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Abstract

In this article, we discuss topics in large-scale multiple testing and present
a compound decision theoretical framework for false discovery rate (FDR)
analysis. It is shown that conventional multiple testing procedures that
threshold p-values can be much improved by a class of powerful data-driven
procedures that exploit relevant information of the sample, including the pro-
portion of non-nulls, the null and alternative distributions, the correlation
structures as well as possible external information. Our discussion reveals
the special features of large-scale inference problems and provides additional
insights into the classic statistical decision theory. Both simulated and real
data examples are presented for illustration of ideas and comparison of dif-
ferent procedures. Some important open problems for future research are
also discussed.

Keywords: Compound decision theory; dependence; false discovery rate;
grouped hypotheses; hidden Markov models; large-scale multiple testing.

1 Introduction

Large-scale multiple testing is an important area in modern statistics with a wide
range of applications including genome-wide association studies, DNA microarray
analysis, brain imaging studies and astronomical surveys. In these applications,
one often tests thousands or even millions of hypotheses simultaneously. The
analysis of these large-scale problems poses many statistical challenges not present
in smaller scale studies. We discuss in this article the challenging statistical issues
and new methodological developments in this field.
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1.1 Setting and Notation

We shall use DNA microarray studies to illustrate the typical setting and notation
in large-scale multiple testing problems. In DNA microarray experiments, a stan-
dard technique for comparison of genes across two conditions is differential analysis
(Dudoit et al. 2002; Sebastiani et al. 2003), where gene expression data are first
collected on the same m genes for the two groups of subjects {X1, · · · , Xn1} and
{Y1, · · · , Yn2}, and then a two sample t-statistic ti is calculated for each gene. The
p-value and z-value of each test can be obtained using appropriate transforma-
tions: pi = 2F (−|ti|) and zi = Φ−1{F (ti)}, where F and Φ are respectively the
cdf’s of the t-variable and standard normal variable. The data notation is summa-
rized in Table 1. For example, Hedenfalk et al. (2001) analyzed a breast cancer

Table 1: Summary of the data notation

Cond. I Cond. II t z p
X1 · · · Xn1 Y1 · · · Yn2 T Z P

Gene 1 x11 · · · xn11 y11 · · · yn21 t1 z1 p1

Gene 2 x12 · · · xn12 y12 · · · yn22 t2 z2 p2

...
...

...
...

...
...

...
...

...
...

Gene m x1m · · · xn1m y1m · · · yn2m tm zm pm

(BRC) study where gene expression data were measured on the same m = 3226
genes for 15 breast cancer patients, 7 with BRCA1 mutation and 8 with BRCA2
mutation. Van’t Wout et al. (2003) carried out a human immunodeficiency virus
(HIV) study where gene expression levels are measured on the same m = 7680
genes for 4 HIV positive cases and 4 HIV negative controls. In both the BRC
and HIV analyses, the m genes can be assumed to come from a mixture of two
populations (null and non-null): in the null population, the gene expression levels
are not associated with the disease condition, while in the non-null population,
genes are differentially expressed between the two conditions. The goal is to test
for differential gene expression and hence to identify genes associated with the
disease status.

1.2 Type I error rates

When performing a single test, two types of errors may be committed: rejecting a
hypothesis when it is a true null (type I error or false positive) or accepting it when
it is a non-null (type II error or false negative). The outcomes of m simultaneous
tests can be summarized in Table 2.

The consequences of the two types of errors are often different. In single
hypothesis testing, it is desirable to control the Type I error rate at a prespecified
level α and minimize the type II error rate. When multiple tests are considered
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Table 2: Classification of tested hypotheses

Claimed non-significant Claimed significant Total
Null N00 N10 m0

Non-null N01 N11 m1

Total S R m

jointly, a procedure that tests each hypothesis at level α, referred to as the per-
comparison error rate (PCER) procedure, in general leads to the inflation of type
I errors. The family wise error rate (FWER), defined as FWER = P (N10 > 1),
has been widely used to avoid misleading inferences caused by the multiplicity
in simultaneous testing. Here “family” refers to the collection of all tests being
conducted. Instead of controlling the PCER at level α, an α-level FWER con-
trolling procedure guarantees that the probability of making one or more type I
errors in the family will not exceed the prespecified level α. A well known FWER
procedure is the Bonferroni method that tests each hypothesis at level α/m. We
refer to Hochberg and Tamhane (1987) and Shaffer (1995) for a review of FWER
procedures. A natural extension of the FWER is the k-FWER, defined as the
probability of making k or more false rejections in the family. Recently, some k-
FWER procedures have been discussed in Lehmann and Romano (2005), Romano
and Shaikh (2006) and Sarkar (2007).

However, the power to reject a non-null hypothesis while controlling for the
FWER is greatly reduced as the number of tests increases. In situations where
both the number of hypotheses and the number of true non-nulls are large, it is
cost-effective to tolerate some type I errors, provided that the number is small
compared to the total number of rejections. These considerations lead to a more
powerful approach which calls for controlling the false discovery rate (FDR, Ben-
jamini and Hochberg 1995). The FDR, defined as the expected proportion of
false rejections among all rejections, provides a novel way to combine the errors in
multiple comparisons. Using the notation in Table 2, the FDR can be defined as

FDR = E

(
N10

R

∣∣∣∣ R > 0
)

P (R > 0) = E

(
N10

R ∨ 1

)
. (1.1)

According to the definition, the FDR is zero when no hypotheses are rejected.
Other similar measures include the positive false discovery rate (Storey 2002) and
the marginal false discovery rate (Genovese and Wasserman 2002; Sun and Cai
2007), respectively defined as

pFDR = E(
N10

R
|R > 0) and mFDR =

E(N10)
E(R)

.

The pFDR and mFDR are equivalent when test statistics come from a random mix-
ture of the null and non-null distributions (Storey 2003). Genovese and Wasserman
(2004) showed that, under mild conditions, mFDR = FDR + O(m−1/2), where m
is the number of hypotheses.
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The FDR controlling procedures are more appropriate in large-scale multi-
ple comparison problems and have been successfully applied in different scientific
areas such as multi-stage clinical trials, microarray experiments, genome-wide as-
sociation studies, brain imaging studies and astronomical surveys, among others
(Weller et al. 1998; Efron et al. 2001; Miller et al. 2001; Tusher et al. 2001;
Storey and Tibshirani 2003; Dudoit et al. 2002; Sabatti et al. 2003; Menshausen
and Rice 2006; Schwartzman et al. 2008). This article discusses the recent the-
oretical and methodological developments in the FDR field. The main goal is to
develop a compound decision theoretical framework for large-scale multiple test-
ing and to introduce a new class of powerful data-driven FDR procedures that are
particularly suitable for testing a large number of hypotheses.

1.3 Optimality

In single hypothesis testing, the power is defined as the probability of correctly
rejecting a non-null hypothesis. In the Neyman-Pearson testing framework, the
most powerful test maximizes the power subject to a constraint on the type I
error rate. The power can be generalized in different ways as we move from
single hypothesis testing to multiple hypothesis testing. For FDR control, the
most widely used measure is the false negative (or non-discovery) rate (FNR;
Genovese and Wasserman 2002), the expected proportion of non-nulls among all
non-rejections. Using the notation in Table 2, we have

FNR = E

(
N01

S

∣∣∣∣ S > 0
)

P (S > 0) = E

(
N01

S ∨ 1

)
. (1.2)

The FNR is a natural dual quantity to the FDR and will be used in this paper.
Other quantities, including the missed discovery rate (MDR), the expected true
positives (ETP) and the average power (AP), have also been considered in the
literature (Spjøtvoll 1972; Storey 2007; Efron 2007). An FDR procedure is said to
be valid if it controls the FDR at a prespecified level α and optimal if it has the
smallest FNR among all valid FDR procedures at level α.

1.4 P -values and adjusted p-values

The p-value is a measure of how strongly the observed data contradict the null
hypothesis. In single hypothesis testing, the p-value of a test can be interpreted
as the probability under the null of observing a test statistic that is as extreme as
or more extreme than the observed value in the direction of rejection. Therefore a
statistical decision can be made by simply comparing the p-value with a given test
level α. A similar concept, the adjusted p-value, was developed in the multiple
testing context (Rosenthal and Rubin 1983; Wright 1992; Westfall and Young
1993). Given a testing procedure, the adjusted p-value for hypothesis i is the level
of the entire testing procedure at which Hi would just be rejected, given the values
of all test statistics. For example, if the interest is in controlling the FWER, the
Bonferroni adjusted p-value for hypothesis i is p̃i = mpi, where pi is the unadjusted
p-value and m is the number of tests. Then Hi is rejected at nominal FWER α if
p̃i 6 α.
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1.5 Stepwise FWER procedures

The Bonferroni method is a single-step procedure, which evaluates each hypoth-
esis using a common critical value that is essentially independent of other test
statistics. Other single-step procedures include the S̆idák procedure and the minP
procedure (cf. Westfall and Young 1993; Dudoit et al. 2003). The single-step
procedures is conservative and can be improved by procedures that have a more
complicated structure. Two class of stepwise procedures, namely step-down and
step-up procedures, have been developed in the literature. Due to their data-
dependent nature, the stepwise procedures are capable of improving the power of
a single-step procedure at the same FWER level without making additional as-
sumptions. The most well known stepwise procedures for FWER control include
the Holm procedure, the Simes procedure and the Hochberg procedure.

Holm procedure. Let p(1) 6 · · · 6 p(m) be the ordered p-values and
H(1), · · · ,H(m) the corresponding hypotheses. The Holm procedure (Holm 1979)
operates as follows: if p(1) > α/m, then accept all hypotheses and stop. Otherwise
reject H(1) and test the remaining m− 1 hypotheses at level α/(m− 1). If p(2) >
α/(m− 1), accept the remaining hypotheses and stop. Otherwise reject H(2) and
test the remaining m− 2 hypotheses at level α/(s− 2). And so on. The adjusted
p-value for the Holm procedure is

p̃(i) = max
k=1,··· ,i

[min{(m− k + 1)p(k), 1}],

for i = 1, · · · ,m. It can be shown that the Holm procedure controls the FWER at
level α for all possible constellations of true and false hypotheses. This is referred
to as the strong control of FWER. In addition, the Holm procedure starts with
the most significant p-value and continues rejecting hypotheses as long as their
p-values are small. This is called a step-down procedure.

Simes-Hochberg procedure. In contrast to step-down procedures, step-
up procedures begin by looking at the least significant p-value and then move to
the more significant ones. A well known step-up procedure is Simes-Hochberg
procedure (Hochberg 1988), which operates as follows. Let k = max{i : p(i) 6
α/(m− i+1)}, then reject hypotheses H1, · · · ,H(k). The adjusted p-value for the
Simes-Hochberg procedure is

p̃(i) = min
k=i,··· ,m

[min{(m− k + 1)p(k), 1}], (1.3)

for i = 1, · · · ,m. We refer to Hochberg and Tamhane (1987) and Shaffer (1995)
and for a comprehensive review of other issues in FWER control.

