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We develop a compound decision theory framework for multiple-testing problems and derive an oracle rule based on the z values that
minimizes the false nondiscovery rate (FNR) subject to a constraint on the false discovery rate (FDR). We show that many commonly
used multiple-testing procedures, which are p value–based, are inefficient, and propose an adaptive procedure based on the z values. The
z value–based adaptive procedure asymptotically attains the performance of the z value oracle procedure and is more efficient than the
conventional p value–based methods. We investigate the numerical performance of the adaptive procedure using both simulated and real
data. In particular, we demonstrate our method in an analysis of the microarray data from a human immunodeficiency virus study that
involves testing a large number of hypotheses simultaneously.
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1. INTRODUCTION

In large-scale multiple comparisons where hundreds or thou-
sands of hypotheses are tested simultaneously, the goal is to
separate the nonnull cases from the null cases. Commonly used
multiple-testing procedures are typically based on the p val-
ues of the individual tests. For example, the well-known step-
up procedure of Benjamini and Hochberg (1995), which aims
to maximize the number of true positives while controlling the
proportion of false positives among all rejections, thresholds
the p values of the individual tests. Other examples include
the adaptive procedure (Benjamini and Hochberg 2000), the
plug-in procedure (Genovese and Wasserman 2004), and the
augmentation procedure (van der Laan, Dudoit, and Pollard
2004). The operation of these procedures essentially involves
first ranking the hypotheses based on the individual p values
and then choosing a cutoff along the rankings.

The outcomes of a multiple testing procedure can be cat-
egorized as done in Table 1. The false discovery rate (FDR)
is defined as E(N10/R|R > 0)Pr(R > 0), with an FDR level
of 0 when no hypotheses are rejected. Other similar measures
include the positive false discovery rate (pFDR), E(N10/R|
R > 0), and the marginal FDR (mFDR), E(N10)/E(R). The
pFDR and mFDR are equivalent when test statistics come from
a random mixture of the null and nonnull distributions (Storey
2003). Genovese and Wasserman (2002) showed that under
weak conditions, mFDR = FDR + O(m−1/2), where m is the
number of hypotheses.

Table 2 summarizes the data notation used in this article,
which is standard for many microarray studies (see, e.g., Efron
2004a,b). Suppose that two groups of subjects, X1, . . . ,Xn1 and
Y1, . . . , Yn2 , each have measured expression levels for the same
m genes. For i = 1, . . . ,m, a two-sample t statistic Ti is ob-
tained for comparing the two groups on gene i, and is then
transformed to a z value through Zi = �−1(F (Ti)), where F

and � are the cdf’s of the t variable Ti and the standard normal
variable. The corresponding p-values of all tests are recorded
and denoted by P1, . . . ,Pm.
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In this article we develop a compound decision theory frame-
work for multiple testing and derive an oracle rule based on the
z values that, subject to a constraint on the FDR, minimizes
the false nondiscovery rate (FNR), E(N01/S|S > 0)Pr(S > 0).
A major goal of this article is to show that the p value–based
approaches generally do not lead to efficient multiple-testing
procedures. The reason for the inefficiency of the p value meth-
ods can be traced back to work of Robbins (1951) that showed
in a compound decision problem that simple rules (defined in
Sec. 2) are usually inferior compared to compound decision
rules. In addition, a result of Copas (1974) implies that the
p value oracle procedure, defined in Section 3, is inadmissi-
ble in a compound decision problem. Robbins’ argument that
compound rules are superior to simple rules is especially im-
portant in large-scale multiple testing in which the precision of
the tests can be increased by pooling information from different
samples. Our approach is to use the z values to learn the distri-
bution of the test statistics and use the information to construct
a more efficient test.

In this article we first develop a z value–based oracle proce-
dure that minimizes the mFNR subject to mFDR ≤ α. We then
compare this procedure with the p value oracle procedure pro-
posed by Genovese and Wasserman (2002). A comparison of
these two oracle procedures in Figure 1 shows that the p value
oracle procedure is dominated by the z value oracle procedure,
and that the gain in efficiency can be substantial when the al-
ternative is asymmetric. More numerical examples are given in
Section 5. It can be seen that the z value oracle procedure out-
performs the p value oracle procedure in all cases except when
the alternative is perfectly symmetric about the null, which im-
plies that it is possible that p value–based procedures can be
uniformly improved by using the z values.

We then develop a data-driven adaptive procedure based on
the z values. We show that the z value–based adaptive pro-
cedure asymptotically attains the performance of the z value
oracle procedure and is more efficient than the conventional
p value–based methods, including the step-up procedure of
Benjamini and Hochberg (1995) and the plug-in procedure of
Genovese and Wasserman (2004). By treating multiple testing
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Table 1. Classification of tested hypothesis

Claimed nonsignificant Claimed significant Total

Null N00 N10 m0
Nonnull N01 N11 m1
Total S R m

as a compound decision problem, our results show that individ-
ual p values, although appropriate for testing a single hypothe-
sis, fail to serve as the fundamental building block in large-scale
multiple testing.

In addition to the theoretical properties, we study the numer-
ical performance of the z value–based adaptive procedure using
both simulated and real data. Simulations reported in Section 5
demonstrate that our z value procedure yields a lower mFNR
than the p value–based methods at the same mFDR level. The
gain in efficiency is substantial in many situations when the al-
ternative is asymmetric about the null. We then apply our proce-
dure to the analysis of microarray data from a human immuno-
deficiency virus (HIV) study in Section 6 and find that at the
same FDR level, it rejects more hypotheses than the p value–
based procedures. The type of asymmetry in the HIV data is
commonly observed in microarray study, suggesting that our
new z value–based adaptive procedure can aid in the discovery
of additional new meaningful findings in many scientific appli-
cations.

The article is organized as follows. In Section 2 we develop a
compound decision-theoretic framework and study various as-
pects of weighted classification and multiple-testing problems
in this setting. In Sections 3 and 4 we propose oracle and adap-
tive testing procedures based on the z values for FDR control.
In Section 5 we introduce numerical examples to show that our
new z value–based procedure is more efficient than the tradi-
tional p value–based procedures. In Section 6 we illustrate our
adaptive procedure with the analysis of microarray data in an
HIV study. We conclude the article with a discussion of the
results and some open problems. We provide proofs in the Ap-
pendix.

2. COMPOUND DECISION PROBLEM

Let � be the sample space and let � be the parameter space.
Suppose that x = (x1, . . . , xm) ∈ � are observed and that we are
interested in inference about the unknown θ = (θ1, . . . , θm) ∈ �

based on x. This involves solving m decision problems si-
multaneously and is called a compound decision problem. Let
δ = (δ1, . . . , δm) be a general decision rule. Then δ is simple if
δi is a function only of xi , that is, δi(x) = δi(xi). The simple
rules correspond to solving the m component problems sepa-
rately. In contrast, δ is compound if δi depends on other xj ’s,

Table 2. Summary of the data notation

Original data T statistic z value p value

X1 · · · Xn1 Y1 · · · Yn2 T Z P

X11 · · · Xn11 Y11 · · · Yn21 T1 Z1 P1
X12 · · · Xn12 Y12 · · · Yn22 T2 Z2 P2
...

...
...

...
...

...
...

...
...

X1m · · · Xn1m Y1m · · · Yn2m Tm Zm Pm

Figure 1. A comparison of the p value ( ) and z value ( )
oracle procedures with the mFDR level at .10. The test statis-
tics have the normal mixture distribution .8N(0,1) + p1N(−3,1) +
(.2 − p1)N(3,1). The mFNRs of the two procedures are plotted as a
function of p1.

j �= i. A decision rule δ is symmetric if δ(τ (x)) = τ(δ(x)) for
all permutation operators τ .

Robbins (1951) considered a compound decision problem
where Xi ∼ N(θi,1), i = 1, . . . , n, are independent normal
variables with mean θi = 1 or −1. The goal is to classify each θi

under the usual misclassification error. He showed that the
unique minimax rule R: δi = sgn(xi) does not perform well in
this compound decision problem by exhibiting a compound rule
R∗: δi = sgn(xi − 1

2 log 1−x̄
1+x̄

) that substantially outperforms R

when p, the proportion of θi = 1, approaches 0 or 1, with only
slightly higher risk near p = .5.

