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Federated learning has attracted significant recent attention due to its ap-
plicability across a wide range of settings where data is collected and ana-
lyzed across disparate locations. In this paper, we study federated nonpara-
metric goodness-of-fit testing in the white-noise-with-drift model under dis-
tributed differential privacy (DP) constraints.

We first establish matching lower and upper bounds, up to a logarithmic
factor, on the minimax separation rate. This optimal rate serves as a bench-
mark for the difficulty of the testing problem, factoring in model character-
istics such as the number of observations, noise level, and regularity of the
signal class, along with the strictness of the p✏, �q-DP requirement. The re-
sults demonstrate interesting and novel phase transition phenomena. Further-
more, the results reveal an interesting phenomenon that distributed one-shot
protocols with access to shared randomness outperform those without access
to shared randomness. We also construct a data-driven testing procedure that
possesses the ability to adapt to an unknown regularity parameter over a large
collection of function classes with minimal additional cost, all while main-
taining adherence to the same set of DP constraints.

Keywords: Distributed computation; Differential privacy; Federated learn-
ing; Nonparametric goodness-of-fit testing,

1. Introduction. Federated learning is a collaborative distributed machine learning tech-
nique designed to address data governance and privacy concerns. It facilitates organizations
or groups to collectively train a shared global model without the need to expose raw data ex-
ternally. Federated learning has garnered increasing attention due to its applicability across a
wide range of settings where data is collected and analyzed across disparate locations. This
includes scenarios like medical data dispersed among different hospitals, financial customer
data stored across various branches or databases, and the utilization of federated learning
within user networks in modern technologies such as smartphones or self-driving cars. See,
for example, [59, 52, 44, 13, 68]. In such contexts, privacy concerns often impede direct
data pooling, making the development of efficient statistical inference methods that preserve
privacy and harness the collective power of distributed data essential.

In this paper, we investigate federated nonparametric goodness-of-fit testing under dis-
tributed differential privacy (DP) constraints. Nonparametric hypothesis testing, a fundamen-
tal statistical problem, has been extensively studied in conventional settings, with a rich body
of classical literature examining theoretically optimal performance. DP, introduced by Dwork
et al. (2006), serves as a mathematical guarantee determining whether results or datasets can
be deemed “privacy-preserving" and thus openly published. Many differentially private sta-
tistical methods have since been developed. See, for example, [11, 37, 38]. While several
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other privacy frameworks exist, DP holds a prominent position both theoretically and practi-
cally, finding application within industry giants like Google [40], Microsoft [32], Apple [78],
as well as governmental entities such as the US Census Bureau [70].

DP may significantly impact the quality of statistical inference, particularly in testing prob-
lems where it may diminish statistical power that could be obtained with complete data avail-
ability. In the present paper, we quantify the cost of privacy in the canonical nonparametric
goodness-of-fit testing setting, delineating the theoretical limits of performance achievable
under DP constraints and developing methods that attain optimal performance. Contrasting
our results with those derived for federated nonparametric estimation under DP [20], we ob-
serve that the differences persist and are exacerbated under privacy constraints, highlighting
the unique challenges posed by privacy preservation in both testing and estimation contexts.

We first establish the minimax separation rate for the nonparametric goodness-of-fit testing
problem and construct optimal tests in the oracle setting where the regularity parameters are
known. The minimax separation rate serves as a benchmark for the difficulty of the testing
problem. However, the regularity parameters are typically in applications. A natural question
is: Without the knowledge of the regularity parameters, is it possible to construct a test that is
as good as when the parameters are known? This is a question about adaptation, which has
been a major goal in nonparametric statistics. We construct a data-driven test and show that
the proposed method can adapt to unknown regularity parameters with minimal additional
cost while adhering the same DP restrictions.

1.1. Federated privacy-constrained testing. We begin by formally introducing the gen-
eral framework of federated inference under distributed DP constraints. Consider a family of
probability measures tPfufPF on the measurable space pX ,X q, parameterized by f P F . We
consider a setting where N “ mn i.i.d. observations are drawn from a distribution Pf and
distributed across m servers. Each server j “ 1, . . . ,m holding an equal amount (n many)
observations.

