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SUMMARY

It is often of interest to understand how the structure of a genetic network differs between
two conditions. In this paper, each condition-specific network is modelled using the precision
matrix of a multivariate normal random vector, and a method is proposed to directly estimate
the difference of the precision matrices. In contrast to other approaches, such as separate or joint
estimation of the individual matrices, direct estimation does not require those matrices to be
sparse, and thus can allow the individual networks to contain hub nodes. Under the assumption
that the true differential network is sparse, the direct estimator is shown to be consistent in support
recovery and estimation. It is also shown to outperform existing methods in simulations, and its
properties are illustrated on gene expression data from late-stage ovarian cancer patients.

Some key words: Differential network; Graphical model; High dimensionality; Precision matrix.

1. INTRODUCTION

A complete understanding of the molecular basis of disease will require characterization of
the network of interdependencies between genetic components. There are many types of net-
work that may be considered, such as protein-protein interaction networks or metabolic networks
(Emmert-Streib & Dehmer, 2011), but the focus of this paper is on transcriptional regulatory
networks. In many cases, interest centres not on a particular network but rather on whether and
how the network changes between disease states. Indeed, differential networking analysis has
recently emerged as an important complement to differential expression analysis (de la Fuente,
2010; Ideker & Krogan, 2012). For example, Hudson et al. (2009) studied a mutant breed of cat-
tle known to differ from wild-type cattle by a mutation in the myostatin gene. The myostatin gene
was not differentially expressed between the two breeds, but Hudson et al. (2009) showed that a
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differential network analysis could correctly identify it as the gene containing the causal muta-
tion. In another example, using an experimental technique called differential epistasis mapping,
Bandyopadhyay et al. (2010) demonstrated large-scale changes in the genetic networks of yeast
cells after perturbation by a DNA-damaging agent.

Transcriptional networks are frequently modelled as Gaussian graphical models (Markowetz
& Spang, 2007). Gene expression levels are assumed to be jointly Gaussian, so that two expres-
sion levels are conditionally independent given the other genes if and only if the corresponding
entry of the precision matrix, or inverse covariance matrix, is zero. Representing gene expres-
sion levels as nodes and conditional dependency relationships as edges in a graph results in a
Gaussian graphical model (Lauritzen, 1996). A differential network can be modelled as a set of
changes in this graph structure between two conditions.

However, there may be cases where the conditional dependency relationships between pairs
of genes change in magnitude but not in structure. For example, two genes may be positively
conditionally dependent in one group but negatively conditionally dependent in the other; the
supports of the precision matrices of the two groups would be identical and would not reflect
these potentially biologically significant differences in magnitude. For this reason, in the present
paper two genes are instead defined to be connected in the differential network if the magnitude of
their conditional dependency relationship changes between two groups. More precisely, consider
independent observations of the expression levels of p genes from two groups of subjects: Xi =
(Xi1, . . . , Xip)

T for i = 1, . . . , nX from one group and Yi = (Yi1, . . . , Yip)
T for i = 1, . . . , nY

from the other, where Xi ∼ N (μX , �X ) and Yi ∼ N (μY , �Y ). The differential network is defined
to be the difference between the two precision matrices, denoted by �0 = �−1

Y − �−1
X . The

entries of �0 can also be interpreted as the differences in the partial covariances of each pair
of genes between the two groups. This type of model for a differential network has been adopted
by others as well, for example Li et al. (2007) and Danaher et al. (2014), and in a 2013 unpub-
lished technical report by N. Städler and S. Mukherjee (arXiv:1308.2771).

2. PREVIOUS APPROACHES

There are currently two main types of approach to estimating �0. The most straightforward
one is to separately estimate �−1

X and �−1
Y and then subtract the estimates. A naive estimate of

a single precision matrix can be obtained by inverting the sample covariance matrix. However,
in most experiments the number of gene expression probes exceeds the number of subjects. In
this high-dimensional data setting, the sample covariance matrix is singular and alternative meth-
ods are needed to estimate the precision matrix. Theoretical and computational work has shown
that estimation is possible under the key assumption that the precision matrix is sparse, mean-
ing that each row and each column has relatively few nonzero entries (Friedman et al., 2008;
Ravikumar et al., 2008; Yuan, 2010; Cai et al., 2011).

The second type of approach is to jointly estimate �−1
X and �−1

Y , assuming that they share
common features. For example, Chiquet et al. (2011), Guo et al. (2011) and Danaher et al. (2014)
penalized the joint loglikelihood of the Xi and Yi using penalties such as the group lasso
(Yuan & Lin, 2006) and group bridge (Huang et al., 2009; Wang et al., 2009), which encourage
the estimated precision matrices to have similar supports. Danaher et al. (2014) also introduced
the fused graphical lasso, which uses a fused lasso penalty (Tibshirani et al., 2005) to encourage
the entries of the estimated precision matrices to have similar magnitudes.

Most of these approaches assume that both �−1
X and �−1

Y are sparse, but real transcriptional
networks often contain hub nodes (Barabási & Oltvai, 2004; Barabási et al., 2011), or genes that
interact with many other genes. The rows and columns of �−1

X and �−1
Y corresponding to hub
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nodes have many nonzero entries and violate the sparsity condition. The method of Danaher et al.
(2014) is one exception that does not require individual sparsity. Its estimates �̂−1

X and �̂−1
Y

minimize∑
g∈{X,Y }

ng{log det �−1
g − tr(�̂g�

−1
g )} − λ1

∑
g∈{X,Y }

∑
j |= k

|ωg
jk | + λ2

∑
jk

|ωX
jk − ωY

jk |, (1)

where �̂X and �̂Y are sample covariance matrices of the Xi and Yi , ωX
jk and ωY

jk are the ( j, k)th

entries of �−1
X and �−1

Y , and det(·) and tr(·) denote the determinant and trace of a matrix, respec-
tively. The first term of (1) is the joint likelihood of the Xi and Yi , and the second and third terms
constitute a fused lasso-type penalty. The parameters λ1 and λ2 control the sparsity of the individ-
ual precision matrix estimates and the similarities of their entries, respectively, and when λ1 is set
to zero (1) does not require �̂−1

X or �̂−1
Y to be sparse. A referee pointed out that methods recently

introduced by Mohan et al. (2012) were also designed for estimating networks containing hubs;
however, theoretical performance guarantees for these methods have not yet been derived.