Let θ1, . . . , θm be independent Bernoulli(p) variables and let
Xi be generated as

Xi |θi ∼ (1 − θi)F0 + θiF1. (1)

The variables Xi are observed, and the variables θi are unob-
served. The marginal cumulative distribution function (cdf) of
X is the mixture distribution F(x) = (1 − p)F0(x) + pF1(x),
and the probability distribution function (pdf) is f (x) = (1 −
p)f0(x) + pf1(x), where f is assumed to be continuous and
positive on the real line. In statistical and scientific applica-
tions, the goal is to separate the nonnull cases (θi = 1) from
the null (θi = 0), which can be formulated either as a weighted
classification problem or a multiple-testing problem. The so-
lution to both problems can be represented by a decision rule,
δ = (δ1, . . . , δm) ∈ I = {0,1}m.

In Section 6 we consider a problem in which we are inter-
ested in identifying a set of genes that are differentially ex-
pressed between HIV-positive patients and HIV-negative con-
trols. This naturally gives rise to a multiple-testing problem
in which the goal is to find as many true positives as possi-
ble while controlling the proportion of false positives among
all rejections within level α. As in the work of Genovese and
Wasserman (2002), we define the marginal FNR as mFNR =
E(N01)/E(S), the proportion of the expected number of non-
nulls among the expected number of nonrejections. The multi-
ple testing problem is then to find δ that minimizes the mFNR
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while controlling the mFDR at level α. On the other hand, in
applications it is possible to rate the relative cost of a false pos-
itive (type I error) to a false negative (type II error). This nat-
urally gives rise to a weighted classification problem with loss
function

Lλ(θ , δ) = 1

m

{∑
i

[λI (θi = 0)δi + I (θi = 1)(1 − δi)]
}
, (2)

where λ > 0 is the relative weight for a false positive. The
weighted classification problem is then to find δ that mini-
mizes the classification risk E[Lλ(θ , δ)]. We develop a com-
pound decision theory framework for inference about the mix-
ture model (1) and make connections between multiple testing
and weighted classification.

We consider δ(x) ∈ {0,1}m, which is defined in terms
of statistic T(x) = [Ti(x) : i = 1, . . . ,m] and threshold c =
(c1, . . . , cm) such that

δ(x) = I (T < c) = [
I (Ti(x) < ci) : i = 1, . . . ,m

]
. (3)

Then δ can be used in both weighted classification and multiple-
testing problems. It is easy to verify that δ given in (3) is sym-
metric if Ti(x) = T (xi) and c = c1, where T is a function. In
this section we allow T to depend on unknown quantities, such
as the proportion of nonnulls and/or the distribution of Xi . We
assume that T (Xi) ∼ G = (1 − p)G0 + pG1, where G0 and
G1 are the cdf’s of T (Xi) under the null and the alternative,
respectively. The pdf of T (Xi) is g = (1 − p)g0 + pg1. Let T
be the collection of functions such that for any T ∈ T , T (Xi)

has monotone likelihood ratio (MLR), that is,

g1(t)/g0(t) is decreasing in t . (4)

We call T the SMLR class. Let x = {x1, . . . , xm} be a ran-
dom sample from the mixture distribution F and let δ(T , c) =
{I [T (xi) < c] : i = 1, . . . ,m}. We call δ(T , c) a SMLR decision
rule if T ∈ T , and let Ds denote the collection of all SMLR
decision rules.

Suppose that T (Xi) = p(Xi), the p value of an individual
test based on the observation Xi . Assume that p(Xi) ∼ G =
(1 − p)G0 + pG1, where G0 and G1 are the p value distrib-
utions under the null and the alternative. Assume that G1(t) is
twice differentiable. Note that g0(t) = G′

0(t) = 1, the assump-
tion p(·) ∈ T implies that G′′

1(t) = g′
1(t) < 0, that is, G1(t) is

concave. Therefore, the SMLR assumption can be viewed as
a generalized version of the assumption of Storey (2002) and
Genovese and Wasserman (2002, 2004) that the p value distri-
bution under the alternative is concave. The following proposi-
tion shows that the SMLR assumption is a desirable condition
in both multiple-testing and weighted classification problems.

Proposition 1. Let θi , i = 1, . . . ,m, be iid Bernoulli(p) vari-
ables and let xi |θi , i = 1, . . . ,m, be independent observations
from the model (1). Suppose that T ∈ T ; then the implemen-
tation of δ(T , c) = {I [T (xi) < c] : i = 1, . . . ,m} in both the
weighted classification and the multiple-testing problems im-
plies that (a) P(θi = 1|T (Xi) ≤ c) is monotonically decreas-
ing in threshold c, (b) the mFDR is monotonically increasing
in c and the expected number of rejections r , (c) the mFNR is
monotonically decreasing in c and r , (d) the mFNR is monoton-
ically decreasing in the mFDR, and (e) in the classification
problem, c (and thus r) is monotonically decreasing in the clas-
sification weight λ.

The following theorem makes connection between a multi-
ple-testing problem and a weighted classification problem. In
particular, the former can be solved by solving the latter, with
an appropriately chosen λ.

Theorem 1. Let θi , i = 1, . . . ,m, be iid Bernoulli(p) vari-
ables and let xi |θi , i = 1, . . . ,m, be independent observations
from the mixture model (1). Let 
 ∈ T and suppose that the
classification risk with the loss function (2) is minimized by
δλ[
,c(λ)] = {δλ

1 , . . . , δλ
m}, where δλ

i = I {
(xi) < c(λ)}. Then
for any given mFDR level α in a multiple testing problem,
there exists a unique λ(α) that defines a weighted classifica-
tion problem. The optimal solution to the classification problem
δλ(α)[
,c{λ(α)}] is also optimal in the multiple testing prob-
lem in the sense that it controls the mFDR at level α with the
smallest mFNR among all decision rules in Ds .

The next step is to develop such an optimal rule δλ(
, c(λ))

as stated in Theorem 1. We first study an ideal setup in which
there is an oracle that knows p,f0, and f1. Then the oracle rule
in this weighted classification problem gives the optimal choice
of δ.

Theorem 2 (The oracle rule for weighted classification). Let
θi , i = 1, . . . ,m, be iid Bernoulli(p) variables and let xi |θi ,
i = 1, . . . ,m, be independent observations from the mixture
model (1). Suppose that p,f0, and f1 are known. Then the clas-
sification risk E[Lλ(θ , δ)] with L given in (2) is minimized by
δλ(
,1/λ) = {δ1, . . . , δm}, where

δi = I

{

(xi) = (1 − p)f0(xi)

pf1(xi)
<

1

λ

}
, i = 1, . . . ,m. (5)

The minimum classification risk is R∗
λ

.= infδ E[Lλ(θ , δ)] =
p+∫

K
[λ(1−p)f0(x)−pf1(x)]dx, where K = {x ∈ � :λ(1−

p)f0(x) < pf1(x)}.
Remark 1. Let the likelihood ratio (LR) be defined as Li =

f0(xi)/f1(xi). A compound decision rule is said to be ordered
if for almost all x, Li > Lj and δi(x) > 0 imply that δj (x) = 1.
Copas (1974) showed that if a symmetric compound decision
rule for dichotomies is admissible, then it is ordered. Note that
(5) is a Bayes rule and so is symmetric, ordered, and admis-
sible. But because the p value–based procedure δ(p(·), c) =
{I [p(Xi) < c] : i = 1, . . . ,m} is symmetric but not ordered by
the LR, it is inadmissible in the compound decision problem.

Remark 2. In practice, some of the p, f0, and f1 are un-
known but estimable. Then we can estimate the unknown quan-
tities and use the rule δλ(
̂,1/λ). The subminimax rule, δi =
sgn(xi − 1

2 log 1−x̄
1+x̄

), given by Robbins (1951), is recovered by
letting λ = 1, f0 = φ(·+ 1), f1 = φ(·− 1), and p̂1 = (1 + x̄)/2
in (5), where φ is the pdf of a standard normal.

