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SUMMARY

Multivariate regression with high-dimensional covariates has many applications in genomic
and genetic research, in which some covariates are expected to be associated with multiple
responses. This paper considers joint testing for regression coefficients over multiple responses
and develops simultaneous testing methods with false discovery rate control. The test statistic is
based on inverse regression and bias-corrected group lasso estimates of the regression coefficients
and is shown to have an asymptotic chi-squared null distribution. A row-wise multiple testing
procedure is developed to identify the covariates associated with the responses. The procedure
is shown to control the false discovery proportion and false discovery rate at a prespecified
level asymptotically. Simulations demonstrate the gain in power, relative to entrywise testing, in
detecting the covariates associated with the responses. The test is applied to an ovarian cancer
dataset to identify the microRNA regulators that regulate protein expression.

Some key words: Bias-corrected group lasso; Error rate control; Multiple phenotypes; Row-wise multiple testing.

1. INTRODUCTION

In genetic and genomic applications, multiple correlated phenotypes are often measured on
the same individuals. Examples include genetic association studies, where many correlated phe-
notypic measurements are analysed jointly in the hope of increasing the power to detect causal
genetic variants (Schifano et al., 2013; Zhou et al., 2015). In the study of gene expression,
many genetic variants are associated with expression of multiple genes through trans-regulation
(Grundberg et al., 2012). Identification of such trans-variants has been difficult due to limited
sample sizes and multiple comparisons. In cancer genomic studies, microRNAs, or miRNAs, have
been found to modulate many cellular processes, and protein-miRNA interactions are essential
for post-transcriptional regulation in normal development and may be deregulated in cancer
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(van Kouwenhove et al., 2011). The biological goal of these studies is to identify associations
between miRNA and protein expression in order to understand the regulatory roles of miRNAs.

High-dimensional multivariate regression can be used in the applications mentioned above.
One simple approach involves assessing the relationship between each response and each covari-
ate individually and using a Bonferroni correction and false discovery rate control to account for
the large number of tests conducted. This is often performed in genetic association analysis of
gene expression data. Ruffieux et al. (2017) developed a Bayesian method for sparse multivariate
regression models to select predictor-response pairs. Alternatively, one can apply a dimension
reduction technique, such as principal component analysis of the responses, and test for asso-
ciation with the principal components rather than the individual responses (Suo et al., 2013).
Classical Fisher combination tests have also been explored and applied (Yang et al., 2016).

By taking advantage of the similarity across multivariate responses, significant gains in statis-
tical power can potentially be achieved in an association analysis. This motivates us to consider
the following high-dimensional multivariate regression model, where D correlated responses are
measured on n independent individuals, together with p covariates, where p can be much greater
than n:

Yn×D = μn×D + Xn×pBp×D + ϒn×D, (1)

where Y = (Y·,1, . . . , Y·,D) ∈ R
n×D, with Y·,d = (Y1,d , . . . , Yn,d)T, denotes the observed

response matrix for n samples over D responses, μ = (μ·,1, . . . , μ·,D) ∈ R
n×D, with

μ·,d = (μ1,d , . . . , μn,d)T, is the mean response matrix, the rows of which are the same, and
X = (X T

1,·, . . . , X T
n,·)T ∈ R

n×p is the covariate matrix. In this model, B = (B·,1, . . . , B·,D) ∈ R
p×D,

with B·,d = (B1,d , . . . , Bp,d)T ∈ R
p, represents the matrix of regression coefficients, where the

ith row represents the regression coefficients of the ith covariate on the D responses, and D is
fixed. Finally, ϒ = (ε·,1, . . . , ε·,D) ∈ R

n×D with ε·,d = (ε1,d , . . . , εn,d)T, where {εk ,d} are inde-
pendent and identically distributed random variables with mean zero and variance σ 2

ε which are
independent of X .

To test whether the ith covariate is associated with any of the D responses, in this paper we
develop an efficient procedure for simultaneously testing

H0,i : Bi,· = 0 versus H1,i : Bi,· |= 0 (i = 1, . . . , p) (2)

while controlling the false discovery rate and false discovery proportion. Of particular interest
is the scenario where the effects of the ith variable on each of the D responses share strong
similarities; that is, if Bi,d |= 0, then the rest of the entries in that row are more likely to be nonzero.
Hence, a row-wise testing method using the group information should be more favourable than
testing B column by column.

Currently there is significant interest in statistical inference for high-dimensional linear regres-
sion. In the ultra-sparse setting, Javanmard & Montanari (2013), van de Geer et al. (2014) and
Zhang & Zhang (2014) considered constructing confidence intervals and testing for a given coor-
dinate of a high-dimensional coefficient vector in a linear model, and proposed procedures based
on the debiased lasso estimators. Cai & Guo (2017) studied adaptive confidence intervals for a
general linear functional of the regression vector in the high-dimensional setting, and showed
that the adaptivity depends on the sparsity of the regression and the loading vectors. Zhu &
Bradic (2017) considered testing a single entry of the regression coefficient in the setting of
nonsparse linear regression. These papers focused on inference for a given coordinate or a given
linear functional, but simultaneous testing of all coordinates with false discovery rate control was

Downloaded from https://academic.oup.com/biomet/article-abstract/105/2/249/4867661
by guest
on 17 May 2018



Joint testing for multivariate response regression 251

not considered. Furthermore, they only dealt with the regression setting with a single response,
whereas here we consider joint testing of regression coefficients over multiple responses.

We develop a sum-of-squares-type test statistic for testing a given row of the regression coef-
ficient matrix B, based on the covariance between the residuals from the fit of the regression
model (1) and the corresponding pD inverse regression models introduced in § 2·2. To get an
estimate of the error terms ϒ in (1), this model is reformulated and the group lasso algorithm
applied to obtain a bias-corrected estimator of B, so as to make use of the group information.
The test statistic is shown to have an asymptotic χ2 distribution under the null hypothesis that
the corresponding row of B is zero. A transformed statistic is introduced and its asymptotic
power is studied. In addition, a new row-wise multiple testing procedure based on the normal
quantile transformation is proposed and its theoretical error rate control investigated. It is shown
numerically that for a range of settings, the row-wise testing procedure significantly outperforms
the entrywise method. We apply our method to analyse an ovarian cancer genomic dataset. The
results demonstrate that the proposed test provides a powerful tool for identifying the miRNA
regulators that are associated with a set of important proteins related to cancer progression.

2. ESTIMATION AND ROW-WISE STATISTICAL TEST

2·1. Notation and definitions

We begin with some basic notation and definitions. For a vector a = (a1, . . . , ap)
T ∈ R

p,
define the lq-norm by |a|q = (

∑p
i=1 |ai|q)1/q for 1 � q � ∞. For subscripts, we use the

convention that vi stands for the ith entry of a vector v and Mi,j for the entry in the ith row and jth
column of a matrix M . Throughout, n independent and identically distributed random samples
{Yk ,d , Xk ,· : k = 1, . . . , n; d = 1, . . . , D} are observed, where Xk ,· = (Xk ,1, . . . , Xk ,p) is a random
vector with covariance matrix �. Define �−1 = � = (ωi,j).