The rest of this chapter is organized as follows. Traditional FDR procedures
are introduced in Section 2. In Section 3 we formulate the multiple testing prob-
lem in a compound decision theoretic framework and discuss an oracle and an
adaptive procedure for FDR control. The simultaneous testing of grouped hy-
potheses and multiple testing under dependence are considered in Sections 4 and
5, respectively. We conclude the article with a discussion of some open problems
and future directions.
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2 FDR controlling procedures based on p-values

In contrast to the restrictive FWER criterion, an FDR procedure allows making
more than one Type I errors as long as the total number of false rejections is small
relative to the total number of rejections. Since the seminar work of Benjamini and
Hochberg (BH 1995), the FDR procedures have been widely used in large-scale
multiple comparison problems.

In this section, we first introduce the well known BH step-up procedure and
then present several improvements over the BH procedure, including a q-value
procedure (Storey 2002), an adaptive p-value procedure (Benjamini and Hochberg
2000), an oracle p-value procedure and the corresponding plug-in p-value procedure
(Genovese and Wasserman 2004).

2.1 BH step-up procedure

Let α be an FDR level. Denote by p(1), · · · , p(m) the ordered individual p-values
and H(1), · · · ,H(m) the corresponding hypotheses. Benjamini and Hochberg (1995),
designated by BH hereinafter, proposed the following step-up procedure:

Let k = max{i : P(i) 6 iα/m}, then rejects all H(i), i 6 k. (2.1)

BH showed that the step-up procedure (2.1) controls the FDR at the nominal level
α when the tests statistics are independent. The BH procedure is more powerful
than FWER controlling procedures at the same level.

The BH step-up procedure is distribution-free, which guarantees that the
FDR is controlled at level α regardless of the p-value distribution. Thus it provides
strong control of the FDR. However, with the gain of robustness, we pay a price for
ignoring the distributional information in the sample. This issue was first raised
in BH (2000), where it is argued that the BH step-up procedure is conservative
when some of the hypotheses are in fact non-nulls. Specifically, the BH step-up
procedure controls the FDR at level (1 − p)α, instead of the nominal level α,
where p is the proportion of non-nulls. Next we shall discuss several approaches
that exploit the information of p to improve the classical BH procedure .

2.2 Adaptive p-value procedure

BH (2000) proposed a modified procedure for FDR control that is adaptive to the
unknown non-null proportion. Let p̂ be a conservative estimate of p. The adaptive
p-value procedure operates as follows.

Let k = max{i : P(i) 6 iα/[(1− p̂)m]}, then rejects all H(i), i 6 k, (2.2)

A graphical implementation of the BH adaptive procedure was presented in BH
(2000) and it was shown that the adaptive procedure is more powerful than the
BH step-up procedure.
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2.3 Storey’s q-value procedure

The conservativeness of the BH step-up procedure is also noted by Storey (2002),
who suggested a direct approach to the FDR control. Instead of fixing the FDR
level α and estimate the cutoff, Storey (2002) proposed to estimate the FDR con-
servatively for a given cutoff. Storey’s approach also indicates that the efficiency
of an FDR procedure can be improved by exploiting the information of p.

Let p denote the proportion of non-nulls and G the marginal distribution of
the p-value. It can be shown that for the random mixture model, the pFDR for a
given p-value cutoff λ is

pFDR(λ) = E

(
N10

R

∣∣∣∣ R > 0
)

=
(1− p)λ

G(λ)
. (2.3)

Consider a set of tests conducted with independent p-values. For an observed
p-value, its q-value is defined as

q(pi) = inf
γ>pi

{pFDR(γ)} = inf
γ>pi

{
(1− p)γ

G(γ)

}
. (2.4)

The q-value can be explained as the minimum pFDR level such that a hypothesis
with the p-value of pi is just rejected. Thus the q-value in multiple testing can be
viewed as the pFDR analogue of the p-value in single hypothesis testing.

In practice, the non-null proportion p and G are unknown. Given a cutoff
λ, an underestimate for p is proposed by Storey (2002): p̂(λ) = 1− #{pi>λ}

(1−λ)m . The
estimate p̂(λ) is conservative because the largest p-values are most likely to come
from the null. Next, an empirical estimate of G is Ĝ(λ) = #{pi<λ}

m . Therefore the
q-value can be estimated as

q̂
(
p(i)

)
= p̂FDR

(
p(i)

)
=

(1− p̂)p(i)

Ĝ
(
p(i)

) . (2.5)

In practice, we can calculate the q-values for all individual p-values and determine
the rejection region. The q-value procedure is equivalent to the BH procedure
when p̂ is estimated as zero, and is equivalent to the adaptive p-value procedure
when the same p̂ is used.

2.4 Oracle and plug-in p-value procedures

Let G1(t) denote the non-null distribution of p-value and π the proportion of non-
nulls. We assume that G1 is concave, then according to Genovese and Wasserman
(2002), the oracle p-value procedure rejects all hypotheses whose p-value is less
than u∗, the solution to the equation {(1 − p)u}/{(1 − p)u + pG1(u)} = α or
equivalently,

G1(u)/u = (1/p− 1) (1/α− 1) . (2.6)

The cutoff u∗ is optimal in the sense that it has the smallest FNR among all
p-value based procedures at FDR level α.
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The idea that a testing problem is connected to an estimation problem is fur-
ther developed in Genovese and Wasserman (2004), designated by GW hereinafter.
Let Ĝ and p̂ be estimates of the p-value cdf and the proportion of non-nulls, respec-
tively. The FDR for a given cutoff t can be estimated as Q̂(t) = (1− p̂)t/Ĝ(t). A
class of plug-in FDR procedures were constructed (GW 2004) based on the p-value
cutoff

t(p̂, Ĝ) = sup{t : Q̂(t) 6 α}. (2.7)

The BH step-up procedure, BH adaptive procedure and Storey’s FDR approach
can be identified as special cases when different estimates for p and G are chosen.

Although numerical results are promising, no theoretical supports for the
uses of BH adaptive p-value procedure or Storey’s q-value procedure were provided
in the original works of BH (2000) and Storey (2002). GW (2004) developed a
stochastic process framework for multiple testing and showed that, when consistent
estimates of G and p are chosen, the class of plug-in procedures (2.7) controls the
FDR at level α + o(1). Therefore the validity of BH adaptive procedure, GW
plug-in procedure and Storey’s FDR procedure, which can be viewed as special
cases of (2.7), are established in an asymptotic sense.

2.5 Other issues

Resampling approaches (e.g., bootstrap, permutation) can be used to estimate
the p-values and adjusted p-values without making any parametric assumptions
on the joint distribution of the test statistics, and the correlation structure and dis-
tributional characteristics of the gene expression can be preserved. Algorithms for
computing adjusted p-values are introduced, for example, in Westfall and Young
(1993) and Dudoit et al. (2003). Permutation based methods have been applied
to the significance analysis of microarrays (SAM). A widely used SAM procedure
was proposed in Tusher et al. (2001).

The theoretical properties and operating characteristics of p-value based FDR
procedures have been studied extensively in the literature. Here we mention a few
references, Finner and Roters (2002), Sarkar (2002, 2006), Lehmann and Romano
(2005), Finner et al. (2009), for interested readers.

3 Oracle and adaptive compound decision rules
for FDR control

Developing the optimal FDR procedure is important from both theoretical and
practical perspectives. The construction of an optimal multiple testing procedure
involves two important steps: deriving an optimal test statistic T and setting a
cutoff for T for a given FDR level. However, the focus of the FDR literature has
been exclusively on the second step on how to threshold the p-values so that the
FDR can be controlled, while the more fundamental problem on how to choose T
is ignored.

In single hypothesis testing, p-value is a fundamental statistic for decid-
ing whether a hypothesis should be rejected or accepted. This p-value testing
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framework is almost universally used in the FDR literature. For example, the
FDR procedures reviewed in the previous section essentially involve first ranking
the p-values from individual tests and then choosing a cutoff along the rankings.
However, testing procedures built on ranked p-values fail to exploit all important
distributional information in the sample (e.g., the symmetry of distribution and
correlation in the sample), and hence are inefficient. Sun and Cai (2007) showed
that p-value is not a fundamental building block in large-scale multiple testing,
and proposed an adaptive data-driven procedure based on z-values that uniformly
improves all p-value based FDR procedures.

In this section, we study the optimality issue in a compound decision theoretic
framework. Our strategy for deriving an optimal testing procedure essentially
involves three steps.

1. The first step is to derive an oracle test statistic TTTOR that gives the optimal
significance rankings of all tests. “Oracle” is used here to reflect the fact
that we have assumed in this step that all distributional information of the
sample is known. A useful technique in the derivation is to make connections
between the multiple testing and weighted classification problems, then solve
the former problem via finding the optimal classification rule.

2. The second step is to choose an optimal cutoff cOR along the rankings pro-
duced by TTTOR so that the FDR is controlled at the nominal level α. The
essential idea is to first evaluate the distributions of TTTOR, then calculate the
FDR level for a given cutoff c, and finally choose the largest cutoff cOR that
controls the FDR. The resulting testing procedure δδδ(TTTOR, cOR111) = I(TTTOR <
cOR111) is referred to as the oracle procedure, which has the smallest FNR or
the largest power to detect non-null cases among valid FDR procedures.

3. The third step is to develop a data-driven procedure that mimics the oracle
procedure by plugging-in estimates of the unknown parameters. To achieve
this goal, we need to (i) construct good estimates of the unknown parameters
from the sample, and (ii) establish the asymptotic validity and optimality of
the data-driven procedure by showing that it achieves the performance of
the oracle procedure asymptotically.

3.1 Two-group random mixture model

A two-component random mixture model provides a convenient and efficient frame-
work for large-scale multiple testing and has been widely used in the FDR liter-
ature (Efron et al. 2001; Storey 2002; Newton et al. 2004; Sun and Cai 2007).
Let θθθ = (θ1, · · · , θm) be independent Bernoulli(p) variables, where θi = 1 indi-
cates that hypothesis i is a non-null and θi = 0 otherwise. It is assumed that
xxx = (x1, · · · , xm) are observations generated conditional on θθθ:

Xi|θi ∼ (1− θi)F0 + θiF1, (3.1)

where F0 and F1 are the conditional cumulative distribution functions (cdf) of Xi

under the null and alternative, respectively. Let F (x) = (1− p)F0(x) + pF1(x) be
the mixture cdf and f(x) = (1−p)f0(x)+pf1(x) the mixture density, with f0 and
f1 the corresponding conditional probability distribution functions (pdf).
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3.2 Compound decision problem

Consider the random mixture model (3.1). In a multiple testing problem, we are
interested in separating the non-null cases (θi = 1) from the null cases (θi = 0).
A solution to this problem can be represented by a general decision rule δδδ =
(δ1, · · · , δm) ∈ {0, 1}m, where δi = 1 indicates that we claim case i is a non-null
and δi = 0 otherwise. In an FDR analysis, the m decisions are combined and
evaluated integrally; this is referred to as a compound decision problem (Robbins
1951). The decision rule δδδ is simple if δi is only a function of xi, i.e., δi(x) = δi(xi).
The simple rules correspond to solving the m component problems separately. In
contrast, δδδ is compound if δi depends on other xj ’s, j 6= i. A decision rule δδδ is
symmetric if δδδ(π(x)) = π(δδδ(x)) for all permutation operators π.