Remark 3. Suppose that two weights λ1 < λ2 are chosen
in the loss (2). Let �1 = {x :λ1(1 − p)f0(x) < pf1(x)} and
�2 = {x :λ2(1 − p)f0(x) < pf1(x)}. Then the classification
risk Rλ is increasing in λ because R∗

λ1
− R∗

λ2
= ∫

�1\�2
[λ1(1 −

p)f0(x) − pf1(x)]dx + ∫
�2

{[(λ1 − λ2)(1 − p)f0(x)]}dx < 0.
Also, it is easy to see that �1 ⊃ �2. Thus the expected number
of subjects classified to the nonnull population is decreasing
in λ, demonstrating that (d) in Proposition 1 is satisfied by the
classification rule δλ(
,1/λ).
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3. THE ORACLE PROCEDURES FOR
mFDR CONTROL

We have shown that δλ(
,1/λ) = [I {
(x1) < 1/λ}, . . . ,
I {
(xm) < 1/λ}] is the oracle rule in the weighted classifica-
tion problem. Theorem 1 implies that the optimal rule for the
multiple-testing problem is also of the form δλ(α)[
,1/λ(α)]
if 
 ∈ T , although the cutoff 1/λ(α) is not obvious. Note
that 
(x) = Lfdr(x)/[1 − Lfdr(x)] is monotonically increas-
ing in Lfdr(x), where Lfdr(·) = (1 − p)f0(·)/f (·) is the local
FDR (Lfdr) introduced by Efron, Tibshirani, Storey, and Tusher
(2001) and Efron (2004a), so the optimal rule for mFDR control
is of the form δ(Lfdr(·), c) = {I [Lfdr(xi) < c] : i = 1, . . . ,m}.
Lfdr has been widely used in the FDR literature to provide
a Bayesian version of the frequentist FDR measure and in-
terpret results for individual cases (Efron 2004a). We “redis-
cover” it here as the optimal (oracle) statistic in the multiple-
testing problem in the sense that the thresholding rule based on
Lfdr(X) controls the mFDR with the smallest mFNR.

The Lfdr statistic is defined in terms of the z values, which
can be converted from other test statistics, including the t

and chi-squared statistics, using inverse-probability transforma-
tions. Note that p is a global parameter. Therefore, the expres-
sion Lfdr(z) = (1 − p)f0(z)/f (z) implies that we actually rank
the relative importance of the observations according to their
LRs, and that the rankings are generally different from the rank-
ings of p values unless the alternative distribution is symmetric
about the null. An interesting consequence of using the Lfdr
statistic in multiple testing is that an observation located farther
from the null may have a lower significance level. Therefore,
it is possible that the test accepts a more extreme observation

while rejecting a less extreme observation, implying that the re-
jection region is asymmetric. This is not possible for a testing
procedure based on the individual p values, which has a rejec-
tion region always symmetric about the null. This phenomenon
is illustrated in Figure 2 at the end of this section.

Setting the threshold for the test statistics has been the focus
of the FDR literature (see, e.g., Benjamini and Hochberg 1995;
Genovese and Wasserman 2004). Consider an ideal situation
in which we assume that an oracle knows the true underlying
distribution of the test statistics. Note that the SMLR assump-
tion implies that the mFNR is decreasing in the mFDR; there-
fore, the oracle’s response to such a thresholding problem is to
“spend” all of the mFDR to minimize the mFNR. Besides pro-
viding a target for evaluating different multiple-testing proce-
dures, the oracle procedure also sheds light on the development
of the adaptive procedure that we propose in Section 4.

3.1 The Oracle Procedure Based on the p Values

Let G1(t) be the distribution of the p values under the alter-
native and let p be the proportion of nonnulls. We assume that
G1 is concave; then, according to Genovese and Wasserman
(2002), the oracle procedure thresholds the p value at u∗, the
solution to the equation G1(u)/u = (1/p − 1)(1/α − 1). Here
u∗ is the optimal cutoff for a concave G1(t) in the sense that the
rule δ[p(·), u∗] = {I [Pi < u∗] : i = 1, . . . ,m} yields the small-
est mFNR among all p value–based procedures that control the
mFDR at level α. Let G̃(t) = 1 − G(t). The resulting mFDR of
(1 − p)u∗/[(1 − p)u∗ + pG1(u

∗)] is just α, and the mFNR is
given by pG̃(u∗)/[pG̃1(u

∗) + (1 − p)(1 − u∗)].

(a) (b)

Figure 2. Symmetric rejection region versus asymmetric rejection region. (a) Comparison of oracle rules ( , p value; , z value).
(b) Rejection regions. The normal mixture model is .8N(0,1) + p1N(−3,1) + (.2 − p1)N(4,1). Both procedures control the mFDR at .10.
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3.2 The Oracle Procedure Based on z Values

We write the Lfdr statistic as TOR(Zi) = (1 − p)f0(Zi)/

f (Zi) and call it the oracle test statistic. We assume that
TOR(Zi) is distributed with marginal cdf GOR = (1 − p)G0

OR +
pG1

OR, where G0
OR and G1

OR are the cdf’s of TOR(Zi) under the
null and the alternative. Set G̃OR(t) = 1 − GOR(t). The mFDR
of the oracle rule δ(TOR, λ) is QOR(λ) = (1 − p)G0

OR(λ)/

GOR(λ). We assume that TOR ∈ T satisfies the SMLR assump-
tion; then (b) of Proposition 1 implies that QOR(λ) is increasing
in the threshold λ. Therefore, the oracle procedure thresholds
TOR(z) at λOR = sup{t ∈ (0,1) :QOR(t) ≤ α} .= Q−1

OR(α). Thus
the oracle testing rule based on z values is

δ(TOR, λOR) = {
I [TOR(z1) < λOR], . . . , I [TOR(zm) < λOR]}.

(6)

The corresponding mFDR= QOR(λOR) is just α, and the mFNR
is

Q̃OR(λOR) = pG̃1
OR(λOR)/G̃OR(λOR). (7)

Example 1. We consider a random sample z1, . . . , zm from a
normal mixture model,

f (z) = (1−p1 −p2)φ(z)+p1φ(z−μ1)+p2φ(z−μ2), (8)

along with corresponding m tests Hi
0 :μ = 0 versus Hi

1 :μ �= 0,
i = 1, . . . ,m. Let p = p1 + p2 be the total proportion of non-
nulls. We assume that μ1 < 0 and μ2 > 0, so that the rejection
region will be two-sided.

The p value distribution under the alternative can be de-
rived as G1(t) = (p1/p){�̃(Zt/2 +μ1)+�̃(Zt/2 −μ1)}+ (p2/

p){�̃(Zt/2 + μ2) + �̃(Zt/2 − μ2)}. Thus the optimal p value
cutoff u∗ is the solution to equation G1(u)/u = (1/p − 1) ×
(1/α − 1), with corresponding mFNR of pG̃(u∗)/[pG̃1(u

∗) +
(1 − p)(1 − u∗)].

It is easy to verify that in normal mixture model (8), the
oracle testing rule (6) is equivalent to rejecting the null when
zi < cl or zi > cu. The threshold λOR can be obtained using the
bisection method. For a given λ, cl and cu can be solved numeri-
cally from the equation λ[p1 exp(−μ1z− 1

2μ2
1)+p2 exp(μ2z−

1
2μ2

2)] − (1 − λ)(1 − p) = 0. The corresponding mFDR and
mFNR can be calculated as

mFDR = (1 − p)[�(cl) + �̃(cu)]
/
(
(1 − p)[�(cl) + �̃(cu)] + p1[�(cl + μ1)

+ �̃(cu + μ1)] + p2[�(cl − μ2) + �̃(cu − μ2)]
)

and

mFNR = (
p1[�(cu + μ1) − �(cl + μ1)]
+ p2[�(cu − μ2) − �(cl − μ2)]

)
/
(
(1 − p)[�(cu) − �(cl)] + p1[�(cu + μ1)

− �(cl + μ1)] + p2[�(cu − μ2) − �(cl − μ2)]
)
,

where �(·) is the cdf of a standard normal and �̃(·) = 1−�(·).
In this example we choose the mixture model .8N(0,1) +

p1N(−3,1)+(.2−p1)N(4,1). This is different from the model

shown in Figure 1, which has alternative means −3 and 3; there-
fore, different patterns are seen. Both oracle procedures con-
trol the mFDR at level .10, and we plot the mFNRs of the
two procedures as a function of p1 in Figure 2(a). We can
see that again, the p value oracle procedure is dominated by
the z value oracle procedure. We set p = .15 and character-
ize the rejection regions of the two oracle procedures in Fig-
ure 2(b). Some calculations show that the rejection region of
the p value oracle procedure is |zi | > 2.27 with mFNR = .046,
whereas the rejection region of the z value oracle procedure is
zi < −1.97 and zi > 3.41 with mFNR = .038. It is interest-
ing to note that the z value oracle procedure rejects observa-
tion x = −2 (p value = .046) but accepts observation x = 3
(p value = .003). We provide more numerical comparisons in
Section 5, and show that the z value oracle procedure yields
a lower mFNR level than the p value oracle procedure on all
possible configurations of alternative hypotheses, with the dif-
ference significant in many cases.