For any vector μd ∈ R
p, let μ−i,d denote the (p−1)-dimensional vector obtained by removing

the ith entry from μd . For a symmetric matrix A, let λmax(A) and λmin(A) denote the largest and
smallest eigenvalues of A. For any n × p matrix A, let Ai,−j denote the ith row of A with its jth
entry removed and let A−i,j denote the jth column of A with its ith entry removed. Let A−i,−j
denote the (n − 1) × (p − 1) submatrix of A formed by removing its ith row and jth column, and
let A·,−j denote the n× (p−1) submatrix of A formed by removing the jth column. Let Ai,· be the
ith row of A and A·,j the jth column of A. Write Ā·,j = n−1∑n

k=1 Ak ,j, Ā·,−j = n−1∑n
k=1 Ak ,−j,

Ā·,j = (Ā·,j, . . . , Ā·,j)T
n×1, and Ā(·,−j) = (ĀT·,−j, . . . , ĀT·,−j)

T
n×(p−1). Let Ā = n−1∑n

k=1 Ak ,·.
For a matrix � = (ωi,j)p×p, the matrix elementwise infinity norm is defined by ‖�‖∞ =

max1�i,j�p |ωi,j|. For a set H, |H| denotes the cardinality. For two sequences of real numbers
{an} and {bn}, write an = O(bn) if there exists a constant C such that |an| � C|bn| for all n, write
an = o(bn) if limn→∞ an/bn = 0, and write an � bn if limn→∞ an/bn = 1.

2·2. Parameter estimation and construction of test statistics

In order to construct a row-wise testing procedure, an inverse regression approach is used to
first obtain a nearly unbiased estimator of B. Based on model (1), for each i = 1, . . . , p and
d = 1, . . . , D, we run linear regression by taking Xk ,i as the response and (Yk ,d , Xk ,−i) as the
covariates:

Xk ,i = αi,d + (Yk ,d , Xk ,−i)γi,d + ηk ,i,d (k = 1, . . . , n) (3)

where ηk ,i,d has mean zero and variance σ 2
i,d and is uncorrelated with (Yk ,d , Xk ,−i). The regression

coefficients γi,d = (γi,1,d , . . . , γi,p,d)T satisfy

Downloaded from https://academic.oup.com/biomet/article-abstract/105/2/249/4867661
by guest
on 17 May 2018



252 Y. XIA, T. T. CAI AND H. LI

γi,d = −σ 2
i,d(−Bi,d/σ 2

ε , Bi,dBT
−i,d/σ 2

ε + �i,−i)
T, σ 2

i,d = (B2
i,d/σ 2

ε + ωi,i)
−1.

Note that cov(εk ,d , ηk ,i,d) = cov{εk ,d , Xk ,i − αi,d − (Yk ,d , Xk ,−i)γi,d}. Because the εk ,d are
independent of the random design matrix X , ri,d = cov(εk ,d , ηk ,i,d) can be expressed as
−γi,1,d cov(εk ,d , Yk ,d) = −γi,1,dσ 2

ε = −σ 2
i,dBi,d . Thus the null hypotheses H0,i : Bi,· = 0 are

equivalent to

H0,i :
D∑

d=1

(ri,d/σ 2
i,d)2 = 0 (i = 1, . . . , p).

Test statistics can then be based on the estimates of {ri,d/σ 2
i,d : i = 1, . . . , p; d = 1, . . . , D}.

To obtain estimates of ri,d , estimates of B and γi,d are first constructed. To utilize the
row-wise similarity information, the estimator B̂ = (B̂·,1, . . . , B̂·,D) ∈ R

p×D, with B̂·,d =
(B̂1,d , . . . , B̂p,d)T ∈ R

p, is obtained by using the group lasso method proposed in Yuan &
Lin (2006). Because the response variables and the covariates can be centred so that the
observed mean is zero, without loss of generality we assume that μ = 0. Specifically, write
vec(Y ) = (Y1,·, . . . , Yn,·)T ∈ R

nD×1, vec(B) = (B1,·, . . . , Bp,·)T ∈ R
pD×1 and vec(ϒ) =

(ε1,·, . . . , εn,·)T ∈ R
nD×1. Model (1) can then be written as

vec(Y ) = X ⊗ ID×Dvec(B) + vec(ϒ). (4)

Let vec(B̂) = (B̂1,·, . . . , B̂p,·)T ∈ R
pD×1. The group lasso estimator is defined as

vec(B̂) = arg min

⎧⎨
⎩1

2

∣∣∣∣vec(Y ) −
p∑

j=1

(X ⊗ ID×D)·,[(j−1)D+1]:jDBj,·
∣∣∣∣
2

2
+ λn

p∑
j=1

|Bj,·|2
⎫⎬
⎭, (5)

where λn is a tuning parameter. Selection of λn will be discussed in § 3·3. By Lemma A3 in the
Appendix, if the row sparsity of B satisfies s(p) = o(n1/3/log p), then

max
1�d�D

∣∣B̂·,d − B·,d
∣∣
1 = Op(an1), max

1�d�D

∣∣B̂·,d − B·,d
∣∣
2 = Op(an2) (6)

for some an1 and an2 such that

max(an1an2, a2
n2) = o{(n log p)−1/2}, an1 = o(1/ log p). (7)

Remark 1. The estimator B̂ in (5) provides one way to estimate the regression coefficients B,
and other methods can be applied to estimate it if the coefficients satisfy (6) and (7). On the other
hand, row-wise estimation as in (5) is better than entrywise estimation because the entries in the
same row of B have similar patterns.

Next, we construct estimates of γi,d in the inverse regression (3) that satisfy

max
1�d�D

max
1�i�p

∣∣γ̂i,d − γi,d
∣∣
1 = Op(an1), max

1�d�D
max

1�i�p

∣∣γ̂i,d − γi,d
∣∣
2 = Op(an2), (8)

which can be obtained via the lasso estimator (Xia et al., 2015, 2018); see § 3·3.
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For k = 1, . . . , n and d = 1, . . . , D, define the residuals

ε̂k ,· = Yk ,· − Ȳ − (Xk ,· − X̄ )B̂,
η̂k ,i,d = Xk ,i − X̄i − {Yk ,d − Ȳd , (Xk ,−i − X̄·,−i)}γ̂i,d ,

where B̂ and γ̂i,d are estimators of B and γi,d that satisfy (7) and the following conditions by
combining (6) and (8):

max
(

max
1�d�D

|B̂·,d − B·,d |1, max
1�d�D

max
1�i�p

|γ̂i,d − γi,d |1
)

= Op(an1),

max
(

max
1�d�D

|B̂·,d − B·,d |2, max
1�d�D

max
1�i�p

|γ̂i,d − γi,d |2
)

= Op(an2).
(9)

We construct a nearly unbiased estimate of ri,d as follows. Since ri,d = cov(εk ,d , ηk ,i,d), it can
be estimated by the sample covariance between the error terms, Ri,d = n−1∑n

k=1 εk ,dηk ,i,d . By
replacing the error terms with the residuals, Ri,d can be estimated by r̃i,d = n−1∑n

k=1 ε̂k ,d η̂k ,i,d .
However, the bias induced by the estimated parameters exceeds the desired rate (n log p)−1/2 and
is not ignorable. By comparing r̃i,d and Ri,d , Lemma A2 leads to

r̃i,d = Ri,d + σ̃ 2
ε (γi,1,d − γ̂i,1,d) + σ̃ 2

i,d(Bi,d − B̂i,d) + op{(n log p)−1/2}.

Define σ̂ 2
ε = (Dn)−1∑n

k=1
∑D

d=1 ε̂2
k ,d and σ̂ 2

i,d = n−1∑n
k=1 η̂2

k ,i,d to be the empirical sample
variances that satisfy

max
(
|σ̂ 2

ε − σ 2
ε |, max

1�i�p
|σ̂ 2

i,d − σ 2
i,d |
)

= Op{(log p/n)1/2}.