Let us denote by Xpjq
“ pXpjq

i
q
n

i“1 the n realizations from Pf on the j-th server. Based on
Xpjq, each server outputs a (randomized) transcript Y pjq to the central server that satisfies the
privacy constraint. The central server, utilizing all transcripts Y :“ pY p1q, . . . , Y pmq

q, decides
between a null hypothesis and an alternative hypothesis, through means of a test T “ T pY q.
Since we are concerned with testing between a null and alternative hypothesis, we shall con-
sider the decision space t0,1u, where 0 corresponds to DO NOT REJECT and 1 with REJECT.
A test is then simply to be understood as a statistic taking values in t0,1u. Figure 1 gives an
illustration of a federated p✏, �q-DP-constrained testing procedure.

The transcript Y pjq satisfies an p✏, �q-DP constraint, which, loosely speaking, means that
the transcript Y pjq cannot differ too much depending on whether a specific individual is in
the data set or not. This is achieved through randomization, which is independent of the data.
We will consider two types of sources for randomization; independently among the servers
or through a shared source of randomness U (e.g., the same random seed). Formally, shared
source of randomness means that the law of the transcript is given by a distribution condi-
tionally on Xpjq and U , A fiÑ PpY pjq

P A|Xpjq,Uq, defined on a measurable space pY,Y q.
The presence of shared randomness is a slight, but important extension of the distributed
protocols where Y pjq is allowed to be random only through locally generated randomness.
See further discussion below and in Section 2. To assure that the source of shared random-
ness does not erode the notion of privacy, only the local source of randomness is used in the
privacy mechanism, i.e. to guarantee privacy. We formalize this as follows.

We shall call two data sets x,x1
P X n neighboring if they differ in one individual datum.

That is, they are at most one apart in Hamming distance (see Section 1.6). A DP constraint is
then defined as follows.
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FIGURE 1. Illustration of federated p✏, �q-DP-constrained testing.

DEFINITION 1. The transcript Y pjq is p✏, �q-differentially private (p✏, �q-DP) if for all
A P Y pjq, u P U and neighboring data sets x,x1

P X n differing in one individual datum it
holds that

(1) P
´
Y pjq

P A|Xpjq
“ x,U “ u

¯
§ e✏P

´
Y pjq

P A|Xpjq
“ x1,U “ u

¯
` �.

The above setting is concerned with distributed protocols for scenarios where multiple par-
ties hold sensitive data and each publishes a differentially private summary, without sharing
raw data between them. This approach is common in cases like separate studies by different
hospitals on the same population, where privacy concerns prevent direct data pooling. We
note that, in the above definition, the outcome of the shared source of randomness U does
not diminish the privacy guarantee, even when it is publicly available. This is because the
shared randomness is not used in the privacy mechanism, but as a means to enhance coor-
dination between the transcripts, which allows the transcripts to be more informative about
the underlying signal whilst each transcript is effectively sharing less information about their
underlying individual data.

Formally, having access to shared randomness means that U can be defined on some
probability space pU ,U ,PU

q, such that U is independent of the data (i.e. by taking the
appropriate product space for PX,U ). Having no access to shared randomness effectively
corresponds to considering U to be a degenerate random variable, or U “ tH,Uu. In
order to stream line the notation between these two setups, we shall refer to the triplet
pT, t

´
PY

pjq|Xpjq“x,U“u

¯

xPXn,uPU
u
m

j“1, pU ,U ,PU
qq as a p✏, �q-DP shared randomness dis-

tributed testing protocol with t

´
PY

pjq|Xpjq“x,U“u

¯

xPXn,uPU
u
m

j“1 satisfying Definition 1 for

general U (i.e. general pU ,U ,PU
q). The class of such triplets, but with U “ tH,Uu, shall

be referred to as p✏, �q-DP local randomness distributed testing protocols. We shall denote
these classes as T p✏,�q

SHR and T p✏,�q
LR , respectively, and note that the former is a superset of the

latter.

1.2. Problem formulation. The white-noise-with-drift model serves as a benchmark
model for nonparametric testing and has been extensively studied outside of the DP setting,
see [41, 46, 56, 75, 45]. Furthermore, the problem bares a close relationship with “classical”
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nonparametric goodness-of-fit testing in the sense of [10, 73, 30, 84] and other nonparamet-
ric testing problems through asymptotic equivalence, see Section 1.4 in [47] and references
therein.