The direct estimation method proposed in this paper does not require �−1
X and �−1

Y to be sparse
and does not require separate estimation of these precision matrices. Theoretical performance
guarantees are provided for differential network recovery and estimation, and simulations show
that when the separate networks include hub nodes, direct estimation is more accurate than fused
graphical lasso or separate estimation.

3. DIRECT ESTIMATION OF THE DIFFERENCE OF TWO PRECISION MATRICES

3·1. Constrained optimization approach

We use |·| to denote elementwise norms and ‖·‖ to denote matrix norms. For a p × 1 vector
a = (a1, . . . , ap)

T, define |a|0 to be the number of nonzero elements of a, and let |a|1 = ∑
j |a j |,

|a|2 = (
∑

j a2
j )

1/2 and |a|∞ = max j |a j |. For a p × p matrix A with entries a jk , let |A|0 be the
number of nonzero entries of A, |A|1 = ∑

j,k |a jk |, |A|∞ = max j,k |a jk |, ‖A‖1 = maxk
∑

j |a jk |,
‖A‖∞ = max j

∑
k |a jk |, ‖A‖2 = sup|a|2�1 |Aa|2 and ‖A‖F = (

∑
j,k a2

jk)
1/2.

Let �̂X = n−1
X

∑
i (Xi − X̄)(Xi − X̄)T, where X̄ = n−1

X

∑
i Xi , and define �̂Y similarly. Since

the true �0 satisfies �X�0�Y − (�X − �Y ) = 0, a sensible estimation procedure would solve
�̂X��̂Y − (�̂X − �̂Y ) = 0 for �. When min(nX , nY ) < p there are an infinite number of solu-
tions, but accurate estimation is still possible when �0 is sparse. Motivated by the constrained
�1 minimization approach to precision matrix estimation of Cai et al. (2011), one estimator can
be obtained by solving

arg min |�|1 subject to |�̂X��̂Y − �̂X + �̂Y |∞ � λn

and then symmetrizing the solution. This is equivalent to a linear program, as for any three p × p
matrices A, B and C , vec(ABC) = (CT ⊗ A) vec(B) where ⊗ denotes the Kronecker product
and vec(B) denotes the p2 × 1 vector obtained by stacking the columns of B. Therefore �0
could be estimated by solving and then symmetrizing

arg min |�|1 subject to |(�̂Y ⊗ �̂X ) vec(�) − vec(�̂X − �̂Y )|∞ � λn. (2)

This approach directly estimates the difference matrix without even implicitly estimating the
individual precision matrices. The key is that sparsity is assumed for �0 and not for �−1

X or �−1
Y .
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Direct estimation thus allows the presence of hub nodes in the individual networks and can still
achieve accurate support recovery and estimation in high dimensions, as will be discussed in § 4.
A similar direct estimation approach was proposed by Cai & Liu (2011) for high-dimensional
linear discriminant analysis. Linear discriminant analysis depends on the product of a precision
matrix and the difference between two mean vectors, and Cai & Liu (2011) showed that direct
estimation of this product is possible even in cases where the precision matrix or the mean dif-
ference are not individually estimable.

3·2. A modified problem

The linear program (2) has a p2 × p2 constraint matrix �̂Y ⊗ �̂X and can become computa-
tionally demanding for large p. A modified procedure can alleviate this burden by requiring the
estimate to be symmetric. Denote the ( j, k)th entry of a matrix � by δ jk , and define β to be the
p(p + 1)/2 × 1 vector with β = (δ jk)1� j�k�p. Estimating a symmetric � is thus equivalent to
estimating β, which has only p(p + 1)/2 parameters. Define the p2 × p(p + 1)/2 matrix S with
columns indexed by 1 � j � k � p and with rows indexed by l = 1, . . . , p and m = 1, . . . , p, so
that each entry is labelled by Slm, jk . For j � k, let S jk, jk = Skj, jk = 1 and set all other entries of
S equal to zero. For example, when p = 3,

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11,11 S11,12 S11,13 S11,22 S11,23 S11,33
S21,11 S21,12 S21,13 S21,22 S21,23 S21,33
S31,11 S31,12 S31,13 S31,22 S31,23 S31,33
S12,11 S12,12 S12,13 S12,22 S12,23 S21,33
S22,11 S22,12 S22,13 S22,22 S22,23 S11,33
S32,11 S32,12 S32,13 S32,22 S32,23 S32,33
S13,11 S13,12 S13,13 S13,22 S13,23 S23,33
S23,11 S23,12 S23,13 S23,22 S23,23 S13,33
S33,11 S33,12 S33,13 S33,22 S33,23 S33,33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

When � is symmetric, some calculation shows that (�̂Y ⊗ �̂X ) vec(�) = (�̂Y ⊗ �̂X )Sβ.
Furthermore, if β0 = (δ0

jk)1� j�k�p, where δ0
jk is the ( j, k)th entry of �0, then by Lemma A1

β0 is the unique solution to ST(�Y ⊗ �X )Sβ − ST vec(�X − �Y ) = 0. Therefore one reason-
able way to estimate a sparse β0 in high dimensions is to solve

β̂ = arg min |β|1 subject to |ST(�̂Y ⊗ �̂X )Sβ − ST vec(�̂X − �̂Y )|∞ � λn.

However, the inequality constraints can be improved. Let E be the p × p matrix such that
vec(E) = (�̂Y ⊗ �̂X )Sβ. These constraints treat the diagonals and off-diagonals of E − (�̂X −
�̂Y ) differently, with the diagonals constrained roughly half as much as the off-diagonals.

