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SUMMARY

Motivated by the problem of estimating the bacterial growth rates for genome assemblies from
shotgun metagenomic data, we consider the permuted monotone matrix model Y = ΘΠ + Z,
where Y ∈ Rn×p is observed, Θ ∈ Rn×p is an unknown approximately rank-one signal matrix
with monotone rows, Π ∈ Rp×p is an unknown permutation matrix, and Z ∈ Rn×p is the noise
matrix. This paper studies the estimation of the extreme values associated to the signal matrix
Θ, including its first and last columns, as well as their difference (the range vector). Treating
these estimation problems as compound decision problems, minimax rate-optimal estimators are
constructed using the spectral column sorting method. Numerical experiments through simulated
and synthetic microbiome metagenomic data are presented, showing the superiority of the pro-
posed methods over the alternatives. The methods are illustrated by comparing the growth rates
of gut bacteria between inflammatory bowel disease patients and normal controls.

Some key words: Extreme values; Metagenomics; Minimax lower bounds; Permutation; Spectral method

1. INTRODUCTION

The statistical problem considered in this paper is motivated by the problem of estimating
the bacterial growth dynamics using shotgun metagenomics data. Several methods have been
developed to quantify the bacterial growth dynamics based on shotgun metagenomics data by
extrapolating particular patterns in the sequencing read coverages resulted from the bidirectional
microbial DNA replications (Myhrvold et al., 2015; Abel et al., 2015; Korem et al., 2015; Brown
et al., 2016). For bacterial species with known complete genome sequences, Korem et al. (2015)
proposed to use the peak-to-trough ratio (PTR) of read coverages to quantify the bacterial growth
rates after aligning the sequencing reads to the bacterial genomes. Besides quantifying the growth
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rates for the bacteria with complete genome sequences, it is also of great importance to estimate
the growth rates of incomplete genome assemblies, where the coverages of contigs are observed
in multiple samples. However, the order the contigs is only known up to an unknown permutation.

Recently, Gao & Li (2018) developed a computational algorithm (DEMIC) that accurately
estimates the growth dynamics of a given assembled species by taking advantage of highly frag-
mented contigs assembled from multiple samples. DEMIC is based on the following permuted
monotone matrix model:

Y = ΘΠ + Z (1)

where the observed data Y ∈ Rn×p is the matrix of the preprocessed contig coverage for a given
bacterial species. Specifically, the entry Yij represents the log-transformed averaged read counts
of the j-th contig of the bacterial species for the i-th sample after the preprocessing steps, in-
cluding genome assemblies, GC adjustment of read counts and outlier filtering. In practice, the
data set is usually high-dimensional in the sense that the number of contigs p far exceeds the
sample size n, so throughout we assume p� n. The signal matrix Θ ∈ Rn×p represents the true
log-transformed coverage matrix of n samples and p contigs, where each row is monotone due to
the bi-directional DNA replication mechanism (Brown et al., 2016; Gao & Li, 2018), Z ∈ Rn×p
is the noise matrix, and Π ∈ Rp×p is a permutation matrix, corresponding to some permutation
π from the symmetric group Sp. Ma et al. (2020a) developed methods for optimally recovering
the underlying permutation π from Y . In particular, considering the loss function being either
the 0-1 loss or the normalized Kendall’s τ distance, a minimax optimal permutation estimator is
proposed and theoretically analyzed under various parameter spaces.

In addition to the monotonicity constraint imposed on the rows of Θ, real metagenomic data
sets also suggest approximate linear relationship between the contig positions and their log-
coverages for each sample, which indicates approximately rank-one structure of Θ, after certain
normalization. As an example, Figure 1 shows the normalized log-contig counts of an assembled
bacterial genome for three individuals along estimated contig orders, suggesting the aforemen-
tioned approximate linear or rank-one structure (see Section 3·1 for details).
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Fig. 1. The log-coverages of ordered contigs of an assem-
bled bacteria speciesfor from 3 individuals with inflamma-
tory bowel disease from the iHMP study, detailed in Sec-

tion 5·3.

Under the permuted monotone matrix model, one can relate the two extreme columns ΘR

and ΘL, i.e., the first and the last columns of Θ, to the log-transformed true peak and trough
coverages of a given bacterial species, and define their difference R(Θ) = ΘR −ΘL as the true
log-PTRs that characterize the bacterial growth rates over n samples. The goal of this paper is
to provide a rigorous statistical framework for optimal estimation of the extreme values in the
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approximately rank-one permuted monotone matrix model, including ΘR and ΘL and the range
vector R(Θ). Based on the idea of spectral column sorting and the theory of low-rank matrix es-
timation, we develop computationally efficient estimators for the extreme columns and the range
vector. In particular, the minimax optimality of the proposed methods are theoretically estab-
lished and empirically illustrated with numerical experiments, which also justify its applicability
in analyzing real data sets such as the microbiome metagenomics data.