3.3 Connection to Work of Spjøtvoll (1972) and
Storey (2007)

An “optimal” multiple-testing procedure was introduced by
Spjøtvoll (1972). Let f01, . . . , f0N and f1, . . . , fN be integrable
functions. Let S′(γ ) denote the set of all tests (ψ1, . . . ,ψN )
that satisfy

∑N
t=1

∫
ψt(x)f0t (x) dμ(x) = γ , where γ > 0 is pre-

specified. Spjøtvoll (1972) showed that the test (φ1, . . . , φN) =
{I [ft (x) > cf0t (x)] : t = 1, . . . ,N} maximizes

N∑
t=1

∫
φt (x)ft (x) dμ(x) (9)

among all tests (ψ1, . . . ,ψN) ∈ S′(γ ). Storey (2007) proposed
the optimal discovery procedure (ODP) based on a shrinkage
test statistic that maximizes the expected number of true pos-
itives (ETP) for a fixed level of the expected number of false
positives (EFP). The result of Storey (2007) on the ODP fol-
lows directly from the theorem of Spjøtvoll (1972) by choosing
appropriate f0t and ft .

In the setting of the present article, both Spjøtvoll’s optimal
procedure and Storey’s ODP procedure depend on unknown
functions that are not estimable from the data. Moreover, the
optimal cutoffs for a given test level are not specified in both
procedures. These limitations make the two methods inapplica-
ble in terms of the goal of FDR control.

The formulation of our testing procedure (6) has two ad-
vantages over the procedures of Spjøtvoll (1972) and Storey
(2007). First, we can form good estimates (Jin and Cai 2007)
from the data for the unknown functions in the oracle test sta-
tistic that we propose. Second, we specify the optimal cutoff
for each mFDR level, which was not discussed by Spjøtvoll
(1972) or Storey (2007). These advantages greatly facilitate the
development of the adaptive procedure (10), where a consistent
cutoff (relative to the oracle cutoff) is suggested for each test
level based on a simple step-up procedure. This task is impossi-
ble based on the formulation of the work of Spjøtvoll or Storey,
because good estimates of the unknown quantities in their test
“statistics” are not available, and obtaining appropriate cutoffs
is difficult.
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4. ADAPTIVE PROCEDURES FOR mFDR CONTROL

Genovese and Wasserman (2004) discussed a class of plug-in
procedures for the purpose of practical implementations of the
oracle procedure based on the p values. However, the idea of
plug-in is difficult to apply to the z value oracle procedure, be-
cause it essentially involves estimating the distribution of oracle
test statistic TOR(z), which is usually very difficult. Instead, we
develop an adaptive procedure that requires only estimation of
the distribution of the z values, so that the difficulty of estimat-
ing the distribution of TOR(z) is avoided. The adaptive proce-
dure can be easily implemented by noting that the z values are
usually distributed as a normal mixture after appropriate trans-
formations are applied, and several methods for consistently es-
timating the normal nulls have been developed in the literature
(see, e.g., Efron 2004b; Jin and Cai 2007).

In this section we first introduce an adaptive p value–based
procedure proposed by Benjamini and Hochberg (2000). We
then turn to the development of an adaptive procedure based on
the z values. We show that the adaptive z value–based proce-
dure asymptotically attains the performance of the oracle proce-
dure (6). We report simulation studies in Section 5 demonstrat-
ing that the z value–based adaptive procedure is more efficient
than the traditional p value–based testing approaches.

4.1 Adaptive Procedure Based on p Values

Suppose that P(1), . . . ,P(m) are the ranked p values from m

independent tests, and let k = max{i :P(i) ≤ αi/[m(1 − p̂)]}.
Then the adaptive procedure of Benjamini and Hochberg
(2000), designated as BH hereinafter, rejects all H(i), i ≤ k.
Genovese and Wasserman (2004) proposed the plug-in thresh-
old, t (p̂, Ĝ), for p values, where t (p,G) = sup{t : (1 − p)t/

G(t) ≤ α} is the threshold by the oracle p value procedure and
p̂ and Ĝ are estimates of p and G. The next theorem shows that
the GW plug-in procedure and the BH adaptive procedure are
equivalent when the empirical distribution for p values Gm is
used to estimate G.

Theorem 3. Let p̂ be an estimate of p and let Gm be the
empirical cdf of the p values. Then the GW plug-in procedure
is equivalent to the BH adaptive procedure.

It follows from our Theorem 3 and theorem 5 of Genovese
and Wasserman (2004) that the BH adaptive procedure controls
the mFDR at level α asymptotically.

4.2 Adaptive Procedure Based on z Values

Here we outline the steps for an intuitive derivation of the
adaptive z value–based procedure. The derivation essentially
involves mimicking the operation of the z value oracle proce-
dure and evaluating the distribution of TOR(z) empirically.

Let z1, . . . , zm be a random sample from the mixture
model (1) with cdf F = (1 − p)F0 + pF1 and pdf f = (1 −
p)f0 + pf1. Let p̂, f̂0, and f̂ be consistent estimates of p,f0,
and f . Such estimates have been provided by for example, Jin
and Cai (2007). Define T̂OR(zi) = [(1 − p̂)f̂0(zi)/f̂ (zi)] ∧ 1.

The mFDR of decision rule δ(TOR, λ) = {I [TOR(zi) < λ] :
i = 1, . . . ,m} is given by QOR(λ) = (1 − p)G0

OR(λ)/GOR(λ),
where GOR(t) and G0

OR(t) are as defined in Section 3. Let
Sλ = {z :TOR(z) < λ} be the rejection region. Then GOR(λ) =

∫
Sλ

f (z) dz = ∫
1{TOR(z) < λ}f (z) dz. We estimate GOR(λ) by

ĜOR(λ) = 1
m

∑m
i=1 1{T̂OR(zi) < λ}. The numerator of QOR(λ)

can be written as (1 − p)G0
OR(λ) = (1 − p)

∫
Sλ

f0(z) dz =∫
1{TOR(z) < λ}TOR(z)f (z) dz, and we estimate this quantity

by 1
m

∑m
i=1 1{T̂OR(zi) < λ}T̂OR(zi). Then QOR(λ) can be esti-

mated as

Q̂OR(λ)

=
[

m∑
i=1

1{T̂OR(zi) < λ}T̂OR(zi)

]/[
m∑

i=1

1{T̂OR(zi) < λ}
]
.

Set the estimated threshold as λ̂OR = sup{t ∈ (0,1) :
Q̂OR(t) ≤ α}, and let R be the set of the ranked T̂OR(zi): R =
{ ˆLfdr(1), . . . , ˆLfdr(m)}. We consider only the discrete cutoffs in
set R, where the estimated mFDR is reduced to Q̂OR( ˆLfdr(k)) =
1
k

∑k
i=1

ˆLfdr(i). We propose the following adaptive step-up pro-
cedure:

Let k = max{i : 1
i

∑i
j=1

ˆLfdr(j) ≤ α};
(10)

then reject all H(i), i = 1, . . . , k.

