ell_b}$, with $B_1 = I_d$. We have the following theorem to describe Pauli matrices and represent a density matrix by Pauli matrices.
PROPOSITION 1. (i) Pauli matrices B_2, \ldots, B_{d^2} are of full rank and have eigenvalues ± 1. Denote by $Q_{j\pm}$ the projections onto the eigen-spaces of B_j corresponding to eigenvalues ± 1, respectively. Then for $j, j' = 2, \ldots, d^2$,

$$
\text{tr}(Q_{j\pm}) = \frac{d}{2}, \quad \text{tr}(B_{j'}Q_{j\pm}) = \begin{cases}
\pm \frac{d}{2}, & \text{if } j = j', \\
0, & \text{if } j \neq j'.
\end{cases}
$$

(ii) Denote by $\mathbb{C}^{d\times d}$ the space of all d by d complex matrices equipped with the Frobenius norm. All Pauli matrices defined by (2.3) form an orthogonal basis for all complex Hermitian matrices. Given a density matrix ρ, we can expand it under the Pauli basis as follows:

$$
(2.4) \quad \rho = \frac{I_d}{d} + \sum_{j=2}^{d^2} \beta_j \frac{B_j}{d},
$$

where β_j are coefficients. For $j = 2, \ldots, d^2$,

$$
\text{tr}(\rho Q_{j\pm}) = \frac{1 \pm \beta_j}{2}.
$$

Suppose that an experiment is conducted to perform measurements on Pauli observable B_j independently for n quantum systems which are identically prepared in the same quantum state ρ. As B_j has eigenvalues ± 1, the Pauli measurements take values 1 and -1, and thus the average of the n measurements for each B_j is a sufficient statistic. Denote by N_j the average of the n measurement outcomes obtained from measuring B_j, $j = 2, \ldots, d^2$. Our goal is to estimate ρ based on N_2, \ldots, N_{d^2}.

The following proposition provides a simple binomial characterization for the distributions of N_j.

PROPOSITION 2. Suppose that ρ is given by (2.4). Then N_2, \ldots, N_{d^2} are independent with

$$
E(N_j) = \beta_j, \quad \text{Var}(N_j) = \frac{1 - \beta_j^2}{n},
$$

and $n(N_j + 1)/2$ follows a binomial distribution with n trials and cell probabilities $\text{tr}(\rho Q_{j+}) = (1 + \beta_j)/2$, where Q_{j+} denotes the projection onto the eigenspace of B_j corresponding to eigenvalue 1, and β_j is the coefficient of B_j in the expansion of ρ in (2.4).
2.3. Density matrix estimation. Since the dimension of a quantum system grows exponentially with its components such as the number of particles in the system, the matrix size of \(\rho \) tends to be very large even for a moderate quantum system. We need to impose some structure such as sparsity on \(\rho \) in order to make it consistently estimable. Suppose that \(\rho \) has a sparse representation under the Pauli basis, following wavelet shrinkage estimation we construct a density matrix estimator of \(\rho \). Assume that representation (2.4) is sparse in a sense that there is only a relatively small number of coefficients \(\beta_k \) with large magnitudes. Formally, we specify sparsity by assuming that coefficients \(\beta_2, \ldots, \beta_{d^2} \) satisfy

\[
\sum_{k=2}^{d^2} |\beta_k|^q \leq \pi_n(d),
\]

where \(0 \leq q < 1 \), and \(\pi_n(d) \) is a deterministic function with slow growth in \(d \) such as \(\log d \).

Pauli matrices are used to describe the spins of spin-\(\frac{1}{2} \) particles along different directions, and density matrix \(\rho \) in (2.4) represents a mixture of quantum states with spins along many directions. Sparsity assumption (2.5) with \(q = 0 \) indicates the mixed state involving spins along a relatively small number of directions corresponding to those Pauli matrices with nonzero \(\beta_k \). The sparsity reduces the complexity of mixed states. Sparse density matrices often occur in quantum systems where particles have sparse interactions such as location interactions. Examples include many quantum systems in quantum information and quantum computation [Berry et al. (2014), Boixo et al. (2014), Britton et al. (2012), Flammia et al. (2012), Senko et al. (2014), and Wang (2011, 2012)].

Since \(N_k \) are independent, and \(E(N_k) = \beta_k \). We naturally estimate \(\beta_k \) by \(N_k \) and threshold \(N_k \) to estimate large \(\beta_k \), ignoring small \(\beta_k \), and obtain

\[
\hat{\beta}_k = N_k 1(|N_k| \geq \sigma) \quad \text{or} \quad \hat{\beta}_k = \text{sign}(N_k)(|N_k| - \sigma)_+^-, \quad k = 2, \ldots, d^2,
\]

and then we use \(\hat{\beta}_k \) to construct the following estimator of \(\rho \),

\[
\hat{\rho} = \frac{I_d}{d} + \sum_{k=2}^{d^2} \frac{\hat{\beta}_k}{d} B_k,
\]

where the two estimation methods in (2.6) are called hard and soft thresholding rules, and \(\sigma \) is a threshold value which, we reason below, can be chosen to be \(\sigma = \hbar \sqrt{(4/n) \log d} \) for some constant \(\hbar > 1 \). The threshold value is designed such that for small \(\beta_k \), \(N_k \) must be bounded by threshold \(\sigma \) with overwhelming probability, and the hard and soft thresholding rules select only those \(N_k \) with large signal components \(\beta_k \).
As \(n(N_k + 1)/2 \sim \text{Bin}(n, (1 + \beta_k)/2) \), an application of Bernstein’s inequality leads to that for any \(x > 0 \),
\[
P(|N_k - \beta_k| \geq x) \leq 2 \exp\left(-\frac{nx^2}{2(1 - \beta_k^2 + x/3)}\right) \leq 2 \exp\left(-\frac{nx^2}{2(1 + x/3)}\right),
\]
and
\[
P\left(\max_{2 \leq k \leq d^2} |N_k - \beta_k| \leq \sigma\right) = \prod_{k=2}^{d^2} P(|N_k - \beta_k| \leq \sigma)
\geq \left[1 - 2 \exp\left(-\frac{n\sigma^2}{2(1 + \sigma/3)}\right)\right]^{d^2-1} = \left[1 - 2d^{-2h/(1+o(1))}\right]^{d^2-1} \to 1,
\]
as \(d \to \infty \) and \(\sigma \to 0 \), that is, with probability tending to one, \(|N_k| \leq \sigma \) uniformly for \(k = 2, \ldots, d^2 \). Thus, we can select \(\sigma = h\sqrt{4/n} \log d \) to threshold \(N_k \) and obtain \(\hat{\beta}_k \) in (2.6).

3. Asymptotic theory for the density matrix estimator.

3.1. Convergence rates. We fix matrix norm notation for our asymptotic analysis. Let \(x = (x_1, \ldots, x_d)^T \) be a \(d \)-dimensional vector and \(A = (A_{ij}) \) be a \(d \) by \(d \) matrix, and define their \(\ell_\alpha \) norms
\[
\|x\|_\alpha = \left(\sum_{i=1}^{d} |x_i|^\alpha\right)^{1/\alpha}, \quad \|A\|_\alpha = \sup\{\|Ax\|_\alpha, \|x\|_\alpha = 1\}, \quad 1 \leq \alpha \leq \infty.
\]
Denote by \(\|A\|_F = \sqrt{\text{tr}(A^\dagger A)} \) the Frobenius norm of \(A \).

For the case of matrix, the \(\ell_2 \) norm is called the matrix spectral norm or operator norm. \(\|A\|_2 \) is equal to the square root of the largest eigenvalue of \(AA^\dagger \),
\[
\|A\|_1 = \max_{1 \leq j \leq d} \sum_{i=1}^{d} |A_{ij}|, \quad \|A\|_\infty = \max_{1 \leq i \leq d} \sum_{j=1}^{d} |A_{ij}|.
\]
and
\[
\|A\|_2^2 \leq \|A\|_1 \|A\|_\infty.
\]
For a real symmetric or complex Hermitian matrix \(A \), \(\|A\|_2 \) is equal to the largest absolute eigenvalue of \(A \), \(\|A\|_F \) is the square root of the sum of squared eigenvalues, \(\|A\|_F \leq \sqrt{d}\|A\|_2 \), and (3.1)–(3.2) imply that \(\|A\|_2 \leq \|A\|_1 = \|A\|_\infty \).

The following theorem gives the convergence rates for \(\hat{\rho} \) under the spectral and Frobenius norms.
THEOREM 1. Denote by Θ the class of density matrices satisfying the sparsity condition (2.5). Assume $n^{c_0} \leq d \leq e^{n^{c_1}}$ for some constants $c_0 > 0$ and $c_1 < 1$. For density matrix estimator $\hat{\rho}$ defined by (2.6)-(2.7) with threshold $\varpi = \hbar \sqrt{4/n} \log d$ for some constant $\hbar > 1$, we have

$$\sup_{\rho \in \Theta} E[\|\hat{\rho} - \rho\|_2^2] \leq c_2 \pi_n^2(d) \frac{1}{d^2} \left(\frac{\log d}{n} \right)^{1-q},$$

$$\sup_{\rho \in \Theta} E[\|\hat{\rho} - \rho\|_F^2] \leq c_3 \pi_n(d) \frac{1}{d} \left(\frac{\log d}{n} \right)^{1-q/2},$$

where c_2 and c_3 are constants free of n and d.