Therefore the remainder of this paper considers the estimate of �0 obtained by solving

β̂ = arg min |β|1 subject to

{
|ST�̂Sβ − STb̂|O∞ � λn,

|ST�̂Sβ − STb̂|D∞ � λn/2,
(3)

where �̂ = �̂Y ⊗ �̂X , b̂ = vec(�̂X − �̂Y ) and, for a p(p + 1)/2 × 1 vector c, |c|O∞ denotes
the sup-norm of the entries of c corresponding to the off-diagonal elements of its matrix form,
while |c|D∞ denotes the sup-norm of the entries corresponding to the diagonal elements. The
matrix form of β̂ will be denoted by �̂. Compared with (2), the estimator (3) requires only a
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p(p + 1)/2 × p(p + 1)/2 constraint matrix, but needs a stronger theoretical condition to guar-
antee support recovery and estimation consistency, which is discussed in § 4.

3·3. Implementation

The estimator (3) can be computed by slightly modifying code from the R (R Development
Core Team, 2014) package flare, recently developed by Li et al. (2013) to implement a variety
of high-dimensional linear regression and precision matrix estimation methods. Their algorithm
uses the alternating direction method of multipliers; for a thorough discussion see Boyd et al.
(2011). To apply their algorithm, rewrite (3) as

β̂ = arg min
r,β

f (r) + |β|1 subject to r + ST�̂Sβ = STb̂,

where f (r) equals infinity if |r |O∞ > λn or |r |D∞ > λn/2 and zero otherwise. The augmented
Lagrangian is then

Lρ(r, β, y) = f (r) + |β|1 + uT(r + ST�̂Sβ − STb̂) + (ρ/2)‖r + ST�̂Sβ − STb̂‖2
2,

where u is the Lagrange multiplier and ρ > 0 is a penalty parameter specified by the user. The
alternating direction method of multipliers obtains the solution by using the updates

r (t+1) = arg min
r

‖u(t)/ρ + STb̂ − ST�̂Sβ(t) − r‖2
2/2 + f (r)/ρ,

β(t+1) = arg min
β

‖u(t)/ρ − r (t+1) + STb̂ − ST�̂Sβ‖2
2/2 + |β|1/ρ,

u(t+1) = u(t) + ρ(STb̂ − r (t+1) − ST�̂Sβ(t+1)),

for each iteration t . The flare package incorporates several strategies to speed convergence, such
as using a closed-form expression for r (t+1), employing a hybrid coordinate descent and lin-
earization procedure to obtain β(t+1), and dynamically adjusting ρ at each iteration.

The direct estimation approach can be tuned using an approximate Akaike information crite-
rion. For the loss functions

L∞(λn) = |�̂X �̂(λn)�̂Y − �̂X + �̂Y |∞, LF(λn) = ‖�̂X �̂(λn)�̂Y − �̂X + �̂Y ‖F, (4)

where �̂(λn) makes explicit the dependence of the estimator on the tuning parameter, λn is chosen
to minimize

(nX + nY )L(λn) + 2k, (5)

where L(λn) represents either L∞ or LF and k is the effective degrees of freedom, which can be
approximated by k = |β̂|0, or the number of nonzero elements in the upper triangular part of �̂.
The loss functions (4) focus on the supremum and Frobenius norms in light of Theorems 2 and
3 in § 4, but other norms could be used as well.

4. THEORETICAL PROPERTIES

Let σ X
jk and σ Y

jk be the ( j, k)th entries of �X and �Y , respectively. Define σ X
max = max j σ X

j j

and σ Y
max = max j σ Y

j j . Good performance of direct estimation requires the following conditions.

Condition 1. The true difference matrix �0 has s < p nonzero entries in its upper triangular
part, and |�0|1 � M , where M does not depend on p.
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Condition 2. With s defined as in Condition 1, the constants μX = max j |= k |σ X
jk | and

μY = max j |= k |σ Y
jk | must satisfy μ = 4 max(μXσ Y

max, μY σ X
max) � σ S

min(2s)−1, where σ S
min =

min j,k(σ
Y
j jσ

X
j j , σ Y

kkσ
X
j j + 2σ Y

k jσ
X
jk + σ Y

j jσ
X
kk).

Condition 1 requires the difference matrix to have essentially constant sparsity, which is rea-
sonable because genetic networks are not expected to differ much between two conditions. Con-
dition 2 requires that the true covariances between the covariates are not too high, and can hold
even when �−1

X and �−1
Y are not sparse. Actually it is sufficient to require only that the magni-

tude of the largest off-diagonal entry of ST(�Y ⊗ �X )S be less than σ S
min/2s, but Condition 2 is

more interpretable.
Condition 2 is closely related to the mutual incoherence property introduced by Donoho &

Huo (2001), but is more complicated in the current setting because it involves a linear func-
tion of the Kronecker product of two covariance matrices. Solving (2) instead of (3) would
require only max(μXσ Y

max, μY σ X
max) � min j,k(σ

X
j jσ

Y
kk)(2s̃)−1, with s̃ equal to the total number

of nonzero entries of �0. If in addition σ X
j j = σ Y

j j = 1 for all j , max(μX , μY ) � (2s̃)−1 would
be required, which is similar to imposing the usual mutual incoherence condition on �X and
�Y . Condition 2 is more restrictive, but (3) is easy to compute and still gives good finite-sample
results.

Under these conditions, a thresholded version of the direct estimator �̂ can successfully
recover the support of �0. Let the ( j, k)th entries of �0 and �̂ be δ0

jk and δ̂ jk , respectively.
For a threshold τn > 0, define the estimator

�̂τn = {δ̂ jk I (|δ̂ jk | > τn)}.

Let the ( j, k)th entry of �̂τn be δ̂
τn
jk , and define the function

sgn(t) =

⎧⎪⎨
⎪⎩

1, t > 0,

0, t = 0,

−1, t < 0.

Then, if M(�̂τn ) = {sgn(δ̂
τn
jk) : j = 1, . . . , p; k = 1, . . . , p} and M(�0) = {sgn(δ0

jk) : j =
1, . . . , p; k = 1, . . . , p} are vectors of the signs of the entries of the estimated and true difference
matrices, respectively, the following theorem holds.