Similar to the discussion in the proof of Theorem 3, it is suffi-
cient to consider only the discrete cutoffs in R and the adaptive
procedure (10) is equivalent to the plug-in procedure

δ(T̂OR, λ̂OR) = {
I [T̂OR(z1) < λ̂OR], . . . , I [T̂OR(zm) < λ̂OR]},

which is very difficult to implement because obtaining λ̂OR is
difficult.

Remark 4. The procedure (10) is more adaptive than the BH
adaptive procedure in the sense that it adapts to both the global
feature p and local feature f0/f . In contrast, the BH method
adapts only to the global feature p. Suppose that we use the the-
oretical null N(0,1) in the expression of T̂OR = (1 − p̂)f0/f̂ .
The p value approaches treat points −z and z equally, whereas
the z value approaches evaluate the relative importance of −z

and z according to their estimated densities. For example, if
there is evidence in the data that there are more nonnulls
around −z [i.e., f̂ (−z) is larger], then observation −z will be
correspondingly ranked higher than observation z.

Remark 5. In the FDR literature, z value–based methods
such as the Lfdr procedure (Efron 2004a,b) are used only to
calculate individual significance levels, whereas the p value–
based procedures are used for global FDR control to identify
nonnull cases. It is also notable that the goals of global error
control and individual case interpretation are naturally unified
in the adaptive procedure (10).

The next two theorems show that the adaptive procedure (10)
asymptotically attains the performance of the oracle procedure
based on the z values in the sense that both the mFDR and
mFNR levels achieved by the oracle procedure (6) are also
asymptotically achieved by the adaptive z value–based proce-
dure (10).

Theorem 4 (Asymptotic validity of the adaptive procedure).
Let θi , i = 1, . . . ,m, be iid Bernoulli(p) variables and let
xi |θi , i = 1, . . . ,m, be independent observations from the mix-
ture model (1) with PDF f = (1 − p)f0 + pf1. Suppose that
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f is continuous and positive on the real line. Assume that
TOR(zi) = (1 − p)f0(zi)/f (zi) is distributed with the marginal
pdf g = (1 − p)g0 + pg1 and that TOR ∈ T satisfies the SMLR
assumption. Let p̂, f̂0, and f̂ be estimates of p, f0, and f

such that p̂
p→ p, E‖f̂ − f ‖2 → 0, and E‖f̂0 − f0‖2 → 0.

Define the test statistic T̂OR(zi) = (1 − p̂)f̂0(zi)/f̂ (zi). Let
ˆLfdr(1), . . . , ˆLfdr(m) be the ranked values of T̂OR(zi); then the

adaptive procedure (10) controls the mFDR at level α asymp-
totically.

Theorem 5 (Asymptotic attainment of adaptive procedure).
Assume that random sample z1, . . . , zm and test statistics
TOR(zi), T̂OR(zi) are the same as in Theorem 4. Then the mFNR
level of the adaptive procedure (10) is Q̃OR(λOR)+o(1), where
Q̃OR(λOR), given in (7), is the mFNR level achieved by the
z value oracle procedure (6).

5. NUMERICAL RESULTS

We now turn to the numerical performance of our adap-
tive z value–based procedure (10). The procedure is easy
to implement; the R code for the procedure is available at
http://stat.wharton.upenn.edu/˜tcai/paper/html/FDR.html. The
goal of this section is to provide numerical examples to show
that the conventional p value–based procedures are inefficient.
We also explore the situations where these p value–based pro-
cedures can be substantially improved by the z value–based
procedures. We describe the application of our procedure to the
analysis of microarray data from an HIV study in Section 6.

In our numerical studies, we consider the following normal
mixture model:

Zi ∼ (1 − p)N(μ0, σ
2
0 ) + pN(μi, σ

2
i ), (11)

where (μi,σ
2
i ) follows some bivariate distribution F(μ,σ 2).

This model can be used to approximate many mixture dis-
tributions and is found in a wide range of applications (see,
e.g., Magder and Zeger 1996; Efron 2004b). We compare the
p value–based and z value–based procedures in two numerical
examples.

Numerical Study 1. We compare the p value and z value or-
acle procedures in the normal mixture model (8), a special case
of (11). The algorithm for calculating the oracle cutoffs and the
corresponding mFNRs is given in Example 1 at the end of Sec-
tion 3. Figure 3 compares the performance of these two oracle
procedures. Panel (a) plots the mFNR of the two oracle proce-
dures as a function of p1, where the mFDR level is set at .10,
the alternative means are μ1 = −3 and μ2 = 3, and the total
proportion of nonnulls is p = .2. Panel (b) plots the mFNR as a
function of p1 in the same setting except with alternative means
μ1 = −3 and μ2 = 6. In panel (c), mFDR = .10, p1 = .18,
p2 = .02, and μ1 = −3, and we plot the mFNR as a function of
μ2. Panel (d) plots the mFNR as a function of the mFDR level
while holding μ1 = −3, μ2 = 1, p1 = .02, and p2 = .18 fixed.
We discuss these results at the end of this section.

Numerical Study 2. We compare the step-up procedure
(Benjamini and Hochberg 1995), the adaptive p value–based
procedure (Benjamini and Hochberg 2000; Genovese and
Wasserman 2004), and the adaptive z value–based proce-
dure (10), designated by BH95, BHGW, and AdaptZ here-
inafter. Note that the BH step-up procedure is easier to im-
plement than either BHGW or AdaptZ. The BHGW procedure
requires estimating the proportion of nonnulls, and the AdaptZ
procedure also requires an additional density estimation step.

(a) (b)

(c) (d)

Figure 3. Comparison of the p value ( ) and z value ( ) oracle rules. (a) mFDR = .10, μ = (−3;3); (b) mFDR = .10, μ = (−3;6);
(c) mFDR = .10, p1 = .18, p2 = .02, μ1 = −3; (d) μ = (−3;1), p = (.02, .18).

http://stat.wharton.upenn.edu/~tcai/paper/html/FDR.html
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(a) (b)

(c) (d)

Figure 4. Comparison of procedures for FDR control. (a) μ = (−3,3), p = .20; (b) μ = (−3,6), p = .20; (c) μ1 = −3, p = (.08, .02);
(d) μ1 = −3, p = (.18, .02). (◦, the BH step-up procedure based on the p values; , the BHGW adaptive procedure based on the p values;
+, the adaptive procedure based on the z-values.) The mFDR is controlled at level .10.

The alternative means μ1i and μ2i are generated from uni-
form distributions U(θ1 − δ1, θ1 + δ1) and U(θ2 − δ2, θ2 + δ2),
after which zi is generated from the normal mixture model (8)
based on μ1i and μ2i , i = 1, . . . ,m. This hierarchical model
also can be viewed as a special case of the mixture model (11).
In estimating the Lfdr statistic Lfdr(zi) = (1 − p)f0(zi)/f (zi),
f0 is chosen to be the theoretical null density N(0,1), p is esti-
mated consistently using the approach of Jin and Cai, and f is
estimated using a kernel density estimator with bandwidth cho-
sen by cross-validation. The comparison results are displayed
in Figure 4, where the top row gives plots of the mFNR as a
function of p1 and the bottom row gives plots of the mFNR as a
function of θ2, with other quantities held fixed. All points in the
plots are calculated based on a sample size of m = 5,000 and
200 replications.

The following observations can be made based on the results
from these two numerical studies:

a. When |μ1| = |μ2|, the mFNR remains a constant for the
p value oracle procedure. In contrast, the mFNR for the z value
oracle procedure increases first and then decreases [Fig. 3(a)].
The p value and z value oracle procedures yield the same
mFNR levels only when the alternative is symmetric about the
null. This reveals the fact that the z value procedure adapts to
the asymmetry in the alternative distribution but the p value

procedure does not. Similar phenomena are shown in Figure 4
for adaptive procedures.

b. The p value oracle procedure is dominated by the z value
oracle procedure. The largest difference occurs when |μ1| < μ2
and p1 > p2, where the alternative distribution is highly asym-
metric about the null [Figs. 3(b) and 3(c)]. Similarly, the BH95
is dominated by BHGW, which is again dominated by AdaptZ
(Fig. 4).

c. The mFNRs for both p value and z value procedures de-
crease as μ2 moves away from 0.

d. Within a reasonable range (mFDR < .6), the mFNR is
decreasing in the mFDR [Fig. 3(d)], which verifies part (d) of
Proposition 1, one consequence of our SMLR assumption.