REMARK 1. Theorem 1 shows that $\hat{\rho}$ achieves the convergence rate $\pi_n(d) \times d^{-1} (n^{-1} \log d)^{1-q/2}$ under the squared Frobenius norm loss and the convergence rate $\pi_n^2(d) d^{-2} (n^{-1} \log d)^{1-q}$ under the squared spectral norm loss. Both rates will be shown to be optimal in the next section. Similar to the optimal convergence rates for large covariance and volatility matrix estimation [Cai and Zhou (2012) and Tao, Wang and Zhou (2013)], the optimal convergence rates here have factors involving $\pi_n(d)$ and $\log d/n$. However, unlike the covariance and volatility matrix estimation case, the convergence rates in Theorem 1 have factors d^{-1} and d^{-2} for the squared spectral and Frobenius norms, respectively, and go to zero as d approaches to infinity. In particular, the result implies that MSEs of the proposed estimator get smaller for large d. This is quite contrary to large covariance and volatility matrix estimation where the traces are typically diverge, the optimal convergence rates grow with the logarithm of matrix size, and the corresponding MSEs increase in matrix size. The new phenomenon may be due to the unit trace constraint on density matrix and that the density matrix representation (2.4) needs a scaling factor d^{-1} to satisfy the constraint. Also for finite sample $\hat{\rho}$ may not be positive semidefinite, we may project $\hat{\rho}$ onto the cone formed by all density matrices under a given matrix norm $\| \cdot \|$, and obtain a positive semidefinite density matrix estimator $\tilde{\rho}$. Since the underlying true density matrix ρ is positive semidefinite with unit trace, and the representation (2.7) ensures that $\hat{\rho}$ has unit trace, the projection implies $\|\tilde{\rho} - \hat{\rho}\| \leq \|\rho - \hat{\rho}\|$. Thus, $\|\tilde{\rho} - \rho\| \leq \|\rho - \hat{\rho}\| + \|\hat{\rho} - \rho\| \leq 2\|\hat{\rho} - \rho\|$. Taking $\| \cdot \|$ as the spectral norm or the Frobenius norm and using Theorem 1, we conclude that $\tilde{\rho}$ has the same convergence rates as $\hat{\rho}$.

3.2. Optimality of the density matrix estimator. The following theorem establishes a minimax lower bound for estimating ρ under the spectral norm.

THEOREM 2. We assume that $\pi_n(d)$ in the sparsity condition (2.5) satisfies

$$\pi_n(d) \leq \mathcal{N} d^q \left(\log d \right)^{q/2} / n^{q/2},$$

(3.3)
for some constant $\aleph > 0$ and $0 < v < 1/2$. Then
\[
\inf \sup_{\hat{\rho}} E[\|\hat{\rho} - \rho\|_2^2] \geq c_4 \pi_n^2(d) \frac{1}{d^2} \left(\frac{\log d}{n} \right)^{1-q},
\]
where $\hat{\rho}$ denotes any estimator of ρ based on measurement data N_2, \ldots, N_{d^2}, and c_4 is a constant free of n and d.

Remark 2. The lower bound in Theorem 2 matches the convergence rate of $\hat{\rho}$ under the spectral norm in Theorem 1, so we conclude that $\hat{\rho}$ achieves the optimal convergence rate under the spectral norm. To establish the minimax lower bound in Theorem 2, we construct a special subclass of density matrices and then apply Le Cam’s lemma. Assumption (3.3) is needed to guarantee the positive definiteness of the constructed matrices as density matrix candidates and to ensure the boundedness below from zero for the total variation of related probability distributions in Le Cam’s lemma. Assumption (3.3) is reasonable in a sense that if the right-hand side of (3.3) is large enough, (3.3) will not impose very restrictive condition on $\pi_n(d)$. We evaluate the dominating factor $n^{-q/2}d^v$ on the right-hand side of (3.3) for various scenarios. First, consider $q = 0$, the assumption becomes $\pi_n(d) \leq \aleph d^v, v < 1/2$, and so assumption (3.3) essentially requires $\pi_n(d)$ grows in d not faster than $d^{1/2}$, which is not restrictive at all as $\pi_n(d)$ usually grows slowly in d. The asymptotic analysis of high-dimensional statistics usually allows both d and n go to infinity. Typically, we may assume d grows polynomially or exponentially in n. If d grows exponentially in n, that is, $d \sim \exp(b_0 n)$ for some $b_0 > 0$, then $n^{-q/2}$ is negligible in comparison with d^v, and $n^{-q/2}d^v$ behavior like d^v. The assumption in this case is not very restrictive. For the case of polynomial growth, that is, $d \sim n^{b_1}$ for some $b_1 > 0$, then $n^{-q/2}d^v \sim d^{v-q/(2b_1)}$. If $v - q/(2b_1) > 0$, $n^{-q/2}d^v$ grows in d like some positive power of d. Since we may take v arbitrarily close to $1/2$, the positiveness of $v - q/(2b_1)$ essentially requires $b_1 > q$, which can often be quite realistic given that q is usually very small.

The theorem below provides a minimax lower bound for estimating ρ under the Frobenius norm.

Theorem 3. We assume that $\pi_n(d)$ in the sparsity condition (2.5) satisfies
\[
\pi_n(d) \leq \aleph' d^{v'}/n^q,
\]
for some constants $\aleph' > 0$ and $0 < v' < 2$. Then
\[
\inf \sup_{\hat{\rho}} E[\|\hat{\rho} - \rho\|_F^2] \geq c_5 \pi_n(d) \frac{1}{d} \left(\frac{\log d}{n} \right)^{1-q/2},
\]
where $\hat{\rho}$ denotes any estimator of ρ based on measurement data N_2, \ldots, N_{d^2}, and c_5 is a constant free of n and d.\]
Remark 3. The lower bound in Theorem 3 matches the convergence rate of \(\hat{\rho} \) under the Frobenius norm in Theorem 1, so we conclude that \(\hat{\rho} \) achieves the optimal convergence rate under the Frobenius norm. Similar to the Remark 2 after Theorem 2, we need to apply Assouad’s lemma to establish the minimax lower bound in Theorem 3, and assumption (3.4) is used to guarantee the positive definiteness of the constructed matrices as density matrix candidates and to ensure the boundedness below from zero for the total variation of related probability distributions in Assouad’s lemma. Also the appropriateness of (3.4) is more relaxed than (3.3), as \(v' < 2 \) and the right-hand side of (3.4) has main powers more than the square of that of (3.3).

It is interesting to consider density matrix estimation under a Schatten norm, where given a matrix \(A \) of size \(d \), we define its Schatten \(s \)-norm by

\[
\| A \|_s = \left(\sum_{j=1}^{d} |\lambda_j|^s \right)^{1/s},
\]

and \(\lambda_1, \ldots, \lambda_d \) are the eigenvalues of the square root of \(A^\dagger A \). Spectral norm and Frobenius norm are two special cases of the Schatten \(s \)-norm with \(s = 2 \) and \(s = \infty \), respectively, and the nuclear norm corresponds to the Schatten \(s \)-norm with \(s = 1 \). The following result provides the convergence rate for the proposed thresholding estimator under the Schatten \(s \)-norm loss for \(1 \leq s \leq \infty \).

Proposition 3. Under the assumptions of Theorem 1, the density matrix estimator \(\hat{\rho} \) defined by (2.6)–(2.7) with threshold \(\varpi = h\sqrt{(4/n)\log d} \) for some constant \(h > 1 \) satisfies

\[
(3.5) \quad \sup_{\rho \in \Theta} E[\| \hat{\rho} - \rho \|_s^2] \leq c \left[\pi_n(d) \right]^{2-2/\max(s,2)} \frac{1}{d^{2-2/s}} \left(\frac{\log d}{n} \right)^{1-q+q/\max(s,2)}
\]

for \(1 \leq s \leq \infty \), where \(c \) is a constant not depending on \(n \) and \(d \).