We have

r̃i,d + σ̂ 2
ε γ̂i,1,d + σ̂ 2

i,dB̂i,d = n−1
n∑

k=1

{εk ,dηk ,i,d − E(εk ,dηk ,i,d)}

− σ 2
i,dBi,d(1 − σ̃ 2

ε /σ 2
ε − σ̃ 2

i,d/σ 2
i,d) + op{(n log p)−1/2}.

Thus, a debiased estimator for ri,d can be defined by

r̂i,d = r̃i,d + σ̂ 2
ε γ̂i,1,d + σ̂ 2

i,dB̂i,d .

Under the null hypothesis H0,i, the bias of r̂i,d is of order (n log p)−1/2, which is sufficiently small
to construct the test statistics

Ti,d = r̂i,d/σ̂ 2
i,d (i = 1, . . . , p; d = 1, . . . , D).

Under H0,i, we have |Ti,d − Ũi,d | = op{(n log p)−1/2}, where

Ui,d = n−1
n∑

k=1

{εk ,dηk ,i,d − E(εk ,dηk ,i,d)}, Ũi,d = (Bi,d + Ui,d)/σ 2
i,d . (10)
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The variance of Ti,d can be approximated by

θi,d ≡ var(Ũi,d) = var(εk ,dηk ,i,d/σ 2
i,d)/n = (σ 2

ε /σ 2
i,d + B2

i,d)/n,

where θi,d can be estimated by θ̂i,d = (σ̂ 2
ε /σ̂ 2

i,d + B̂2
i,d)/n. Define the standardized statistic

Wi,d = Ti,d/θ̂
1/2
i,d (i = 1, . . . , p).

The final test statistic for (2) based on {Wi,d : i = 1, . . . , p; d = 1, . . . , D} is then defined as

Si =
D∑

d=1

W 2
i,d (i = 1, . . . , p), (11)

which will be studied in detail in § 2·3.

2·3. Asymptotic null distribution of Si

To investigate the asymptotic null distribution of Si, some regularity conditions are needed.

Condition 1. Assume that log p = o(n1/5) and that for some constants C0, C1, C2 > 0,
C−1

0 � λmin(�) � λmax(�) � C0, C−1
1 � σ 2

ε � C1, ‖B‖∞ � C2, and var(Yk ,d) � C2.

Condition 2. There exists some constant M > 0 such that the quantities E{exp(Mε2
k ,d)} and

maxvar(aTX T
k ,·)=1 E[exp{M (aTX T

k ,·)
2}] are finite.

Condition 3. Let � be the diagonal of � and let (ξi,j) = R = �−1/2��−1/2. Assume that
max1�i�j�p |ξi,j| � ξ < 1 for some constant 0 < ξ < 1.

Condition 1, the eigenvalue condition, is common in high-dimensional settings (Cai et al., 2013;
Liu, 2013; Xia et al., 2015). It implies that most of the variables are not highly correlated with
each other and is sufficient to give Lemma A2 and to ensure error rate control in simultaneous
inference, studied in § 3. The assumption log p = o(n1/5) is sufficient for the simultaneous
Gaussian approximations (A3) and (A4), as shown in the proof of Theorem 1. As we shall see
from the numerical results in § 4, p can be much larger than n in practice. The same condition
is commonly used (see, e.g., Cai et al., 2013; Xia et al., 2015), and stricter assumptions are
also imposed, for example in Chang et al. (2017), where it was assumed that log p = o(n1/7).
Condition 2 is a sub-Gaussian tail condition, and can be weakened to a polynomial tail condition
if p < nc for some constant c > 0. This condition is necessary for Gaussian approximation of
the proposed test statistics. It is milder than the normal assumption used in the high-dimensional
regression literature (Javanmard & Montanari, 2014; Zhang & Zhang, 2014). Condition 3 is also
mild. For example, if max1�i�j�p |ξi,j| = 1, then � is singular.

The following theorem gives the asymptotic null distribution of Si, for any i = 1, . . . , p.

THEOREM 1. Suppose that Conditions 1 and 2 and the asymptotic conditions (9) and (7) hold.
Then under H0,i : Bi,· = 0, for any t ∈ R,

pr(Si � t) → pr(χ2
D � t)

as n, p → ∞.
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The normal quantile transformation of Si, defined as

Qi = �−1{1 − pr(χ2
D � Si)/2} (12)

where � is the standard normal cumulative distribution function, asymptotically has the same
distribution as the absolute value of a standard normal random variable.A test �i

α can be defined as

�i
α = I {Qi � �−1(1 − α/2)}, (13)

where the hypothesis H0,i : Bi,· = 0 is rejected whenever �i
α = 1.

2·4. Asymptotic power

To analyse the asymptotic power of the test �i
α given in (13), for a given row index i, define

the class of regression coefficients

Wi(α, ν) =
{

B :
D∑

d=1

B2
i,d

θi,d
� (2 + δ)(�2

1−α + �2
1−ν)

}
(14)

for any constant δ > 0, where �1−α is the 1 − α quantile of χ2
D.

The next theorem shows that the test �i
α is able to asymptotically distinguish the null parameter

set in which Bi,· = 0 from Wi(α, ν) for an arbitrarily small constant δ > 0, with ν → 0.

THEOREM 2. Suppose that Conditions 1 and 2 and the asymptotic conditions (9) and (7) hold.
Then as n, p → ∞, for any δ > 0,

inf
B∈Wi(α,ν)

pr
(
�i

α = 1
)

� 1 − ν.

Since θi,d is of order 1/n, Theorem 2 shows that the proposed test rejects the null hypothesis
H0,i : Bi,· = 0 with high probability for a large class of regression coefficients satisfying the
condition that there exists one entry Bi,d having a magnitude larger than C/n1/2 for C = {(2 +
δ)(C0C1 + C2

2 )(�2
1−α + �2

1−ν)}1/2, where C0, C1 and C2 are given in Condition 1.

3. MULTIPLE TESTING WITH ERROR RATE CONTROL

3·1. Multiple testing algorithm

In this section, a row-wise multiple testing procedure is introduced with error rate control for
testing the p hypotheses

H0,i : Bi,· = 0 versus H1,i : Bi,· |= 0 (i = 1, . . . , p).

Let H = {1, . . . , p}, let H0 = {i : Bi,· = 0, i ∈ H} be the set of true nulls, and let H1 = H \ H0
be the set of true alternatives. We are interested in cases where most of the rows of B consist of
zeros, that is, where |H1| is small relative to |H|.

Theorem 1 shows that Si is asymptotically chi-squared distributed, and, as discussed in § 2·3,
the normal quantile transformation of Si defined as Qi = �−1{1 − pr(χ2

D � Si)/2} has approx-
imately the same distribution as the absolute value of a standard normal random variable under
the null H0,i. Let t be the threshold level such that H0,i is rejected if Qi � t. For any given t,
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denote the total number of false positives by R0(t) = ∑
i∈H0

I (Qi � t) and the total number of
rejections by R(t) = ∑

i∈H I (Qi � t). Then the false discovery proportion and false discovery
rate are defined as

FDP(t) = R0(t)

R(t) ∨ 1
, FDR(t) = E{FDP(t)}.

An ideal choice of t is

t0 = inf
{
0 � t � (2 log p)1/2 : FDP(t) � α

}
,

which would reject as many true positives as possible while controlling the false discovery pro-
portion at the prespecified level α. Here R0(t) can be estimated by 2{1 − �(t)}|H0| and |H0| is
bounded above by p. Thus we conservatively estimate |H0| by p because of the row sparsity of
the regression coefficients. Therefore, we propose the following multiple testing algorithm.

Step 1. Construct Si by (11); then calculate the row-wise test statistics Qi by (12), for i ∈ H.