Throughout the paper, we define the permutation π as a bijection from the set {1, 2, ..., p}
onto itself. For simplicity, we denote π = (π(1), π(2), ..., π(p)). All permutations of the set
{1, 2, ..., p} form a symmetric group, equipped with the function composition operation ◦, de-
noted as Sp. For any π ∈ Sp, we denote π−1 ∈ Sp as its group inverse, so that π ◦ π−1 =
π−1 ◦ π = id. In particular, we may use π and its corresponding permutation matrix Π ∈ Rp×p
interchangeably, depending on the context. For a vector a = (a1, ..., an)> ∈ Rn, we define
the `p norm ‖a‖p =

(∑n
i=1 a

p
i

)1/p, and the `∞ norm ‖a‖∞ = max1≤j≤n |ai|. For a matrix
Θ ∈ Rp1×p2 , we denote Θ.i ∈ Rp1 as its i-th column and denote Θi. ∈ Rp2 as its i-th row. We
write a ∧ b = min{a, b} and a ∨ b = max{a, b}. Furthermore, for sequences {an} and {bn}, we
write an = o(bn) if limn an/bn = 0, and write an = O(bn), an . bn or bn & an if there exists
a constant C such that an ≤ Cbn for all n. We write an � bn if an . bn and an & bn. Lastly,
C,C0, C1, ... are constants that may vary from place to place.

2. EXTREME VALUE ESTIMATION VIA SPECTRAL SORTING

2·1. Spectral Sorting and Extreme Column Localization
A crucial step for estimating the extreme columns is to sort the permuted columns in order

to identify the extreme ones. In this section, we introduce a spectral approach for localizing
the permuted columns. Toward this end, for any Θ with monotone rows, we consider the row-
centered matrix

Θ′ = Θ

(
Ip −

1

p
ee>

)
∈ Rn×p, (2)

where e = (1, ...., 1)> ∈ Rp. Intuitively, Θ′ is invariant to the row averages of Θ and preserves
the row-monotonicity structure as well as the distances between the columns of Θ. The singular
value decomposition (SVD) of Θ′ can be written as

Θ′ =

r∑
i=1

λiuiv
>
i , for some r ≤ min{n, p}, (3)

where λ1 ≥ λ2 ≥ ... ≥ λr are the ordered singular values of Θ′ and ui and vi are the left and
right singular vectors corresponding to λi, respectively. To overcome the identifiability issue, we
assume

(A) λ1 has multiplicity one and the first nonzero component of v1 is negative.
The following proposition provides an important insight that the row-monotonicity of a matrix
actually implies the monotonicity of the components of its leading right singular vector v1. This
property plays a fundamental role in analyzing the permuted monotone matrix model.

PROPOSITION 1. Let Θ be a row-monotone matrix, whose row-centered version Θ′ defined
in (2) satisfies (A). Then its first right singular vector v1 = (v11, ..., v1p)

> is a centered mono-
tone vector, i.e.,

∑p
i=1 v1i = 0 and v11 ≤ v12 ≤ ... ≤ v1p. In addition, the sign vector sgn(u1)

indicates the direction of monotonicity of the rows of Θ′ (or Θ).
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From the above proposition, the relative orders of the columns of Θ′ (and Θ) are qualitatively
preserved by the leading right singular vector v1, whereas the directions of monotonicity for
different rows are coded by the leading left singular vector u1. As a result, given a column-
permuted and noisy matrix Y in (1), one could localize the extreme columns ΘR and ΘL in ΘΠ
by considering the row-normalized observation matrix X = Y (Ip − 1

pee
>) and its first right

singular vector, i.e.,

v̂ = (v̂1, ..., v̂p)
> = arg max

v∈Rp:‖v‖2=1
v>X>Xv. (4)

In accordance with Proposition 1, it was shown by Ma et al. (2020a) that the order statistics
{v̂(1), ..., v̂(p)} can be used to optimally recover the permutation π, or the original column orders,
by tracing back the permutation map between the elements of v̂ and their order statistics. Clearly,
for extreme column localization, the extreme values statistics v̂(1) and v̂(p) are more relevant. In
fact, it is shown in the subsequent section that, minimax optimal estimators can be constructed
using such spectral extreme values estimates.

2·2. Compound Decision Problem and the Proposed Estimators
The problem of estimating ΘR, ΘL or R consists of n individual sub-problems, namely, es-

timating each of its n coordinates. Following the concept proposed by Robbins (1951, 1964)
and further elaborated in Samuel (1967); Copas (1969); Zhang (2003) and Brown & Green-
shtein (2009), among many others, we observe that the problem of finding their minimax op-
timal estimators is a compound statistical decision problem, as the n individual sub-problems
are amalgamated into one larger problem through the combined risk (10). Moreover, although
the observations over n samples are independent, it has been argued that, in general, for a com-
pound decision problem, usually the simple estimators, where only the i-th sample is used to
estimate the i-th coordinate, are suboptimal; in contrast, a minimax optimal estimator should be
compound in the sense that multiple samples are used for the estimation of each coordinate.