The upper bound in (3.5) matches the minimax convergence rates for both the spectral norm and Frobenius norm. Moreover, for the case of the nuclear norm corresponding to the Schatten \(s \)-norm with \(s = 1 \), (3.5) leads to an upper bound with the convergence rate \(\pi_n(d) \left(\frac{\log d}{n} \right)^{1-q/2} \). We conjecture that the upper bounds in (3.5) are rate-optimal under the Schatten \(s \)-norm loss for all \(1 \leq s \leq \infty \). However, establishing a matching lower bound for the general Schatten norm loss is a difficult task, and we believe that a new approach is needed for studying minimax density matrix estimation under the Schatten \(s \)-norm, particularly the nuclear norm.
REMARK 4. The Pauli basis expansion (2.4) is orthogonal with respect to the usual Euclidean inner product, and as in the proof of Lemma 3 we have
\[\| \hat{\rho} - \rho \|_F^2 = \sum_{k=2}^{d^2} |\hat{\beta}_k - \beta_k|^2 / d, \]
where \(\hat{\beta} \) and \(\hat{\rho} \) are threshold estimators of \(\beta \) and \(\rho \), respectively. The sparse vector estimation problem is well studied under the Gaussian or sub-Gaussian noise case [Donoho and Johnstone (1994) and Zhang (2012)] and can be used to recover the minimax result for density matrix estimation under the Frobenius norm loss, because of orthogonality. In fact, our relatively simple proof of the minimax results for the Frobenius norm loss is essentially the same as the sparse vector estimation approach. However, such an equivalence between sparse density matrix estimation and sparse vector estimation breaks down for the general Schatten norm loss such as the commonly used spectral norm and nuclear norm losses. For the spectral norm loss, Lemma 3 in Section 5 provides a sharp upper bound for \(E[\| \hat{\rho} - \rho \|_F^2] \) through the \(\ell_1 \)-norm of \((\hat{\beta}_k - \beta_k) \), and the proof of the minimax lower bound in Theorem 2 relies on the property that the spectral norm is determined by the largest eigenvalue only. Such a special property allows us to reduce the problem to a simple subproblem and establish the lower bound under the spectral norm loss. The arguments cannot be applied to the case of the general Schatten norm loss in particular the nuclear norm loss. Moreover, instead of directly applying Lemma 3 and Remark 5 in Section 5 to derive upper bounds for the general Schatten norm loss, we use the obtained sharp upper bounds for the spectral norm and Frobenius norm losses together with moment inequalities to derive sharper upper bounds in Proposition 3. However, similar lower bounds are not available. Our analysis leads us to believe that it is not possible to use sparse vector estimation to recover minimax lower bound results for the general Schatten norm loss in particular for the spectral norm loss.

4. A simulation study. A simulation study was conducted to investigate the performance of the proposed density matrix estimator for the finite sample. We took \(d = 32, 64, 128 \) and generated a true density matrix \(\rho \) for each case as follows. \(\rho \) has an expansion over the Pauli basis
\[\rho = d^{-1} \left(I_d + \sum_{j=2}^{d^2} \beta_j B_j \right), \]
where \(\beta_j = \text{tr}(\rho B_j), \ j = 2, \ldots, d^2 \). From \(\beta_2, \ldots, \beta_{d^2} \), we randomly selected \([6 \log d]\) coefficients \(\beta_j \) and set the rest of \(\beta_j \) to be zero. We simulated \([6 \log d]\) values independently from a uniform distribution on \([-0.2, 0.2]\), assigned the simulated values at random to the selected \(\beta_j \), and then constructed \(\rho \) from (4.1). The
constructed ρ always has unit trace but may not be positive semi-definite. The procedure was repeated until we generated a positive semi-definite ρ. We took it as the true density matrix. The simulation procedure guarantees the obtained ρ is a density matrix and has a sparse representation under the Pauli basis.

For each true density matrix ρ, as described in Section 2.2 we simulated data N_j from a binomial distribution with cell probability β_j and the number of cells $n = 100, 200, 500, 1000, 2000$. We constructed coefficient estimators $\hat{\beta}_j$ by (2.6) and obtained density matrix estimator $\hat{\rho}$ using (2.7). The whole estimation procedure is repeated 200 times. The density matrix estimator is measured by the mean squared errors (MSE), $E\|\hat{\rho} - \rho\|_2^2$ and $E\|\hat{\rho} - \rho\|_F^2$, that are evaluated by the average of $\|\hat{\rho} - \rho\|_2^2$ and $\|\hat{\rho} - \rho\|_F^2$ over 200 repetitions, respectively. Three thresholds were used in the simulation study: the universal threshold $1.01 \sqrt{4\log d/n}$ for all β_j, the individual threshold $1.01 \sqrt{4(1 - N_j^2)\log d/n}$ for each β_j, and the optimal threshold for all β_j, which minimizes the computed MSE for each corresponding hard or soft threshold method. The individual threshold takes into account the fact in Theorem 2 that the mean and variance of N_j are β_j and $(1 - \beta_j^2)/n$, respectively, and the variance of N_j is estimated by $(1 - N_j^2)/n$.

Figures 1 and 2 plot the MSEs of the density matrix estimators with hard and soft threshold rules and its corresponding density matrix estimator without thresh-

FIG. 1. The MSE plots against sample size for the proposed density estimator with hard and soft threshold rules and its corresponding estimator without thresholding for $d = 32, 64, 128$. (a)–(c) are plots of MSEs based on the spectral norm for $d = 32, 64, 128$, respectively, and (d)–(f) are plots of MSEs based on the Frobenius norm for $d = 32, 64, 128$, respectively.
The MSE plots against sample size for the proposed density estimator with hard and soft threshold rules for \(d = 32, 64, 128 \). (a)–(c) are plots of MSEs based on the spectral norm for \(d = 32, 64, 128 \), respectively, and (d)–(f) are plots of MSEs based on the Frobenius norm for \(d = 32, 64, 128 \), respectively.

holding \([i.e., \beta_j \text{ are estimated by } N_j \text{ in (2.7)}]\) against the sample size \(n \) for different matrix size \(d \), and Figures 3 and 4 plot their MSEs against matrix size \(d \) for different sample size. The numerical values of the MSEs are reported in Table 1. Figures 1 and 2 show that the MSEs usually decrease in sample size \(n \), and the thresholding density matrix estimators enjoy superior performances than that the density matrix estimator without thresholding even for \(n = 2000 \); while all threshold rules and threshold values yield thresholding density matrix estimators with very close MSEs, the soft threshold rule with individual and universal threshold values produce larger MSEs than others for larger sample size such as \(n = 1000, 2000 \) and the soft threshold rule tends to give somewhat better performance than the hard threshold rule for smaller sample size like \(n = 100, 200 \). Figures 3 and 4 demonstrate that while the MSEs of all thresholding density matrix estimators decrease in the matrix size \(d \), but if we rescale the MSEs by multiplying it with \(d^2 \) for the spectral norm case and \(d \) for the Frobenius norm case, the rescaled MSEs slowly increase in matrix size \(d \). The simulation results largely confirm the theoretical findings discussed in Remark 1.

5. Proofs. Let \(p = d^2 \). Denote by \(C \)'s generic constants whose values are free of \(n \) and \(p \) and may change from appearance to appearance. Let \(u \lor v \)
The MSE plots against matrix size for the proposed density estimator with hard and soft threshold rules for \(n = 100, 500, 2000 \). (a)–(c) are plots of MSEs based on the spectral norm for \(n = 100, 500, 2000 \), respectively, and (d)–(f) are plots of MSEs based on the Frobenius norm for \(n = 100, 500, 2000 \), respectively.

and \(u \wedge v \) be the maximum and minimum of \(u \) and \(v \), respectively. For two sequences \(u_{n,p} \) and \(v_{n,p} \), we write \(u_{n,p} \sim v_{n,p} \) if \(u_{n,p}/v_{n,p} \to 1 \) as \(n, p \to \infty \), and write \(u_{n,p} \asymp v_{n,p} \) if there exist positive constants \(C_1 \) and \(C_2 \) free of \(n \) and \(p \) such that \(C_1 \leq u_{n,p}/v_{n,p} \leq C_2 \). Without confusion we may write \(\pi_n(d) \) as \(\pi_n(p) \).

5.1. Proofs of Propositions 1 and 2.

PROOF OF PROPOSITION 1. In two dimensions, Pauli matrices satisfy \(\text{tr}(\sigma_0) = 2 \), and \(\text{tr}(\sigma_1) = \text{tr}(\sigma_2) = \text{tr}(\sigma_3) = 0 \), \(\sigma_1, \sigma_2, \sigma_3 \) have eigenvalues \(\pm 1 \), the square of a Pauli matrix is equal to the identity matrix, and the multiplications of any two Pauli matrices are equal to the third Pauli matrix multiplying by \(\sqrt{-1} \), for example, \(\sigma_1 \sigma_2 = \sqrt{-1} \sigma_3 \), \(\sigma_2 \sigma_3 = \sqrt{-1} \sigma_1 \), and \(\sigma_3 \sigma_1 = \sqrt{-1} \sigma_2 \).

For \(j = 2, \ldots, p \), consider \(B_j = \sigma_{\ell_1} \otimes \sigma_{\ell_2} \otimes \cdots \otimes \sigma_{\ell_b} \). \(\text{tr}(B_j) = \text{tr}(\sigma_{\ell_1}) \times \text{tr}(\sigma_{\ell_2}) \times \cdots \times \text{tr}(\sigma_{\ell_b}) = 0 \), and \(B_j \) has eigenvalues \(\pm 1 \), \(B_j^2 = I_d \).