Step 2. For a given 0 � α � 1, calculate

t̂ = inf
[

0 � t � (2 log p − 2 log log p)1/2 :
2p{1 − �(t)}

R(t) ∨ 1
� α

]
. (15)

If (15) does not exist, then set t̂ = (2 log p)1/2.

Step 3. For i ∈ H, reject H0,i if Qi � t̂.

3·2. Theoretical error rate control

We now turn our attention to the theoretical error rate control of the proposed multiple testing
algorithm. For any i ∈ H, define

�i(γ ) = { j : j ∈ H, |ξi,j| � (log p)−2−γ },
where ξi,j is defined in Condition 3. The following theorem shows that the proposed multiple test-
ing procedure controls the false discovery proportion and false discovery rate at the prespecified
level α asymptotically.

THEOREM 3. Assume p0 = |H0| � p and that (9) and (7) hold. Suppose there exists some
γ > 0 such that maxi∈H0 |�i(γ )| = o(pτ ) for any τ > 0. Then under Conditions 1–3 with
p � cnr for some c > 0 and r > 0, we have

lim sup
(n,p)→∞

FDR(t̂) � α,

and for any ε > 0 we have

lim
(n,p)→∞ pr{FDP(t̂) � α + ε} = 1.

Remark 2. The condition on |�i(γ )| ensures that most of the row estimates of B are not highly
correlated with each other for those indices belonging to the true nulls H0, so as to control the
variance of R0(t) in order to control the false discovery proportion.
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When t̂ is not attained in the range [0, (2 log p − 2 log log p)1/2] as described in (15), it is
thresholded at (2 log p)1/2. The following theorem states a weak condition to ensure the existence
of t̂ in the range; as a result, the false discovery rate and false discovery proportion will converge
to the prespecified level α.

THEOREM 4. Let

Sρ = {i ∈ H : there exists d with 1 � d � D such that |Bi,d |/θ1/2
i,d � (log p)1/2+ρ

}
.

Suppose that for some ρ > 0 and some δ > 0, |Sρ | � {1/(π1/2α) + δ}(log p)1/2. Suppose there
exists some γ > 0 such that maxi∈H0 |�i(γ )| = o(pτ ) for any τ > 0.Assume that p0 = |H0| � cp
for some c > 0 and that (9) and (7) hold. Then under Conditions 1–3 with p � cnr for some
c > 0 and r > 0,

lim
(n,p)→∞

FDR(t̂)

αp0/p
= 1,

FDP(t̂)

αp0/p
→ 1

in probability as (n, p) → ∞.

Remark 3. The condition on |Sρ | requires that a few rows of B have one entry with magnitude
exceeding (log p)1/2+ρ/n1/2 for some constant ρ > 0, among p hypotheses in total, and is thus a
mild condition. It is critical to restrict t to the range [0, (2 log p−2 log log p)1/2] and to threshold
Qi at (2 log p)1/2 when t̂ is not in this range. First of all, when t � (2 log p − 2 log log p)1/2,
2p{1 − �(t)} → 0 and is not even a consistent estimate of the false rejections R0(t) because
|R0(t)/[2p{1 − �(t)}] − 1| 
→ 0 in probability as (n, p) → ∞. Hence, if we use 2p{1 −
�(t)} as an estimate of R0(t) for all t � (2 log p)1/2, it may not be able to control FDP(t̂) with
positive probability. Secondly, it is critical to threshold Qi at (2 log p)1/2 instead of (2 log p −
2 log log p)1/2. When t does not exist in the range, thresholding Qi at (2 log p−2 log log p)1/2 will
cause too many false rejections, and consequently FDR(t̂) cannot be controlled asymptotically at
level α.

3·3. Algorithm details and tuning parameter selection

To obtain the row-wise test statistics Qi in Step 1 of the above algorithm, we study the estimation
of regression coefficients in models (1) and (3). As discussed in § 2·2, the regression coefficient
matrix B can be estimated by first reformulating the model (1) as (4) and then applying the group
lasso estimator of Yuan & Lin (2006) as in (5) with

λn = b{8σ̂Y (1 + 5/2D−1 log p)/(nD)}1/2,

where vec(Y ) and X are centred and σ̂Y is the sample variance of vec(Y ); see, for example,
Lounici et al. (2011). For the inverse regression models in (3), γi,d (d = 1, . . . , D; i = 1, . . . , p)

is estimated by applying the lasso as follows:

γi,d = �
−1/2
i,d arg min

v

(
1

2n

∣∣∣[(Y·,d , X·,−i) − {Ȳd , X̄(·,−i)}
]
�

−1/2
i,d v − (X·,i − X̄·,i)

∣∣∣2
2
+ λi,n|v|1

)
,

(16)
where λi,n = b(σ̂i,i log p/n)1/2 and �i,d = diag(σ̂Yd , �̂−i,−i), in which σ̂Yd is the sample variance
of Yk ,d and �̂ = (σ̂i,j) is the sample covariance matrix of Xk ,·.
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The tuning parameters λn and λi,n in (5) and (16) are selected adaptively using the data by
matching the number of false rejections R0(t) with its estimate 2p{1−�(t)} as closely as possible.
Since H0 is unknown, the constant b in the tuning parameters is chosen to minimize

∫ 1

c

[∑
i∈H I {Q(b)

i � �−1(1 − α/2)}
αp

− 1

]2

dα,

where c > 0 and Q(b)
i is the statistic of the corresponding tuning parameter.A discretized criterion

and the algorithm are summarized as follows.

Step 1. For b = 1, . . . , 40 let λn = (b/20)[8σ̂Y {1 + (5/2) log p/D}/(nD)]1/2 and λi,n =
(b/20)(σ̂i,i log p/n)1/2. For each b, calculate B̂(b) and γ̂

(b)
i,d (i = 1, . . . , p; d = 1, . . . , D). Based

on the estimation of regression coefficients, construct the corresponding statistics S(b)
i for each b.

Step 2. Choose b̂ to be the minimizer of

b̂ = arg min
10∑

s=1

[∑
1�i�p I {S(b)

i � �−1(1 − s[1 − �{(2 log p)1/2}]/10)}
sp[1 − �{(2 log p)1/2}]/10

− 1

]2

.

Then the tuning parameters λn and λi,n are chosen by

λn = (b̂/20)[8σ̂Y {1 + (5/2) log p/D}/(nD)]1/2, λi,n = (b̂/20)(σ̂i,i log p/n)1/2.

4. SIMULATION STUDIES

4·1. Data generation

The false discovery rate and power of the multiple testing procedure proposed in § 3·1 are
evaluated by simulation. The data are generated by considering three matrix models, with covari-
ates being a combination of continuous and discrete random variables. The proposed row-wise
multiple testing procedure is compared with the entrywise testing method of Xia et al. (2018).
The R code is available in the Supplementary Material.

The number of responses D is chosen to be 10. The design matrices Xk ,· (k = 1, . . . , n)
are generated as in Xia et al. (2018), with some covariates continuous and others discrete. Let
� = (�i,j) be a diagonal matrix with �i,i = Un(1, 3) for i = 1, . . . , p. The following three
models are used to generate the design matrices.

Model 1 constructs �∗(1) = (ω
∗(1)
i,j ) where ω

∗(1)
i,i = 1, ω∗(1)

i,i+1 = ω
∗(1)
i+1,i = 0·6, ω∗(1)

i,i+2 = ω
∗(1)
i+2,i =

0·3 and ω
∗(1)
i,j = 0 otherwise. Then the precision matrix is generated by �(1) = �1/2�∗(1)�1/2.