THEOREM 1. Suppose that Conditions 1 and 2 hold, and let σ S
min and μ be as defined in

Condition 2. If min(nX , nY ) > log p,

τn � 1

σ S
min

{
1 + σ S

min

σ S
min − (2s − 1)μ

}
{M(|σ X

l ′l | + |σ Y
m′m | + C) + 1}8C

{
log p

min(nX , nY )

}1/2

and min j,k:δ0
jk |= 0 |δ0

jk | > 2τn, then M(�̂τn ) =M(�0) with probability at least 1 − 8p−τ , where

C is defined in Lemma A2 in the Appendix.

Theorem 1 states that with high probability, �̂τn can recover not only the support of �0 but also
the signs of its nonzero entries, as long as those entries are sufficiently large. In other words, in the
context of genetic networks, �̂τn can correctly identify genes whose conditional dependencies
change in magnitude between two conditions, as well as the directions of those changes, as long
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as min(nX , nY ) is large relative to log p. In practice, the threshold τn can be treated as a tuning
parameter. In simulations and data analysis, τn was set to 0·0001.

A thresholding step is natural in practice because small entries of �̂ are probably noisy esti-
mates of zero. This step could be avoided by imposing an irrepresentability condition on �X ⊗
�Y , similar to the conditions assumed in the proofs of the selection consistencies of the lasso
(Meinshausen & Bühlmann, 2006; Zhao & Yu, 2006) and the graphical lasso (Ravikumar et al.,
2008). However, these types of condition are stronger than the mutual incoherence-type property
assumed in Condition 2, as discussed in Lounici (2008). The thresholded estimators are pursued
in this paper because of their milder theoretical requirements.

In addition to identifying the entries of �−1
X and �−1

Y that change, �̂ can correctly quantify
these changes, in the sense of being consistent for �0 in the Frobenius norm.

THEOREM 2. Suppose that Conditions 1 and 2 hold, and define σ S
min and μ as in Condition 2.

If min(nX , nY ) > log p and

λn = {M(|σ X
l ′l | + |σ Y

m′m | + C) + 1}4C

{
log p

min(nX , nY )

}1/2

,

then

‖�̂ − �0‖F � (5s)1/2

σ S
min

{
1 + σ S

min

σ S
min − (2s − 1)μ

}
2λn

with probability at least 1 − 8p−τ , where C is defined in Lemma A2 in the Appendix.

The proofs of Theorems 1 and 2 rely on the following bound on the elementwise �∞ norm of
the estimation error.

THEOREM 3. Suppose that Conditions 1 and 2 hold, and define σ S
min and μ as in Condition 2.

If min(nX , nY ) > log p and

λn = {M(|σ X
l ′l | + |σ Y

m′m | + C) + 1}4C

{
log p

min(nX , nY )

}1/2

,

then

|�̂ − �0|∞ � 1

σ S
min

{
1 + σ S

min

σ S
min − (2s − 1)μ

}
2λn

with probability at least 1 − 8p−τ , where C is defined in Lemma A2 in the Appendix.

Similar theoretical properties have been derived for separate and joint approaches to estimating
differential networks (Cai et al., 2011; Guo et al., 2011). However, these require sparsity condi-
tions on each �−1, such as ‖�−1‖∞ � M ′ < ∞, which can be violated if the individual networks
contain hub nodes. In contrast, Theorems 1–3 can still hold in the presence of hubs.

5. SIMULATIONS

5·1. Settings

Simulations were conducted to compare the direct estimation given by (3), the fused graphical
lasso given in (1), and separate estimation using the procedure of Cai et al. (2011). Data were
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0·0 0·2 0·4 0·6 0·8 1·0

0·0

0·2

0·4

0·6

0·8

1·0
(a) (b) (c) (d)

TN

T
P

0·0 0·2 0·4 0·6 0·8 1·0

TN

0·0 0·2 0·4 0·6 0·8 1·0

TN

0·0 0·2 0·4 0·6 0·8 1·0

TN

Fig. 1. Receiver operating characteristic curves for support recovery of �0 = �−1
Y − �−1

X , with (a) p = 40, (b) p =
60, (c) p = 90, and (d) p = 120. In each panel, TP and TN are the true positive and true negative rates, respectively,
defined in § 5·2; the solid line represents the thresholded direct estimator, the dashed line represents the thresholded
fused graphical lasso estimator with λ1 = 0, and the dotted line represents the fused graphical lasso estimator with

λ1 = 0·1.

generated with p = 40, 60, 90 and 120, and X1, . . . , XnX and Y1, . . . , YnY were generated from
N (0, �X ) and N (0, �Y ), respectively, with nX = nY = 100.

For each p, the support of �−1
X was first generated according to a network with p(p − 1)/10

edges and a power-law degree distribution with an expected power parameter of 2, which should
mimic real-world networks (Newman, 2003). This still gives a relatively sparse network, since
only 20% of all possible edges are present, but the power-law structure creates hub nodes, which
make certain rows and columns nonsparse.

Next, the value of each nonzero entry of �−1
X was generated from a uniform distribution with

support [−0·5, −0·2] ∪ [0·2, 0·5]. To ensure positive definiteness, each row was divided by two
when p = 40, three when p = 60, four when p = 90, and five when p = 120. The diagonals were
then set equal to one and the matrix was symmetrized by averaging it with its transpose. The dif-
ferential network �0 was generated such that the largest 20%, by magnitude, of the connections
of the top two hub nodes of �−1

X changed sign between �−1
X and �−1

Y . In other words, �0 was
a sparse matrix, with zero entries everywhere except for 20% of the entries in two rows and
columns.

Each method was tuned using an approximate Akaike information criterion. Direct estimation
was tuned using (5) and one of the loss functions in (4). For a fair comparison, the fused graphical
lasso was tuned in the same way, after searching across all combinations of three values of λ1
and ten values of λ2. Small values of λ1 were used because the true precision matrices were
nonsparse. Separate estimation was tuned by searching across ten different values of the tuning
parameter to minimize AICX = nX tr(�̂X �̂X ) − nX log det(�̂X ) + 2|�̂X |0, where �̂X was the
sample covariance matrix of the Xi and �̂X was the estimated precision matrix. The same was
done for the Yi , with AICY defined similarly. Results were averaged over 250 replications.