For \(j, j' = 2, \ldots, p \), \(j \neq j' \), \(B_j = \sigma_{\ell_1} \otimes \sigma_{\ell_2} \otimes \cdots \otimes \sigma_{\ell_b} \) and \(B_{j'} = \sigma_{\ell'_1} \otimes \sigma_{\ell'_2} \otimes \cdots \otimes \sigma_{\ell'_{b'}} \),

\[
B_j B_{j'} = [\sigma_{\ell_1} \sigma_{\ell'_1}] \otimes [\sigma_{\ell_2} \sigma_{\ell'_2}] \otimes \cdots \otimes [\sigma_{\ell_b} \sigma_{\ell'_{b'}}],
\]
is equal to a \(d \) dimensional Pauli matrix multiplying by \((\sqrt{-1})^b\), which has zero trace. Thus, \(\text{tr} (B_j B_{j'}) = 0 \), that is, \(B_j \) and \(B_{j'} \) are orthogonal, and \(B_1, \ldots, B_p \) form an orthogonal basis. \(\text{tr} (\rho B_j/d) = \beta_k \text{tr} (B_j^2)/d = \beta_k \). In particular \(B_1 = I_d \), and \(\beta_1 = \text{tr}(\rho B_1) = \text{tr}(\rho) = 1 \).

Denote by \(Q_{j\pm} \) the projections onto the eigenspaces corresponding to eigenvalues \(\pm 1 \), respectively. Then for \(j = 2, \ldots, p \),

\[
B_j = Q_{j+} - Q_{j-}, \quad B_j^2 = Q_{j+} + Q_{j-} = I_d, \quad B_j Q_{j\pm} = \pm Q_{j\pm} = \pm Q_{j\pm},
\]

\(
0 = \text{tr}(B_j) = \text{tr}(Q_{j+}) - \text{tr}(Q_{j-}), \quad d = \text{tr}(I_d) = \text{tr}(Q_{j+}) + \text{tr}(Q_{j-}),
\)

and solving the equations we get

\[
(5.1) \quad \text{tr}(Q_{j\pm}) = d/2, \quad \text{tr}(B_j Q_{j\pm}) = \pm \text{tr}(Q_{j\pm}) = \pm d/2.
\]

For \(j \neq j', j, j' = 2, \ldots, p \), \(B_j \) and \(B_{j'} \) are orthogonal,

\[
0 = \text{tr}(B_{j'} B_j) = \text{tr}(B_{j'} Q_{j+}) - \text{tr}(B_{j'} Q_{j-}),
\]

and

\[
B_{j'} Q_{j+} + B_{j'} Q_{j-} = B_{j'} (Q_{j+} + Q_{j-}) = B_{j'},
\]

\(
\text{tr}(B_{j'} Q_{j+}) + \text{tr}(B_{j'} Q_{j-}) = \text{tr}(B_{j'}) = 0,
\)
Table 1

MSEs based on spectral and Frobenius norms of the density estimator defined by (2.6) and (2.7) and its corresponding density matrix estimator without thresholding, and threshold values used for \(d = 32, 64, 128, \) and \(n = 100, 200, 500, 1000, 2000 \)

<table>
<thead>
<tr>
<th>(d)</th>
<th>(n)</th>
<th>Density estimator (\times 10^4)</th>
<th>Without threshold</th>
<th>Optimal threshold</th>
<th>Universal threshold</th>
<th>Individual threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MSE (Spectral norm)</td>
<td>Hard</td>
<td>Soft</td>
<td>Hard</td>
<td>Soft</td>
</tr>
<tr>
<td>32</td>
<td>100</td>
<td>348.544</td>
<td>4.816</td>
<td>4.648</td>
<td>5.468</td>
<td>4.790</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>175.034</td>
<td>4.449</td>
<td>4.257</td>
<td>5.043</td>
<td>4.708</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>70.069</td>
<td>2.831</td>
<td>3.054</td>
<td>3.344</td>
<td>4.130</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>35.028</td>
<td>1.537</td>
<td>1.974</td>
<td>1.875</td>
<td>3.201</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>17.307</td>
<td>0.785</td>
<td>1.195</td>
<td>1.001</td>
<td>2.230</td>
</tr>
<tr>
<td>64</td>
<td>100</td>
<td>368.842</td>
<td>1.583</td>
<td>1.572</td>
<td>1.744</td>
<td>1.583</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>183.050</td>
<td>1.565</td>
<td>1.534</td>
<td>1.669</td>
<td>1.575</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>73.399</td>
<td>1.175</td>
<td>1.228</td>
<td>1.367</td>
<td>1.490</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>36.692</td>
<td>0.566</td>
<td>0.807</td>
<td>0.747</td>
<td>1.249</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>18.402</td>
<td>0.186</td>
<td>0.443</td>
<td>0.255</td>
<td>0.832</td>
</tr>
<tr>
<td>128</td>
<td>100</td>
<td>381.032</td>
<td>0.543</td>
<td>0.542</td>
<td>0.574</td>
<td>0.543</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>190.113</td>
<td>0.541</td>
<td>0.539</td>
<td>0.570</td>
<td>0.542</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>75.824</td>
<td>0.471</td>
<td>0.480</td>
<td>0.514</td>
<td>0.525</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>38.010</td>
<td>0.309</td>
<td>0.350</td>
<td>0.355</td>
<td>0.470</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>18.907</td>
<td>0.142</td>
<td>0.216</td>
<td>0.194</td>
<td>0.359</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Threshold value ((\omega)) (\times 10^2)</th>
<th>Universal</th>
<th>Hard</th>
<th>Soft</th>
<th>Universal</th>
<th>Hard</th>
<th>Soft</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>100</td>
<td>24.782</td>
<td>15.180</td>
<td>0.619</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>17.524</td>
<td>7.739</td>
<td>0.562</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>11.083</td>
<td>2.397</td>
<td>0.373</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>7.837</td>
<td>1.099</td>
<td>0.212</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>5.541</td>
<td>0.551</td>
<td>0.116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>100</td>
<td>27.148</td>
<td>16.660</td>
<td>0.395</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>19.196</td>
<td>9.252</td>
<td>0.376</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>12.141</td>
<td>2.900</td>
<td>0.307</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>8.585</td>
<td>1.308</td>
<td>0.177</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>6.070</td>
<td>0.657</td>
<td>0.061</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>100</td>
<td>29.323</td>
<td>17.500</td>
<td>0.237</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>20.734</td>
<td>10.246</td>
<td>0.235</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>13.114</td>
<td>3.547</td>
<td>0.213</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>9.273</td>
<td>1.613</td>
<td>0.146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>6.557</td>
<td>0.725</td>
<td>0.080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\begin{table*}[h]
\centering
\begin{tabular}{cccccccccc}
\hline
 & & & \textbf{MSE (Frobenius norm) $\times 10^3$} & & & \textbf{Threshold value (ϖ) $\times 10^2$} & & & \\
 & & & \textbf{Without} & \textbf{Optimal} & \textbf{Universal} & \textbf{Individual} & \textbf{Universal} & \textbf{Optimal} & \\
 & & & \textbf{threshold} & \textbf{threshold} & \textbf{threshold} & \textbf{threshold} & \textbf{threshold} & \textbf{threshold} & \\
\hline
\textbf{d} & \textbf{n} & \textbf{Density estimator} & \textbf{Hard} & \textbf{Soft} & \textbf{Hard} & \textbf{Soft} & \textbf{Hard} & \textbf{Soft} & \textbf{Universal} & \textbf{Hard} & \textbf{Optimal} & \textbf{Universal} & \textbf{Hard} & \textbf{Optimal} \\
\hline
 & 200 & 159.679 & 5.217 & 4.629 & 5.616 & 5.187 & 5.874 & 5.143 & 11.083 & 2.286 & 0.954 & 7.837 & 1.100 & 0.401 \\
 & 500 & 63.823 & 3.165 & 3.229 & 3.732 & 4.575 & 3.642 & 4.512 & 5.541 & 0.546 & 0.182 & 5.541 & 0.546 & 0.182 \\
 & 1000 & 31.856 & 1.722 & 2.053 & 2.119 & 3.540 & 2.119 & 3.492 & 7.837 & 1.100 & 0.401 & 7.837 & 1.100 & 0.401 \\
 & 2000 & 15.967 & 0.894 & 1.219 & 1.155 & 2.424 & 1.141 & 2.394 & 7.837 & 1.100 & 0.401 & 7.837 & 1.100 & 0.401 \\
 & 1000 & 63.845 & 1.335 & 1.628 & 1.765 & 2.791 & 1.717 & 2.756 & 8.585 & 1.277 & 0.548 & 1.277 & 0.548 & 0.548 \\
 & 2000 & 31.952 & 0.433 & 0.882 & 0.610 & 1.842 & 0.596 & 1.817 & 6.070 & 0.647 & 0.258 & 0.647 & 0.258 & 0.258 \\
 & 1000 & 127.714 & 1.221 & 1.341 & 1.463 & 1.943 & 1.448 & 1.924 & 9.273 & 1.546 & 0.729 & 1.546 & 0.729 & 0.729 \\
 & 2000 & 63.921 & 0.581 & 0.815 & 0.798 & 1.471 & 0.798 & 1.456 & 6.557 & 0.719 & 0.327 & 0.719 & 0.327 & 0.327 \\
\hline
\end{tabular}
\caption{(Continued)}
\end{table*}
which imply
\[\text{tr}(B_j Q_{j\pm}) = 0, \quad j \neq j', j, j' = 2, \ldots, p. \]