Robbins (1951) considered the following compound decision problem. Let
Xi, i = 1, · · · , n, be independent normal random variables with unit variance and
mean θi, where each θi is 1 or −1. It is desired to classify each θi according to its
sign, and the risk of a classification procedure is taken to be the expected number
of errors, i.e., the risk for a classification rule δδδ ∈ {−1, 1}m is

R(θθθ,δδδ) = E

{
m∑

i=1

I(θi = 1)I(δi = −1) + I(θi = −1)I(δi = 1)

}
, (3.2)

Robbins showed that the simple rule

δδδS = [sgn(xi) : i = 1, · · · , n] (3.3)

is the unique minimax decision rule with constant risk, say rn. At the same time,
he argued that minimax did not equal best by exhibiting another decision rule

δδδC =
[
sgn

(
xi − 1

2
log

1− x̄

1 + x̄

)
: i = 1, · · · , n

]
, (3.4)

which has a much lower risk r∗n when p0 approaches 0 or 1, and only exceeds rn

slightly near 0.5. As n → ∞, r∗n − rn → 0 at point 0.5, so it is subminimax. We
shall give a graphical illustration of this interesting result shortly. An important
feature of the decision rule R∗ is that it classifies θi depending on the whole vector
x = (x1, · · · , xn), not on xi alone. Thus R∗ is a compound rule.

The subminimax rule can be motivated as follows. Assume that an oracle
knows the proportion of θ = 1, say p, then it can be shown that the optimal
classification rule (Bayes oracle rule) is

δδδ∗ =
[
sgn

{
xi − log

(
1− p

p

)}
: i = 1, · · · , n

]
. (3.5)

The subminimax rule can be obtained by replacing the unknown p using its unbi-
ased estimate

p̂ =
1
n

(no. of i for which xi > 0) =
1 + x̄

2
(3.6)

The subminimax rule is a compound decision rule, which improves the efficiency
of simple rules by utilizing the information of p̂ that is estimated from the entire
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sample xxx. Some calculations show that the classification risks for the minimax
rule, the Bayes oracle rule, and the subminimax rule are

RMinimax = Φ(−1),

ROracle = pΦ
(
−1 +

1
2

log
1− p

p

)
+ (1− p)Φ

(
−1− 1

2
log

1− p

p

)
, and

RSubminimax = r(p) +
1
n

p

[{
1 +

1
4p(1− p)

}2

− 1

]
Φ

(
−1 +

1
2

log
1− p

p

)
,

respectively. We plot the classification risks as functions of the proportion p. The
results are shown in Figure 3.1. It is easy to see that the risk of the subminimax
rule approaches the risk of the Bayes oracle rule as n → ∞. For large n, the
subminimax rule is better than the minimax rule for most values of p except the
values near 0.5. The efficiency gain is the largest as p approaches 0 and 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

p

Ri
sk

Bayes Risk (n=∞)
n=20                 
n=50                 
n=100                
minimax risk         

Figure 3.1: The classification risks of the minimax, subminimax and Bayesian
oracle rules.

An important implication of Robbin’s results is that the precision of individ-
ual decisions can be much increased by pooling information from different samples.
The distributional information among all hypotheses, such as the proportion of
non-nulls, is important for construction of efficient testing procedures. Therefore
we anticipate that, in large-scale multiple testing, conventional testing procedures
may be much improved by an estimation-testing combined procedure.

3.3 Derivation of the optimal test statistic

In the loss function (3.2) that was considered by Robbins (1951), it is assumed that
a false positive and a false negative have the same cost. However, in practice, a false
positive is often considered to be more serious than a false negative. Therefore
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it is desirable to treat the two types of errors differently. Let λ be the known
relative cost of a false positive to a false negative, then a weighted classification
rule δδδ = (δ1, · · · , δm) ∈ {0, 1}m, where δi = 1 indicates that we classify θi as a
non-null and δi = 0 otherwise, can be used to separate the non-nulls from the
nulls. The false positives and false negatives of the m simultaneous decisions can
be combined using the following loss function

Lλ(θθθ, δδδ) =
1
m

∑

i

[λ(1− θi)δi + θi(1− δi)] . (3.7)

The goal of a weighted classification problem is to find a decision rule δδδλ that
minimizes the weighted classification risk Rλ = E[Lλ(θθθ,δδδ)].

However, it may be difficult to prespecify the relative cost of a false positive to
a false negative, especially in many large-scale studies where the non-nulls are very
sparse. We can use the FDR and FNR to combine the respective false positives
and false negatives instead, and apply a multiple testing procedure to select non-
null cases from the nulls. In a multiple testing problem, the two types of errors
are also treated differently, where a higher penalty on false positives is achieved
by prespecifying a smaller FDR level α. The goal of multiple testing is to find a
decision rule δδδα ∈ {0, 1}m that has the smallest FNR among all FDR procedures
at level α. We define a multiple testing procedure in terms of a function T and
a constant c such that δδδ(T, c) = [I(T (xi) < c) : i = 1, · · · , m]. In conventional
p-value based FDR procedures, T (xi) is taken as F0(−|xi|) or 2F0(−|xi|), where
F0 is the null cdf of Xi. We consider a wider class of testing procedures in which
T is allowed to also depend on other quantities. We are interested in finding the
optimal choices of T and its corresponding cutoff c.

A monotone ratio condition. The goal of both the multiple testing and
weighted classification problems is to separate the non-null cases from the null
cases, and the solution to both problems can be represented by a decision rule of
the form

δδδ(TTT , c111) = {I(Ti < c) : i = 1, · · · ,m}, (3.8)

where TTT is a classifier or a test statistic and c is a cutoff. In the multiple testing
literature, the following assumption has been used (e.g., Genovese and Wasserman
2004; Storey 2004):

the FDR level yielded by δδδ(TTT , c111) is increasing in c; (3.9)
the FNR level yielded by δδδ(TTT , c111) is decreasing in c. (3.10)

Assumptions (3.9) and (3.10) are desirable for developing multiple testing proce-
dures since it implies that in order to minimize the FNR, we should choose the
largest cutoff c that satisfies FDR6 α. Let G0 and G1 be the null and non-null
cdfs of T , respectively. Denote by G = (1− π)G0 + πG1 the marginal cdf of T . A
general condition that guarantees (3.9) and (3.10) is the monotone ratio condition
(MRC), which assumes that

g1(t)/g0(t) is monotonically decreasing in t. (3.11)



14 T. Tony Cai, Wenguang Sun

See Sun and Cai (2007) for a proof. Denote by T the collection of all test statistics
that satisfy (3.11). The MRC class T is fairly general. Let Ti = pi, the p-value
of an individual test based on the observation xi. Assume that p(xi) ∼ G =
(1 − p)G0 + pG1, where G0 and G1 are the p-value distributions under the null
and the alternative, respectively. Next assume that G1(t) is twice differentiable.
Note g0(t) = G′0(t) = 1, the assumption p(.) ∈ T implies that G′′1(t) = g′1(t) < 0,
i.e., G1(t) is concave. Therefore the MRC condition (3.11) can be viewed as a
generalized version of the concavity assumption on G1 for p-value (Storey 2002,
Genovese and Wasserman 2004). In addition, other test statistics, including the
local false discovery rate (Lfdr, Efron et al. 2001) and the local index of significance
(Sun and Cai 2009) also belong to T . See Sun and Cai (2007) for more discussions
of the MRC.

Connection between multiple testing and weighted classification.
An important step for our derivation is to show that the multiple testing and
weighted classification problems are “equivalent” when the MRC holds (Sun and
Cai 2007). Specifically, let Dα be the collection of all α-level FDR procedures of
the form δδδ = I(TTT < c111). Suppose that the classification risk with the loss function
defined in (3.7) is minimized by δλ{TTT , c(λ)}, so that TTT is optimal in the weighted
classification problem. If TTT ∈ T , then TTT is also optimal in the multiple testing
problem, in the sense that for each FDR level α, there exists a unique λ(α), and
hence c{λ(α)} = c(α), such that δλ(α){TTT , c(α)} controls the FDR at level α with
the smallest FNR level among all testing rules in Dα. This implies that the more
complicated multiple testing problem can be solved by studying an equivalent
weighted classification problem.

The next step is to derive the optimal classification rule. We first study an
ideal setup where there is an oracle that knows p, f0 and f1. Then the oracle rule
in this weighted classification problem gives the optimal choice of δ.

Theorem 3.1. (The oracle rule for weighted classification.) Consider the
random mixture model (3.1). Suppose p, f0, f1 are known. Then the classification
risk E[Lλ(θ, δ)] with loss function (3.7) is minimized by δλ(Λ, 1/λ) = {δ1, · · · , δm},
where

δi = I

{
Λ(xi) =

(1− p)f0(xi)
pf1(xi)

<
1
λ

}
, i = 1, · · · ,m. (3.12)

3.4 Oracle testing procedure

We have shown that δλ(Λ, 1/λ) = [I{Λ(x1) < 1/λ}, · · · , I{Λ(xm) < 1/λ}] is
the oracle rule in the weighted classification problem. The equivalence between
multiple testing and weighted classification implies the optimal testing rule is also
of the form δλ(α)[Λ, 1/λ(α)] if Λ ∈ T , although the cutoff 1/λ(α) is not obvious.
Note that Λ(x) = Lfdr(x)/[1 − Lfdr(x)] is monotonically increasing in Lfdr(x),
where Lfdr(·) = (1− p)f0(·)/f(·) is the local false discovery rate (Lfdr) introduced
by Efron et al. (2001) and Efron (2004), so the optimal rule for mFDR control is of
the form δ(Lfdr(·), c) = {I[Lfdr(xi) < c] : i = 1, · · · ,m}. The Lfdr has been widely
used in the FDR literature to provide a Bayesian version of the frequentist FDR
measure and interpret results for individual cases (Efron 2004). We rediscover it
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here as the optimal (oracle) statistic in the multiple testing problem in the sense
that the thresholding rule based on Lfdr(X) controls the mFDR at the nominal
level with the smallest mFNR.

The MRC implies that in order to minimize the mFNR level, we should
choose the largest threshold for the Lfdr statistic. Therefore the oracle testing
procedure is

δδδ(Lfdr, cOR) = {I[Lfdr(xi) < cOR] : i = 1, · · · ,m}, (3.13)

where the oracle threshold cOR = sup{c ∈ (0, 1) : mFDR(c) 6 α}. The oracle
procedure (3.13) provides an ideal target for evaluating different multiple testing
procedures. In particular, it is more efficient than the p-value oracle procedure
proposed in Genovese and Wasserman (2002). Hence the z-value oracle procedure
is more efficient than all p-value based FDR procedures.

The Lfdr statistic is defined in terms of the z-values, which can be converted
from other test statistics including the t-statistic and χ2-statistic using appropriate
transformations. Note that the non-null proportion p is a global parameter. The
expression Lfdr(z) = (1− p)f0(z)/f(z) therefore implies that we actually rank
the relative importance of the observations according to their likelihood ratios,
and that the rankings are generally different from the rankings of p-values. An
interesting consequence of using the Lfdr statistic in multiple testing is that an
observation located farther from the null may have a lower significance level. It is
therefore possible that the test accepts a more extreme observation while rejecting
a less extreme observation, which implies that the rejection region is asymmetric.
This is not possible for a testing procedure based on the individual p-values, whose
rejection region is always symmetric about the null.