In light of our discussion in Section 2·1 as to the fundamental role of (λ1,u1,v1), we introduce
our proposed estimators for the extreme columns as

Θ̂∗R = v̂(p)Xv̂ +
1

p
Y e ∈ Rn, Θ̂∗L = v̂(1)Xv̂ +

1

p
Y e ∈ Rn, (5)

and our proposed range estimator as

R̂∗ = Θ̂∗R − Θ̂∗L = (v̂(p) − v̂(1))Xv̂, (6)

where we recall that v̂ is defined in (4) and v̂(i) is the i-th smallest order statistic among
{v̂1, ..., v̂p}. By construction, the proposed extreme column estimators (5) are compound esti-
mators, and each of them consists of two parts: the first part estimates the extreme columns of
the row-centered matrix Θ′ whereas the second part compensates the row-specific mean effects.
In particular, in accordance with the observations made in Section 1, to construct the first parts of
Θ̂∗R and Θ̂∗L, the approximately rank-one structure Θ′.` ≈ λ1v1`u for ` ∈ {1, p}, is incorporated
with v1` estimated by v̂(`) and λ1u1 estimated by Xv̂.

Ma et al. (2020a) developed an optimal estimator for the permutation π under the model (1).
Specifically, let r : Rp → Sp be the ranking operator, which is defined such that for any vector
x ∈ Rp, r(x) is the vector of ranks for components of x in increasing order – whenever there are
ties, increasing orders are assigned from left to right. The best linear projection estimator of π
was defined as

π̂ = [r(v̂)]−1. (7)
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This permutation estimator can be used to construct a natural two-step estimator of the two
extreme columns. In the first step, we recover/sort the columns of Y to obtain the sorted matrix
Y̌ =

[
Y.π̂(1) Y.π̂(2) ... Y.π̂(p)

]
. Intuitively, the column-sorted matrix Y̌ is expected to be close to

Θ. In the second step, we fit a simple linear regression between each row of Y̌ and the sorted
projection scores (v̂(1), v̂(2), ..., v̂(p)), which characterize the column relative locations. Denote
the fitted intercepts as α = (α1, ..., αn)> and the slopes as β = (β1, ..., βn)>. We define the
two-step regression estimators as

Θ̂Reg
L = α + βv̂(1), Θ̂Reg

R = α + βv̂(p), R̂Reg = β(v̂(p) − v̂(1)). (8)

It is easy to check (see Section 3 of Supplementary Material (Ma et al., 2020b)) that under the
conditions of Proposition 1, it holds that

Θ̂Reg
L = Θ̂∗L, Θ̂Reg

R = Θ̂∗R, R̂Reg = R̂∗, (9)

This interesting observation provides another way of understanding our proposed estimators.

3. THEORETICAL PROPERTIES

3·1. Risk Upper Bounds for the Extreme Column Estimators
In what follows, we study the theoretical properties of our proposed estimator Θ̂∗R, as the

results for ΘL would hold in parallel. Towards this end, we consider the normalized `2 distances
1√
n‖Θ̂R −ΘR‖2 and denote the corresponding estimation risk as

RR(Θ̂R) =
1√
n
E‖Θ̂R −ΘR‖2. (10)

We first define the set of monotone matrices

D =

{
Θ = (θij) ∈ Rn×p :

for each 1 ≤ i ≤ n, either θi,j ≤ θi,j+1 for all j,
or θi,j ≥ θi,j+1 for all j

}
.

Recall that the row-centered version of Θ, namely Θ′, has the SVD given by (3). Consequently,
throughout, we consider the following parameter space for (Θ, π)

DR(t, β) =

{
(Θ, π) ∈ D × Sp :

(A) holds, 0 ≤ v1p ≤ β,
λ1 ∈ [t/8, 8t],

∑r
i=2 λi ≤ σ

√
log p

}
, (11)

with t ≥ 0 and p−1/2 ≤ β ≤ 1. Here the constraint on β is natural since v1 is a unit vector
and β is no less than the order of its largest component. Intuitively, the hyper-parameters (t, β)
characterize the global signal strength as well as the relative position of the extreme column ΘR

shared by the signal matrices in DR(t, β), while the condition
∑r

i=2 λi ≤ σ
√

log p imposes an
approximately rank-one structure on the row-centered Θ.

To simplify notation, we define the rate function ψ = ψ(n, p) =
√

(log p/n). The following
theorem provides a uniform risk upper bound of the proposed estimator Θ̂∗R over DR(t, β).

THEOREM 1 (UNIFORM UPPER BOUND). Suppose the pair (t, βR) satisfies p−1/2 ≤ βR ≤
1, t2 & σ2

[
1
β2
R
∧
{

1
ψ2 + 1

ψ

√
( p
n log p)

}]
n log p and the noise matrix Z has independent sub-

Gaussian entries Zij with parameter σ2. Then

sup
DR(t,βR)

RR(Θ̂∗R) .
βRt√
n

[
σ
√
{(t2 + σ2p)n}

t2
∧ 1

]
+ σψ. (12)
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The risk upper bound (12) consists of two components. In the first component, the factor
[σ
√
{(t2 + σ2p)n}/t2 ∧ 1] is the error from estimating the leading left singular vector u1 by its

sample counterpart, whereas the factor βRt/
√
n reflects the overall magnitude of the extreme

column ΘR of the matrices in DR(t, βR). As for the second component σψ(n, p), it comes from
using the order statistic v̂(p) to estimate the largest component of v1.