For a density matrix \(\rho \) with representation (2.4) under the Pauli basis (2.3), from (5.1) we have \(\text{tr}(Q_{k\pm}) = d/2 \) and \(\text{tr}(B_k Q_{k\pm}) = \pm d/2 \), and thus
\[\text{tr}(\rho Q_{k\pm}) = \frac{1}{d} \text{tr}(Q_{k\pm}) + \sum_{j=2}^{p} \frac{\beta_j}{d} \text{tr}(B_j Q_{k\pm}) \]
\[= \frac{1}{2} + \frac{\beta_k}{d} \text{tr}(B_k Q_{k\pm}) = \frac{1 \pm \beta_k}{2}. \]
(5.2)

Proof of Proposition 2. We perform measurements on each Pauli observable \(B_k \) independently for \(n \) quantum systems that are identically prepared under state \(\rho \). Denote by \(R_{k1}, \ldots, R_{kn} \) the \(n \) measurement outcomes for measuring \(B_k \), \(k = 2, \ldots, p \).
\[N_k = (R_{k1} + \cdots + R_{kn})/n, \]
(5.3)

\(R_{k\ell}, k = 2, \ldots, p, \ell = 1, \ldots, n \), are independent, and take values \(\pm 1 \), with distributions given by
\[P(R_{k\ell} = \pm 1) = \text{tr}(\rho Q_{k\pm}), \quad k = 2, \ldots, p, \ell = 1, \ldots, n. \]
(5.4)

As random variables \(R_{k1}, \ldots, R_{kn} \) are i.i.d. and take eigenvalues \(\pm 1 \), \(n(N_k + 1)/2 = \sum_{\ell=1}^{n}(R_{k\ell} + 1)/2 \) is equal to the total number of random variables \(R_{k1}, \ldots, R_{kn} \) taking eigenvalue 1, and thus \(n(N_k + 1)/2 \) follows a binomial distribution with \(n \) trials and cell probability \(P(R_{k1} = 1) = \text{tr}(\rho Q_{k+}) \). From (5.3)–(5.4) and Proposition 1, we have for \(k = 2, \ldots, p \),
\[\text{tr}(\rho Q_{k+}) = \frac{1 + \beta_k}{2}, \quad E(N_k) = E(R_{k1}) = \text{tr}(\rho B_k) = \beta_k \text{tr}(B_k^2)/d = \beta_k, \]
\[\text{Var}(N_k) = \frac{1 - \beta_k^2}{n}. \]
\(\square \)

5.2. Proof of Theorem 1: Upper bound.

Lemma 1. If \(\beta_j \) satisfy sparsity condition (2.5), then for any \(a \),
\[\sum_{j=2}^{p} |\beta_j| \leq a \sigma \leq a^{1-q} \pi_n(p) \sigma^{1-q}, \]
\[\sum_{j=2}^{p} 1(\beta_j \geq a \sigma) \leq a^{-q} \pi_n(p) \sigma^{-q}. \]
PROOF. Simple algebraic manipulation shows
\[
\sum_{j=2}^{p} |\beta_j| 1(|\beta_j| \leq a\varpi) \leq (a\varpi)^{1-q} \sum_{j=2}^{p} |\beta_j|^q 1(|\beta_j| \leq a\varpi)
\leq a^{1-q}\pi_n(p)\varpi^{1-q},
\]
and
\[
\sum_{j=2}^{p} 1(|\beta_j| \geq a\varpi) \leq \sum_{j=2}^{p} [|\beta_j|/(a\varpi)]^q 1(|\beta_j| \geq a\varpi)
\leq (a\varpi)^{-q} \sum_{j=2}^{p} |\beta_j|^q \leq a^{-q}\pi_n(p)\varpi^{-q}.
\]

Lemma 2. With \(\varpi = h n^{-1/2} \sqrt{2 \log p}\) for some positive constant \(h\), we have for any \(a \neq 1\),
\[
P(N_j - \beta_j \leq -|a - 1|\varpi) \leq 2 \exp\left(-\frac{h^2 |a - 1|^2}{2} \pi_n(p)\varpi^{-q}\right),
\]
\[
P(N_j - \beta_j \geq |a - 1|\varpi) \leq 2 \exp\left(-\frac{h^2 |a - 1|^2}{2} \pi_n(p)\varpi^{-q}\right).
\]

Proof. From Proposition 2 and (5.3)–(5.4), we have that \(N_j\) is the average of \(R_{j1}, \ldots, R_{jn}\), which are i.i.d. random variables taking values \(\pm 1\), \(P(R_{j1} = \pm 1) = (1 \pm \beta_j)/2\), \(E(R_{j1}) = \beta_j\) and \(\text{Var}(R_{j1}) = 1 - \beta_j^2\). Applying Bernstein’s inequality, we obtain for any \(x > 0\),
\[
P(|N_j - \beta_j| \geq x) \leq 2 \exp\left(-\frac{nx^2}{2(1 - \beta_j^2 + x/3)}\right) \leq 2 \exp\left(-\frac{nx^2}{2(1 + x/3)}\right).
\]
Both \(P(N_j - \beta_j \leq -|a - 1|\varpi)\) and \(P(N_j - \beta_j \geq |a - 1|\varpi)\) are less than \(P(|N_j - \beta_j| \geq |a - 1|\varpi)\), which is bounded by
\[
2 \exp\left(-\frac{n|a - 1|^2\varpi^2}{2(1 + |a - 1|\varpi/3)}\right) = 2 \exp\left(-\frac{h^2 |a - 1|^2 \log p}{1 + o(1)}\right)
= 2 \exp\left(-\frac{h^2 |a - 1|^2}{1 + o(1)}\right).
\]

Lemma 3.
\[
E\|\hat{\rho} - \rho\|_F^2 = p^{-1/2} \sum_{j=2}^{p} E|\hat{\beta}_j - \beta_j|^2,
\]
\[
p^{1/2} E\|\hat{\rho} - \rho\|_2 \leq \sum_{j=2}^{p} E|\hat{\beta}_j - \beta_j|.
\]
\[pE\|\hat{\rho} - \rho\|_F^2 \leq \sum_{j=2}^{p} E[|\hat{\beta}_j - \beta_j|^2] + \left\{ \sum_{j=2}^{p} E[|\hat{\beta}_j - \beta_j|]\right\}^2 \]
\[- \sum_{j=2}^{p} \left\{ E(|\hat{\beta}_j - \beta_j|)\right\}^2. \]

(5.7)

Proof. Since Pauli matrices \(B_j \) are orthogonal with respect to the usual Euclidean inner product, with \(\|B_j\|_F = \frac{d1}{2} \), and \(\|B_j\|_2 = 1 \), we have

\[\|\hat{\rho} - \rho\|^2_F = \left\| \sum_{j=2}^{p} (\hat{\beta}_j - \beta_j)B_j \right\|^2_F / d^2 = \sum_{j=2}^{p} |\hat{\beta}_j - \beta_j|^2 \|B_j\|^2_F / d^2 \]
\[= \sum_{j=2}^{p} |\hat{\beta}_j - \beta_j|^2 / d, \]

(5.8)

\[p^{1/2}\|\hat{\rho} - \rho\|_2 = \left\| \sum_{j=2}^{p} (\hat{\beta}_j - \beta_j)B_j \right\|_2 \leq \sum_{j=2}^{p} |\hat{\beta}_j - \beta_j| \|B_j\|_2 \]
\[= \sum_{j=2}^{p} |\hat{\beta}_j - \beta_j|, \]

(5.9)

\[p\|\hat{\rho} - \rho\|^2_2 = \left\| \sum_{j=2}^{p} (\hat{\beta}_j - \beta_j)B_j \right\|^2_2 \]
\[\leq \sum_{j=2}^{p} |\hat{\beta}_j - \beta_j|^2 \|B_j\|^2_2 + 2 \sum_{i<j}^{p} |(\hat{\beta}_i - \beta_i)(\hat{\beta}_j - \beta_j)| \|B_iB_j\|_2 \]
\[\leq \sum_{j=2}^{p} |\hat{\beta}_j - \beta_j|^2 \|B_j\|^2_2 + 2 \sum_{i<j}^{p} |(\hat{\beta}_i - \beta_i)(\hat{\beta}_j - \beta_j)| \|B_i\|_2 \|B_j\|_2 \]
\[= \sum_{j=2}^{p} |\hat{\beta}_j - \beta_j|^2 + 2 \sum_{i<j}^{p} |(\hat{\beta}_i - \beta_i)(\hat{\beta}_j - \beta_j)|. \]