In the distributed setting, the j “ 1, . . . ,m machines each observe i “ 1, . . . , n i.i.d, Xpjq
i

taking values in X Ä L2r0,1s and subject to the stochastic differential equation

(2) dXpjq
t;i “ fptqdt ` �dW pjq

t;i

under Pf , with t fiÑ W p1q
t;i , . . . , t fiÑ W pmq

t;i i.i.d. Brownian motions and f P L2r0,1s for i “

1, . . . , n, with � ° 0 the known noise level for each observation. For notational convenience,
we shall use N “ mn throughout the paper and will consider asymptotic regimes where
N Ñ 8. We note that, when m “ 1, we recover the classical white-noise-with-drift model.

We consider the canonical signal detection problem, where the goal is to test for the pres-
ence or absence of the “signal component” f . More formally, we consider testing the null
hypothesis H0 : f ” 0 against the alternative hypotheses that

(3) f P Hs,R

⇢ ” Hs,R,p,q

⇢ :“
!
f P Bs,R

p,q : }f}L2
• ⇢ and }f}Bs

p,q
§ R

)
.

Here, the alternative hypothesis consists of s-smooth functions in a Besov space, with } ¨

}Bs

p,q
denoting the Besov-ps, p, qq-norm and Bs,R

p,q Ä L2r0,1s corresponds to the Besov ball of
radius R, see Section E in the Supplementary Material [21] for the definitions. Besov spaces
are a very rich class of function spaces. They include many traditional smoothness spaces
such as Hölder and Sobolev spaces as special cases. We refer the reader to [80] for a detailed
discussion on Besov spaces.

Using a wavelet transform, the above testing problem is equivalent the observations under
the Gaussian sequence model, where each of the j “ 1, . . . ,m machines observes i “ 1, . . . , n

observations Xpjq
i

:“ pXpjq
lk;iql•1,k“1,...,2l

(4) Xpjq
lk;i “ flk ` �Zpjq

lk;i,

where the Zpjq
lk;i’s are i.i.d. standard Gaussian. The equivalent hypotheses (3) in the sequence

model simply follows by replacing the L2r0,1s-norm with the `2pNq-norm and the Besov
space Bs,R

p,q set to tf P `2pNq : }f}Bs

p,q
† 8u, where the Besov norm on the sequence space

`2pNq is defined as

(5) }f}Bs

p,q
:“

$
’’&

’’%

ˆ 8∞
l“1

ˆ
2lps`1{2´1{pq

›››pflkq
2l

k“1

›››
p

˙
q
˙1{q

for 1 § q † 8,

sup
l•1

2lps`1{2´1{pq
›››pflkq

2l

k“1

›››
p

for q “ 8.

In other words, the results for testing under DP derived for the sequence model of (4) with
hypothesis (3) apply to the model described by (2) also, with the same corresponding hypoth-
esis.

Given a t0,1u valued test T , where T pY q “ 1 corresponds to rejecting the null hypothesis,
we define the testing risk sum of the type I and worst case type II error over the alternative
class;

RpHs,R

⇢ , T q “ P0T pY q ` sup
fPHs,R

⇢

PfT pY q.

For the range of values 2 § p § 8, 1 § q § 8, the minimax separation rate in the uncon-
strained case is known to be ⇢ — p�2

{Nq

s

2s`1{2 (see e.g. [46]). This means that, for ⇢ "
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p�2
{Nq

s

2s`1{2 , there exists a sequence of consistent tests T ” TN such that RpHs,R
⇢ , T q Ñ 0,

whilst no such sequence of tests exists whenever ⇢ ! p�2
{Nq

s

2s`1{2 .
The minimax separation rate captures how the testing problem becomes easier, or more

difficult, for different model characteristics. For distributed p✏, �q-DP testing protocols, the
minimax separation rate depends on the stringency of the privacy requirement, given by ✏, � °

0, as well as the model characteristics m,n, s and �. That is, we aim to find ⇢ as a function
of m,n, s,�, ✏, �, such that inf

TPT p✏,�q
RpHs,p,q

⇢1,R , T q converges to either 0 or 1 depending on

whether ⇢1
! ⇢ or ⇢1

" ⇢. The class of alternatives under consideration are subsets of the
Besov ball Bs,R

p,q , where 2 § p † 8, 1 § q § 8, which offers a framework for functions in (2)
with specific smoothness characteristics. Our results extend easily to the case where p “ 8

at the cost of an additional logarithmic factor in the rate and a few additional technicalities in
the proofs.