5·2. Results

Figure 1 shows the receiver operating characteristic curves of the three estimation methods.
Let δ̂ jk be the ( j, k)th entry of a given estimator �̂, and let δ0

jk be the ( j, k)th entry of the true

�0. The true positive and true negative rates of �̂ are defined as

TP =
∑

jk I (δ̂ jk |= 0, δ0
jk |= 0)∑

jk I (δ0
jk |= 0)

, TN =
∑

jk I (δ̂ jk = 0, δ0
jk = 0)∑

jk I (δ0
jk = 0)

,
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Table 1. Average true discovery rates over 250 simulations, with standard
errors given in parentheses

�̂τn �̂FGLτn �̂Sτn

p L∞ LF L∞ LF

40 77 (16) 29 (16) 83 (12) 27 (17) 2 (0)
60 76 (19) 66 (21) 74 (19) 65 (30) 1 (0)
90 66 (25) 80 (31) 55 (26) 12 (28) 1 (0)

120 48 (39) 61 (45) 33 (25) 1 (7) 1 (0)

�̂τn , thresholded direct estimator; �̂FGLτn , thresholded fused graphical lasso estimator;
�̂Sτn , thresholded separate estimator; the direct and fused graphical lasso estimators were
tuned using (5) and either L∞ or LF from (4).

respectively. Different points on the curves correspond to different tuning parameter values. The
curves for the fused graphical lasso estimator (1) were plotted by varying λ2. The λ1 parameter,
which controls the sparsity of the individual precision matrix estimates, was fixed at a small value
because the individual matrices were not sparse. For a fair comparison with the thresholded direct
estimator, the fused graphical lasso was thresholded at 0·0001. The separate estimator performed
poorly and its curves are not plotted. Figure 1 shows that direct estimation compares favourably
with the fused graphical lasso.

The true discovery and nondiscovery rates of the three estimators were studied as well, which
are defined as

TD =
∑

jk I (δ̂ jk |= 0, δ0
jk |= 0)∑

jk I (δ̂ jk |= 0)
, TND =

∑
jk I (δ̂ jk = 0, δ0

jk = 0)∑
jk I (δ̂ jk = 0)

,

respectively. These rates are taken to be zero when their denominators are equal to zero. In the
analysis of genomic data, minimizing the number of false discoveries is a major concern. The
direct and fused graphical lasso estimators were thresholded at 0·0001, and the separate estimator
was thresholded at 0·0002. In all settings, the true nondiscovery rates of the direct and fused
graphical lasso estimators were close to 100%; separate estimation frequently did not identify
any zero entries in the differential network. The true discovery rates are reported in Table 1,
which also compares the effects of tuning using different loss functions (4). For direct estimation,
tuning using L∞ gave the best true discovery rates for smaller p, while LF was preferable for
larger p. For the fused graphical lasso, L∞ was always the better choice. Using either L∞ or LF,
direct estimation performed well compared to the fused graphical lasso and separate estimation,
especially for larger p.

The Frobenius norm estimation accuracies of the unthresholded estimators tuned using the
loss functions L∞ and LF are reported in Table 2. The different loss functions gave comparable
results. Direct estimation was much more accurate than separate estimation and slightly more
accurate than the fused graphical lasso. It is possible for direct estimation to simultaneously
give markedly better support recovery but similar estimation compared to the fused graphical
lasso, because estimation error depends on the magnitudes of the estimated entries, while support
recovery depends only on whether the entries are nonzero. For example, suppose that �̂ had the
same support as the true �0 but that each nonzero entry had magnitude 0·01. Then, under the
p = 120 simulation setting, ‖�̂ − �0‖F = 1·56. The estimation error of this �̂ is even higher
than those in Table 2, but it exactly recovers the true support.

The good performance of direct estimation comes at the price of some computational conve-
nience. The memory required by the large constraint matrix behaves like O(p4), although the
simulations generally needed no more than one gigabyte of memory when p = 120. In a 2012
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Table 2. Average estimation errors in the Frobenius norm over 250 simulations, with
standard errors given in parentheses

�̂ �̂FGL �̂S

p L∞ LF L∞ LF

40 1·67 (0·13) 1·46 (0·22) 1·72 (0·06) 1·50 (0·15) 12·96 (0·78)
60 1·68 (0·07) 1·62 (0·11) 1·68 (0·05) 1·69 (0·06) 28·45 (2·01)
90 1·68 (0·04) 1·71 (0·03) 1·68 (0·03) 1·72 (0·03) 57·30 (2·75)

120 1·55 (0·02) 1·55 (0·01) 1·54 (0·02) 1·55 (0·00) 102·84 (4·06)

�̂, direct estimator; �̂FGL, fused graphical lasso estimator; �̂S, separate estimator; the direct and fused
graphical lasso estimates were tuned using (5) with either L∞ or LF from (4).

unpublished technical report (arXiv:1208.3922), M. Hong and Z.-Q. Luo proved the global linear
convergence of the alternating direction method of multipliers applied to problems like (3). How-
ever, each iteration of the proposed algorithm requires roughly O(sp4) computations, where s is
the number of nonzero entries in the upper triangular part of �0, as defined in Condition 1. The
simulations required on average 51, 853, 6231 and 51 589 seconds when p = 40, 60, 90 and 120,
respectively. On the other hand, these memory and time requirements are still reasonable in prac-
tice. Recently, Pang et al. (2013) have developed an even faster algorithm for constrained �1 min-
imization problems such as (3), available in the R package fastclime (R Development Core Team,
2014; Pang et al., 2013), which should reduce the computational burden of direct estimation.