(5.10)

As \(N_2, \ldots, N_p \) are independent, \(\hat{\beta}_2, \ldots, \hat{\beta}_p \) are independent. Thus, from (5.8)–(5.10) we obtain (5.5)–(5.6), and

\[pE\|\hat{\rho} - \rho\|^2_2 \]
\[\leq \sum_{j=2}^{p} E|\hat{\beta}_j - \beta_j|^2 + 2 \sum_{i<j}^{p} E|(\hat{\beta}_i - \beta_i)(\hat{\beta}_j - \beta_j)| \]
\[
\begin{align*}
&= \sum_{j=2}^{p} E|\hat{\beta}_j - \beta_j|^2 + 2 \sum_{i < j}^{p} E|\hat{\beta}_i - \beta_i|E|\hat{\beta}_j - \beta_j| \\
&= \sum_{j=2}^{p} E[|\hat{\beta}_j - \beta_j|^2] + \left\{ \sum_{j=2}^{p} E[|\hat{\beta}_j - \beta_j|] \right\}^2 - \sum_{j=2}^{p} \{E(|\hat{\beta}_j - \beta_j|)\}^2.
\end{align*}
\]

Remark 5. Since Pauli matrices \(B_j\) have eigenvalues \(\pm 1\), the Schatten \(s\)-norm \(\|B_j\|_{*s} = d^{1/s}\). Similar to (5.9)–(5.10), we obtain that

\[
(5.11) \quad p^{1/2}\|\hat{\rho} - \rho\|_{*s} \leq \sum_{j=2}^{p} |\hat{\beta}_j - \beta_j|\|B_j\|_{*s} = d^{1/s} \sum_{j=2}^{p} |\hat{\beta}_j - \beta_j|,
\]

\[
(5.12) \quad p\|\hat{\rho} - \rho\|_{*s}^2 \leq d^{2/s} \left[\sum_{j=2}^{p} |\hat{\beta}_j - \beta_j| \right]^2 = d^{2/s} \left[\sum_{j=2}^{p} |\hat{\beta}_j - \beta_j|^2 + 2 \sum_{i < j}^{p} |(\hat{\beta}_i - \beta_i)(\hat{\beta}_j - \beta_j)| \right].
\]

Lemma 4.

\[
(5.13) \quad \sum_{j=2}^{p} E|\hat{\beta}_j - \beta_j| \leq C_1 \pi_n(d) \sigma^{1-q},
\]

\[
(5.14) \quad \sum_{j=2}^{p} [E|\hat{\beta}_j - \beta_j|^2] \leq \sum_{j=2}^{p} E[|\hat{\beta}_j - \beta_j|^2] \leq C_2 \pi_n(d) \sigma^{2-q}.
\]

Proof. Using (2.6), we have

\[E|\hat{\beta}_j - \beta_j|\]

\[\leq E[(|N_j - \beta_j| + \sigma)1(|N_j| \geq \sigma)] + |\beta_j|P(|N_j| \leq \sigma)\]

\[\leq [E|N_j - \beta_j|^2P(|N_j| \geq \sigma)]^{1/2} + \sigma P(|N_j| \geq \sigma) + |\beta_j|P(|N_j| \leq \sigma)\]

\[\leq \left[n^{-1}(1 - \beta_j^2)P(|N_j| \geq \sigma) \right]^{1/2} + \sigma P(|N_j| \geq \sigma) + |\beta_j|P(|N_j| \leq \sigma)\]

\[\leq 2\sigma \left[P(|N_j| \geq \sigma) \right]^{1/2} + |\beta_j|P(|N_j| \leq \sigma)\]

\[= 2\sigma \left[P(|N_j| \geq \sigma) \right]^{1/2}\left\{1(|\beta_j| > a_1\sigma) + 1(|\beta_j| \leq a_1\sigma)\right\}\]

\[+ |\beta_j|P(|N_j| \leq \sigma)\left\{1(|\beta_j| > a_2\sigma) + 1(|\beta_j| \leq a_2\sigma)\right\} \]

\[\leq 2\sigma 1(|\beta_j| > a_1\sigma) + 2\sigma \left[P(|N_j| \geq \sigma) \right]^{1/2}1(|\beta_j| \leq a_1\sigma)\]

\[+ P(|N_j| \leq \sigma)1(|\beta_j| > a_2\sigma) + |\beta_j|1(|\beta_j| \leq a_2\sigma)\],
where a_1 and a_2 are two constants satisfying $a_1 < 1 < a_2$ whose values will be chosen later, and

$$\sum_{j=2}^{p} E|\hat{\beta}_j - \beta_j| \leq 2\sigma \sum_{j=2}^{p} 1(|\beta_j| > a_1 \sigma)$$

(5.15)

$$+ 2\sigma \sum_{j=2}^{p} [P(|N_j| \geq \sigma)]^{1/2} 1(|\beta_j| \leq a_1 \sigma)$$

$$+ \sum_{j=2}^{p} P(|N_j| \leq \sigma) 1(|\beta_j| > a_2 \sigma) + \sum_{j=2}^{p} |\beta_j| 1(|\beta_j| \leq a_2 \sigma).$$

Similarly,

$$[E(|\hat{\beta}_j - \beta_j|^2)]^2 \leq E[|\hat{\beta}_j - \beta_j|^2]$$

$$\leq E[2(|N_j| - \beta_j|^2 + \sigma^2) 1(|N_j| \geq \sigma)] + |\beta_j|^2 P(|N_j| \leq \sigma)$$

$$\leq 2[E|N_j - \beta_j|^4 P(|N_j| \geq \sigma)]^{1/2}$$

$$+ 2\sigma^2 P(|N_j| \geq \sigma) + |\beta_j|^2 P(|N_j| \leq \sigma)$$

$$\leq c\sigma^2 [P(|N_j| \geq \sigma)]^{1/2} + |\beta_j|^2 P(|N_j| \leq \sigma)$$

$$= c\sigma^2 [P(|N_j| \geq \sigma)]^{1/2} \{1(\beta_j > a_1 \sigma) + 1(\beta_j \leq a_1 \sigma)\}$$

$$+ |\beta_j|^2 P(|N_j| \leq \sigma)[1(\beta_j > a_2 \sigma) + 1(\beta_j \leq a_2 \sigma)]$$

$$\leq c\sigma^2 1(\beta_j > a_1 \sigma) + c\sigma^2 [P(|N_j| \geq \sigma)]^{1/2} 1(\beta_j \leq a_1 \sigma)$$

$$+ P(|N_j| \leq \sigma) 1(|\beta_j| > a_2 \sigma) + |\beta_j|^2 1(|\beta_j| \leq a_2 \sigma),$$

and

$$\sum_{j=2}^{p} E[|\hat{\beta}_j - \beta_j|^2]$$

$$\leq c\sigma^2 \sum_{j=2}^{p} 1(|\beta_j| > a_1 \sigma)$$

(5.16)

$$+ c\sigma^2 \sum_{j=2}^{p} [P(|N_j| \geq \sigma)]^{1/2} 1(|\beta_j| \leq a_1 \sigma)$$

$$+ \sum_{j=2}^{p} P(|N_j| \leq \sigma) 1(|\beta_j| > a_2 \sigma) + \sum_{j=2}^{p} |\beta_j|^2 1(|\beta_j| \leq a_2 \sigma).$$
By Lemma 1, we have
\begin{equation}
\sum_{j=2}^{p} |\beta_j| 1(|\beta_j| \leq a_2 \varpi) \leq a_2^{1-q} \pi_n(d) \varpi^{-q}, \tag{5.17}
\end{equation}
\begin{equation}
\sum_{j=2}^{p} |\beta_j|^2 1(|\beta_j| \leq a_2 \varpi) \leq (a_2 \varpi)^{2-q} \sum_{j=2}^{p} |\beta_j|^q 1(|\beta_j| \leq a_2 \varpi) \leq a_2^{2-q} \pi_n(d) \varpi^{2-q}, \tag{5.18}
\end{equation}
\begin{equation}
\varpi \sum_{j=2}^{p} 1(|\beta_j| \geq a_1 \varpi) \leq a_1^{-q} \pi_n(d) \varpi^{-q}. \tag{5.19}
\end{equation}