1.3. Main results and our contribution. We quantify the difficulty of the federated testing
problem outlined in the previous section in terms of the minimax separation rate. To achieve
this, we present constructive distributed p✏, �q-DP testing protocols that achieve consistent
testing for the problem described above for certain values of ⇢ (Theorem 4 in Section 3).
Additionally, we establish matching minimax lower bounds, up to logarithmic factor, for
the testing risk (Theorem 5 in Section 5), providing a lower bound on the performance of
distributed p✏, �q-DP testing protocols.

Our analysis uncovers several novel and intriguing findings, which we briefly highlight
here. The performance guarantees for the methods demonstrated in Section 3, along with the
lower bounds established in Section 5, indicate that the distributed p✏, �q-DP testing problem
for the hypotheses given in (3) is governed by the minimax separation rate (up to logarithmic
factors)

(6)

⇢2 —

ˆ
�2

mn

˙ 2s
2s`1{2

`

ˆ
�2

mn3{2✏
?

1 ^ n✏2

˙ 2s
2s`1

^

¨

˝
˜

�2

?
mn

?

1 ^ n✏2

¸ 2s
2s`1{2

`
�2

mn2✏2

˛

‚.

The precise statement is deferred to Theorem 1.
The derived rate indicates that the distributed testing problem under privacy constraints

undergoes multiple phase transitions, resulting in different regimes where ✏ affects the de-
tection boundary differently. Specifically, a smaller ✏, which implies a stronger privacy guar-
antee, leads to an increased detection threshold. When � decreases polynomially with N , its
impact on the detection boundary is limited to a logarithmic factor, making its effect on the
error rate minor compared to that of ✏.

For m “ 1, our theorems establish the optimal separation rate for nonparametric goodness-
of-fit testing in the central DP setting, where all data is available on a single machine. When
✏ À 1{

?

N , the privacy constraint affects the rate polynomially. In contrast, for ✏ Á 1{

?

N ,
the rate approximates the classical minimax rate, up to logarithmic factors. Thus, the privacy
constraint significantly impacts the rate only when ✏ is relatively small compared to the total
number of observations N .

When n “ 1, we establish the optimal separation rate for the testing problem in the local
DP setting. Here, ✏ can be seen to have a pronounced effect on the rate whenever ✏ À 1.

In the general federated setting, with m " 1, we see that m and n come into play with
different powers in the minimax rate whenever ✏2 À �

1
2s`1m

1
4s`1n

1{2´2s

4s`1 . This means that if
one distributes N “ mn observations across m machines, the task becomes more challenging
as the N observations are spread over a greater number of machines, rather than having many
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observations on a smaller number of machines. This phenomenon is also observed in the
comparable estimation setting of nonparametric regression, as recently investigated in [20].
The phase transitions, however, are not observed in its estimation counterpart. We provide a
detailed interpretation of the phase transitions in Section 2.

Our analysis also reveals that the minimax rate obtained in Theorem 1 becomes worse
without access to shared randomness. This is revealed by Theorem 1 in Section 2. For certain
values of ✏, we show that the performance is strictly worse for methods that use only local
randomness, and we exhibit optimal local and shared randomness methods for these regimes,
respectively, in Sections 3.2 and 3.3. The shared source of randomness does not reveal any
information on the identity of the individuals comprising the sample, even when it is publicly
available. This means that the shared randomness does not violate the privacy constraints,
and the improvement in the rate is a direct result of the shared randomness. We comment on
this further in Section 2.

In many practical applications, the regularity parameter s is unknown. In Section 4, we
extend the methods of Section 3 that attain the minimax rates, up to additional logarithmic
factors, when the regularity is unknown. That is, establish that adaptive testing is possible
under DP constraints with minimal additional cost in terms of the separation rate.

The lower bound relies on several technical innovations, which are summarized in Section
5. There, we provide a sketch of the proof and highlight the key innovations. The optimal
methods proposed in this paper rely on carefully tailored private test statistics that extend to
the adaptive setting with minimal cost due to exponential concentration bounds. We describe
the construction of these tests in Sections 3 and 4.

1.4. Related Work. The literature on the theoretical properties of DP can be mostly di-
vided into those studying local DP or central DP. In local DP, the privacy protection is applied
at the level of individual data entries or observations, which corresponds to n “ 1 in our set-
ting. This is a stringent form of DP because each item of data is independently given privacy
protection. In the other extreme, central DP, only the inference output needs to satisfy the
DP constraint (i.e. m “ 1 in our setting), meaning that if the output is a test, only the final
decision needs to satisfy a DP constraint.