6. GENE EXPRESSION STUDY OF OVARIAN CANCER

The proposed approach was applied to gene expression data collected from patients with
stage III or stage IV ovarian cancer. Using these data, Tothill et al. (2008) identified six molec-
ular subtypes of ovarian cancer, which they labelled C1 to C6. They found that the C1 subtype,
characterized by differential expression of genes associated with stromal and immune cell types,
was associated with much shorter survival times.

The proposed direct estimation procedure was applied to investigate whether this poor prog-
nosis subtype was also associated with differential wiring of genetic networks. The subjects were
divided into a C1 group, with 78 patients, and a C2–C6 group, with 113 patients. Several path-
ways from the KEGG pathway database (Ogata et al., 1999; Kanehisa et al., 2012) were studied
to determine whether any differences existed in the conditional dependency relationships of the
gene expression levels between the subtypes. All probe sets corresponding to the same gene
symbol were first averaged to obtain gene-level expression measurements.

Direct estimation and fused graphical lasso were tuned using (5) with the loss function L∞,
because in simulations this gave the best results for the fused graphical lasso and good results
for direct estimation. Separate estimation was tuned as described in § 3·3. The direct and fused
graphical lasso estimators were thresholded at 0·0001 to recover the differential network. The
separate estimator was not simply thresholded at 0·0002, as simulations showed that this method
gave poor true discovery rates; instead, two genes were defined as being linked in the differential
network if they were connected in one group but not the other, or if they were connected in both
groups but their conditional dependency relationship changed sign. The procedure of Cai et al.
(2011) thresholded at 0·0001 was used to recover the individual networks.

Two illustrative examples are reported in Fig. 2. Only genes included in at least one edge, or
which saw a change in partial variance between the two subtypes, were included in the figure. In
the results of separate estimation, only genes in the differential network estimated by direct esti-
mation were labelled. To interpret the results, the most highly connected genes in the differential
networks were considered to be important.
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(a) TGF-b, direct estimator.
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(b) TGF-b, fused graphical lasso.
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(c) TGF-b, separate estimator.
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(d) Apoptosis, direct estimator.

BIRC3

FAS

CSF2RB
IL1R1

PRKAR2B

TP53

TNFSF10

AIFM1

(e) Apoptosis, fused graphical lasso.
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(f) Apoptosis, fused graphical lasso tuned
to give nine edges.

Fig. 2. Estimates of the differential networks between ovarian cancer subtypes: (a)–(c) KEGG 04350, TGF-β path-
way; (d)–(f) KEGG 04210, apoptosis pathway. The direct and fused graphical lasso estimators were thresholded,
and the separate estimator was further sparsified; see § 6. Black edges show an increase in conditional dependency
from ovarian cancer subtype C1 to subtypes C2–C6; grey edges show a decrease. The estimators in (a)–(e) were
tuned using L∞ with (5), and the estimator in (f) was tuned with λ1 = 0 and λ2 to give the same number of edges

as (d); see § 6. The separate estimator is not shown for the apoptosis pathway.

Figures 2(a)–(c) illustrate estimates of the differential network of the TGF-β signalling path-
way, which at 82 genes is larger than the sample size of the C1 group. Direct estimation suggested
the presence of two hub genes, COMP and THBS2, which have both been found to be related to
resistance to platinum-based chemotherapy in epithelial ovarian cancer (Marchini et al., 2013).
The fused graphical lasso gave the same number of edges in the differential network as direct
estimation and only suggested the importance of COMP. It was hard to draw meaningful con-
clusions from the results of separate estimation, because the denseness of the estimated network
made it difficult to identify a small number of important genes.

Figures 2(d)–(f) give the estimates for the apoptosis pathway, which at 87 genes was also
larger than the sample size of the C1 group. The separate estimator again resulted in a dense
network and is not included in Fig. 2. Direct estimation pointed to BIRC3 and TNFSF10 as being
important genes. Indeed, TNFSF10 encodes the TRAIL protein, which has been studied a great
deal because of its potential as an anticancer drug (Yagita et al., 2004; Bellail et al., 2009) and,
in particular, as a therapy for ovarian cancer (Petrucci et al., 2012; Kipps et al., 2013). BIRC3
can inhibit TRAIL-induced apoptosis (Johnstone et al., 2008) and has also been considered for
use as a therapeutic target in cancer (Vucic & Fairbrother, 2007). Figure 2(e) shows the fused
graphical lasso estimator tuned in the same way as the direct estimator, and suggests only BIRC3
as being important. For a fairer comparison with direct estimation, Fig. 2(f) depicts the fused
graphical lasso estimator after fixing λ1 = 0 and adjusting λ2 to achieve the same level of sparsity
as Fig. 2(d). The result is similar to Fig. 2(d), although it suggests that BIRC3 and PRKAR2B, a
protein kinase, are important, rather than BIRC3 and TRAIL.
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7. DISCUSSION

Instead of modelling a differential network as the difference of two precision matrices, as pro-
posed above, another possibility is to use the difference between two directed acyclic graphs.
These graphs are natural models for single transcriptional regulatory networks, with nodes rep-
resenting gene expression levels and edges indicating how the nodes are causally related to
each other. Biological changes to a network can be thought of as interventions on some of
its nodes, which result in changes to the graphical structure (Hauser & Bühlmann, 2014). Fre-
quently, however, only observational data are available for gene expression, so it is difficult to
estimate the underlying causal structures (Kalisch & Bühlmann, 2007; Maathuis et al., 2009).
It would be interesting to develop a direct estimation method for differential networks with
interventional data.

For method (3) to have good properties in high dimensions, �0 must be sparse. While reason-
able, this assumption will be violated if the biological differences between two groups manifest
as global changes that affect a large number of gene-gene dependencies. If some proportion of
these global changes are of sufficient magnitude, the method should still be able to detect their
presence, though it may not recover all of the changes or accurately estimate their magnitudes.
The most challenging case for the proposed method occurs when the network changes are numer-
ous but small. A new statistic could be defined to quantify the degree of global change between
two precision matrices, but so far there is little consensus as to what statistic would be most
biologically meaningful.