3.5 A data-driven procedure

The oracle procedure is not applicable in practice because the distributional in-
formation is usually unknown. This section first discusses the estimation and
the non-null proportion in large-scale multiple comparisons. Then we introduce a
data-driven procedure that mimics the oracle procedure.

Efron (2004) raised an important issue that in many large-scale studies the
usual assumption that the null distribution is known is incorrect, and seemingly
negligible differences in the null may result in large differences in subsequent stud-
ies. It was demonstrated that the null distribution should be estimated from data
instead of being assumed known. Besides the null distribution, the proportion
of non-null effects p is also an important quantity. The implementation of many
FDR procedures requires the knowledge of p (BH 2000; Storey 2002; GW 2004).
Developing good estimators for the proportion of non-nulls is a challenging task.
Recent work includes that of Genovese and Wasserman (2004), Langaas, Lindqvist
and Ferkingstad (2005), Meinshausen and Rice (2006), Cai, Jin and Low (2007),
and Jin and Cai (2007).

Jin and Cai (2007) developed an approach based on the empirical charac-
teristic function and Fourier analysis for simultaneous estimation of both the null
distribution f0 and proportion of non-null effects p. The estimators are shown
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to be uniformly consistent over a wide class of parameters. Numerical results
also showed that the estimators perform favorably in comparison to other existing
methods. This method will be used in our data-driven procedure.

Next we outline the steps for an intuitive derivation of the adaptive z-value
based procedure. The derivation essentially involves mimicking the operation of
the z-value oracle procedure and evaluating the distribution of TOR(z) empiri-
cally. Let z1, · · · , zm be a random sample from the mixture model (3.1) with
the CDF F = (1 − p)F0 + pF1 and PDF f = (1 − p)f0 + pf1. Let p̂, f̂0 and
f̂ be consistent estimates of p, f0 and f . Such estimates are provided, for ex-
ample, in Jin and Cai (2006). Define T̂OR(zi) = [(1 − p̂)f̂0(zi)/f̂(zi)] ∧ 1. The
mFDR of decision rule δδδ(TOR, λ) = {I[TOR(zi) < λ] : i = 1, · · · ,m} is given by
QOR(λ) = (1 − p)G0

OR(λ)/GOR(λ), where GOR(t) and G0
OR(t) are the marginal

cdf and null cdf of TOR, respectively. Let Sλ = {z : TOR(z) < λ} be the rejec-
tion region. Then GOR(λ) =

∫
Sλ

f(z)dz =
∫

1{TOR(z) < λ}f(z)dz. We estimate
GOR(λ) by ĜOR(λ) = 1

m

∑m
i=1 1{T̂OR(zi) < λ}. The numerator of QOR(λ) can be

written as (1− p)G0
OR(λ) = (1− p)

∫
Sλ

f0(z)dz =
∫

1{TOR(z) < λ}TOR(z)f(z)dz

and we estimate this quantity by 1
m

∑m
i=1 1{T̂OR(zi) < λ}T̂OR(zi). Then QOR(λ)

can be estimated as

Q̂OR(λ) = [
m∑

i=1

1{T̂OR(zi) < λ}T̂OR(zi)]/[
m∑

i=1

1{T̂OR(zi) < λ}].

Set the estimated threshold as λ̂OR = sup{t ∈ (0, 1) : Q̂OR(t) 6 α} and let R be
the set of the ranked T̂OR(zi): R = { ˆLfdr(1), · · · , ˆLfdr(m)}. We only consider the
discrete cutoffs in set R, where the estimated mFDR is reduced to Q̂OR( ˆLfdr(k)) =
1
k

∑k
i=1

ˆLfdr(i). We propose the following adaptive step-up procedure:

Let k = max{i :
1
i

i∑

j=1

ˆLfdr(j) 6 α}, then reject all H(i), i = 1, · · · , k. (3.14)

In the FDR literature, z-value based methods such as the Lfdr procedure
(Efron, 2004) are only used to calculate individual significance levels whereas the
p-value based procedures are used for global FDR control to identify non-null
cases. It is also notable that the goals of global error control and individual
case interpretation are naturally unified in the adaptive procedure. The procedure
(3.14) is more adaptive than the BH adaptive procedure in the sense that it adapts
both to the global feature (p) and local feature (f0/f). In contrast, the BH method
only adapts to the global feature p. Suppose we use the theoretical null N(0, 1)
in the expression of ˆLfdr = (1− p̂)f0/f̂ . The p-value approaches treat points −z
and z equally, whereas the z-value approaches evaluate the relative importance of
−z and z according to their estimated densities. For example, if there is evidence
in the data that there are more non-nulls around −z (i.e., f̂(−z) is larger), then
observation −z will be correspondingly ranked higher than observation z.

The following theorem shows that the adaptive procedure (3.14) asymptoti-
cally attains the performance of the oracle procedure based on the z-values in the
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sense that both the mFDR and mFNR levels achieved by the oracle procedure are
also asymptotically achieved by the adaptive z-value procedure.

Theorem 3.2 (Asymptotic validity and optimality of the adaptive procedure).
Consider the random mixture model (3.1). Suppose f is continuous and positive on
the real line. Assume TOR(zi) = (1−p)f0(zi)/f(zi) is distributed with the marginal
PDF g = (1−p)g0+pg1 and TOR ∈ T satisfies the SMLR assumption. Let p̂, f̂0, f̂

be estimates of p, f0 and f such that p̂
qm−−→ p, E‖f̂−f‖2 → 0 and E‖f̂0−f0‖2 → 0.

Define test statistic T̂OR(zi) = (1− p̂)f̂0(zi)/f̂(zi). Let ˆLfdr(1), · · · , ˆLfdr(m) be the
ranked values of T̂OR(zi), then the FDR level of the adaptive procedure (3.14) is
α+o(1), and the mFNR level of the adaptive procedure (3.14) is Q̃OR(λOR)+o(1),
where Q̃OR(λOR) is the mFNR level achieved by the oracle oracle procedure.

3.6 Numerical Results

We now turn to the numerical performance of our adaptive z-value procedure.
When the Lfdr statistic is needed to be estimated, f0 is chosen to to be the
theoretical null density N(0, 1), p is estimated consistently using the approach of
Jin and Cai (2007), and f is estimated using the kernel density estimator. The
new data-driven procedure is compared with the BH step-up procedure and the
adaptive p-value procedure (BH 2000; GW 2004). These three procedures are
designated respectively by SC, BH and AP hereinafter.
Example 3.3. We generate m = 3000 observations from the normal mixture model
0.8N(0, 1) + p1N(θ1i, 1) + (0.2 − p1)N(θ2i, 1), where θ1i and θ2i are randomly
generated from uniform distributions U(µ1 − ε1, µ1 + ε1) and U(µ2 − ε2, µ2 + ε2).
We apply the BH, AP and SC with FDR = 0.10, µ1 = −3, ε1 = 0.4 and ε2 = 0.2.
The comparison results are displayed in Figure 3.2. In panel (a), we set µ2 = 3
and plot the FNR’s by BH, GW and SC as functions of p1. In panel (b), we set
p1 = 0.18 and plot the FNR’s by BH, AP and SC as functions of µ2. We can see
that the BH is dominated by AP, which is again dominated by SC. The efficiency
gain of SC becomes more prominent when the alternative distribution is more
asymmetric.

Next we illustrate our method in the analysis of the microarray data from
an HIV study. The goal of the HIV study (van’t Wout et al., 2003) is to discover
differentially expressed genes between HIV positive patients and HIV negative
controls. Gene expression levels were measured for four HIV positive patients and
four HIV negative controls on the same m = 7680 genes. A total of m two sample
t-tests were performed and the corresponding two-sided p-values were obtained.
The z-values were then converted from the t-statistics using the transformation
zi = Φ−1[G0(ti)], where Φ and G0 are the CDFs of a standard normal and a t
variable with six degrees of freedom, respectively. The histograms of the z-values
and p-values were presented in Figure 3.3. An important feature in this data set
is that the z-value distribution is asymmetric about the null. The distribution is
skewed to the right.

When the null hypothesis is true, the p-values and z-values should follow their
theoretical null distributions, which are uniform and standard normal, respectively.
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Figure 3.2: The comparison of BH, AP and SC when the alternative is concentrated
(’◦’: BH; ’4’: AP; ’+’: SC). The FDR level is set at 0.1. (a). The FNR versus p1;
(b) The FNR versus µ2. Both the BH and AP are dominated by SC.
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Figure 3.3: The histograms of the HIV data: p-values and z-values. The trans-
formed p-values are approximately distributed as uniform (0, 1) for the null cases.
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However, the theoretical nulls are usually quite different from the empirical nulls
for the data arising from microarray experiments. We take the approach in Jin
and Cai (2006) to estimate the null distribution as N(µ̂0, σ̂

2
0). The estimates µ̂0

and σ̂2
0 are consistent. We then proceed to estimate the proportion of the non-nulls

p̂ based on µ̂0 and σ̂2
0 . The marginal density f is estimated by a kernel density

estimate f̂ with the bandwidth chosen by cross validation. The Lfdr statistics are
then calculated as ˆLfdr(zi) = (1− p̂)f̂0(zi)/f̂(zi). The transformed p-values are
obtained as F̂0(zi), where F̂0 is the estimated null CDF Φ(x−µ̂0

σ̂0
). As we can see

from the right panel of Figure 3.3, after transformation, the distribution of the
transformed p-values is approximately uniform when the null is true.

We compare the BH, AP and SC using both the theoretical nulls and esti-
mated nulls. We calculate the number of rejections for each mFDR level and the
results are shown in Figure 3.4. For the left panel, f0 is chosen to be the theo-
retical null N(0, 1) and the estimate for the proportion of nulls is 1. The BH and
AP procedures therefore yield the same number of rejections. For the right panel,
the estimated null distribution is N(−0.08, 0.772) with estimated proportion of
nulls p̂0 = 0.94. Transformed p-values as well as the Lfdr statistics are calculated
according to the estimated null. The following observations can be made from the
results displayed. (i) The number of rejections is increasing as a function of the
mFDR. (ii) For both the p-value and z-value based approaches, more hypotheses
are rejected by using the estimated null. (iii) Both comparisons show that SC is
more powerful than the BH and AP that are based on p-values.
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Figure 3.4: Analysis of the HIV data: Number of rejections versus FDR levels:
’◦’: BH; ’4’: AP; ’+’: SC.
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4 Simultaneous Testing of Grouped Hypotheses

So far we have made two important assumptions: all hypotheses are independent
and all observations come from a homogeneous distribution. Next we shall deal
with more complicated situations where these assumptions do not hold. In this
section, we consider the multiple testing problem when hypotheses come from
heterogeneous groups. In Section 5, we discuss the multiple testing problem under
dependence. For both problems, we will focus on the motivation and the main
ideas of our solution. More technical details are given in Cai and Sun (2009) and
Sun and Cai (2009).

4.1 Motivating examples

Conventional multiple testing procedures, such as the false discovery rate anal-
yses (Benjamini and Hochberg 1995; Efron et al. 2001; Storey 2002; Genovese
and Wasserman 2002; van der laan et al. 2004), implicitly assume that data are
collected from repeated or identical experimental conditions, and hence the hy-
potheses are exchangeable. However, in many applications, data are known to
be collected from heterogeneous sources and hypotheses intrinsically form into
different groups.