Locally differential private estimation has been studied in the context of the many-normal-
means model, discrete distributions and parametric models in [34, 35, 1, 85]. The problem
of density estimation under local DP constraints has been considered by [35, 71, 53, 18],
of which the latter three works consider adaptation. In the context of hypothesis testing,
[42, 72, 7, 2, 14, 4, 3] study testing under local DP for discrete distributions. Nonparametric
goodness-of-fit testing under local DP is considered in [33, 55], where in [55], the authors
consider adaptation as well. In [19], the authors consider estimation of a quadratic functional
under local differential privacy constraints, which has connections to goodness-of-fit testing.

Settings in which the full data is assumed to be on a single server (i.e. m “ 1), where a
single privacy constraint applies to all the observations, have also been studied for various
parametric high-dimensional problems [74, 39, 12, 49, 50, 22, 65, 17, 24]. In [54], nonpara-
metric density estimation with known smoothness is considered. When it comes to hypothesis
testing under central DP, [25] study simple hypothesis testing. [8] considers uniformity and
independence testing in the multinomial model and [26, 66] study signal detection in the
many-normal-means model. In [9], hypothesis testing in a linear regression setting is consid-
ered.

Investigations into the more general federated setting have been much more limited, with
estimation being considered in [63, 6], which study estimation for discrete distributions and
[57, 67] which study mean estimation, [20] which study nonparametric regression, and [58]
which consider sparse linear regression. In the paper [27], the authors consider discrete dis-
tribution testing in a two server setting (m “ 2) with differing DP constraints.
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1.5. Organization of the paper. The rest of the paper is organized as follows. In Section
2, we present the main results of the paper, for the known smoothness case and the adaptive
setting. Next, Section 3 presents the methods that achieve the optimal rates derived in Section
2. In Section 4, we extend these methods to be adaptive in the case that the smoothness is
unknown. In Section 5, we present the lower bound theorems for the testing problem and give
a sketch of its proof. Further proofs are deferred to the supplemental material to the article,
[21].

1.6. Notation, definitions and assumptions. Throughout the paper, we shall write N :“
mn. For two positive sequences ak, bk we write ak À bk if the inequality ak § Cbk holds for
some universal positive constant C . Similarly, we write ak — bk if ak À bk and bk À ak hold
simultaneously and let ak ! bk denote that ak{bk “ op1q.

We use the notations a_b and a^b for the maximum and minimum, respectively, between
a and b. For k P N, rks shall denote the set t1, . . . , ku. Throughout the paper c and C denote
universal constants whose value can differ from line to line. The Euclidean norm of a vector
v P Rd is denoted by }v}2. For a matrix M P Rdˆd, the norm M fiÑ }M} is the spectral norm
and TrpMq is its trace. Furthermore, we let Id denote the d ˆ d identity matrix.

Throughout the paper, dH is the Hamming distance on X n is defined as dHpx, x̆q :“∞
n

i“1 txi ‰ x̆iu for x “ pxiqni“1, x̆ “ px̆iqni“1 P X n. Furthermore, for a vector space X and
x “ pxiqiPrns P X n, we shall write x for the average n´1∞n

i“1 xi.

2. Minimax optimal testing rates under privacy constraints. In this section, we dis-
cuss the main results in detail. We start the discussion with results for the oracle case where
the regularity parameter is known in Section 2.1. Section 2.2 describes the main results for
when the regularity is not known.

2.1. Description of the minimax separation rate. We first give a precise statement con-
cerning the minimax separation rate shown in (6).

THEOREM 1. Let s,R ° 0 be given and consider any sequences of natural numbers
m ” mN and n :“ N{m such that N “ mn Ñ 8, 1{N ! � ” �N “ Op1q, ✏ ” ✏N in
pN´1,1s and � ” �N À N´p1`!q for any constant ! ° 0. Let ⇢ a sequence of positive num-
bers satisfying (6).

Then,

inf
TPT p✏,�q

SHR

RpHs,R

⇢MN

, T q Ñ

#
0 for any M2

N
" log logpNq log3{2

pNq logp1{�q,

1 for any MN Ñ 0.