Model 2 constructs �∗(2) = (ω
∗(2)
i,j ) where ω

∗(2)
i,j = ω

∗(2)
j,i = 0·5 for i = 10(k − 1) + 1

and 10(k − 1) + 2 � j � 10(k − 1) + 10, with 1 � k � p/10, and ω
∗(2)
i,j = 0 otherwise.

Then the precision matrix is generated by �(2) = �1/2(�∗(2) + δI )/(1 + δ)�1/2 with δ =
|λmin(�

∗(2))| + 0·05.
Model 3 constructs �∗(3) = (ω

∗(3)
i,j ) where ω

∗(3)
i,i = 1, ω∗(3)

i,j = 0·8×Ber(1, 0·05) for i < j and

ω
∗(3)
j,i = ω

∗(3)
i,j . Then the precision matrix is generated by �(3) = �1/2(�∗(3) + δI )/(1 + δ)�1/2

with δ = |λmin(�
∗(3))| + 0·05.
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For each of the three matrix models, independent and identically distributed samples Xk ,· ∼
N (0, �(m)) (k = 1, . . . , n) with m = 1, 2 and 3 are obtained. Discrete covariates are simulated by
l covariates of Xk ,·,d taking one of three discrete values, 0, 1 or 2, with probability 1/3 each, where
l is a random integer between p/2� and p. For the regression coefficient matrix B, s nonzero rows
are randomly selected, with s = 10, 20, 30 and 50 for p = 50, 200, 500 and 1000, respectively.
For the selected rows, we construct the regression coefficient matrix in the following two settings.

In setting 1, all entries in the nonzero rows are nonzero: the magnitudes of Bi,d are generated
randomly from [−2(log p/n)1/2, −(log p/n)1/2] ∪ [(log p/n)1/2, 2(log p/n)1/2] with n = 100
and d = 1, . . . , D.

In setting 2, a small proportion of entries of the nonzero rows are nonzero: for each nonzero
row, we randomly selected three nonzero locations {l1, l2, l3} and generated the magnitudes of
nonzero Bi,d randomly from [−4(log p/n)1/2, −2(log p/n)1/2] ∪ [2(log p/n)1/2, 4(log p/n)1/2]
with n = 100 and d = l1, l2, l3, and set Bi,d = 0 otherwise.

The false discovery rate level is chosen as α = 5%. Based on 50 replications, the empirical
false discovery rate and power are calculated by

1

50

50∑
l=1

∑
i∈H0

I (Ni,l � t̂)∑
i∈H I (Ni,l � t̂)

,
1

50

50∑
l=1

∑
i∈H1

I (Ni,l � t̂)

|H1| ,

where Ni,l denotes the normal quantile transformed statistics for the lth replication.

4·2. Simulation results

Figure 1 shows that the new method controls the false discovery rate well with α = 5%
for all three matrix models with randomly selected nonzero regression coefficients as described
above, across the whole range of dimensions. In contrast, the entrywise method shows severe
false discovery rate distortion when the same significance level α is used. As an alternative, we
can conservatively select the significance level for the entrywise method to be α/D, for testing
each of the D columns. The false discovery rate is well controlled by this corrected entrywise
method for Models 1 and 2, but still suffers from distortion for Model 3 when the dimension is
large.

Figure 1 shows that the proposed method has a clear power advantage over the two entrywise
methods. Even for the uncorrected entrywise method, which has serious false discovery rate
distortion, the empirical power is still much lower than that of our new procedure. When the
dimension is large, i.e., when p = 1000, both entrywise methods suffer from trivial power, while
the power of our method remains reasonably high.

In Fig. 2 one can observe similar behaviour to that in Fig. 1: the proposed method attains the
desired error rate control in all models with various dimensions and sparsity levels. In setting 2,
because only a small proportion of entries in the nonzero rows of the regression coefficient
matrix B are nonzero, the entrywise method with the same significance level α exhibits less
severe false discovery rate distortion, though obvious deviation from the nominal level can still
be seen, especially in Model 3. Furthermore, although the similarities between the columns of B
are relatively weak in setting 2, the proposed method still shows significant power gain over the
alternative procedures, especially as the dimension increases.

In summary, the numerical results suggest that when the regression coefficients share some
row-wise similarities, groupwise testing is preferable to the entrywise method, in terms of both
false discovery rate and power. The results of more simulations with weaker signal sizes are
reported in the Supplementary Material.
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Fig. 1. Simulation setting 1: comparison of false discovery rate and power of the three methods, with α = 5%; in each
panel the solid line with circles represents the proposed row-wise method, the dotted line with crosses represents the
entrywise method with significance level α, and the dashed line with triangles represents the entrywise method with

significance level α/D.

5. REAL-DATA ANALYSIS

We apply the proposed testing procedures to an ovarian cancer dataset, with the goal of iden-
tifying the miRNA regulators that regulate the expression of ovarian cancer-related proteins.
MicroRNAs are a family of small noncoding RNAs that regulate a wide array of biological
processes, including carcinogenesis. In cancer cells, miRNAs have been found to be heavily
dysregulated and affect the expression of genes and their protein products. To investigate the
association between miRNA expression and protein expression in ovarian cancer, a total of 125
stage III and stage IV papillary serous primary ovarian cancer samples resected during debulking
at the University of Turin were profiled for both miRNA expression and protein expression (Zsiros
et al., 2015). A total of 3480 probes were profiled for miRNA expression and summarized as log2
expression ratios. Among these, 3132 miRNAs were characterized and are used in our analysis.
The protein expression data on these 125 samples were measured using reverse-phase protein
arrays for a total of 195 proteins; reverse-phase protein array is a quantitative antibody-based
technology that can be used to assess multiple protein markers in many samples in a cost-effective,
sensitive and high-throughput manner (Li et al., 2013).

Since many of the proteins did not exhibit large variations in the ovarian cancer samples,
they were first screened with the variance threshold set to 1, which resulted in the following
16 most variable proteins in our analysis: Annexin, Caveolin, Caveolin1, Claudin7, Cyclin.B1,
E.cadherin, FAK.C, FAK.C1, HER2, HSP70, HSP70.1, IGFBP2, MAPK, p38, PARP, and PR.V.
These proteins play functionally significant roles in ovarian cancer migration and invasion. For
example, HER2 overexpression is a driving force in the carcinogenesis of several human cancers,
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Fig. 2. Simulation setting 2: comparison of false discovery rate and power of the three methods, with α = 5%; in each
panel the solid line with circles represents the proposed row-wise method, the dotted line with crosses represents the
entrywise method with significance level α, and the dashed line with triangles represents the entrywise method with

significance level α/D.

including ovarian cancer (Pils et al., 2007). It has been reported that the overwhelming majority
of human tumours overexpress members of the HSP70 family, and expression of these proteins is
typically a marker of poor prognosis (Murphy, 2013). Insulin-like growth factor binding protein 2,
IGFBP2, has been shown to enhance the invasion capacity of ovarian cancer cells (Lee et al., 2005).
It is therefore important to identify the possible miRNA regulators that regulate the expression
of such proteins in ovarian cancer.