Consider the following two examples. The adequate yearly progress (AYP)
study compares the academic performances of social-economically advantaged (SEA)
versus social-economically disadvantaged (SED) students of California high schools
(Rogosa 2003). Standard tests in mathematics were administered to 7867 schools
and a z-value for comparing SEA and SED students was obtained for each school.
The estimated null densities of the z-values for small, medium and large schools
are plotted on the left panel of Figure 4.1. It is interesting to see that the null
density of the large group is much wider than those of the other two densities. The
differences in the null distributions have significant effects on the outcomes of a
multiple testing procedure. Another example is the brain imaging study analyzed
in Schwartzman et al. (2005). In this study, 6 dyslexic children and 6 normal
children received diffusion tensor imaging brain scans on the same 15443 brain lo-
cations (voxels). A z-value (converted from a two-sample t-statistic) for comparing
dyslexic versus normal children was obtained for each voxel. The right panel in
Figure 4.1 plots the estimated null densities of the z-values for the front and back
halves of the brain. We can see that the null cases from two groups centered on
different means, and the density of the back half is narrower. There are many other
examples where the hypotheses are naturally grouped. For instance, in analysis
of geographical survey data, individual locations are aggregated into several large
clusters; and in meta-analysis of large biomedical studies, the data are collected
from different clinical centers. An important common feature of these examples
is that data are collected from heterogeneous sources and the hypotheses being
considered are grouped and no longer exchangeable. We shall see that incorporat-
ing the grouping information is important for optimal simultaneous inference with
samples collected from different groups.
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Figure 4.1: Empirical null densities of the AYP study and the brain imaging
study. The null density of the large group is much wider than those of the other
two densities. In the right panel, the null densities of the front and back halves of
the brain are N(0.06, 1.092) and N(−0.29, 1.012), respectively, which are centered
at different means.

4.2 The multiple-group model

The multiple-group random mixture model (Efron 2008a; see Figure 4.2) extends
the previous random mixture model (3.1) (for a single group) to cover the situation
where the m cases can be divided into K groups. It is assumed that within each
group, the random mixture model (3.1) holds separately.

Let ggg = (g1, · · · , gK) be a multinomial variable with probabilities {π1, · · · , πK},
where gi = k indicates that case i belongs to group k. We assume that prior to
analysis, the group labels ggg have been determined by external information derived
from other data or a priori knowledge. Let θθθ = (θ1, · · · , θm) be Bernoulli variables,
where θi = 1 indicates that case i is a non-null and θi = 0 otherwise. Given ggg,
θθθ can be grouped as θθθ = (θθθ1, · · · , θθθK) = {(θk1, · · · , θkmk

) : k = 1, · · · ,K}, where
mk is the number of hypotheses in group k. Different from ggg, θθθ are unknown and
need to be inferred from observations xxx. Let θki, i = 1, · · · ,mk, be independent
Bernoulli (pk) variables and XXX = (Xki) be generated conditional on θθθ:

Xki|θki ∼ (1− θki)Fk0 + θkiFk1, i = 1, · · · ,mk, k = 1, · · · ,K. (4.1)

Hence within group k, the Xki’s, i = 1, · · · ,mk, are i.i.d. observations with
mixture distribution Fk = (1− pk)Fk0 + pkFk1. Denote by fk the mixture density
of group k, the null and non-null densities by fk0 and fk1, respectively. Then
fk = (1− pk)fk0 + pkfk1.

4.3 Conventional FDR procedures

We first consider the problem in an ideal setting where all distributional infor-
mation is assumed to be known. This section considers two conventional FDR
approaches: pooled and separate analyses.
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Figure 4.2: The multiple group model: the m hypotheses are divided into K groups
with prior probability πk; the random mixture model (3.1) holds separately within
each group, with possibly different pk, fk0 and fk1.

Pooled FDR analysis. A naive approach to testing grouped hypotheses
is to simply ignore the group labels and combine all cases into a pooled sample.
Denote by f the mixture density,

f =
∑

k

πk[(1− pk)fk0 + pkfk1] = (1− p)f∗0 + pf∗1 ,

where p =
∑

k πkpk is the non-null proportion, f∗0 =
∑

k[(πk − πkpk)/(1 − p)]fk0

and f∗1 =
∑

k(πkpk/p)fk1 are the pooled or global null and non-null densities,
respectively. Denote the pooled null distribution by F ∗0 =

∑
k[(πk − πkpk)/(1 −

p)]Fk0. In a pooled analysis, the group labels are ignored and one tests against
the common pooled null distribution F ∗0 in all individual tests. Define the pooled
Lfdr statistic (PLfdr) by

PLfdr(xi) =
(1− p)f∗0 (xi)

f(xi)
, i = 1, · · · ,m. (4.2)

The results in Section 3 imply that among all testing procedures that adopt the
pooled-analysis strategy, the optimal one is

δδδ(PLfdr, cOR(α)111) = [I{PLfdr(xi) < cOR(α)} : i = 1, · · · , m], (4.3)

where cOR(α) is the largest cutoff for the PLfdr statistic that controls the over-
all FDR at level α. Let PLfdr(1), · · · , PLfdr(m) be the ranked PLfdr values and
H(1), · · · ,H(m) the corresponding hypotheses. An asymptotically equivalent ver-
sion of (4.3) is the PLfdr procedure:

Reject all H(i), i = 1, · · · , l, where l = max



i : (1/i)

i∑

j=1

PLfdr(j) 6 α



. (4.4)
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The following result shows that the PLfdr procedure is valid for FDR control when
testing against the pooled null distribution F ∗0 .

Theorem 4.1. Consider the mixture model (4.1). Let PLfdr(i), i = 1, · · · ,m be
the ranked PLfdr values defined in (4.2). Then the PLfdr procedure (4.4) controls
the FDR at level α when testing against the pooled null distribution F ∗0 .

We should emphasize here that a pooled analysis makes sense only when the
null distributions Fk0 are the same for all groups, in which case F ∗0 coincides with
the common group null. When Fk0 are different across groups, in general the
pooled null distribution F ∗0 differs from any of the group null Fk0. In this case a
pooled analysis is not appropriate at all because for each individual case a rejection
against F ∗0 does not imply rejection against a null distribution Fk0 for a given
group. To further illustrate this important point, let us take the most extreme case.
Consider two groups where the null distribution of the first group is the alternative
distribution of the second, and vice versa. It is then impossible to decide whether
a case is a null or non-null without knowing the grouping information. In this case
F ∗0 is not the right null distribution to test against for any individual tests and
therefore it is entirely inappropriate to perform a pooled analysis.

Separate FDR analysis. Another natural approach to testing grouped
hypotheses is the separate analysis where each group is analyzed separately at the
same FDR level α. Define the conditional Lfdr for group k as

CLfdrk(xki) =
(1− pk)fk0(xki)

fk(xki)
, i = 1, · · · ,mk; k = 1, · · · ,K. (4.5)

Again implied by the results in Sun and Cai (2007), the optimal procedure for
testing hypotheses from group k is of the form

δδδk(CLfdrk, ck
OR(α)111) = [I{CLfdrk(xki) < ck

OR(α)} : i = 1, · · · ,mk], k = 1, · · · ,K,
(4.6)

where ck
OR(α) is the largest cutoff for CLfdr statistic that controls the FDR of

group k at level α. By combining testing results from separate groups together,
we have δδδ = (δδδ1, · · · , δδδK).

Similarly we can propose the separated Lfdr (SLfdr) procedure that is asymp-
totically equivalent to (4.6). Denote by CLfdrk

(1), · · · ,CLfdrk
(mk) the ranked CLfdr

values in group k and Hk
(1), · · · ,Hk

(mk) the corresponding hypotheses. The testing
procedure for group k is:

Reject all Hk
(i), i = 1, · · · , lk, where lk = max



i : (1/i)

i∑

j=1

CLfdrk
(j) 6 α



.

(4.7)
The final rejection set of the SLfdr procedure is obtained by combining the K
rejection sets from all separate analyses: RSLfdr = ∪K

k=1{Hk
(i) : i = 1, · · · , lk}.

The next theorem shows that the SLfdr procedure is also valid for global FDR
control.



24 T. Tony Cai, Wenguang Sun

Theorem 4.2. Consider the random mixture model (4.1). Let CLfdrk
(i), i =

1, · · · ,mk, k = 1, · · · ,K, be the ranked CLfdr values defined by (4.5) for group k.
Then the SLfdr procedure (4.7) controls the global FDR at level α.

4.4 Optimal FDR procedures for grouped tests

The pooled and separate analyses are inefficient in reducing the overall FNR. In
this section, we begin by considering an ideal setting where all distributional infor-
mation is known and propose an optimal (oracle) FDR procedure that uniformly
outperforms both the pooled and separate procedures. We then turn to the situa-
tion where the distributions are unknown and introduce a data-driven procedure
that is asymptotically valid and optimal.

Consider a weighted classification problem with loss function

L(θθθ, δδδ) = (1/m)
K∑

k=1

mk∑

i=1

λ(1− θki)δki + θki(1− δki). (4.8)

The goal in a weighted classification problem is to find δδδ ∈ {0, 1}m that minimizes
the classification risk E[Lλ(θθθ,δδδ)]. Cai and Sun (2009) showed that the multiple
testing and weighted classification problems are “equivalent” under mild conditions
for model (4.1). Consider an ideal setting where an oracle knows pk, fk0 and fk1,
k = 1, · · · ,K. The optimal classification rule is given by the next theorem.

Theorem 4.3. Consider the random mixture model (4.1). Suppose pk, fk0, fk1

are known. Then the classification risk with loss function (4.8) is minimized by
δδδλ = (δki), where

δki = I

{
Λk(xki) =

(1− pk)fk0(xki)
pkfk1(xki)

<
1
λ

}
. (4.9)

Note that Λk(x) = CLfdrk(x)/[1−CLfdrk(x)] is strictly increasing in CLfdrk(x),
where CLfdrk(x) is the conditional local false discovery rate defined in (4.5), an
equivalent optimal test statistic is CLfdr = [CLfdrk(xki) : i = 1, · · · ,mk, k =
1, · · · ,K]. Therefore the optimal testing procedure is of the form δδδ[CLfdr < c(α)].
The MRC implies the cutoff should be chosen as cOR(α) = sup{c ∈ (0, 1) :
mFDR(c) 6 α}. Therefore the optimal (oracle) procedure for multiple group hy-
pothesis testing is the following CLfdr oracle procedure:

δδδ[CLfdr, cOR(α)111] = [I{CLfdrk(xki) < cOR(α)} : i = 1, · · · ,mk, k = 1, · · · ,K],
(4.10)

Note that different from (4.6), the oracle procedure (4.10) suggests using a uni-
versal cutoff for all CLfdr statistics regardless of their group identities.

For a given FDR level, it is difficult to calculate the optimal cutoff cOR(α)
directly. Also, the CLfdr oracle procedure requires the distributional information
of all individual groups, which is usually unknown in practice. Cai and Sun (2009)
derived the following CLfdr procedure that is asymptotically equivalent to the
oracle procedure (4.10). Let p̂k, f̂k0 and f̂k be estimates obtained for separate
groups. The CLfdr procedure involves the following three steps:
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1. Calculate the plug-in CLfdr statistic ĈLfdr
k
(xki) = (1− p̂k)f̂k0(xki)/f̂k(xki).