On the other hand,
\begin{equation}
\sum_{j=2}^{p} P(|N_j| \leq \varpi) 1(|\beta_j| > a_2 \varpi) \leq \sum_{j} P(-\varpi - \beta_j \leq N_j - \beta_j \leq \varpi - \beta_j) 1(|\beta_j| > a_2 \varpi) \leq 4 p^{1-(q-2)/2} \leq 4 p^{-1-n^{-1}(q-2)/2} = o(\pi_n(d) \varpi^{2-q}), \tag{5.20}
\end{equation}
where the third inequality is from Lemma 2, the first equality is due the fact that we take \(a_2 = 1 + \frac{2+(2-q)/(2c_0)}{1+o(1)}\) so that \(h^2(1-a_2)^2/(1+o(1)) = 4 h^2 (1+o(1)))/2 \) and \(c_0\) is the constant in assumption \(p \geq n^{c_0}\). Finally, we can show
\begin{equation}
\varpi \sum_{j=2}^{p} [P(|N_j| \geq \varpi)]^{1/2} 1(|\beta_j| \leq a_1 \varpi) \
\leq \varpi \sum_{j=2}^{p} [P(N_j - \beta_j \leq -\varpi - \beta_j)]^{1/2} 1(|\beta_j| \leq a_1 \varpi) + P(N_j - \beta_j \geq a_1 \varpi) \leq 2 \varpi p^{-1} = o(\pi_n(d) \varpi^{1-q}), \tag{5.21}
\end{equation}
where the third inequality is from Lemma 2, and the first equality is due to the fact that we take $a_1 = 1 - 2(1 + o(1))^{1/2}/h$ so that $h^2(1 - a_1)^2 = 4$. Plugging (5.17)–(5.21) into (5.15) and (5.16), we prove the lemma. □

Proof of Theorem 1. Combining Lemma 4 and (5.5)–(5.6) in Lemma 3, we easily obtain

$$E[\| \hat{\rho} - \rho \|_2] \leq C_1 \frac{\pi_n(d)}{p^{1/2}} \left(\frac{\log p}{n} \right)^{(1-q)/2},$$

$$E[\| \hat{\rho} - \rho \|_F^2] \leq C_0 \pi_n(d) \frac{1}{d} \left(\frac{\log p}{n} \right)^{1-q/2}.$$

Using Lemma 4 and (5.7) in Lemma 3, we conclude

$$E[\| \hat{\rho} - \rho \|_2^2] \leq C_2 \left[\pi_n^2(d) \frac{1}{p} \left(\frac{\log p}{n} \right)^{1-q} + \pi_n(d) \frac{1}{p} \left(\frac{\log p}{n} \right)^{1-q/2} \right]$$

(5.22)

$$\leq C \frac{\pi_n^2(d)}{d^2} \left(\frac{\log p}{n} \right)^{1-q},$$

where the last inequality is due to the fact that the first term on the right-hand side of (5.22) dominates its second term. □

Proof of Proposition 3. Applying the Lyapunov’s moment inequality to the Schatten s-norm, we have for $s \in [1, 2]$ and $\rho \in \Theta$,

$$E[\| \hat{\rho} - \rho \|_{s}^2] \leq d^{-1+2/s} E[\| \hat{\rho} - \rho \|_{s}^2]$$

$$= d^{-1+2/s} E[\| \hat{\rho} - \rho \|_{F}^2]$$

$$\leq c_1 \pi_n(d) d^{-2+2/s} \left(\frac{\log d}{n} \right)^{1-q/2},$$

where the last inequality is due to Theorem 1. On the other hand, applying Hölder’s inequality by interpolating between Schatten s-norms with $s = 2$ and $s = \infty$, we obtain for $s \in [2, \infty]$ and $\rho \in \Theta$,

$$E[\| \hat{\rho} - \rho \|_{s}^2] \leq E[\| \hat{\rho} - \rho \|_{2}^{4/s} \| \hat{\rho} - \rho \|_{\infty}^{2-4/s}]$$

$$\leq \left[E[\| \hat{\rho} - \rho \|_{2}^2] \right]^{2/s} \left[E[\| \hat{\rho} - \rho \|_{\infty}^2] \right]^{1-2/s}$$

$$\leq c_7 \pi_n^{2-2/s}(d) d^{-2+2/s} \left(\frac{\log d}{n} \right)^{1-q+q/s},$$

where the last inequality is due to Theorem 1, and $c_7 = c_1^{(s-2)/s} c_2^{2/s}$. The result follows by combining the above two inequalities together. □
5.3. Proofs of Theorems 2 and 3: Lower bound.

Proof of Theorem 2 (for the lower bound under the spectral norm). We first define a subset of the parameter space Θ_1. It will be shown later that the risk upper bound under the spectral norm is sharp up to a constant factor, when the parameter space is sufficiently sparse. Consider a subset of the Pauli basis, $\{\sigma_{l_1} \otimes \sigma_{l_2} \otimes \cdots \otimes \sigma_{l_b}\}$, where $\sigma_{l_i} = \sigma_0$ or σ_3. Its cardinality is $d = 2^b = p^{1/2}$. Denote each element of the subset by $B_j, j = 1, 2, \ldots, d$, and let $B_1 = I_d$. We will define each element of Θ_1 as a linear combination of B_j. Let $\gamma_j \in \{0, 1\}, j = 1, 2, \ldots, d$, and denote $\eta = \sum_j \gamma_j = \|\gamma\|_0$. The value of η is either 0 or K, where K is the largest integer less than or equal to $\pi_n(d)/ (\log p_n)^q/2$. By assumption (3.3), we have

\begin{equation}
1 \leq K = O(d^v) \quad \text{with } v < 1/2.
\end{equation}

Let $\varepsilon^2 = (1 - 2v)/4$ and set $a = \varepsilon \sqrt{\log p_n}$. Now we are ready to define Θ,

\begin{equation}
\Theta = \left\{ \rho(\gamma) : \rho(\gamma) = \frac{I_d}{d} + a \sum_{j=2}^d \gamma_j \frac{B_j}{d}, \text{ and } \eta = 0 \text{ or } K \right\}.
\end{equation}

Note that Θ is a subset of the parameter space, since

\[\sum_{j=2}^d (a\gamma_j)^q \leq Ka^q \leq \varepsilon^q \pi_n(d) \leq \pi_n(d), \]

and its cardinality is $1 + \left(\frac{d-1}{K}\right)$.

We need to show that

\[\inf_{\hat{\rho}} \sup_{\Theta} E \| \hat{\rho} - \rho \|_2^2 \gtrsim \pi_n^2(d) \frac{1}{p} \left(\frac{\log p}{n} \right)^{1-q}. \]

Note that for each element in Θ, its first entry ρ_{11} may take the form $1/d + a \sum_{j=2}^d \gamma_j/d = 1/d + (a/d)\eta$. It can be shown that

\[\inf_{\hat{\rho}} \sup_{\Theta} E \| \hat{\rho} - \rho \|_2^2 \gtrsim \inf_{\hat{\rho}_{11}} \sup_{\Theta} E (\hat{\rho}_{11} - \rho_{11})^2 \geq \frac{a^2}{d^2} \inf_{\hat{\eta}} \sup_{\Theta} E (\hat{\eta} - \eta)^2. \]

It is then enough to show that

\begin{equation}
\inf_{\hat{\eta}} \sup_{\Theta} E (\hat{\eta} - \eta)^2 \gtrsim K^2,
\end{equation}

which immediately implies

\[\inf_{\hat{\rho}} \sup_{\Theta} E \| \hat{\rho} - \rho \|_2^2 \gtrsim K^2 \frac{a^2}{d^2} \gtrsim \pi_n^2(d) \frac{1}{p} \left(\frac{\log p}{n} \right)^{1-q}. \]
We prove equation (5.25) by applying Le Cam’s lemma. From observations \(N_j, j = 2, \ldots, d\), we define \(\tilde{N}_j = n(N_j + 1)/2\), which is Binomial\((n, \frac{1+\alpha_j}{2})\). Let \(P_{\gamma}\) be the joint distribution of independent random variables \(\tilde{N}_2, \tilde{N}_3, \ldots, \tilde{N}_d\). The cardinality of \(\{P_{\gamma}\}\) is \(1 + \binom{d-1}{K}\). For two probability measures \(P, Q\) with density \(f, g\) with respect to any common dominating measure \(\mu\), write the total variation affinity \(\|P \wedge Q\| = \int f \wedge g \, d\mu\), and the Chi-square distance \(\chi^2(P, Q) = \int \frac{g^2}{f} - 1\).

Define

\[
\hat{P} = \left(\frac{d-1}{K} \right)^{-1} \sum_{\|\gamma\|_0 = K} P_{\gamma}.
\]

The following lemma is a direct consequence of Le Cam’s lemma [cf. Le Cam (1973) and Yu (1997)].

Lemma 5. Let \(\hat{\eta}\) be any estimator of \(\eta\) based on an observation from a distribution in the collection \(\{P_{\gamma}\}\), then

\[
\inf_{\hat{\rho}} \sup_{\Theta_1} E(\hat{\eta} - \eta)^2 \geq \frac{1}{4} \|P_0 \wedge \hat{P}\|^2 \cdot K^2.
\]

We will show that there is a constant \(c > 0\) such that

\[
(5.26) \quad \|P_0 \wedge \hat{P}\| \geq C,
\]

which, together with Lemma 5, immediately imply equation (5.25).