Our goal is to identify the key protein regulators from the set of 3132 miRNAs using the
data from these 125 ovarian cancer samples. Applying the proposed method, 25 miRNAs were
identified as being associated with protein expression at a false discovery rate α-level of 0·05; see
Table 1. However, when the entrywise test was applied with an α-level of 0·05/16, none of the
miRNAs was selected. The identified miRNAs play various regulatory roles in cancer initiation
and progression. Among them, miR-376a, miR-888, miR-187, miR-146a and miR-105 are asso-
ciated with promotion of proliferation and metastasis, while miR-33b, miR-490-5p, miR-497,
miR-596, miR-548-3p, miR-105, miR-185, miR-548i, miR-1247 and miR136 are associated with
inhibition of cancer metastasis and progression. A few identified miRNAs, including miR-593,
are also involved in protein kinase R, PKR, regulation and regulate cell proliferation. Table 1 lists
supporting literature for the involvement of some of the identified miRNAs in ovarian cancer pro-
gression. These results show that miRNAs play important roles in regulating protein expression
that are associated with ovarian cancer initiation and progression, and our proposed test provides
a powerful tool for identifying such cancer-associated miRNAs.

For comparison, we also analysed this dataset using the method of Ruffieux et al. (2017),
a Bayesian implementation of a sparse multivariate regression model that allows simultaneous
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Table 1. MicroRNAs that regulate protein expression in stage II to stage IV ovarian cancer,
their biological functions, p-values from the proposed test, and relevant literature

MicroRNA Biological function p-value Reference

hsa-miR-376a Promotes proliferation and metastasis 3·65 × 10−5 Yang et al. (2016)
hsa-miR-888 Cancer metastasis 9·76 × 10−6 Huang & Chen (2014)
hsa-miR-1288 Cancer location and pathological staging 7·00 × 10−6 Gopalan et al. (2014)
hsa-miR-33b Inhibits cancer metastasis 1·75 × 10−4 Lin et al. (2015)
hsa-miR-490-5p Tumour suppression 6·86 × 10−7 Lan et al. (2015)
hsa-miR-497 Inhibitory roles 3·55 × 10−4 Li et al. (2011)
mmu-miR-759 — 3·22 × 10−4

has-RNU48 Tumour pathology and prognosis 2·15 × 10−4 Gee et al. (2011)
hsa-miR-596 Tumour suppression 7·90 × 10−5 Endo et al. (2013)
hsa-miR-187 Cancer progression 5·49 × 10−6 Chao et al. (2012)
has-RNU19 — 1·68 × 10−4

hsa-miR-518f — 3·43 × 10−5

hsa-miR-548d-3p Anti-oncogenic regulator 9·73 × 10−5 Shi et al. (2015)
hsa-miR-105 Inhibits tumour growth 1·15 × 10−4 Honeywell et al. (2013)
hsa-miR-185 Suppresses tumour growth 2·92 × 10−4 Imam et al. (2010)
hsa-miR-146a Enhanced tumourigenic potential 2·89 × 10−4 Sandhu et al. (2014)
hsa-miR-548i Anti-oncogenic regulator 9·73 × 10−5 Shi et al. (2015)
hsv1-miR-H6 — 3·66 × 10−4

hsa-miR-129 Promotes apoptosis 5·23 × 10−7 Karaayvaz et al. (2013)
hsa-miR-1247 Inhibits cell proliferation 2·13 × 10−4 Shi et al. (2014)
hsa-miR-136 Inhibits cancer stem cell activity 1·38 × 10−4 Jeong et al. (2017)
hsa-miR-593 Regulates cell proliferation 1·65 × 10−6 Ito et al. (2011)
mmu-miR-105 Promotes metastasis 1·15 × 10−4 Zhou et al. (2014)
hsa-miR-886-5p Associates with PKR and modulates its activity 2·41 × 10−4 Lee et al. (2011)
hsa-miR-553 — 7·03 × 10−5

selection of predictors and associated responses. For each miRNA-protein pair, we obtained the
marginal posterior inclusion probability. Among all the pairs, the maximum inclusion probability
was 0·56, with only four pairs having inclusion probability over 0·25 and one pair having inclusion
probability above 0·50. Using 400 permutations as suggested by Ruffieux et al. (2017), the
procedure did not detect any miRNA-protein association at a false discovery rate level of 0·25.
Since our test aims to test the association between a given miRNA and any of the proteins, for each
miRNA we also took the maximum inclusion probability among all the proteins and calculated
the false discovery rate using 400 permutations. Again, no association was identified for a false
discovery rate level of 0·25. These results were similar to the entrywise test results.
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APPENDIX

Technical lemmas

In this section we prove the main theoretical results. We begin by stating lemmas that will be used in
the proofs of the theorems. The following lemma was introduced in Berman (1962).

LEMMA A1. If X and Y have a bivariate normal distribution with zero expectation, unit variance and
correlation coefficient ρ, then

lim
c→∞

pr(X > c, Y > c)

{2π(1 − ρ)1/2c2}−1 exp
(− c2

1+ρ

)
(1 + ρ)1/2

= 1

uniformly for all ρ such that |ρ| � δ, for any δ with 0 < δ < 1.

Based on the definitions of Ui,d and Ũi,d in (10), the following lemma is essentially proved in an
unpublished 2014 paper by W. Liu and S. Luo, available upon request from the first author.

LEMMA A2. Suppose that Conditions 1 and 2 and the asymptotic conditions (9) and (7) hold. Then

r̃i,d = n−1
n∑

k=1

(εk ,d − ε̄)(ηk ,i,d − η̄i,d) + σ̃ 2
ε (γi,1,d − γ̂i,1,d) + σ̃ 2

i,d(Bi,d − B̂i,d) + op{(n log p)−1/2}

and, consequently,

Ti,d = Ũi,d + (σ̃ 2
ε /σ 2

ε + σ̃ 2
i,d/σ

2
i,d − 2)Bi,d + op{(n log p)−1/2},

where σ̃ 2
ε = (Dn)−1

∑nd
k=1

∑D
d=1(εk ,d − ε̄)2 and σ̃ 2

i,d = n−1
∑n

k=1(ηk ,i,d − η̄i,d)
2 with ε̄ =

(Dn)−1
∑n

k=1

∑D
d=1 εk ,d and η̄i,d = n−1

∑n
k=1 ηk ,i,d . As a result, uniformly in i = 1, . . . , p,

|Ti,d − Ũi,d | = Op{Bi,d(log p/n)1/2} + op{(n log p)−1/2}.

We apply the group lasso estimator (5) with λ = {8σ̂Y (1+A log p/D)/(nD)}1/2, taking A > 5/2, where
vec(Y ) and X are centralized and σ̂Y is the sample variance of vec(Y ). Then, by Corollary 4.1 in Lounici
et al. (2011), we have the following lemma.

LEMMA A3. Consider the model (4). Under Conditions 1 and 2, if D = O(log p), then B̂ satisfies

max
1�d�D

∣∣B̂·,d − B·,d
∣∣
1
= Op{s(p)(log p/n)1/2}, max

1�d�D

∣∣B̂·,d − B·,d
∣∣
2
= Op

[{s(p) log p/n}1/2
]
,

where s(p) =∑p
i=1 I (Bi,· |= 0) is the row sparsity of B.

Proof of Theorem 1

Based on the definitions of Ui,d and Ũi,d in (10), let Vi,d = Ui,d/(σ
2
i,1θ

1/2
i,d ), where θi,d = var(Ũi,d) =

var(εk ,dηk ,i,d/σ
2
i,d)/n = (σ 2

ε /σ 2
i,d + B2

i,d)/n (d = 1, . . . , D). By Lemma 2 in Xia et al. (2015), under
conditions (9) and (7) we have

|σ̂ 2
ε − σ 2

ε | = Op{(log p/n)1/2}, max
i,d

|σ̂ 2
i,d − σ 2

i,d | = Op{(log p/n)1/2}.