2. Combine and rank the plug-in CLfdr values from all groups. Denote by
ĈLfdr(1), · · · , ĈLfdr(m) the ranked values and H(1), · · · ,H(m) the corre-
sponding hypotheses.

3. Reject all H(i), i = 1, · · · , l, where l = max
{

i : (1/i)
∑i

j=1 ĈLfdr(j) 6 α
}

.

The next theorem shows that the data-driven procedure is asymptotically
valid and optimal in the sense that both the FDR and FNR levels of the oracle
procedure are asymptotically achieved by the data-driven procedure.

Theorem 4.4. (Cai and Sun 2009). Consider the multiple group model (4.1).
Let p̂k, f̂k0 and f̂k be consistent estimates of pk, fk0 and fk such that p̂k

p−→ pk,
E‖f̂k0 − fk0‖2 → 0, E‖f̂k − fk‖2 → 0, k = 1, · · · ,K. Let

ĈLfdr
k
(xki) = (1− p̂)f̂0(xki)/f̂(xki),

for i = 1, · · · ,mk, k = 1, · · · ,K. Combine all test statistics from separate groups
and let ĈLfdr(1), · · · , ĈLfdr(m) be the ranked values. Then
(i). The FDR and FNR levels of the data-driven procedure are respectively α+o(1)

and FNROR + o(1), where FNROR is the FNR level of the oracle procedure
(4.10).

(ii). The FDR level of the data driven procedure in group k can be consistently

estimated as F̂DR
k

= (1/Rk)
∑Rk

i=1 ĈLfdr
k

(i). In addition, F̂DR
k

= FDRk
OR+

o(1), where FDRk
OR + o(1) is the FDR level of the oracle procedure (4.10) in

group k.

It is important to note that in Step 1, the external information of group
labels is utilized to calculate the CLfdr statistic; this is the feature from a separate
analysis. However, in Steps 2 and 3, the group labels are dropped and the rankings
of all hypotheses are determined globally; this is the feature from a pooled analysis.
Therefore the CLfdr procedure is a hybrid strategy that enjoys features from both
pooled and separate analyses.

Unlike for the separate analysis, the group-wise FDR levels of the CLfdr
procedure are in general different from α. In addition to its validity, one may be
interested in knowing the actual group-wise FDR levels FDRk yielded by the CLfdr
procedure; this can be conveniently obtained based on the quantities that we have
already calculated. Specifically, let Rk be the number of rejections in group k.

The actual FDRk’s can be consistently estimated by F̂DR
k

= 1
Rk

∑Rk

i=1 CLfdrk
(i).

4.5 Simulation studies

Consider the following two-group normal mixture model:

Xki ∼ (1− pk)N(µk0, σ
2
k0) + pkN(µk, σ2

k), k = 1, 2. (4.1)

The numerical performances of the PLfdr, SLfdr and CLfdr procedures are inves-
tigated in the next simulation study. The nominal global FDR level is 0.10.
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Example 4.5. The null distributions of both groups are fixed as N(0, 1). Three
simulation settings are considered: (i) The group sizes are m1 = 3000 and m2 =
1500; the group mixture pdf’s are f1 = (1 − p1)N(0, 1) + p1N(−2, 1) and f2 =
0.9N(0, 1) + 0.1N(4, 1). We vary p1, the proportion of non-nulls in group 1, and
plot the FDR and FNR levels as functions of p1. (ii) The groups sizes are also m1 =
3000 and m2 = 1500; the group mixture pdf’s are f1 = 0.8N(0, 1) + 0.2N(µ1, 1)
and f2 = 0.9N(0, 1) + 0.1N(2, 0.52). The FDR and FNR levels are plotted as
functions of µ1. (iii) The marginal pdf’s are f1 = 0.8N(0, 1) + 0.2N(−2, 0.52) and
f2 = 0.9N(0, 1)+0.1N(4, 1). The sample size of group 2 is fixed at m2 = 1500, the
FDR and FNR levels are plotted as functions of m1. The simulation results with
500 replications are given in Figure 4.3. The top row compares the actual FDR
levels of the three procedures; the results for setting (i), (ii) and (iii) are shown
in Panels (a), (b) and (c), respectively. The group-wise FDR levels of the CLfdr
procedure are also provided (the dashed line for group 1 and dotted line for group
2). The bottom row compares the FNR levels of the three procedures; the results
for setting (i), (ii) and (iii) are shown in Panels (d), (e) and (f), respectively.
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Figure 4.3: Results for Simulation Study 4.5: the top row compares the FDR levels
and the bottom row compares the FNR levels (# , PLfdr; 4, SLfdr; +, CLfdr).
The optimal group-wise FDR levels suggested by the CLfdr procedure are provided
together with the global FDR levels (dashed line, Group1; dotted line, Group2).

We can see that all three procedures control the global FDR level at the
nominal level 0.10, indicating that all three procedures are valid. It is important
to note that the CLfdr procedure chooses group-wise FDR levels automatically
(dashed and dotted lines in Panels (a)-(c)), and the levels are in general differ-
ent from the nominal level 0.10. The relative efficiency of PLfdr versus SLfdr is
inconclusive (depends on simulation settings). For example, the SLfdr procedure
yields lower FNR levels in Panel (d), but higher FNR levels in Panel (f). How-
ever, all simulations show that both the PLfdr and SLfdr procedures are uniformly
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dominated by the CLfdr procedure.

4.6 A case study

We now return to the adequate yearly progress (AYP) study mentioned in the
introduction. In this section, we analyze the data collected from m = 7867 of
California high schools (Rogosa 2003) by using the PLfdr, SLfdr and CLfdr pro-
cedures.

One goal of the AYP study is to compare the success rates in Math exams
of social-economically advantaged (SEA) versus social-economically disadvantaged
(SED) students. Since the average success rates of the SEA students are in general
(7370 out of 7867 schools) higher that the SED students, it is of interest to identify
a subset of schools in which the advantaged-disadvantaged performance differences
are unusually small or large. Denote by Xi and Yi the success rates, and ni

and n′i the numbers of scores reported for SEA and SED students in school i,
i = 1, · · · , m. Define the centering constant ∆ = median(Xi) − median(Yi). A
z-value for comparing the SEA students versus the SED students can be computed
for each school:

zi =
Xi − Yi −∆√

Xi(1−Xi)/ni + Yi(1− Yi)/n′i
, (4.1)

for i = 1, · · · ,m. We claim school i is “interesting” if the observed |zi| is large.
The AYP data has been analyzed by Efron (2007 and 2008b), where he first

estimated the global null density f̂0, then searched for interesting cases in the tail
areas of f̂0. This pooled-analysis strategy ignores the fact that the hypotheses
formed for different schools are not exchangeable. In particular, the number of
scores reported by each school varies from less than a hundred to more than
ten thousands. A pooled analysis tends to over-select too many large schools,
which often express themselves as “very significant” in the tail areas due to small
denominators in (4.1). In contrast, small schools are likely to be hidden in the
central area of f̂0 and appear “uninteresting”. This is not desirable because, in
practice, investigators are interested in identifying significant differences from all
schools, not only from large schools. As we shall see, an important feature of the
AYP data is that the empirical null distributions of the z-values are substantially
different for small and large schools, therefore a pooled analysis is inappropriate
and one should perform a separate analysis to take into account the effect of school
size. Based on a preliminary cluster analysis, we divide all schools into three groups
according to the number of scores reported (ni+n′i): small schools (ni+n′i 6 120),
medium schools (120 < ni+n′i 6 900) and large schools (ni+n′i > 900). The group
characteristics are summarized in Table 3, where the empirical null distributions
are estimated using Jin and Cai (2007)’s method. Note that the variance of the
empirical null distribution for the scores from the large schools is more than four
times than those for the scores from the other two groups. See also Figure 4.1 in
the introduction.

We then apply the PLfdr, SLfdr and CLfdr procedures to the AYP data at
different FDR levels. The PLfdr procedure claims the most discoveries, followed by
the CLfdr and then SLfdr procedure. It is important to emphasize that the PLfdr
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Table 3: Group characteristics in the AYP data: 7867 schools in total. The global
null density is f̂0 = N(−0.59, 1.592)

Group Group Definition Group Size Proportion Empirical Null
Small ni + n′i 6 120 516 6.6% f̂10 = N(−0.51, 1.272)

Medium 120 < ni + n′i 6 900 6514 80.6% f̂20 = N(−0.61, 1.542)
Large ni + n′i > 900 837 12.8% f̂30 = N(−0.95, 3.162)

procedure is inappropriate here because the pooled null distribution is not the
correct null to test against. The PLfdr procedure is too liberal for the large group
yet too conservative for the small group: around 50%-70% significant schools come
from the large group, although its population proportion is only 13%; in contrast,
only around 1% interesting cases come from the small group, although its pop-
ulation proportion is more than 6%. The SLfdr procedure considers the groups
separately; large schools are no longer over-selected and more small schools are
identified. The CLfdr procedure further improves the SLfdr procedure by effi-
ciently exploiting the important grouping information and weighting the numbers
of discoveries among groups. The optimal group-wise FDR levels estimated by
the CLfdr procedure at different nominal FDR levels are plotted in Figure 4.4,
suggesting that we should choose higher FDR levels for the medium group and
lower FDR level for the large group. Note that the SLfdr procedure uses the same
FDR level for all groups, the CLfdr procedure usually identifies more cases from
the medium group, but fewer cases from the large group.
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Figure 4.4: AYP study. Optimal group-wise FDR levels estimated by the CLfdr
procedure.
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5 Large-Scale Multiple Testing under Dependence

Observations arising from large scale multiple comparison problems are often de-
pendent. For example, in microarray experiments, different genes may cluster into
groups along biological pathways and exhibit high correlation. In public health
surveillance studies, the observed data from different time periods and locations
are often serially or spatially correlated. Correlation has big effects on a multi-
ple testing procedure. Finner and Roters (2002) and Owen (2005) showed that
both the expectation and variance of the number of Type I errors are greatly af-
fected by the correlation among the hypotheses. Qiu et al. (2005) noted that
the correlation effects can substantially deteriorate the performance of many FDR
procedures. The correlation effects on the z-value null distribution is studied by
Efron (2007), who suggested that an adjusted FDR estimate should be combined
with the use of an Lfdr procedure to remove the bias caused by the correlation.
Nevertheless, the works by Benjamini and Yekutieli (2001), Farcomeni (2006) and
Wu (2009) show that the FDR is controlled at the nominal level by the BH step-up
and adaptive p-value procedure under different dependence assumptions, support-
ing the “do nothing” approach.

Among the suggestions with respect to the correlation effects on an FDR
procedure, the validity issue is overemphasized, and the efficiency issue is ignored.
The FDR procedures developed under the independence assumption, even valid,
may suffer from substantial efficiency loss when the dependence structure is highly
informative. These situations include the geographical disease mapping studies,
multiple-stage clinical trials, functional Magnetic Resonance Imaging analyses and
comparative microarray experiments, where the non-null cases are often structured
in some way, e.g., correlated temporally, spatially or functionally. Benjamini and
Heller (2007) and Genovese et al. (2005) suggested incorporating scientific or
spatial information into a multiple testing procedure to improve the efficiency.
However, their approaches essentially rely on prior information, such as well de-
fined clusters or prespecified weights, and the correlation structure among the
hypotheses is not modeled.