Interestingly, about the first component, we observe two phase transitions when t2 passes
σ2√(np) and σ2p, respectively. Specifically, in (12), we have

βRt√
n

[
σ
√
{(t2 + σ2p)n}

t2
∧ 1

]
�


βRt/

√
n if t2 . σ2√(np),

βRσ
√

(t2+σ2p)
t if σ2√(np) . t2 . σ2p,

βRσ if t2 & σ2p.

From the theory of low-rank matrix estimation (Cai & Zhang, 2018), the quantity σ2√(np) is the
critical point, below which it is impossible to estimate the singular vector u1. Hereafter we re-
fer the collection of parameter spaces {DR(t, βR) : t2 ≤ σ2√(np)}, {DR(t, βR) : σ2√(np) .
t2 . σ2p} and {DR(t, βR) : t2 & σ2p} as the “weak signal-to-noise ratio” regime, the “interme-
diate signal-to-noise ratio” regime, and the “strong signal-to-noise ratio” regime, respectively.

To see the implications of the condition

t2 & σ2

[
1

β2
R

∧
{

1

ψ2
+

1

ψ

√
(

p

n log p

)}]
n log p (13)

of Theorem 1 on the critical events t2 � σ2√(np) and t2 � σ2p, we note that, as long as
βR � (n/p)1/4, by ignoring the logarithmic factors, the right-hand side of the condition (13)
is asymptotically smaller than both critical points σ2√(np) and σ2p, so that both phase transi-
tions exist under the condition of Theorem 1.

3·2. Minimax Rates and Optimality of the Extreme Column Estimators
Now we establish the minimax rate of convergence and the optimality of the proposed extreme

column estimator Θ̂∗R over the parameter space DR(t, βR). Specifically, for some given (t, β),
we define the minimax risks over DR(t, βR) as infΘ̂R

supDR(t,βR)RR(Θ̂R) where the infimum
is over all the possible estimators obtained from the data. The following theorem provides the
minimax lower bound of the estimation risk under the Gaussian noise.

THEOREM 2 (MINIMAX LOWER BOUND). Suppose Z in model (1) has i.i.d. entries

Zij ∼ N(0, σ2). Then, for any DR(t, β) such that t2 ≥ c0

(1−β2
R

β2
R
σ2 log p+

β2
R

1−β2
R
σ2p
)

and

c1p
−1/2√log p ≤ βR ≤ c2, for sufficiently large (n, p) and some constants c0, c1 > 0 and 0 <

c2 < 1 , it holds that

inf
Θ̂R

sup
DR(t,βR)

RR(Θ̂R) &
βRt√
n

[
σ
√
{(t2 + σ2p)n}

t2
∧ 1

]
+ σψ. (14)

The proof of Theorem 2 is involved. The main difficulty lies in the non-linearity and multi-
dimensionality of the maps from the original parameter Θ to its extreme columns of interest.
As the lower bound containsseveral components, we essentially derived three distinct minimax
lower bounds corresponding to different worst-case scenarios. In addition to adopting the existing
techniques such as the sphere packing of the Grassmannian manifolds, we developed two novel
lower bound techniques to facilitate the proof of the minimax lower bound. The details can be
found in the Supplementary Material (Ma et al., 2020b).
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Combining the upper and the lower bounds, we obtain the exact minimax rate for estimating
ΘR. Specifically, under the conditions of Theorems 1 and 2, i.e., for Zij ∼i.i.d. N(0, σ2) and

t2 & σ2

[
1

β2
R

∧
{

1

ψ2
+

1

ψ

√
(

p

n log p

)}]
n log p+

(
1− β2

R

β2
R

σ2 log p+
β2
Rσ

2p

1− β2
R

)
, (15)

we have

inf
Θ̂R

sup
DR(t,βR)

RR(Θ̂R) � βRt√
n

[
σ
√
{(t2 + σ2p)n}

t2
∧ 1

]
+ σψ, (16)

where the optimal rate is attained by our proposed estimator Θ̂∗R. To make better sense of condi-
tion (15), we note that, if we calibrate βR � (n/p)1/4, then by ignoring the logarithmic factors,
condition (15) is equivalent to t2 & σ2√(np), which means the minimax rate can essentially be
established over the intermediate to strong SNR regime, where the minimax rate is

inf
Θ̂R

sup
DR(t,βR)

RR(Θ̂R) � σn1/4√(t2 + σ2p)

p1/4t
+ σψ. (17)

As a consequence of the phase transition phenomena pointed out earlier, some interesting insights
about the interplay between the global signal strength t2, the dimensionality of the problem,
the hardness of estimating ΘR and that of estimating the leading left singular vector u1, can be
obtained. Specifically, we observe that (i) within the intermediate SNR regime (σ2√(np) . t2 .
σ2p), increasing the signal strength t2 will reduce the difficulty of estimating u1 and therefore
the rate for estimating ΘR, and (ii) within the strong SNR regime (t2 & σ2p), the difficulty
of estimating ΘR no longer depends on t2, as in this case the improved estimation of u1 is
neutralized by the increased magnitude of ΘR. Especially, all the above rate analysis is subjected
to a possible lower bound of ψ(n, p).