Additional simulation results show that the difference in the
mFNRs of the p value and z value procedures is increas-
ing in the proportion of nonnulls and that the adaptive proce-
dures (BHGW and AdaptZ) control the mFDR at the nominal
level α approximately, whereas the BH95 procedure controls
the mFDR at a lower level.

6. APPLICATION TO MICROARRAY DATA

We now illustrate our method in the analysis of the microar-
ray data from an HIV study. The goal of the HIV study (van’t
Wout et al. 2003) is to discover differentially expressed genes
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(a) (b) (c)

Figure 5. Histograms of the HIV data. (a) z values; (b) p values; transformed p values, approximately distributed as uniform (0,1) for the
null cases.

between HIV positive patients and HIV negative controls. Gene
expression levels were measured for four HIV-positive patients
and four HIV-negative controls on the same N = 7,680 genes.
A total of N two-sample t-tests were performed, and N two-
sided p values were obtained. The z values were converted
from the t statistics using the transformation zi = �−1[G0(ti)],
where � and G0 are the cdf’s of a standard normal and a t vari-
able with 6 degrees of freedom. The histograms of the z values
and p values were presented in Figure 5. An important feature
in this data set is that the z value distribution is asymmetric
about the null. The distribution is skewed to the right.

When the null hypothesis is true, the p values and z values
should follow their theoretical null distributions, which are uni-
form and standard normal. But the theoretical nulls are usu-
ally quite different from the empirical nulls for the data aris-
ing from microarray experiments (see Efron 2004b for more
discussion on the choice of the null in multiple testing). We
take the approach of Jin and Cai (2007) to estimate the null
distribution as N(μ̂0, σ̂

2
0 ). The estimates μ̂0 and σ̂ 2

0 are consis-
tent. We then proceed to estimate the proportion of the nonnulls
p̂ based on μ̂0 and σ̂ 2

0 . The marginal density f is estimated

by a kernel density estimate f̂ , with the bandwidth chosen
by cross-validation. The Lfdr statistics are then calculated as

ˆLfdr(zi) = (1 − p̂)f̂0(zi)/f̂ (zi). The transformed p values are
obtained as F̂0(zi), where F̂0 is the estimated null cdf �(

x−μ̂0
σ̂0

).
As shown in Figure 5(b), after transformation, the distribution
of the transformed p values is approximately uniform when the
null is true.

We compare the BH95, BHGW, and AdaptZ procedures us-
ing both the theoretical nulls and estimated nulls. We calculate
the number of rejections for each mFDR level; the results are
shown in Figure 6. For Figure 6(a), f0 is chosen to be the theo-
retical null N(0,1), and the estimate for the proportion of nulls
is 1. Therefore, the BH and BHGW procedures yield the same

number of rejections. For Figure 6(b), the estimated null dis-
tribution is N(−.08, .772), with estimated proportion of nulls
p̂0 = .94. Transformed p values as well as the Lfdr statistics
are calculated according to the estimated null. The following
observations can be made from the results displayed:

a. The number of rejections is increasing as a function of the
mFDR.

b. For both the p value–based and z value–based ap-
proaches, more hypotheses are rejected by using the estimated
null.

c. Both comparisons show that AdaptZ is more powerful
than BH95 and BHGW, which are based on p values.

7. DISCUSSION

We have developed a compound decision theory framework
for inference about the mixture model (1) and showed that the
oracle procedure δ(TOR, λOR), given in (6), is optimal in the
multiple-testing problems for mFDR control. We have proposed
an adaptive procedure based on the z values that mimics the or-
acle procedure (6). The adaptive z value–based procedure at-
tains the performance of the oracle procedure asymptotically
and outperforms the traditional p value–based approaches. The
decision-theoretic framework provides insight into the superi-
ority of the adaptive z value–based procedure. Each multiple-
testing procedure involves two steps, ranking and threshold-
ing. The process of ranking the relative importance of the m

tests can be viewed as a compound decision problem, P =
(Pij ,1 ≤ i < j ≤ m), with m(m−1)/2 components. Each com-
ponent problem Pij is a pairwise comparison with its own data,
yij = (xi, xj ). Then the solution to P based on p values is sim-
ple (note that δij = I [p(xi) < p(xj )] depends on yij alone),
whereas the rule based on the estimated Lfdr is compound. The
gain in efficiency of the adaptive z value–based procedure is
due to the fact that the scope of attention is extended from the
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(a) (b)

Figure 6. Analysis of the HIV data: Number of rejections versus FDR levels for the theoretical null (a) and the estimated null (b) ◦, the BH
step-up procedure based on the p values; , the BHGW adaptive procedure based on the p values; +, the adaptive procedure based on the
z values.

class of simple rules to the class of compound rules in the rank-
ing process.

The compound decision-theoretic approach to multiple test-
ing also suggests several future research directions. First, the
oracle statistic (Lfdr) may no longer be optimal in ranking the
significance of tests when the observations are correlated. In
addition, different cutoffs should be chosen under dependency
because the multiple-testing procedures developed for indepen-
dent tests can be too liberal or too conservative for dependent
tests (Efron 2006). Second, the oracle procedure is only opti-
mal in the class of symmetric decision rules. We expect to de-
velop more general models in the compound decision-theoretic
framework and extend our attention to asymmetric rules to fur-
ther increase the efficiency of the multiple-testing procedures.
Finally, Genovese, Roeder, and Wasserman (2005), Wasserman
and Roeder (2006), Rubin, Dudoit, and van der Laan (2006),
and Foster and Stine (2006) have discussed methods that use
different cutoffs for p values for different tests when prior in-
formation is available or some correlation structure is known. It
would be interesting to construct z value–based testing proce-
dures that also exploit external information. We leave this topic
for future research.

APPENDIX: PROOFS

Proof of Proposition 1

To prove part (a), note the MLR assumption (4) implies that
∫ c

0
g0(t) dt

/∫ c

0
g1(t) dt =

∫ c

0
g0(t) dt

/∫ c

0

g1(t)

g0(t)
g0(t) dt

<

∫ c

0
g0(t) dt

/∫ c

0

g1(c)

g0(c)
g0(t) dt

= g0(c)

g1(c)
,

which is equivalent to g1(c)G0(c) < g0(c)G1(c). Thus the derivative
of P(θi = 1|T (Xi) ≤ c) = pG1(c)/G(c) is (1 − p)p{g1(c)G0(c) −
g0(c)G1(c)}/{G(c)}2 < 0. Therefore, P(θi = 1|T (Xi) ≤ c) is de-
creasing in c. Parts (b) and (c) can be proved similarly to part (a)
by noting that mFDR = p0G0(c)/G(c) and mFNR = p1[1 − G1(c)]/
[1 − G(c)]. Part (d) follows from parts (b) and (c). For part (e),
the classification risk of δ is Rλ = E[Lλ(θ, δ)] = λ(1 − p)G0(c) +
p{1 − G1(c)}. The optimal cutoff c∗ that minimizes Rλ satisfies
[g0(c∗)/g1(c∗)] = [p/λ(1 − p)]. Equivalently, λ = pg1(c∗)/[(1 −
p)g0(c∗)]. Therefore, λ (c∗) is monotone decreasing in c∗ (λ) if (4)
holds. Note that r = G(c∗) and G is increasing; we conclude that r is
decreasing in λ.

Proof of Theorem 1

According to part (b) of Proposition 1, for any T ∈ T and mFDR
level α, there exists a unique threshold c such that the mFDR is con-
trolled at level α by δ(T , c) = {I [T (x1) < c], . . . , I [T (xm) < c]}. Let
r be the expected number of rejections of δ(T , c). Then, again by
part (b) of Proposition 1, there exists a unique threshold c∗ such that
the expected number of rejections of δ(
, c∗) is also r . Next, accord-
ing to part (e) of Proposition 1, there exists a unique λ(α) with respect
to the choice of c∗ such that the classification risk with λ(α) as the
weight is minimized by δ(
, c∗), and the expected number of subjects
classified to the nonnull population is r .