We study multiple testing under dependency in a compound decision-theoretic
framework. An important dependency structure, the hidden Markov model (HMM),
is considered. The HMM is an effective tool for modeling the dependency structure
and has been widely used in areas such as speech recognition, signal processing
(Rabiner 1989; Ephraim and Merhav 2002). Also see Churchill (1992), Krogh et
al. (1994) for its applications in analyzing biological sequences and processes.

In this section, we first propose an oracle testing procedure in an ideal setting
where the HMM parameters are assumed to be known. Under mild conditions,
the oracle procedure is shown to be optimal in the sense that it minimizes the
FNR subject to a constraint on the FDR. This approach is distinguished from
the conventional methods in that the proposed procedure is built on a new test
statistic (local index of significance, LIS) instead of the p-values. Unlike p-values,
the LIS takes into account the observations in adjacent locations by exploiting the
local dependency structure in the HMM. The precision of individual tests is hence
improved by utilizing the dependency information.
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We then introduce a data-driven procedure that mimics the oracle procedure
by plugging in consistent estimates of the unknown HMM parameters. The data-
driven procedure is shown to be asymptotically optimal in the sense that it attains
both the FDR and FNR levels of the oracle procedure asymptotically. Simulation
studies conducted in Section 5.4 indicate the favorable performance of the LIS
procedure. Our findings show that the correlation among hypotheses is highly
informative in simultaneous inference and can be exploited to construct more ef-
ficient testing procedures. The LIS procedure is illustrated in analyzing the SNP
data from a genome-wide association study of T1D disease in Section 5.5.

5.1 The hidden Markov model

Let θθθ = (θ)m
1 = (θ1, · · · , θm) be a sequence of Bernoulli random variables and

distributed as a stationary Markov chain, where θi = 1 indicates that case i is a
non-null and θi = 0 otherwise. Assume that observations xxx = (x1, · · · , xm) are
generated according to the following conditional probability model:

P (xxx|θθθ,F) =
m∏

i=1

P (xi|θi,F), (5.1)

where P (xi < x|θi = j) = Fj(x), j = 0, 1 and F = (F0, F1). Denote by f0 and f1

the corresponding pdf’s. The HMM can be illustrated in Figure 5.1.

Figure 5.1: Graphical representation of an HMM

We assume that the Markov chain (θi)m
1 = (θ1, · · · , θm) is stationary, irre-

ducible and aperiodic. Specifically, the transition probabilities are homogeneous
and bounded away from 0 and 1. That is, ajk = P (θi = k|θi−1 = j), 0 6
j, k 6 1, do not depend on i, with the standard stochastic constraints 0 <
ajk < 1, aj0 + aj1 = 1. The convergence theorem of a Markov chain implies
that (1/m)

∑m
i=1 I(θi = j) → πj almost surely as m → ∞. The Bernoulli vari-

ables θ1, · · · , θm are identically distributed (but correlated) with P (θi = j) = πj .
Denote by A = {ajk} the transition matrix, πππ = (π0, π1) the stationary distribu-
tion, F = {F0, F1} the observation distribution, and ϑ = (A,πππ,F) the collection
of all HMM parameters.
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5.2 The oracle procedure

Let δδδ ∈ {0, 1}m be a general decision rule defined as before. Sun and Cai (2009)
showed that under the HMM dependency and a monotone ratio condition, the
multiple testing problem is equivalent to a weighted classification problem with
loss function

Lλ(θθθ, δδδ) =
1
m

∑

i

[λ(1− θi)δi + θi(1− δi)]. (5.2)

It can be shown that the optimal solution to the weighted classification problem
is δδδ(ΛΛΛ, 1/λ) = (δ1, · · · , δm), where

Λi(xxx) =
Pϑ(θi = 0|xxx)
Pϑ(θi = 1|xxx)

(5.3)

and δi = I {Λi(xxx) < 1/λ} for i = 1, · · · ,m.

Remark 5.1. Given ϑ, the oracle classification statistic Λi(xxx) can be expressed
in terms of the forward and backward density variables, which are defined as
αi(j) = fϑ[(xt)i

1, θi = j] and βi(j) = fϑ[(xt)m
i+1|θi = j], respectively (note that the

dependence of αi(j) on (xt)i
1 has been suppressed, similarly for βi(j)). It can be

shown that Pϑ(xxx, θi = j) = αi(j)βi(j) and hence Λi(xxx) = [αi(0)βi(0)]/[αi(1)βi(1)].
The forward variable αi(j) and backward variable βi(j) can be calculated recur-
sively using the forward-backward procedure (Baum et al. 1970 and Rabiner 1989).
Specifically, we initialize α1(j) = πjfj(x1), βm(j) = 1, then by induction we have

αi+1(j) =
[∑1

k=0 αi(k)akj

]
fj(xi+1) and βi(j) =

∑1
k=0 ajkfk(xi+1)βi+1(k).

Since Λi(xxx) is increasing in Pϑ(θi = 0|xxx), an optimal multiple-testing rule in
an HMM can be written in the form of δδδ = [I{Pϑ(θi = 0|xxx) < t} : i = 1, · · · ,m].
Define the local index of significance (LIS) for hypothesis i by

LISi = Pϑ(θi = 0|xxx). (5.4)

The LIS depends only on xi and reduces to Efron’s local false discovery rate (Lfdr)
in the independent case, i.e., LISi(xxx) simplifies to Lfdr(xi) = (1− π)f0(xi)/f(xi),
where π is the proportion of non-nulls and f is the marginal pdf. The oracle
testing procedure is

δδδ = [I{LISLISLIS < cOR111} : i = 1, · · · , m],

where cOR is the largest cutoff for LIS that controls the FDR at level α.

Remark 5.2. It is important to note that the conventional testing procedures es-
sentially involve ranking and thresholding p-values, whereas under our framework
the optimal statistic is the LIS. Now we compare p-value and LIS from a compound
decision theoretic view. Let δδδ be a general decision rule, then δδδ is symmetric if
δδδ(T (xxx)) = T (δδδ(xxx)) for all permutation operators T . In situations where one ex-
pects the non-null hypotheses appear in clusters, it is natural to treat differently
a hypothesis surrounded by non-nulls from one surrounded by nulls. However,
these two hypotheses are exchangeable when a symmetric rule is applied. The
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FDR procedures that threshold the p-value or Lfdr are symmetric rules; so are not
desirable when hypotheses are correlated. In contrast, we consider decision rule
δδδ(LIS, λ) = {I(LISi(xxx) < λ) : i = 1, · · · ,m}. It is easy to see that δδδ(LIS, λ) is
asymmetric, and the order of the sequence (xi)m

1 is accounted for in deciding the
significance level of hypothesis i. In particular, the local dependency structure is
captured by the HMM, and the operation of the forward-backward procedure im-
plies that a large (small) observation will increase (decrease) the significance level
of its neighbors. The performance of the testing procedure is hence improved by
pooling information from adjacent locations. In addition, the signal to noise ratio
is increased since the information from the whole sequence is integrated to calcu-
late the LIS value of a single hypothesis. Therefore, the LIS is more robust against
local disturbance, which further increases the efficiency of our testing procedure.

5.3 A data-driven procedure for dependent tests in an HMM

The oracle procedure is difficult to implement since cOR is difficult to calculate. In
addition, the HMM parameters ϑ are usually unknown. Sun and Cai (2009) derived
a data-driven procedure that mimics the oralce procedure. We first estimate the
unknown quantities by ϑ̂, then plug-in ϑ̂ to obtain L̂ISi. The maximum likelihood
estimate (MLE) is commonly used and is strongly consistent and asymptotically
normal under certain regularity conditions (Baum and Petrie, 1966; Leroux, 1992;
Bickel et al., 1998). The MLE can be computed using the EM algorithm or
other standard numerical optimization schemes, such as the gradient search, or
downhill simplex algorithm. These methods are reviewed by Ephraim and Merhav
(2002). In many practical applications, the number of components in the non-null
mixture L is unknown, yet the information is needed by the algorithms used to
maximize the likelihood function. Consistent estimates of L can be obtained using
the method proposed by Kiefer (1993) and Liu and Narayan (1994), among others.
Alternately, one can use likelihood based criteria, such as Akaike or Bayesian
information criterion (BIC) to select the number of components in the normal
mixture.

Let ϑ̂ be an estimate of the HMM parameter ϑ. Define the plug-in test
statistic L̂ISi(xxx) = Pϑ̂(θi = 0|xxx). For given ϑ̂, L̂ISi can be computed via the
forward-backward procedure. Denote by L̂IS(1)(xxx), · · · , L̂IS(m)(xxx) the ranked plug-
in test statistics and H(1), · · · ,H(m) the corresponding hypotheses. In light of the
oracle procedure, we propose the following data-driven procedure:

Let k = max



i :

1
i

i∑

j=1

L̂IS(j)(xxx) 6 α



, then reject all H(i), i = 1, · · · , k. (5.5)

The testing procedure given in (5.5) is referred to as the LIS procedure. We
shall show that the performance of OR is asymptotically attained by LIS under
some standard assumptions on the HMM. The asymptotic properties of the LIS
procedure are studied by the following theorems. Theorem 5.3 shows that the
rejection sets yielded by OR and LIS are asymptotically equivalent in the sense
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that the ratio of the number of rejections and the ratio of the number of true
positives yielded by the two procedures approach 1 as m →∞.

Theorem 5.3. Consider an HMM defined as in (5.1). Let R and R̂, V and V̂
be the number of rejections and number of false positives yielded by OR and LIS
procedures, respectively. Under some regularity conditions (see Sun and Cai 2009),
we have R̂/R

p−→ 1, V̂ /V
p−→ 1.

Theorem 5.4 below, together with the validity of the oracle procedure, implies
that the FDR is controlled at level α + o(1) by LIS, so the LIS procedure is
asymptotically valid. Theorem 5.4 also shows that the performance of OR is
attained by the LIS procedure asymptotically in the sense that the FNR level
yielded by LIS approaches that of OR as m →∞, therefore the LIS procedure is
asymptotically efficient.

Theorem 5.4. Consider an HMM defined as in (5.1). Let FDROR and FDRLIS,
FNROR and FNRLIS be the FDR levels and FNR levels yielded by OR and LIS,
respectively. Under some regularity conditions (see Sun and Cai 2009) FDROR −
FDRLIS → 0. In addition, if at least a fixed proportion of hypotheses are not
rejected, then FNROR − FNRLIS → 0 as m →∞.

5.4 Simulation studies

We first assume that L, the number of components in non-null mixture, is known
or estimated correctly from the data. The situation where L is misspecified is
considered in Sun and Cai (2009). In all simulations, we choose the number of
hypotheses m = 3000 and the number of replications N = 500.