Finally, while the focus has been on directly estimating the difference between two preci-
sion matrices, there are situations where interest may centre on how a transcriptional regulatory
network differs between K conditions, where K > 2. The proposed method could of course be
used to estimate all pairwise differential networks, but this could be time-consuming. Another
possibility would be to estimate the difference between each precision matrix and some com-
mon precision matrix, which could be taken to be the inverse of the pooled covariance matrix
of all K groups. In other words, if �̂k were the sample covariance matrix of the kth group, let
�̂P = ∑

k wk�̂k be some weighted average of the �̂k and consider solving

�̂k = arg min |�|1 subject to |�̂k��̂P − �̂k + �̂P|∞ � λn.

If the difference matrix �k = �−1
P − �−1

k were sparse, where �P = E(�̂P) and �−1
k is the pre-

cision matrix of the kth group, �̂k would be a direct estimate of �k . The differential network
between the j th and kth group could then be estimated as �̂ j − �̂k .
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APPENDIX

Proofs of theorems

LEMMA A1. The matrix ST(�Y ⊗ �X )S is invertible, where �Y and �X are p × p covariance matrices
and S is as defined in § 3·2.
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Proof. Since �X and �Y are positive definite, there exists a full-rank matrix �1/2 such that �Y ⊗
�X = (�1/2)T�1/2. Furthermore, from its construction S has full column rank, so rank(S) = p(p + 1)/2.
Therefore

rank{ST(�Y ⊗ �X )S} = rank{ST(�1/2)T�1/2S} = rank(�1/2S) = rank(S).

Since ST(�Y ⊗ �X )S is p(p + 1)/2 × p(p + 1)/2, it is of full rank and therefore invertible. �

The next lemma comes from the proofs of Theorems 1(a) and 4(a) in Cai et al. (2011).

LEMMA A2. Let Xi = (Xi1, . . . , Xip)
T for i = 1, . . . , n be independent and identically distributed ran-

dom vectors with E(Xi ) = (μ1, . . . , μ j )
T, and let X̄ = n−1 Xi and �̂ = n−1

∑
i (Xi − X̄)(Xi − X̄)T. If

there exists some 0 < η < 1/4 such that log p/n � η and E[exp{t (Xi j − μ j )
2}] � K < ∞ for all |t | � η

and j = 1, . . . , p, then
|�̂ − �|∞ � C(log p/n)1/2

with probability at least 1 − 4p−τ , where C = 2η−2(2 + τ + η−1e2 K 2)2 and τ > 0.

LEMMA A3. Let � = �Y ⊗ �X . Label the entries of ST�S as σ S
j ′k ′, jk (1 � j ′ � k ′ � p; 1 � j � k �

p). Then

σ S
j ′k ′, jk = σ Y

k ′kσ
X
j ′ j + σ Y

k ′ jσ
X
j ′k + σ Y

j ′kσ
X

k ′ j + σ Y
j ′ jσ

X
k ′k, j ′ |= k ′, j |= k;

σ S
j ′k ′, j j = σ Y

k ′ jσ
X
j ′ j + σ Y

j ′ jσ
X

k ′ j , j ′ |= k ′, j = k;
σ S

j ′ j ′, jk = σ Y
j ′kσ

X
j ′ j + σ Y

j ′ jσ
X
j ′k, j ′ = k ′, j |= k;

σ S
j ′ j ′, j j = σ Y

j ′ jσ
X
j ′ j , j ′ = k ′, j = k.

Proof. Label the entries of � as σl ′m ′,lm (l ′ = 1, . . . , p; m ′ = 1, . . . , p; l = 1, . . . , p; m = 1, . . . , p)

and the entries of S as Slm, jk (l = 1, . . . , p; m = 1, . . . , p; 1 � j � k � p), as in § 3·3. By the definition
of the Kronecker product, σl ′m ′,lm = σ Y

m ′mσ X
l ′l and σ S

j ′k ′, jk = ∑
l ′,m ′,l,m Sl ′m ′, j ′k ′σl ′m ′,lm Slm, jk , so the lemma

follows from the definition of the entries of S. �

Proof of Theorem 3. Let the entries of �0 be denoted by δ0
jk , and define the p(p + 1)/2 × 1 vector

β0 = (δ0
jk)1� j�k�p. Define � as in Lemma A3, and let b̂ = vec(�̂X − �̂Y ), b = vec(�X − �Y ) and h =

β̂ − β0. The bound on |�̂ − �0|∞ = |h|∞ is obtained by following Lounici (2008).
Denote the ath component of ST�Sh by (ST�Sh)a , the (a, b)th entry of ST�S by σ S

ab, and the bth com-
ponent of h by hb. Also let μ = maxa |= b |σ S

ab|. Then (ST�Sh)a = ∑
b=1 σ S

abhb = σ S
aaha + ∑

b |= a σ S
abhb,

which implies that

|σ S
aaha| � |ST�Sh|∞ + μ |σ S

ab|
∑
b |= a

|hb|. (A1)

The diagonal terms σ S
aa can be relabelled as σ S

jk, jk , where j may equal k, and from Lemma A3 they must sat-
isfy σ S

jk, jk � σ S
min, with σ S

min as defined in Condition 2. The off-diagonal terms σ S
ab, a |= b, can be relabelled

as σ S
j ′k ′, jk with j ′ |= j or k ′ |= k, and by Lemma A3 they must satisfy σ S

j ′k ′, jk � 4 max(μXσ X
max, μY σ Y

max) = μ,
with μX and μY defined as in Condition 2. Using these facts and Condition 2, (A1) becomes

|h|∞ � 1

σ S
min

(
|ST�Sh|∞ + σ S

min

2s
|h|1

)
. (A2)

The method of Cai et al. (2010b) is used to bound |h|1. Let T0 be the set of indices corresponding to the
support of β0, and for any p × 1 vector a = (a1, . . . , ap)

T let aT0 be the vector with components aT0 j = 0
for j /∈ T0 and aT0 j = a j for j ∈ T0.