The proof of the theorem is given in Section B.4 of the Supplementary Material [21]. It is
based on a combination of upper and lower bounds, where the lower bound is established in
Section 5. The upper bound is given in Section 3, where we present an p✏, �q-DP distributed
testing protocol that attains the rate in Theorem 1. These upper and lower bounds are in fact
non-asymptotic, meaning that they do not require the assumption that N Ñ 8.

Theorem 1 shows multiple regime changes, where the distributed testing problem under
privacy constraints undergoes a change in the minimax separation rate. Later on in this sec-
tion, we highlight the different regimes and give an interpretation to each of them.

Theorem 1 considers the minimax rate for the class of distributed protocols with access
to shared randomness, T p✏,�q

SHR . Theorem 2 below considers the minimax rate for the (strictly
smaller) class of distributed protocols without access to shared randomness, T p✏,�q

LR . Here,
transcripts depend only on their local data and possibly a local source of randomness.



8

THEOREM 2. Let s,R ° 0 be given and consider any sequences of natural numbers
m ” mN and n :“ N{m such that N “ mn Ñ 8, 1{N ! � ” �N “ Op1q and ✏ ” ✏N in
pN´1,1s and � ” �N À N´p1`!q for any constant ! ° 0. Let ⇢ ” ⇢N a sequence of positive
numbers satisfying

(7) ⇢2 —

ˆ
�2

mn

˙ 2s
2s`1{2

`

ˆ
�2

mn2✏2

˙ 2s
2s`3{2

^

¨

˝
˜

�2

?
mn

?

1 ^ n✏2

¸ 2s
2s`1{2

`

ˆ
�2

mn2✏2

˙˛

‚.

Then,

inf
TPT p✏,�q

LR

RpHs,R

⇢MN

, T q Ñ

#
0 for any M2

N
" log logpNq log3{2

pNq logp1{�q,

1 for any MN Ñ 0.

The proof of Theorem 1 is given in Section B.4 of the supplemental material [21]. The
theorem shows that, depending on the value of ✏, the minimax rate for protocols that do
not have access to shared randomness is strictly worse than those for protocols that do have
access to shared randomness.

To more easily compare the two theorems, we provide a table in Table 1 below, where we
separate six “regimes” to aid interpretability below. Each of the regimes correspond to the
dominating term in the minimax separation rates of Theorems 1 and 2. Which term domi-
nates depends on the value of ✏, in comparison to n,m,�, s and the availability of shared
randomness.

Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 Regime 6

Shared U
´

�
2

mn

¯ 2s
2s`1{2

´
�
2

mn3{2✏

¯ 2s
2s`1

´
�
2

mn2✏2

¯ 2s
2s`1

´
�
2?
mn

¯ 2s
2s`1{2

ˆ
�
2?

mn3{2✏

˙ 2s
2s`1{2

�
2

mn2✏2

Local only
´

�
2

mn

¯ 2s
2s`1{2

´
�
2

mn2✏2

¯ 2s
2s`3{2

´
�
2

mn2✏2

¯ 2s
2s`3{2

´
�
2?
mn

¯ 2s
2s`1{2

ˆ
�
2?

mn3{2✏

˙ 2s
2s`1{2

�
2

mn2✏2

TABLE 1
The minimax separation rates for the testing problem under privacy constraints, for both the local randomness
and shared randomness settings. The rates are given up to logarithmic factors. The regimes are defined by the

values of ✏ and the model characteristics m,n,�, s.

The rates in Regimes 4, 5 and 6 are the same for both types of protocols, and these rates are
attained by the same testing protocol for each of the classes, which does not require shared
randomness. We shall refer to Regime 4, 5 and 6 as the “low privacy-budget” regimes, as
these rates occur for relatively small values of ✏.

We shall refer to Regimes 1, 2 and 3 as the “high privacy-budget” regimes, as these rates
occur for relatively large values of ✏. These rates are achieved by a different protocol, for
the classes of protocols with and without shared randomness, respectively. These protocols
are given in Sections 3.2 and 3.3. Proving the tighter lower bound in case of the class of
protocols with access to local randomness only, requires a different technique to that of the
class of shared randomness protocols, which we outline in Section 5.

The improvement in the rate for the shared randomness protocols, compared to the local
randomness protocols, are visible for Regime 2 and Regime 3, but also the values of ✏ for
which the different regimes occur are different for the two types of protocols. The improve-
ment in the rate is loosely speaking a consequence of the improved coordination between
the servers made possible by shared randomization. We exhibit a distributed p✏, �q-DP shared
randomness protocol attaining the above rate in Section 3.3.