Therefore

max
i,d

|θ̂i,d − θi,d | = op{1/(n log p)}. (A1)
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Lemma A2, together with (A1), implies that uniformly in 1 � i � p, Wi,d = Vi,d + op{(log p)−1/2}; thus
we have that uniformly in 1 � i � p, Si = ∑D

d=1 V 2
i,d + op(1). Hence, it suffices to show that

∑D
d=1 V 2

i,d

converges to χ 2
D in distribution. Define Zk ,i,d = {εk ,dηk ,i,d − E(εk ,dηk ,i,d)}/σ 2

i,d for 1 � k � n. Then

Vi,d =
n∑

k=1

Zk ,i,d/(n
2θk ,d)

1/2.

Without loss of generality, we assume σ 2
ε = σ 2

i,d = 1. Define V̂i,d = ∑n
k=1 Ẑk ,i,d/(n2θk ,d)

1/2, where Ẑk ,i,d =
Zk ,i,dI (|Zk ,i,d | � τn) − E{Zk ,i,dI (|Zk ,i,d | � τn)} with τn = (4/M ) log(p + n). Note that

max
1�i�p

n−1/2
n∑

k=1

E
[|Zk ,i,d |I

{|Zk ,i,d | � (4/M ) log(p + n)
}]

� Cn1/2 max
1�k�n

max
1�i�p

E
[|Zk ,i,d |I

{|Zk ,i,d | � (4/M ) log(p + n)
}]

� Cn1/2(p + n)−2 max
1�k�n

max
1�i�p

E
[|Zk ,i,d | exp{(M/2)|Zk ,i,d |}

]
� Cn1/2(p + n)−2.

Hence

pr
{

max
1�i�p

|Vi,d − V̂i,d | � (log p)−1
}

� pr
(

max
1�i�p

max
1�k�n

|Zk ,i,d | � τn

)
= O(p−1).

Because of the fact that∣∣∣∣∣max
1�i�p

D∑
d=1

V 2
i,d − max

1�i�q

D∑
d=1

V̂ 2
i,d

∣∣∣∣∣ � 2D max
1�i�p

max
1�d�D

|V̂i,d | max
1�i�q

max
1�d�D

|Vi,d − V̂i,d |

+ D max
1�i�q

max
1�d�D

|Vi,d − V̂i,d |2,

it suffices to prove that for any t ∈ R,

pr

(
D∑

d=1

V̂ 2
i,d � t

)
→ pr(χ 2

D � t). (A2)

Let Z̃k ,i,d = Ẑk ,i,d/θ
1/2
i,d for i = 1, . . . , q and Wk ,i = (Z̃k ,i,1, . . . , Z̃k ,i,D) for 1 � k � n. Then

pr

(
D∑

d=1

V̂ 2
i,d � t

)
= pr

⎛
⎝
∣∣∣∣∣n−1/2

n∑
k=1

Wk ,i

∣∣∣∣∣
2

2

� t

⎞
⎠ .

It follows from Theorem 1 in Zaïtsev (1987) that

pr

⎛
⎝
∣∣∣∣∣n−1/2

n∑
k=1

Wk ,i

∣∣∣∣∣
2

2

� t

⎞
⎠� pr

{|N (D)|22 � t − εn(log p)−1/2
}+ c1d5/2 exp

{
− n1/2εn

c2d3τn(log p)1/2

}
(A3)

and that

pr

⎛
⎝
∣∣∣∣∣n−1/2

n∑
k=1

Wk ,i

∣∣∣∣∣
2

2

� t

⎞
⎠� pr

{|N (D)|22 � t + εn(log p)−1/2
}− c1d5/2 exp

{
− n1/2εn

c2d3τn(log p)1/2

}
, (A4)
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where c1 > 0 and c2 > 0 are constants, εn → 0 will be specified later, and N (D) = (N1, . . . , ND) is a
normal random vector with E{N (D)} = 0 and cov{N (D)} = cov(Wk ,i). Because ϒ is independent of X and
ηk ,i,d2 = Xk ,i − (Yk ,d2 , Xk ,−i)γi,d2 with Yk ,d2 = Xk ,·B·,d2 + εk ,d2 , we have that for d1 |= d2, εk ,d1 and ηk ,i,d2 are
independent of each other. On the other hand, by definition, εk ,d and ηk ,i,d + γi,1,dεk ,d are independent of
each other. Hence, under the null H0,i, we have that the εk ,d are independent of ηk ,i,d . Thus we have

cov(εk ,d1ηk ,i,d1 , εk ,d2ηk ,i,d2) = E(εk ,d1ηk ,i,d1εk ,d2ηk ,i,d2) = 0.

So cov{N (D)} = cov(Wk ,i) = ID×D. This, together with (A3) and (A4), proves (A2), and Theorem 1 then
follows.

Proof of Theorem 2

By Lemma A2, we have

max
1�d�D

∣∣∣∣∣Ti,d − {1 + o(1)}ETi,d

θ̂
1/2
i,d

− Ui,d

∣∣∣∣∣ = op{(log p)−1/2}.

Observe that

∑
1�d�D

[{1 + o(1)}ETi,d]2

θ̂i,d

� 2

(
Si +

∑
1�d�D

[Ti,d − {1 + o(1)}ETi,d]2

θ̂i,d

)
.

Also note that E(Ti,d) = Bi,d{1 + o(1)} + o{(n log p)−1/2}. The result then follows from the definition (14)
of the classes of precision matrices and Theorem 1.

Proof of Theorem 3

We start by showing that pr[∑i∈H0
I {|Qi| � (2 log p)1/2} = 0] → 1 as (n, p) → ∞, and then we focus

on the event {t̂ in (15) exists}. Next, we show the false discovery proportion result by dividing the null set
into small subsets and controlling the variance of R0(t) for each subset, and thus the false discovery rate
result will also be proved. Note that

pr

⎡
⎣∑

i∈H0

I {|Qi| � (2 log p)1/2} � 1

⎤
⎦ � p0 max

i∈H0
pr{|Qi| � (2 log p)1/2}.

By Theorem 1, pr(maxi∈H0 max1�d�D |Wi,d − V̂i,d | = o{(log p)−1/2}) = 1. Then, on the event {maxi∈H0

max1�d�D |Wi,d − V̂i,d | = o{(log p)−1/2}}, by (A3), (A4) and the fact that G(t + o{(log p)−1/2)}/G(t) =
1 + o(1) uniformly in 0 � t � (2 log p)1/2, where G(t) = 2{1 − �(t)}, we have

pr

⎡
⎣∑

i∈H0

I {|Qi| � (2 log p)1/2} � 1

⎤
⎦ � p0G{(2 log p)1/2}{1 + o(1)} = o(1).

Hence we shall focus on the event {t̂ exists in the range [0, (2 log p − 2 log log p)1/2]}. By definition of t̂,
it is easy to show that

2{1 − �(t̂)}p
max{∑i∈H I (|Qi| � t̂), 1} = α.
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Therefore it suffices to show that

sup
0�t�(2 log p−2 log log p)1/2

∣∣∣∣∣
∑

i∈H0
{I (|Qi| � t) − G(t)}

pG(t)

∣∣∣∣∣→ 0

in probability. Let 0 � t0 < t1 < · · · < tb = tp be such that tι − tι−1 = vp for 1 � ι � b − 1 and
tb − tb−1 � vp, where vp = {log p(log4 p)}−1/2. Thus we have b ∼ tp/vp. For any t such that tι−1 � t � tι,

∑
i∈H0

I (|Qi| � tι)

p0G(tι)

G(tι)

G(tι−1)
�
∑

i∈H0
I (|Qi| � t)

p0G(t)
�
∑

i∈H0
I (|Qi| � tι−1)

p0G(tι−1)

G(tι−1)

G(tι)
.