Moreover, since the above minimax optimal rates are simultaneously attained by the pro-
posed estimator Θ̂∗R regardless of the specific value of the underlying indices (t, βR), then, under
the sub-Gaussian noise, Θ̂∗R is minimax rate-adaptive over the collection of parameter spaces
C = {DR(t, βR) : p−1/2c1

√
log p ≤ βR ≤ c2 < 1, (15) holds}. In particular, with the calibra-

tion βR � (n/p)1/4, by ignoring the logarithmic factors, our proposed estimator is rate-optimally
adaptive over the collection of parameter spaces lying in the intermediate to strong SNR regime,
namely, CAdap = {DR(t, βR) : t2 & σ2√(np)}.

3·3. Minimax Rates and Optimality of the Range Estimator
As a direct consequence of our previous results on the extreme column estimation, the theoret-

ical properties of the range estimator R̂∗ can be obtained in the same manner. Again we consider
the normalized `2 distances ‖R̂−R(Θ)‖2/

√
n and denote the corresponding estimation risk as

RW (R̂) = 1√
nE‖R̂−R(Θ)‖2. Define the parameter space

DW (t, βR, βL) =

{
(Θ, π) ∈ D × Sp :

(A) holds, λ1 ∈ [t/8, 8t],
∑r

i=2 λi ≤ σ
√

log p,

− βL ≤ v11 ≤ 0 ≤ v1p ≤ βR,

}
, (18)

where t ≥ 0, p−1/2 ≤ βR, βL ≤ 1, and define the function q′(x, y, n, p) = σ2n log p
[

1
x2
∧{

1
ψ2 + 1

ψ

√
( p
n log p)

}]
+
(

1−x2
x2

σ2 log p+ y2σ2p
1−y2

)
. The following theorem establishes the mini-

max rate of convergence for estimating R(Θ) and the minimax optimality and adaptivity of our
proposed estimator R̂∗.
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THEOREM 3 (MINIMAX RATES). Let βW = βR + βL. Suppose t2 ≥ c0q
′(βR ∧ βL, βR ∨

βL, n, p), c1p
−1/2√log p ≤ {βR, βL} ≤ c2 for sufficiently large (n, p) and some constants

c0, c1 > 0 and 0 < c2 < 1, and Z has independent sub-Gaussian entries Zij with parameter
σ2. Then

inf
R̂

sup
DW (t,βR,βL)

RW (R̂) � βW t√
n

[
σ
√
{(t2 + σ2p)n}

t2
∧ 1

]
+ σψ. (19)

In particular, the minimax rates are simultaneously attained by the estimator R̂∗.

4. A SPECIAL CASE: PERMUTED LINEAR GROWTH MODEL

In the previous sections, theoretical results are obtained for the general approximately rank-
one matrices characterized by (11) (18) as well as the conditions of Theorems 1 to 3. One advan-
tage is the rich row-monotonicity structures contained in such parameter spaces, which adapts
well to real applications such as our motivating example in microbiome studies where the noisy
data sets are generated from the shotgun metagenomic sequencing (See Boulund et al. (2018);
Gao & Li (2018) and Figure 1). However, in many cases such as classical theories of the bac-
terial growth dynamics, an important subclass of the general permuted monotone matrix model
has usually been considered for its heuristic simplicity and explanatory power. We refer this
sub-model as the permuted linear growth model, where (1) holds over the restricted set

D0 =

{
(Θ, π) ∈ D × Sp :

θij = aiηj + bi, where ai, bi ∈ R for 1 ≤ i ≤ n,
ηj ≤ ηj+1 for 1 ≤ j ≤ p− 1 and

∑p
j=1 ηj = 0.

}
.

In other words, each row of Θ has a linear growth pattern with possibly different intercepts and
slopes. Denote a = (ai)1≤i≤n, η = (ηj)1≤j≤p and b = (bi)1≤i≤n. In this case, the parameters
of interest have the expressions of ΘR = aηp, ΘL = aη1 and R = a(ηp − η1).

In the context of bacterial growth dynamics, the above model is commonly referred as the
Cooper-Helmstetter model (Cooper & Helmstetter, 1968; Bremer & Churchward, 1977) that as-
sociates the copy number of genes with their relative distances to the replication origin. Specif-
ically, ai is the ratio of genome replication time and doubling time for the ith sample, ηj is the
distance from the replication origin for the jth contig, and bi is related to the read counts at the
replication origin and the sequencing depth. Consequently, the extreme columns aηp and aη1

correspond to the true log-transformed peak and trough coverages that are used to quantify the
bacterial growth dynamics across the samples (see also Section 5·2 and 5·3 for more details).