Suppose that among the r rejected hypotheses, there are vL from
the null and kL from the nonnull when δ(L, cL) is applied, where
(L, cL) = (T , c) or (
, c∗). Then r = vT + kT = v
 + k
. Now we
argue that vT ≥ v
 and kT ≤ k
. If not, then suppose that vT < v


and kT > k
. Note that the classification risk can be expressed as
Rλ(α) = p + 1

m {λ(α)vL − kL}, and it is easy to see that δ(T , c) yields
a lower classification risk than δ(
, c∗). This contradicts the fact
that δ(
, c∗) minimizes the classification risk for the choice of λ(α).
Therefore, we must have that vT ≥ v
 and kT ≤ k
.
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Let mFDRL and mFNRL be the mFDR and mFNR of δ(L, cL),
where L = T ,
. Now we apply both δ = δ(T , c) and δ∗ = δ(
, c∗)

in the multiple-testing problem. Then the mFDR using rule δ∗ is
mFDR
 = v
/r ≤ vT /r = mFDRT = α, and the mFNR using δ∗ is
mFNR
 = [(m1 − k
)/(m − r)] ≤ [(m1 − kT )/(m − r)] = mFNRT .
Therefore, δ∗ is the testing rule in class DS that controls the mFDR at
level α with the smallest mFNR.

Proof of Theorem 2

The joint distribution of θ = (θ1, . . . , θm) is π(θ) = ∏
i (1 −

p)1−θi pθi . The posterior distribution of θ given x can be calculated as
Pθ |X(θ |x) = ∏

i Pθi |Xi
(θi |xi), where

Pθi |Xi
(θi |xi) = I (θi = 0)(1 − p)f0(xi) + I (θi = 1)pf1(xi)

(1 − p)f0(xi) + pf1(xi)
. (A.1)

Let Ii = I (θi = 1) and I = {(I1, . . . , Im) : Ii = 0 or 1} be collections
of all m-binary vectors; then |I| = 2m. The elements in I are desig-
nated by superscripts, I(j), j = 1, . . . ,2m. Note that

∑1
θi=0[I (θi =

0)(1 − p)f0(xi) + I (θi = 1)pf1(xi)][λI (θi = 0)δi + I (θi = 1)(1 −
δi)] = λ(1 − p)f0(xi)δi + pf1(xi)(1 − δi); then the posterior risk is

Eθ |XL(θ, δ)

=
2m∑
j=1

L
(
θ = I(j), δ

)∏
i

P
θi=I

(j)
i |Xi

(
θi = I

(j)
i

|xi

)

= 1

m

∑
i

1∑
θi=0

Pθi |Xi
(θi |xi){λI (θi = 0)δi + I (θi = 1)(1 − δi)}

= 1

m

∑
i

pf1(xi)

f (xi)
+ 1

m

∑
i

λ(1 − p)f0(xi) − pf1(xi)

f (xi)
δi .

The Bayes rule is the simple rule δπ (x) = [δπ
1 (xi), . . . , δ

π
m(xm)],

where δπ
i

= I [λ(1 − p)f0(xi) < pf1(xi)]. The expected misclassifi-
cation risk of δπ is

EEθ |XL(θ, δπ ) = E
pf1(X)

f (X)
− E

[
λ(1 − p)f0(X) − pf1(X)

f (X)

× I {λ(1 − p)f0(X) < pf1(X)}
]

= p +
∫
λ(1−p)f0<pf1

[λ(1 − p)f0(x) − pf1(x)]dx.

Proof of Theorem 3

Observe that for each t , if p(i) ≤ t < p(i+1), then the number of re-
jections is i. In addition, the ratio (1 − p̂)t/Gm(t) increases in t over
the range on which the number of rejections is a constant, which im-
plies that if t = p(i) does not satisfy the constraint, then neither does
any choice of t between p(i) and p(i+1). Thus it is sufficient to in-
vestigate the thresholds that are equal to one of the p(i)’s. Then the ra-
tio (1 − p̂)t/Gm(t) becomes (m/i)(1− p̂)p(i). Therefore, the plug-in
threshold is given by sup{p(i) : (m/i)(1− p̂)p(i) ≤ α}, which is equiv-
alent to choosing the largest i such that p(i) ≤ iα/[m(1 − p̂)].
Proof of Theorem 4

To prove this theorem, we need to state the following lemmas.

Lemma A.1. Let p̂, f̂ , and f̂0 be estimates such that p̂
p→, E‖f̂ −

f ‖2 → 0, E‖f̂0 − f0‖2 → 0, and then E‖T̂OR − TOR‖2 → 0.

Proof. Note that f is continuous and positive on the real line, then
there exists K1 = [−M,M] such that Pr(z ∈ Kc

1) → 0 as M → ∞.

Let infz∈K1 f (z) = l0 and A
f
ε = {z : |f̂ (z) − f (z)| ≥ l0/2}. Note that

E‖f̂ − f ‖2 ≥ (l0/2)2P(A
f
ε ); then Pr(Af

ε ) → 0. Thus f and f̂ are

bounded below by a positive number for large m except for an event
that has a low probability. Similar arguments can be applied to the up-
per bound of f̂ and f , as well as to the upper and lower bounds for f̂0
and f0. Therefore, we conclude that f0, f̂0, f , and f̂ are all bounded
in the interval [la, lb],0 < la < lb < ∞ for large m except for an event,
say Aε , that has algebraically low probability. Therefore, 0 < la <

infz∈Aε
min{f0, f̂0, f, f̂ } < supz∈Ac

ε
max{f0, f̂0, f, f̂ } < lb < ∞.

Noting that T̂OR − TOR = [f̂0f (p − p̂) + (1 − p)f (f̂0 − f0) +
(1 − p)f0(f − f̂ )]/(f̂ f ), we conclude that (T̂OR − TOR)2 ≤ c1(p −
p̂)2 + c2(f̂0 − f0)2 + c3(f̂ − f )2 in Ac

ε . It is easy to see that
‖T̂OR −TOR‖2 is bounded by L. Then E‖T̂OR −TOR‖2 ≤ LPr(Aε)+
c1E(p̂0 − p)2 + c2E‖f̂ − f ‖2 + c3E‖f̂0 − f0‖2. Note that E(p̂0 −
p)2 → 0 by lemma 2.2 of van der Vaart (1998), and E‖f̂ − f ‖2 → 0,
E‖f̂0 −f0‖2 → 0 by assumption; then we have that for a given ε > 0,
there exists M ∈ Z

+ such that we can find Aε , Pr(Aε) < ε/(4L),
and at the same time E(p̂0 − p)2 < ε/(4c1), E‖f̂ − f ‖2 < ε/(4c2),
and E‖f̂0 − f0‖2 < ε/(4c3) for all m ≥ M . Consequently, E‖T̂OR −
TOR‖2 < ε for m ≥ M , and the result follows.

Lemma A.2. E‖T̂OR − TOR‖2 → 0 implies that T̂OR(Zi)
p→

TOR(Zi).

Proof. Let Aε = {z : |T̂OR(z) − TOR(z)| ≥ ε}. Then ε2 Pr(Aε) ≤
E‖T̂OR − TOR‖2 → 0. Consequently, Pr(Aε) → 0. Therefore,
Pr(|T̂OR(Zi)−TOR(Zi)| ≥ ε) ≤ Pr(Aε)+Pr({|T̂OR(Zi)−TOR(Zi)| ≥
ε} ∩ Ac

ε) = Pr(Aε) → 0, and the result follows.

Lemma A.3. For α < t < 1, E[1{T̂OR(Zi) < t}T̂OR(Zi)] →
E[1{TOR(Zi) < t}TOR(Zi)].

Proof. T̂OR(Zi)
p→ TOR(Zi) (Lemma A.2) implies that T̂OR(Zi)

d→
TOR(Zi). Let h(x) = 1{x < t}x; then h(x) is bounded and continuous
for x < t . By lemma 2.2 of van der Vaart (1998), E[h(T̂OR(Zi))] →
E[h(TOR(Zi))], and the result follows.