So it suffices to prove that

max
0�ι�b

∣∣∣∣∣
∑

i∈H0
{I (|Qi| � tι) − G(tι)}

pG(tι)

∣∣∣∣∣→ 0

in probability. Define Fi = ∑1�d�D V̂ 2
i,d and Mi = �−1{1 − pr(χ 2

D � Fi)/2}. By the proof of Theorem 1,
we have maxi∈H0 |Si − Fi| = op(1), because

pr{χ 2
D � t + o(1)}/pr(χ 2

D � t) = 1 + o(1)

for all 0 � t � c log p with any constant c > 0. Recall that Qi = �−1{1 − pr(χ 2
D � Si)/2}. Note that

G[t +o{(log p)−1/2}]/G(t) = 1+o(1) uniformly in 0 � t � (2 log p)1/2. Based on the proof of Theorem 1,
it suffices to show that

max
0�ι�b

∣∣∣∣∣
∑

i∈H0
[I (|Mi| � tι) − G(tι)]

p0G(tι)

∣∣∣∣∣→ 0

in probability. Note that

pr

[
max
0�ι�b

∣∣∣∣∣
∑

i∈H0
{I (|Mi| � tι) − G(tι)}

p0G(tι)

∣∣∣∣∣ � ε

]
�

b∑
ι=1

pr

[∣∣∣∣∣
∑

i∈H0
{I (|Mi| � tι) − G(tι)}

p0G(tι)

∣∣∣∣∣ � ε

]

� 1

vp

∫ tp

0
pr

{∣∣∣∣∣
∑

i∈H0
I (|Mi| � t)

p0G(t)
− 1

∣∣∣∣∣ � ε

}
dt +

b∑
ι=b−1

pr

[∣∣∣∣∣
∑

i∈H0
{I (|Mi| � tι) − G(tι)}

p0G(tι)

∣∣∣∣∣ � ε

]
.

Therefore, it suffices to show that for any ε > 0,

∫ tp

0
pr

[∣∣∣∣∣
∑

i∈H0
{I (|Mi| � t) − pr(I (|Mi| � t)}

p0G(t)

∣∣∣∣∣ � ε

]
dt = o(vp). (A5)

Note that

E

∣∣∣∣∣
∑

i∈H0
{I (|Mi| � t) − pr(I (|Mi| � t)}

p0G(t)

∣∣∣∣∣
2

=
∑

i,j∈H0
{pr(|Mi| � t, |Mj| � t) − pr(|Mi| � t)pr(|Mj| � t)}

p2
0G2(t)

.
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We divide the indices i, j ∈ H0 into three subsets: H01 = {i, j ∈ H0 : i = j}, H02 = {i, j ∈ H0 : i |= j, i ∈
�j(γ ) or j ∈ �i(γ )}, which contains the highly correlated pairs, and H03 = H0\(H01∪H02). Then we have

∑
i,j∈H01

{pr(|Mi| � t, |Mj| � t) − pr(|Mi| � t)pr(|Mj| � t)}
p2

0G2(t)
� C

p0G(t)
. (A6)

Note that cov(εk ,dηk ,i,d , εk ,dηk ,j,d) = E(ε2
k ,dηk ,i,dηk ,j,d) − E(εk ,dηk ,i,d)E(εk ,dηk ,j,d). Because cov(εk ,d , ηk ,i,d) =

−σ 2
i,dBi,d , we have E(εk ,dηk ,i,d)E(εk ,dηk ,j,d) = σ 2

i,dσ
2
j,dBi,dBj,d . Note that E(ε2

k ,dηk ,i,dηk ,j,d) equals

E{ε2
k ,d(ηk ,i,d + εk ,dγi,1,d)(ηk ,j,d + εk ,dγj,1,d)}

− E{ε2
k ,d(ηk ,i,d + εk ,dγi,1,d)εk ,dγj,1,d} − E(ε3

k ,dγi,1,dηk ,j,d).

Since εk ,d is uncorrelated with ηk ,i,d + εk ,dγi,1,d , we have −γi,1,dvar(εk ,d) = cov(εk ,dηk ,i,d). Thus,

E(ε2
k ,dηk ,i,dηk ,j,d) = σ 2

ε E{(ηk ,i,d + εk ,dγi,1,d)(ηk ,j,d + εk ,dγj,1,d)} − E(ε3
k ,dγi,1,dηk ,j,d).

Note that

E(ε3
k ,dγi,1,dηk ,j,d) = E{ε3

k ,dγi,1,d(ηk ,j,d + εk ,dγj,1,d)} − E(ε4
k ,dγi,1,dγj,1,d) = −3γi,1,dγj,1,dσ

4
εd

and that

E{(ηk ,i,d + εk ,dγi,1,d)(ηk ,j,d + εk ,dγj,1,d)}
= cov(ηk ,i,d , ηk ,j,d) + γi,1,dcov(εk ,d , ηk ,j,d) + γj,1,dcov(εk ,d , ηk ,i,d) + γi,1,dγj,1,dσ

2
ε .

We have cov(εk ,dηk ,i,d , εk ,dηk ,j,d) = (ωi,jσ
2
ε + 2Bi,dBj,d)σ

2
i,dσ

2
j,d .

Therefore, for i, j ∈ H0,

ξ̃i,j,d = corr(εk ,dηk ,i,d , εk ,dηk ,j,d) = (ωi,jσ
2
ε + 2Bi,dBj,d)

{(ωi,iσ 2
ε + 2B2

i,d)(ωj,jσ 2
ε + 2B2

j,d)}1/2
= ξi,j.

By the proof of Theorem 1 we also have, for d1 |= d2, corr(εk ,d1ηk ,i,d1 , εk ,d2ηk ,j,d2) = 0. Thus we have
|corr(Mi, Mj)| � ξ < 1, where ξ is defined in Condition 3. Hence, by Lemma A1 and Lemma 6.2 in Liu
(2013),

∑
i,j∈H02

{pr(|Mi| � t, |Mj| � t) − pr(|Mi| � t) pr(|Mj| � t)}
p2

0G2(t)

� C
p1+τ t−2 exp{−t2/(1 + ξ)}

p2G(t)
� C

p1−τ {G(t)}2ξ/(1+ξ)
. (A7)

It remains to consider the subset H03, in which Mi and Mj are weakly correlated with each other. It is easy
to check that maxi,j∈H03 pr(|Mi| � t, |Mj| � t) = [1 + O{(log p)−1−γ }]G2(t).
Thus we have∑

i,j∈H03
{pr(|Mi| � t, |Mj| � t) − pr(|Mi| � t) pr(|Mj| � t)}

p2
0G2(t)

= O{(log p)−1−γ }. (A8)

Equation (A5) follows by combining (A6), (A7) and (A8).
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Proof of Theorem 4

Under the conditions of Theorem 4, we have

∑
i∈H

I {|Qi| � (2 log p)1/2} � {1/(π 1/2α) + δ}(log p)1/2

with probability tending to 1. Hence, with probability approaching 1, we have

p∑
i∈H I {|Qi| � (2 log p)1/2} � p{1/(π 1/2α) + δ}−1(log p)−1/2.

Let tp = (2 log p − 2 log log p)1/2. Because 1 − �(tp) ∼ 1/{(2π)1/2tp} exp(−t2
p/2), we have pr(1 �

t̂ � tp) → 1 according to the definition of t̂ in the proposed multiple testing algorithm in § 3·1; that is,
pr(t̂ exists in [0, tp]) → 1. Theorem 4 then follows from the proof of Theorem 3.
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