In the following, we discuss the consequences for the estimation of ΘR under this special
linear growth model, and the results for estimating ΘL and R follow similarly. By definition,
the SVD (3) for Θ ∈ D0 has a reduced form. Specifically, the row-centered matrix Θ′ is exactly
rank-one, where the leading right singular vector v1 has components

v1j =
ηj
‖η‖2

, for j = 1, ..., p, (20)

and the largest singular value admits the expression

λ1 = ‖a‖2‖η‖2. (21)

Intuitively, the set {v1j}1≤i<j≤p characterize the exact normalized column positions of Θ′ (and
Θ), while λ1 summarizes the slope magnitude of the rows and the overall separateness of the
columns. Consequently, the risk upper bound obtained in Theorem 1 has a reduced form, which
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has simpler and more intuitive interpretations. Specifically, for any given Θ ∈ DR(t, βR), we
consider the following pointwise risk upper bound

RR(Θ̂∗R) .
v1pλ1(Θ)√

n

[
σ
√
{(λ2

1(Θ) + σ2p)n}
λ2

1(Θ)
∧ 1

]
+ σψ, (22)

induced by (12) of Theorem 1. With the reparametrizations (20) and (21), we can rewrite (22) as

RR(Θ̂∗R) .
ηp‖a‖2√

n

[
σ
√
{(‖a‖22‖η‖22 + σ2p)n}
‖a‖22‖η‖22

∧ 1

]
+ σψ. (23)

Some observations about this risk upper bound are in order.
(a) Over the low SNR regime where ‖a‖22‖η‖22 . σ2√(np), (23) becomes

RR(Θ̂∗R) .
‖a‖2ηp√

n
+ σψ, (24)

where the first term is proportional to the overall slope magnitude ‖a‖2, but does not rely on the
locations of the other columns, i.e., ηj for 1 ≤ j ≤ p− 1. In this case, since the signal changes
across different columns are so vague, Θ̂∗R fails to implement a good estimate for the slopes a
and the estimation error can only decrease when the extreme column ΘR = aηp itself (and its
norm ‖a‖2ηp) is close to zero.

(b) Over the intermediate SNR regime where σ2√(np) . ‖a‖22‖η‖22 . σ2p, (23) becomes

RR(Θ̂∗R) .
σηp
‖η‖2

(
1 +

σ2p

‖a‖22‖η‖22

)1/2

+ σψ. (25)

In this case, as the signal differences between every consecutive columns are steep enough so
that the slopes a can be well estimated, increasing ‖η‖2 or ‖a‖2 would expand the advantage
and therefore leads to a better estimate.

(c) Over the strong SNR regime where ‖a‖22‖η‖22 & σ2p, the upper bound (23) becomes

RR(Θ̂∗R) .
σηp
‖η‖2

+ σψ. (26)

In the case, the advantage of large ‖a‖2 has been exploited to extremity so that increasing ‖a‖2
will no longer improve the performance of Θ̂∗R.

Comparing the rates from (24) to (26), an interesting discrepant role played by the overall
slope magnitude ‖a‖2 can be observed. In general, the theoretical performance of Θ̂∗R is clearly
driven by the global SNR ‖a‖22‖η‖22/σ2, which measures the magnitude of the signal changes
and the degree of monotonicity relative to the noise level.

Following the same argument as the proof of Theorem 2, the minimax optimality of our pro-
posed estimator Θ̂∗R can be also established under the permuted linear growth model. Specif-
ically, if we define the indexed parameter space D0,R(t, β) = {(Θ, π) ∈ D0 : 0 ≤ ηp/‖η‖2 ≤
β, ‖a‖2‖η‖2 ∈ [t/8, 8t]}, then it can be shown that for any pair (t, βR) such that (15) holds and
p−1/2√log p . βR ≤ c < 1,

inf
Θ̂R

sup
D0,R(t,βR)

RR(Θ̂R) � βRt√
n

[
σ
√
{(t2 + σ2p)n}

t2
∧ 1

]
+ σψ,

where the optimal rate is simultaneously attained by the proposed estimator Θ̂∗R.
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5. NUMERICAL STUDIES

5·1. Simulation with Model-Generated Data
To demonstrate our theoretical results and to compare with alternative methods, we generate

data from model (1) with various configurations of the signal matrix Θ. Specifically, the signal
matrix Θ = (θij) ∈ Rn×p is generated under the following two regimes:

r S1(n, p, α): for any 1 ≤ i ≤ n, θij = aiηj + bi for 1 ≤ j ≤ p, where ai ∼ Unif(0, α), bi ∼
Unif(0, 6) and (η1, ..., ηp) = (−1, 0, 0, ..., 0, 1);r S2(n, p, α): for any 1 ≤ i ≤ n, θij = log(1 + aij + βi) for 1 ≤ j ≤ p where ai ∼ Unif(0, α)
and bi ∼ Unif(0, 6).

By construction, S1(α, n, p) belongs to the linear growth model whereas S2(α, n, p) does not.
The elements of Z are drawn from i.i.d. standard normal distributions, and, without loss of gen-
erality, we set Π = Ip.

For the extreme column ΘR, we compare the empirical performance of our proposed estimator
Θ̂∗R with (i) the direct sorting estimator (DS) Θ̃R defined as Θ̃R = Y.π̂(p), where π̂ is given
by (7); and (ii) the order statistic estimator (OS) Θ̌R = (Yi,(p))1≤i≤n, as all the rows of Θ are
monotonic increasing. For the range vector R(Θ), we compare our proposed estimator R̂∗ with
(i) the direct sorting estimator (DS) R̃DS = Y.π̂(p) − Y.π̂(1), and (ii) the order statistic estimator
(OS) R̃OS = (Yi,(p) − Yi,(1))1≤i≤n. We use the empirical risk, or the averaged normalized `2
distance, to compare these methods. For each setting, we evaluate the empirical performance of
each method over a range of n, p and α. Each setting is repeated for 200 times.