Lemma A.4. Construct the empirical distributions ĜOR(t) = 1
m ×∑m

i=1 1{T̂OR(zi) ≤ t} and Ĝ0
PI

(t) = 1
m

∑m
i=1 1{T̂OR(zi) ≤ t} ×

T̂OR(zi). Define Q̂OR(t) = Ĝ0
OR(t)/ĜOR(t), the estimated mFDR.

Then for α < t < 1, Q̂OR(t)
p→ QOR(t).

Proof. Let ρm = cov[T̂OR(Zi), T̂OR(Zj )], where Zi and Zj are
two independent random variables from the mixture distribution

F . T̂OR(Zi)
p→ TOR(Zi) (Lemma A.2) implies that E[T̂OR(Zi) ×

T̂OR(Zj )] → E[TOR(Zi)TOR(Zj )]. Therefore, ρm = cov[T̂OR(Zi),

T̂OR(Zj )] → cov[TOR(Zi), TOR(Zj )] = 0. Let σ 2
m = var(T̂OR(Z1));

then σ 2
m ≤ E[T̂OR(Z1)]2 ≤ 1.

Let μm = Pr{T̂OR(Zi) < t} and Sm = ∑m
i=1 1{T̂OR(zi) ≤ t}. Note

that var(Sm)/m2 = (1/m)σ 2
m + [(m − 1)/m]ρm ≤ 1/m + ρm → 0.

According to the weak law of large numbers for triangular arrays,

we have that (1/m)
∑m

i=1 1{T̂OR(zi) ≤ t} − μm
p→ 0. Also note

that μm = Pr{T̂OR(Zi) < t} → Pr{TOR(Zi) < t} = GOR(t), we con-

clude that ĜOR(t)
p→ GOR(t). Next, we let vm = E[1{T̂OR(Zi) ≤

t}T̂OR(Zi)]. Similarly, we can prove that Ĝ0
OR(t) = 1

m ×∑m
i=1 1{T̂OR(zi) ≤ t}T̂OR(zi) − vm

p→ 0. Note that by Lemma A.2,

we have E[1{T̂OR(Zi) < t}T̂OR(Zi)] → E[1{TOR(Zi) < t}TOR(Zi)];
thus vm → E(1{TOR(Zi) < t}TOR(Zi)) = (1 − p)

∫
1{TOR(Zi) <

t}f0dt = (1 − p)G0
OR(t) and Ĝ0

OR(t)
p→ (1 − p)G0

OR(t). Finally,
note that for t > α, GOR(t) is bounded away from 0, and we obtain

Q̂OR(t)
p→ (1 − p)G0

OR(t)/GOR(t) = QOR(t).

Lemma A.5. Define the estimate of the plug-in threshold λ̂OR =
sup{t ∈ (0,1) : Q̂OR(t) ≤ α}. If Q̂OR(t)

p→ QOR(t), then λ̂OR
p→ λOR.
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Proof. Note that Q̂OR(t) is not continuous, and the consistency of
Q̂OR(t) does not necessarily imply the consistency of λ̂OR. Thus we
first construct an envelope for Q̂OR(t) using two continuous random
functions Q̂−

OR(t) and Q̂+
OR(t) such that for Lfdr(k) < t < Lfdr(k+1),

Q̂−
OR(t) = Q̂OR

(
Lfdr(k−1)

) t − Lfdr(k)

Lfdr(k+1) − Lfdr(k)

+ Q̂OR
(
Lfdr(k)

) Lfdr(k+1) − t

Lfdr(k+1) − Lfdr(k)

and

Q̂+
OR(t) = Q̂OR

(
Lfdr(k)

) t − Lfdr(k)

Lfdr(k+1) − Lfdr(k)

+ Q̂OR
(
Lfdr(k+1)

) Lfdr(k+1) − t

Lfdr(k+1) − Lfdr(k)
.

Noting that Q̂OR(Lfdr(k+1)) − Q̂OR(Lfdr(k)) = [kLfdr(k+1) −∑k
i=1 Lfdr(i)]/[k(k + 1)] > 0, we have that Q̂−

OR(t) ≤ Q̂OR(t) ≤
Q̂+

OR(t), with both Q̂−
OR(t) and Q̂+

OR(t) strictly increasing in t .

Let λ̂−
OR = sup{t ∈ (0,1) : Q̂−

OR(t) ≤ α} and λ̂+
OR = sup{t ∈ (0,1) :

Q̂+
OR(t) ≤ α}; then λ̂+

OR ≤ λ̂OR ≤ λ̂−
OR.

We claim that λ̂−
OR

p→ λOR. If not, then there must exist ε0 and η0

such that for all m ∈ Z+, Pr(|λ̂−
OR − λOR| > ε0) > 2η0 holds for some

m ≥ M . Suppose that Pr(λ̂−
OR > λOR + ε0) > 2η0. It is easy to see that

Q̂−
OR

p→ QOR, because Q̂−
OR(t) − Q̂+

OR(t)
a.s.→ 0, Q̂−

OR(t) ≤ Q̂OR(t) ≤
Q̂+

OR(t), and Q̂OR(t)
p→ QOR(t). Thus there exists M ∈ Z

+ such

that Pr(|Q̂−
OR(λOR + ε0) − QOR(λOR + ε0)| < δ0) > 1 − η0 for all

m ≥ M , where we let 2δ0 = QOR(λOR + ε0) − α. Now for the
choice of m, there exists event K1m such that Pr(K1m) ≥ 1 − η0 and
for all outcomes ω ∈ K1m, |Q̂−

OR(λOR + ε0) − QOR(λOR + ε0)| <

δ0. At the same time, there exists event K2m such that Pr(K2m) ≥
2η0 and for all outcomes ω ∈ K2m, λ̂−

OR > λOR + ε0. Let Km =
K1m ∩K2m; then Pr(Km) = Pr(K1m)+Pr(K2m)−Pr(K1m ∪K2m) ≥
Pr(K1m)+Pr(K2m)−1 ≥ η0. That is, Km has positive measure. Then
for all outcomes in Km, Q̂−

OR(t) is continuous and strictly increas-

ing, and we have α = Q̂−
OR(λ̂−

OR) > Q̂−
OR(λOR + ε0) > QOR(λOR +

ε0) − δ0 > α + δ0. This is a contradiction. Therefore, we must

have λ̂−
OR

p→ λOR. Similarly, we can prove λ̂+
OR

p→ λOR. Note that

Q̂−
OR(t) − Q̂+

OR(t)
a.s.→ 0 implies that λ̂−

OR − λ̂+
OR

a.s.→ 0, the result fol-

lows by noting that λ̂+
OR ≤ λ̂OR ≤ λ̂−

OR.

Proof of Theorem 4. Implementing the adaptive procedure (10)
is equivalent to choosing T̂OR(Zi) as the test statistic and λ̂OR as
the threshold. The mFDR of decision rule δ(T̂OR, λ̂OR) is mFDR =
E(N10)/E(R) = [(1 − p)PH0(T̂OR < λ̂OR)]/[P(T̂OR < λ̂OR)]. Not-

ing that T̂OR
p→ TOR by Lemma A.2 and λ̂OR

p→ λOR by Lemma A.5,
it follows that (1 − p)PH0(T̂OR < λ̂OR) → (1 − p)PH0(TOR <

λOR) = (1 − p)G0
OR(λOR) and P(T̂OR < λ̂OR) → P(TOR < λOR) =

GOR(λOR). Noting that P(TOR < λOR) is bounded away from 0, we
have that mFDR → (1 − p)G0

OR(λOR)/GOR(λOR) = QOR(λOR) =
α.

Proof of Theorem 5

Similar to the proof of Theorem 4, the mFNR of the adaptive pro-
cedure (10) is mFNR = E(N01)/E(S) = PH1 (T̂OR > λ̂OR)/P (T̂OR >

λ̂OR). By Lemmas A.2 and A.5, we have that PH1 (T̂OR > λ̂OR) →
PH1(TOR > λOR) = G̃1

OR(λOR) and P(T̂OR > λ̂OR) → P(TOR >

λOR) = G̃OR(λOR). Noting that G̃OR(λOR) is bounded away from 0,
we obtain mFNR → pG̃1

OR(λOR)/G̃OR(λOR) = Q̃OR(λOR).

[Received November 2006. Revised March 2007.]
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