In case of access to shared randomness, the high privacy-budget regime occurs whenever
✏ Á �´ 2

4s`1m´ 2s
4s`1n

1{2´2s

4s`1 and ✏ • n´1{2, or �´ 1
2sm´ 1

2n
1´2s
4s § ✏ † n´1{2. In the case of
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local randomness only, the high privacy-budget regimes occur for larger values of ✏, namely
✏ Á �´ 2

4s`1m
1

4s`1n
1{2´2s

4s`1 if ✏ • n´1{2 or ✏ Á �´ 4
4s´1m´ 1

2n
5{2´2s

4s´1 for ✏ À n´1{2, whenever
s ° 1{4. When s § 1{4 and no shared randomness is available, we are always in the low
privacy-budget regime for the range of N´1

À � À 1 and N´1
† ✏ À 1 considered.

The testing protocols that attains the rate in the high privacy-budget regimes are given in
Section 3.2 and 3.3. These protocols bear some resemblance with the estimation strategy in
[20], where transcripts constitute noisy, lower dimensional approximations of the original
data. As ✏ increases, the dimensionality of these approximations increases and the rate im-
proves. In Regime 2 and 3, the minimax rate is at least a polynomial factor of ✏ larger than
the unconstrained, non-private minimax separation rate, which is attained in Regime 1 (up to
a logarithmic factor).

The observation that shared randomness can improve performance in our problem has
been noted in other contexts involving distributed privacy and communication constraints,
see for example [4, 5, 3, 76, 77]. [33, 19] studies interactive versus non-interactive proto-
cols and finds a difference in terms of minimax performance between the two in the local
differential privacy setting. Interestingly, when n “ 1 (i.e. in the local differential privacy
setting), we find the similar minimax rates for nonparametric goodness-of-fit testing in the
high privacy-budget regimes, for the shared randomness and local randomness protocols, as
they do for interactive and non-interactive protocols, whenever ✏ is in the high-budget regime.
Although they study a different model, observations from smooth densities; it is interesting to
see that the same rates seem to be attainable without sequential interaction, by using shared
randomness instead. We note here that, when sequential- or interactive protocols are allowed,
shared randomness can be employed in particular. In real applications without interaction,
one should always use shared randomness if at all possible.

In the low privacy-budget case, i.e. Regimes 4, 5 and 6, the minimax rate for both local
and shared randomness protocols coincides. We note that the regimes occur at different values
of ✏ for the two types of protocols, however. Within the low privacy-budget range, we find
essentially three different regimes. When n´1{2

§ ✏ † �´ 2
4s´1m

1{4´s

4s`1 n
1{2´2s

4s`1 , the rate is given
by p

�
2?
mn

q
2s

2s`1{2 . What is remarkable here, is that whilst the rate is polynomially worse in
m than the unconstraint rate, the rate is otherwise independent of ✏. This regime essentially
corresponds to a setting where, even though a high privacy-budget strategy is not feasible,
the desired level of privacy is achieved “for free" with the locally optimal test statistic.

We exhibit an p✏, �q-DP distributed testing protocol that attains this rate in Section 3.1. This
strategy can roughly be described as first computing a locally optimal private test statistic –
a test statistic that would result in the optimal private test using just the local data – and then
averaging these private test statistics; essentially combining the power of the local tests. That
this strategy performs well when the privacy constraint is sufficiently stringent can intuitively
be explained as that it is easier to retain privacy when only (a private version of) a single real
valued local test statistic is shared, rather than a (private approximation of) the original data.

When ✏ À n´1{2 within the low privacy-budget range, ✏ affects the rate polynomially. For
the smallest values of ✏, i.e. ✏ À �

1
2s`1m´ 1

2n´ 1`s

2s`1 , the rate is given by �
2

mn2✏2
. Strikingly,

the regularity parameter does not appear in the rate in this regime. This phenomenon has the
following explanation: for such small values of ✏, signals of size �

2

mn2✏2
are of larger order

than the local estimation rate of p
�

2

n
q

2s
2s`1{2 . Consequently, signal can locally be estimated with

high accuracy, and the bottleneck is purely the privacy constraint, not the high-dimensional
nature of the problem.

In the case of central DP (i.e. m “ 1), only the low privacy-budget regime is observed. In
this case, our results show that the non-private rate is attainable (up to logarithmic factors) for
✏ Á 1{

?