Example 5.5. The Markov chain (θi)m
1 is generated with the initial state distri-

bution πππ0 = (π0, π1) = (1, 0) and transition matrix A = [0.95, 0.05; 1− a11, a11].
The observations (xi)m

1 are generated conditional on (θi)m
1 : xi|θi = 0 ∼ N(0, 1),

xi|θi = 1 ∼ N(µ, 1). Figure 5.2 compares the performance of BH, AP, OR and
LIS. In the top row we choose µ = 2 and plot the FDR, FNR and average number
of true positives (ATP) yielded by BH, AP, OR and LIS as functions of a11. In the
bottom row, we choose a11 = 0.8 and plot the FDR, FNR and ATP as functions
of µ. The nominal FDR in all simulations is set at level 0.10.

From Panel (a), we can see that the FDR levels of all four procedures are
controlled at 0.10 asymptotically, and the BH procedure is conservative. From
Panels (b) and (c), we can see that the two lines of the oracle procedure and LIS
procedure are almost overlapped, indicating that the performance of the oracle
procedure is attained by the LIS procedure asymptotically. In addition, the two
p-value based procedures are dominated by the LIS procedure and the difference
in FNR and ATP levels becomes larger as a11 increases. Note that a11 is the
transition probability from a non-null case to a non-null case, therefore it controls
how likely the non-null cases cluster together. It is interesting to observe that
the p-value procedures have higher FNR levels as the non-nulls cluster in larger
groups. In contrast, the FNR levels of the LIS procedure decreases as a11 increases.
This observation shows that if modeled appropriately, the positive dependency
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Figure 5.2: A comparison of the BH, AP, OR and LIS in an HMM with simple
alternative (# , BH; 4, AP; +, OR; ¤, LIS). (a)-(c) The FDR, FNR and ATP
versus a11. (d)-(f) The FDR, FNR and ATP versus µ. The FDR level is set at
0.10.

is a blessing (the FNR level decreases in a11); but if it is ignored, the positive
dependency may become a disadvantage. In situations where the non-null cases
are prevented from forming into clusters (a11 < 0.5), the LIS procedure is still
more efficient than BH and AP, although the gain in efficiency is not as much as
the situation where a11 > 0.5.

Panel (d) similarly shows that all procedures are valid and BH is conservative.
On Panels (e) and (f), we plot the FNR and ATP levels as functions of the non-null
mean µ. We can see that BH and AP are dominated by LIS, and the difference is
large when µ is small to moderate. This is due to the fact that the LIS procedure
can integrate information from adjacent locations, so is still very efficient even
when the signals are weak.

The superiority of LIS is achieved by incorporating the informative depen-
dency structure; hence more efficient rankings of the SNPs are produced. The LIS
rankings are fundamentally different from the rankings by BH. Table 4 compares
the outcomes of the LIS and BH procedures for testing two clusters of non-null
SNPs, where # denotes a null hypothesis or an acceptance and  denotes a non-
null hypothesis or a rejection. It is interesting to note that BH suggests site 2720
be less significant than site 2723. In contrast, LIS suggests that site 2720, being
surrounded by significant neighbors, be more significant than site 2723. LIS tends
to identify disease-associated SNPs in clusters, while the BH procedure only iden-
tifies sporadic suspicious SNPs. Using HMM, LIS efficiently increases the signal
to noise ratio by integrating information from adjacent locations. The precision is
greatly improved in the sense that (1) the number of false positives is greatly re-
duced and (2) the statistical power to reject a non-null is substantially increased.
This indicates that dependence can make the testing problem “easier” and is a
blessing if incorporated properly in a testing procedure.
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Table 4: Significance levels suggested by BH & LIS

Sequence States p-values LIS Values BH LIS
Procedure Procedure

2694  3.62e-01 1.59e-03 #  
2695  1.52e-03 6.85e-05   
2696  6.62e-04 9.29e-04   
2697  7.19e-01 1.00e-01 #  

...
...

...
...

...
...

2718  1.23e-02 1.65e-04 #  
2719  3.37e-03 8.19e-05   
2720  5.59e-01 2.19e-03 #  
2721  2.07e-04 2.67e-05   
2722  3.42e-02 7.42e-04 #  
2723  2.88e-01 6.19e-03 #  

5.5 A case study

Because of the recent advancements in comprehensive genomic information and
cost-effective genotyping technologies, genome-wide association studies (GWAS)
have become a popular tool to detect genetic variants that contribute to complex
diseases. However, the established genetic associations with T1D only explain
around 50% of the genetic risk for T1D. Many more genes with small to moderate
effects remain to be discovered (Todd et al., 2007 and Hakonarson et al., 2007).
Finding these unknown “weak” genes is important for improving the understanding
of the pathology of T1D disease.

It has been appreciated that genomic dependency information can signifi-
cantly improve the efficiency in analysis of large-scale genomic data. We expect
that the information of the SNP dependency can be exploited to construct more
efficient tests. From a biological point of view, the SNP dependency is informative
in constructing more efficient association tests because, when a SNP is associated
with a disease, it is likely that the neighboring SNPs are also disease-associated
(due to the co-segregation). Therefore, when deciding the significance level of a
SNP, the neighboring SNPs should be taken into account. The dependency of
adjacent SNPs is captured using an HMM.

To search systematically for these unknown loci, Hakonarson et al. (2007)
performed a genome-wide association study, where a discovery cohort, including
563 cases and 1146 controls, was collected. All participants were of European
ancestry and recruited through paediatric diabetes clinics in Philadelphia, Mon-
treal, Toronto, Ottawa and Winnipeg. The study subjects were genotyped using
the Illumina HumanHap550 BeadChip at the Children’s Hospital of Philadelphia
(CHOP). A replication cohort, consisting of 483 parents-offspring trios with af-
fected children, was also collected and genotyped (Hakonarson et al., 2007; Grant
et al., 2008). A series of standard quality control procedures was performed to
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eliminate markers with minor allele frequency less than 1%, with hardy-Weinberg
Equilibrium p-values lower than 1e-6, or with genotype nocall rate higher than
5%. After the quality control, 534213 markers on 23 chromosomes in the discovery
cohort are eligible for further analysis. The same quality control procedure was ap-
plied to the replication cohort. Additional markers showing excessive (>families)
Mendelian inconsistencies were eliminated. After the screening, 532662 markers
over 23 chromosomes in the replication cohort are eligible for further analysis.

We first conducted a χ2-test for each SNP to assess the association be-
tween the allele frequencies and the disease status, then obtain p-values and z-
values using appropriate transformations. Each chromosome is modeled sepa-
rately to obtain chromosome-specific HMM parameters Ψk and LIS values L̂ISki.
We assume that the null distribution is standard normal N(0, 1) and the non-
null distribution is a normal mixture

∑L
l=1 clN(µl, σ

2
l ). The number of compo-

nents L in the non-null distribution is determined by the BIC criterion, BIC =
log{P (Ψ̂L|zzz)} − |ΨL|

2 log(m), where P (ΨL|zzz) is the likelihood function, Ψ̂L is the
MLE of HMM parameters, and |ΨL| is the number of HMM parameters. We vary
L and evaluate different choices of L for each chromosome. The high transition
probabilities (a00 and a11) indicate that the genomic dependency is strong.

A meta-analysis based on recent GWAS has confirmed 15 T1D susceptibility
loci, among which four are identified by BH and seven are identified by the LIS
procedure. Detailed results are provided in Table 5. In contrast, LIS does not
claim two loci, namely the gene for collagen type 1 a2 (COL1A2; rs10255021)
and rs672797, in the vicinity of latrophilin 2 (LPHN2), are disease-associated,
while the p-value based approaches even claimed their significant association under
the Bonferroni correction. However, these two loci failed to replicate in follow-
up studies. A closer look at the nearby regions shows that these two SNPs are
both surrounded by insignificant SNPs; hence the “significance” is more likely
to be “noise”. By borrowing information from nearby locations, LIS successfully
classifies them as non-disease associated SNPs.

Table 5: The 7 known T1D susceptibility loci identified by PLIS.

Chr. T1D Loci SNP Dist. D′ LIS Stat. p Value
1 rs2476601 rs2476601 0 3.19e-09 1.22e-12
6 rs3129871 rs3129871 0 2.42e-89 2.91e-90
16 rs725613 rs725613 0 2.73e-08 4.92e-09
11 rs4244808 rs4320932 8 1 8.40e-05 5.07e-04
12 rs1701704 rs10876864 11 0.955 3.26e-04 4.80e-07
10 rs12251307 rs4147359 15 0.610 8.48e-05 1.55e-04
6 rs3757247 rs10498965 42 1 1.96e-04 8.25e-04

Three loci are identified directly; four loci are identified by nearby SNPs (within
50Kb) in LD with them. Chr., chromosome; Dist., distance of the significant SNPs
to the known T1D loci, in Kb; D’, disequilibrium scores of the significant SNPs to
the known T1D loci, derived from HapMap CEPH Utah (CEU) data.
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6 Open Problems

We conclude with discussions on some open problems and possible directions for
future research in large-scale multiple testing.

It is of great importance from both theoretical and practical perspectives to
develop efficient multiple testing procedures under general dependency. The prob-
lem is challenging. The asymptotic optimality of a data-driven procedure requires
the estimates of the unknown model parameters to be consistent. However, to the
best of our knowledge, such theoretical results for other dependency structures,
such as for a higher dimensional random field, have not been developed in the
literature. Hence the optimality of the LIS procedure may be lost in the estima-
tion step. In addition, the implementation of the data-driven procedure for other
correlation structures may be very complicated. The forward-backward procedure
and EM algorithm for an HMM is known to be efficient and relatively easy to
program. However, such efficient algorithms may not exist for other dependency
structures.

Another important direction is to extend the testing procedure in Section
4 to deal with the situation when the grouping information is unknown. One
needs to take into account the interplay among grouping, estimation and testing in
developing an efficient procedure. On the one hand, if we use many small groups
instead of several large groups, the hypotheses within each small group will be
more homogeneous, which will increase the precision of a testing procedure. On
the other hand, the estimated test statistic will become less precise if a group
consists of too few cases; hence the efficiency may be lost in the estimation step as
the number of groups increases. A problem of particular interest in this direction
is multiple testing with covariates.

The false discovery exceedance (FDX) control is an alternative approach to
the FDR control. The false discovery proportion (FDP) is the proportion of false
positives among all rejections and the FDX is the tail probability that the FDP
exceeds a specified bound (Genovese and Wasserman 2006). In many applica-
tions, the FDP in each realization has very large deviations from the nominal
FDR level. This unfavorable situation is allowed by FDR controlling procedures.
Instead of controlling the average error rate, an FDX procedure aims to control
the tail probability of FDP > α below a pre-specified level γ. The FDX proce-
dures are argued to be more appropriate since the variability of FDP is taken
into account. The procedures related to the FDX/FDP control are discussed in
Pacifico et al.(2004), Lehmann and Romano (2005) and Genovese and Wasserman
(2006). However, these procedures are essentially based on thresholding p-values.
We anticipate that more efficient testing procedures can be developed under the
compound decision theoretic framework.

Finally, we mention a few other interesting directions that are worth pursuing
for future research with related references: multiple testing with weights (Genovese
et al 2006; Roeder et al. 2007); conjunction and partial conjunction analysis of
sets of hypotheses ( Friston et al. 2005; Pacifico et al. 2007; Benjamini and Heller
2007); multiple testing with a hierarchical structure (Meinshausen 2008; Yekutieli
2008; Bickel et al. 2009).
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