The results are summarized as boxplots in Figure 2 and Figure 3. The empirical results agree
with our theory in the following perspectives: (i) our proposed estimators Θ̂∗R and R̂∗ perform
the best among all the settings; (ii) in the middle two plots of Figure 2 and 3, the risks of our
proposed estimators decrease as n grows, which agrees with our theorems. In addition, in the top
left panel of Figure 2 and 3 we observe that the risks of the OS estimator decrease as α increases.
This is because under S1(α, p, n), the parameter α characterizes the separateness of the two
extreme columns from the other columns. The OS estimators would apparently favour the cases
where the separation is more significant. In addition, both our proposed estimators and the DS
estimators outperform the OS estimators, showing the advantage of the compound estimators.

5·2. Simulation with Synthetic Microbiome Metagenomic Data
We then evaluate the empirical performance of our proposed method using a synthetic metage-

nomic sequencing data set (Gao & Li, 2018) by generating sequencing reads based on 45 closely
related bacterial genomes in 50 independent samples. Particularly, Gao & Li (2018) presented
a synthetic shotgun metagenomic sequencing data set of a community of 45 phylogenetically
related species from 15 genera of five different phyla with known RefSeq ID, taxonomy and
replication origin (Gao et al., 2013). To generate the metagenomic reads, reference genome se-
quences of randomly selected three species in each genus were downloaded from NCBI. Read
coverages were generated along the genome based on an exponential distribution with a spec-
ified peak-to-trough ratio and a function of accumulative distribution of read coverages along
the genome was calculated. Sequencing reads were then generated using the above accumulative
distribution functions and a random location for each read on the genome, until the total read
number achieved a randomly assigned average coverage between 0·5 and 10 folds for the species
in a sample. Sequencing errors including substitution, insertion and deletion were simulated in a
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Fig. 2. Boxplots of the empirical risks for estimating ΘR

under two different models, S1(α, p, n) and S2(α, p, n),
with DS, OS and Prop representing Θ̃R, Θ̌R and Θ̂∗

R.

position- and nucleotide-specific pattern according to the metagenomic sequencing error profile
of Illumina.

For the final data set, the average nucleotide identities (ANI) between species within each
genus ranged from 66·6% to 91·2%. The probability of one species existing in each of the 50
simulated samples was set as 0·6, and a total of 1,336 average coverages and the corresponding
PTRs were randomly and independently assigned. After the same processing, filtering, and CG-
adjustment steps as in Gao & Li (2018), the final data set included genome assemblies of 41
species. For each species, we obtained the permuted matrix of log-contig coverage with the
number of samples ranging from 29 to 46 and the number of contigs from 47 to 482.

We provide estimates of the log-PTRs of the assembled species for all the samples, or the
range vector R, using our previous notations. As a comparison, in addition to our proposed
method R̂∗, we consider the iRep estimator proposed by Brown et al. (2016), where the contigs
of a given species were ordered for each sample separately based on the observed read counts,
before fitting a piece-wise linear regression function. We evaluate these methods by considering
the `2 distance between the vectors of the true log-PTRs and their estimates. To generalize our
evaluation to diverse metagenomic data sets, we also evaluate the effect of sample size n as well
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Fig. 3. Boxplots of the empirical risks for estimating R
under two different models, S1(α, p, n) and S2(α, p, n),
with DS, OS and Prop representing R̃DS , R̃OS and R̂∗.

as contig numbers p by randomly selecting subsets of samples or contigs from each data set. The
selection was made with replacement.

The results are summarized in Figure 4. As n or p varies, our proposed estimator performs
consistently better than iRep. Moreover, the performance of our proposed method is not sensi-
tive to the sample size, the number of contigs from the genome assemblies or the underlying
true PTRs. These results partially explain why the DEMIC algorithm has superior performance
compared to the existing ones (Gao & Li, 2018).

5·3. Analysis of A Real Microbiome Metagenomic Data Set
We complete our numerical study by analyzing a real metagenomic data set from the NIH

Integrative Human Microbiome Project (iHMP). As part of the iHMP, the Inflammatory Bowel
Disease (IBD) Multi’omics project is a multi-institutional effort to investigate the differences
in gut microbiome communities among adults and children with IBD (Lloyd-Price et al., 2019)
and normal non-IBD controls. Many studies have reported strong associations between IBD,
including both Crohn’s disease (CD) and ulcerative colitis (UC) and gut microbiota composition.
In contrast, we focus on comparing the bacterial growth rates between UC, CD and normal non-
IBD individuals using the proposed methods.
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Fig. 4. Boxplots of the `2 distances between the vectors of
the estimated and the true log-PTRs for different sample
sizes n and different numbers of contigs p. The darker ones
correspond to the proposed method and the lighter ones

correspond to the iRep estimation method.

Table 1. Analysis of bacterial growth rates among CD, UC and non-IBD samples. Bins that show
significantly different growth rates and their taxonomic annotations are presented. (n1, n2, n3):
numbers of samples of CD, UC and non-IBD samples that carried the respective bin (assembled
bacterial genome).