Lemma 6. Under conditions (5.23) and (5.24), we have

\[
\inf_{\hat{\rho}} \sup_{\Theta} E(\hat{\rho} - \rho)^2 \gtrsim K^2,
\]

which implies

\[
\inf_{\hat{\rho}} \sup_{\Theta} E \|\hat{\rho} - \rho\|_2^2 \gtrsim \pi^2_n(d) \frac{1}{p} \left(\frac{\log p}{n} \right)^{1-q}.
\]

Proof. It is enough to show that

\[
\chi^2(P_0, \hat{P}) \rightarrow 0,
\]

which implies \(\|P_0 - \hat{P}\|_{TV} \rightarrow 0\), then we have \(\|P_0 \wedge \hat{P}\| \rightarrow 1\). Let \(J(\gamma, \gamma')\) denote the number of overlapping nonzero coordinates between \(\gamma\) and \(\gamma'\). Note that

\[
\chi^2(P_0, \hat{P}) = \int \frac{(d\hat{P})^2}{dP_0} - 1
\]

\[
= \left(\frac{d-1}{K} \right)^{-2} \sum_{0 \leq j \leq K} \sum_{J(\gamma, \gamma') = j} \left(\int \frac{dP_{\gamma} \cdot dP_{\gamma'}}{dP_0} - 1 \right).
\]
When \(J(\gamma, \gamma') = j \), we have
\[
\int \frac{d\mathbb{P}_\gamma}{d\mathbb{P}_0} \cdot \frac{d\mathbb{P}_{\gamma'}}{d\mathbb{P}_0} = \left(\sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right) \frac{1}{2^l 2^{n-l}} \cdot (1 + a)^{2l} (1 - a)^{2n-2l} \right)^j
\]
\[
= \left(\sum_{l=0}^{n} \left(\begin{array}{c} n \\ l \end{array} \right) \frac{(1 + a)^2}{2} \left(\frac{(1 - a)^2}{2} \right)^{n-l} \right)^j
\]
\[
= \left(\frac{(1 + a)^2}{2} + \frac{(1 - a)^2}{2} \right)^{nj}
\]
\[
= (1 + a^2)^{nj} \leq \exp(na^2 j),
\]
which implies
\[
\chi^2(\mathbb{P}_0, \mathbb{P}) \leq \left(\frac{d - 1}{K} \right)^{-2} \sum_{0 \leq j \leq K} \sum_{J(\gamma, \gamma') = j} (\exp(na^2 j) - 1)
\]
\[
\leq \left(\frac{d - 1}{K} \right)^{-2} \sum_{1 \leq j \leq K} \sum_{J(\gamma, \gamma') = j} \exp(na^2 j)
\]
\[
= \sum_{1 \leq j \leq K} \left(\frac{K}{j} \right) \left(\frac{d - 1 - K}{K - j} \right) d^{2\varepsilon^2 j}.
\]
Since
\[
\left(\frac{K}{j} \right) \left(\frac{d - 1 - K}{K - j} \right) \leq \frac{K^2 j (d - 1 - K) (d - K)^{K - j}}{(d - K)^K} \leq \left(\frac{K^2}{d - K} \right)^j,
\]
and \(\varepsilon^2 = (1 - 2v)/4 \), we then have
\[
\chi^2(\mathbb{P}_0, \mathbb{P}) \leq \sum_{1 \leq j \leq K} \left[\frac{K^2}{d - K} d^{2\varepsilon^2} \right]^j \leq \sum_{1 \leq j \leq K} \left[\frac{d^{2v+(1-2v)/2}}{d - K} \right]^j \to 0. \quad \square
\]

Proof of Theorem 3 (for the lower bound under the Frobenius norm). Recall that \(\Theta \) is the collection of density matrices such that
\[
\rho = \frac{1}{d} \left(I_d + \sum_{j=2}^{p} \beta_j B_j \right),
\]
where
\[
\sum_{j=2}^{p} | \beta_j |^q \leq \pi_n(p).
\]
Apply Assouad’s lemma, and we show below that
\[
\inf_{\hat{\rho}} \sup_{\rho \in \Theta} E[\|\hat{\rho} - \rho\|^2] \geq C \pi_n(p) \frac{1}{d} \left(\frac{\log p}{n} \right)^{1-q/2},
\]
where \(\hat{\rho}\) denotes any estimator of \(\rho\) based on measurement data \(N_2, \ldots, N_p\), and \(C\) is a constant free of \(n\) and \(p\).

To this end, it suffices to construct a collection of \(M + 1\) density matrices \(\{\rho_0 = I_d/d, \rho_1, \ldots, \rho_M\} \subset \Theta\) such that (i) for any distinct \(k\) and \(k_0\),
\[
\|\rho_k - \rho_{k_0}\|^2 \geq C_1 \pi_n(p) \frac{1}{d} \left(\frac{\log p}{n} \right)^{1-q/2},
\]
where \(C_1\) is a constant; (ii) there exists a constant \(0 < C_2 < 1/8\) such that
\[
\frac{1}{M} \sum_{k=1}^M D_{KL}(P_{\rho_k}, P_{\rho_0}) \leq C_2 \log M,
\]
where \(D_{KL}\) denotes the Kullback–Leibler divergence.

By the Gilbert–Varshamov bound [cf. Nielsen and Chuang (2000)], we have that for any \(h < p/8\), there exist \(M\) binary vectors \(\gamma_k = (\gamma_{k2}, \ldots, \gamma_{kp})' \in \{0, 1\}^{p-1}, k = 1, \ldots, M\), such that (i) \(\|\gamma_k\|_1 = \sum_{j=2}^p |\gamma_{kj}| = h\), (ii) \(\|\gamma_k - \gamma_{k_0}\|_1 = \sum_{j=2}^p |\gamma_{kj} - \gamma_{k_0j}| \geq h/2\), and (iii) \(\log M > 0.233h \log(p/h)\). Let
\[
\rho_k = \frac{1}{d} \left(I_d + \epsilon \sum_{j=2}^p \gamma_{kj} B_j\right),
\]
where
\[
\epsilon = C_3 \left(\frac{\pi_n(p)}{h}\right)^{1/q}.
\]
Since \(\sum_{j=2}^p |\epsilon \gamma_{kj}|^q = \epsilon^q h = C_3 \pi_n(p)\), \(\rho_k \in \Theta\) whenever \(C_3 \leq 1\). Moreover,
\[
d\|\rho_k - \rho_{k_0}\|^2 = \epsilon^2 \|\gamma_k - \gamma_{k_0}\|_1 \geq \frac{\epsilon^2 h}{4}.
\]
On the other hand,
\[
D_{KL}(P_{\rho_k}, P_{\rho_0}) = h D_{KL} \left(\text{Bin} \left(n, \frac{1+\epsilon}{2} \right), \text{Bin} \left(n, \frac{1}{2} \right)\right)
\]
\[
= h n \epsilon^2 \log \frac{1/2 + \epsilon}{1/2 - \epsilon} \leq C_4 h n \epsilon^2.
\]
Now the lower bound can be established by taking
\[
h = \pi_n(p) \left(\frac{\log p}{n}\right)^{-q/2},
\]
and then
\[\epsilon = C_3 \left(\frac{\log p}{n} \right)^{1/2}, \quad \epsilon^2 h \frac{4}{C_3} = C_3 \pi_n(p) \left(\frac{\log p}{n} \right)^{1-q/2}, \]

\[C_4 h n \epsilon^2 = C_4 h \log p, \quad h \log (p/h) = h \log p - h \log h, \]

\[\log h \sim \log \pi_n(p) + \frac{q}{2} \log n - \frac{q}{2} \log \log p, \]

which are allowed by the assumption \(\log \pi_n(p) + \frac{q}{2} \log n < v' \log p \) for \(v' < 1 \). \(\square \)

REFERENCES

T. CAI
DEPARTMENT OF STATISTICS
THE WHARTON SCHOOL
UNIVERSITY OF PENNSYLVANIA
PHILADELPHIA, PENNSYLVANIA 19104
USA
E-MAIL: tcai@wharton.upenn.edu

H. H. ZHOU
DEPARTMENT OF STATISTICS
YALE UNIVERSITY
NEW HAVEN, CONNECTICUT 06511
USA
E-MAIL: huibin.zhou@yale.edu

D. KIM
DEPARTMENT OF STATISTICS
UNIVERSITY OF WISCONSIN-MADISON
MADISON, WISCONSIN 53706
USA
E-MAIL: kimd@stat.wisc.edu

Y. WANG
yzwang@stat.wisc.edu

M. YUAN
myuan@stat.wisc.edu

Y. WANG
yzwang@stat.wisc.edu

M. YUAN
myuan@stat.wisc.edu