First it must be shown that β0 is in the feasible set with high probability. Since Xi and Yi are both
Gaussian, they satisfy the conditions of Lemma A2, and thus |�̂X − �X |∞ and |�̂Y − �Y |∞ are both less
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than C{log p/ min(nX , nY )}1/2 with probability at least 1 − 8p−τ . Then

|ST�̂Sβ0 − STb̂|∞ � |ST(�̂ − �)Sβ0|∞ + |ST(b̂ − b)|∞
� ‖ST‖∞|�̂ − �|∞‖S‖1|β0|1 + ‖ST‖∞(|�̂X − �X |∞ + |�̂Y − �Y |∞)

� 4M |�̂ − �|∞ + 4C{log p/ min(nX , nY )}1/2,

where ‖S‖1 = 2 by the definition of S and |β0|1 � M by Condition 1. Next, from the proof of Lemma A3,
each entry of � can be written as σ X

l ′l σ
Y
m ′m , and so

|σ̂ X
l ′l σ̂

Y
m ′m − σ X

l ′l σ
Y
m ′m | = |σ X

l ′l (σ̂
Y
m ′m − σ Y

m ′m) + (σ̂ X
l ′l − σ X

l ′l )σ
Y
m ′m + (σ̂ X

l ′l − σ X
l ′l )(σ̂

Y
m ′m − σ Y

m ′m)|
� [|σ X

l ′l | + |σ Y
m ′m | + C{log p/ min(nX , nY )}1/2]C{log p/ min(nX , nY )}1/2

� (|σ X
l ′l | + |σ Y

m ′m | + C) C{log p/ min(nX , nY )}1/2,

since min(nX , nY ) > log p. Then β0 is feasible with probability at least 1 − 8p−τ if λn = {M(|σ X
l ′l | +

|σ Y
m ′m | + C) + 1}4C{log p/ min(nX , nY )}1/2.
Now |h|1 can be bounded. By the definition of (3), |β0|1 − |β̂|1 � 0. This implies that |β0T0 |1 − (|β̂T0 |1 +

|β̂T c
0
|1) � 0. Using the triangle inequality, |β0T0 − β̂T0 |1 � |β̂T c

0
|1 or, in other words, |hT c

0
|1 � |hT0 |1. There-

fore |h|1 � 2|hT0 |1 � 2s1/2|hT0 |2. To bound |hT0 |2, observe, following Cai et al. (2009), that for any s-sparse
vector c,

|cT ST�Sc| �
∑

a

σ S
aac2

a −
∣∣∣∣∣∣
∑
a |= b

σ S
abcacb

∣∣∣∣∣∣ � σ S
min|c|22 − μ

∑
a |= b

|cacb| � σ S
min|c|22 − μ(s − 1)|c|22.

This implies that

|hT
T0

ST�Sh| � |hT
T0

ST�ShT0 | − ∣∣hT
T0

ST�ShT c
0

∣∣ � {σ S
min − (s − 1)μ}|hT0 |22 −

∣∣∣∣∣
∑
a,b

σ S
abhT0ahT c

0 b

∣∣∣∣∣
� {σ S

min − (s − 1)μ}|hT0 |22 − μ|hT0 |1|hT c
0
|1 � {σ S

min − (s − 1)μ}|hT0 |22 − μ|hT0 |21
� {σ S

min − (2s − 1)μ}|hT0 |22.

Together with |hT
T0

ST�Sh| � |hT0 |1|ST�Sh|∞ � s1/2|hT0 |2|ST�Sh|∞, this implies that

|h|1 � 2s1/2|hT0 |2 � 2s|ST�Sh|∞
σ S

min − (2s − 1)μ
,

so (A2) becomes

|h|∞ � 1

σ S
min

{
1 + σ S

min

σ S
min − (2s − 1)μ

}
|ST�Sh|∞.

Bounding |ST�Sh|∞ uses the proof that β0 is feasible, because

|ST�Sh|∞ = |ST�Sβ̂ − STb|∞
� |ST�̂Sβ̂ − STb̂|∞ + |ST(�̂ − �)Sβ̂1|∞ + |ST(b̂ − b)|∞
� λn + ‖ST‖∞|�̂ − �|∞‖S‖1|β0|1 + ‖ST‖∞(|�̂X − �X |∞ + |�̂Y − �Y |∞)

� λn + {4M(|σ X
l ′l | + |σ Y

m ′m | + C) + 4}{log p/ min(nX , nY )}1/2 = 2λn

when |�̂X − �X |∞ and |�̂Y − �Y |∞ are both less than C{log p/ min(nX , nY )}1/2. �
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Proof of Theorem 1. Let δ̂
τn
jk be the ( j, k)th entry of �̂τn . Then

pr{M(�̂τn ) =M(�0)} = pr

[{
max

j,k:δ0
jk=0

|δ̂τn
jk | = 0

}
∩

{
min

j,k:δ0
jk>0

δ̂
τn
jk > 0

}
∩

{
max

j,k:δ0
jk<0

δ̂
τn
jk < 0

}]
.

Suppose δ0
jk > 0. Then δ̂ jk = δ0

jk − (δ̂ jk − δ0
jk) > 2τn − τn with probability going to 1, by Theorem 3, so

δ̂
τn
jk = δ̂ jk > 0. Next, suppose δ0

jk < 0. Then δ̂ jk = δ0
jk − (δ̂ jk − δ0

jk) < −2τn + τn with probability going to

1, so δ̂
τn
jk = δ̂ jk < 0. Finally, for δ0

jk = 0, |δ̂ jk | = |δ̂ jk − δ0
jk | � τn with probability going to 1, so δ̂

τn
jk = 0. �

Proof of Theorem 2. Solutions to this type of �1 constrained optimization problem have |hT0 |1 � |hT c
0
|1.

Cai et al. (2010a) used this property of h, along with their Lemma 3, to show that |h|2 � 2|hT0∪T ∗ |2, where
T ∗ is the set of indices corresponding to the s/4 largest components of hT c

0
. Then |h|2 � 2(1·25s)1/2|h|∞,

and combining this with Theorem 3 completes the proof. �
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