Bins (n1, n2, n3) P-values Taxonomic Annotations

bin·054 (54, 32, 54) 0·015 Roseburia (genus)
bin·090 (38, 41, 52) 0·005 Faecalibacterium (genus)
bin·091 (26, 40, 52) 0·016 Clostridiales (order)
bin·099 (30, 32, 49) < 0·001 Subdoligranulum (genus)
bin·465 (36, 41, 33) 0·043 Dialister (genus)

The metagenomic data sets, including 300 samples of the CD, UC and non-IBD subjects,
were downloaded from the IBDMDB website (https://www.ibdmdb.org). Specifically,
we randomly select 100 samples of UC, CD and normal non-IBD samples, respectively. For
each sample, the sequencing data was obtained from the stool sample using Illumina shotgun se-
quencing. We first apply MEGAHIT (Li et al., 2015) version 1·1·1 to perform metagenomic co-
assembly. The co-assembled contigs were then clustered into metagenomic bins or genome as-
semblies using MaxBin (Wu et al., 2015) version 2·2·4. Finally, Bowtie 2 (Langmead & Salzberg,
2012) version 2·3·2 was used to align reads back to the assembled contigs for each of the sam-
ples, and the output alignments were then sorted by samtools (Li et al., 2009) version 0·1·19.

After these preparations, the DEMIC algorithm, incorporated with our proposed methods, was
applied to obtain the estimated PTRs (ePTRs) of a given species represented by a contig cluster
(bin) for each sample. As a result, ePTRs of 25 bins were obtained for subsets of the UC (n1), CD
(n2) and non-IBD (n3) samples with n1 + n2 + n3 ≥ 100, as some contig clusters may not be
carried or abundant enough among many samples. For each bin, we compare the ePTRs among
the UC, CD and non-IBD samples using an F-test. We applied the CAT/BAT algorithm (von
Meijenfeldt et al., 2019) that compares the metagenomic assembled bins to a taxonomy database
to obtain the taxonomic annotations of the 25 bins.

Interestingly, based on the F-test, among the 25 contig clusters, 5 of them show significant
difference in ePTRs among the UC, CD and non-IBD samples (Table 1). For reasons of space,
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Table 2. p-values from pairwise t-tests of differential growth rates between different groups for
five genome assembly bins.

Bins UC vs. CD UC vs. non-IBD CD vs. non-IBD

bin·054 0·525 0·004 0·081
bin·090 0·392 0·016 0·004
bin·091 0·012 0·054 0·335
bin·099 0·960 < 0·001 < 0·001
bin·465 0·042 0·818 0·026

Table 1 only provides the taxonomic annotation of the bins in terms of their genus – except
for bin·091 which can only be determined up to orders (see our Supplementary Material (Ma
et al., 2020b) for the complete annotations). We also performed pairwise comparisons using two-
sample t-test for the 5 differential bins (Table 2). We found that the difference in the growth rates
of bin·054 (Roseburia), bin·090 (Faecalibacterium) and bin·099 (Subdoligranulum) are more
significant between IBD and non-IBD samples. In particular, boxplots in our Supplementary
Material (Ma et al., 2020b) indicate higher growth rates of bin·054 (Roseburia) and bin·090
(Faecalibacterium), and a lower growth rates of bin·099 (Subdoligranulum) for IBD samples
when compared to the non-IBD samples. Moreover, the growth rates of bin·091 (Clostridiales)
is significantly higher among UC samples, whereas the growth rate of bin·465 (Dialister) is
significantly higher among the CD samples, comparing to the samples of the other two categories.
These results show that the gut microbiome communities in CD and UC patients or IBD and non-
IBD patients differ not only in relative abundance but also in growth rates of certain bacterial
species, an important insight from our data analysis.

6. DISCUSSION

The present paper focused on the permuted monotone matrix model with homoskedastic noise.
If the noises are heteroskedastic, for example (i) the columns of the noise matrix are not inde-
pendent, or (ii) the variances of the noise matrix entries are not identical, we argue that, as long
as the marginal distributions of the noise matrix remain sub-Gaussian, the framework developed
in this paper can still be applied. Specifically, in light of the recent work of Zhang et al. (2018),
where heteroskedastic PCA and SVD are studied, the key analytical tools paralleling to those
applied in the current work, such as concentration and perturbation inequalities associated to
the heteroskedastic random matrices, can be obtained by generalizing the results of Zhang et al.
(2018). Such extensions are involved and we leave them for future research.

Moreover, the current analytical framework is built upon the approximately rank-one structure
observed in the real data sets from our metagenomic applications, as well as the leading singular
vector property demonstrated in Section 2·1. However, there might be other interesting applica-
tions where the underlying monotone signal matrix is of general rank r > 1. As a result, it is also
of interest to investigate whether the current method and theoretical framework can be extended
to estimate the extreme values in those general rank r matrices.

SUPPLEMENTARY MATERIALS

Supplementary material available at Biometrika online includes the proofs of other theorems
and the technical lemmas, as well as some supplementary tables and figures.
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