N . This is in contrast to the local DP setting, where both the high- and low privacy
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budget regimes are observed (depending on the values of � and s). Whenever m is larger
than say polynomial in N in the low privacy-budget range, (i.e. m — N! for some ! ° 0) the
unconstrained minimax rate cannot be reached.

To further illustrate the difference between these classes of protocols, we provide two plots
in Figure 2. The plots show the relationship between the minimax testing rate ⇢ and ✏ for fixed
values of m,n,� and four different choices for the regularity s. The regimes correspond to the
six regimes in Table 1. The plots show that the shared randomness setting strictly improves
the rate for certain values of ✏, and that the values of ✏ for which the different regimes occur
are different for the two types of protocols. A full case-wise breakdown of when each of the
regimes occur is given in Section C of the Supplementary Material [21]. Below, we give an
interpretation for each of the regimes.

(m = 15, n = 2) (m = 5, n = 6)

Local R
andom

ness
Shared R

andom
ness

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

ε

ρ

Smoothness: 0.2 0.5 1 3 Regime: 1
2

3
4

5
6

FIGURE 2. The relationship of the minimax testing rate ⇢ and ✏, given by (7) and (6), for pn,mq “ p5,5q in the
left column and pn,mq “ p2,15q in the right column, � “ 1 and smoothness levels s “ 1{5, s “ 1{2, s “ 1 and
s “ 3. The panels on the first row correspond to distributed p✏, �q-DP (local randomness only) protocols (i.e. (7)),
the bottom row corresponds to distributed p✏, �q-DP protocols with shared randomness (i.e. (6)). The regimes
correspond to the six regimes (e.g. different rates) in Table 1.

What constitute “moderate” or “large” values, depends on the size of m relative to n,
as can be seen when comparing Figure 2, which compares N “ 30 observations distributed
either between m “ 15 servers with 2 observations each, and m “ 5 servers with n “ 6
observations each. It can be seen that, as the local sample n is larger compared to the number
of times the total number of data points N is divided m, the cost of privacy is less. This
underlines the idea that, in large samples, it is easier to retain privacy.

When ✏ becomes “very small” (smaller than a threshold depending on s, m and n), the
smoothness starts to matter less and less, up to the point where the difficulty of the problem
is no different for (very) different regularity levels. These scenarios correspond to settings
where the privacy requirement underlying the problem is so stringent, that it effectively be-
comes the bottleneck of the testing problem.
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2.2. Adaptation. In the previous section, we derived the minimax separation rate for
the nonparametric distributed testing problem. However, the proposed tests constructed in
Section 3 require knowledge of the regularity parameter s of the underlying f . Typically, the
regularity of the function is unknown in practice, necessitating the use of data-driven methods
to find the best adaptive testing strategies.

Given that the regularity of the underlying signal class is unknown, it makes sense to
consider the minimax testing risk

sup
sPrsmin,smaxs

R
´
Hs,R

MN,s⇢s

, T
¯
,

for certain predetermined values 0 † smin † smax † 8. Here, we consider separation rates
⇢s depending on the underlying smoothness. In the case that the true underlying smoothness
is s “ smin, the separation rate is relatively larger than when (for example) s “ smax. In the
case that the true smoothness s is larger than smin, we would like to attain the smaller of the
two rates ⇢s.

In the non-privacy constraint setting, adaptation for the above risk can be achieved with
only a minor additional cost in the separation rate (a log logN factor). See for example The-
orem 2.3 in [75] or Section 7 in [47]. Theorem 3 below shows that also under privacy con-
straint, the optimal private rate can be attained by a protocol that is adaptive to the regularity
parameter s, with minimal additional cost; at most a logarithmic factor.

THEOREM 3. Let 0 † smin † smax † 8, R ° 0 be given and consider any sequences of
natural numbers m ” mN and n :“ N{m such that N “ mn Ñ 8, 1{N ! � ” �N “ Op1q,
✏ ” ✏N in pN´1,1s and � ” �N À N´p1`!q for any constant ! ° 0.

If ⇢ a sequence of positive numbers satisfies (6), there exists a sequence of distributed
p✏, �q-DP testing protocols TN such that

sup
sPrsmin,smaxs

RpHs,R

⇢MN

, TN q Ñ

#
0 for any M2

N
" log logpNq log5{2

pNq logp1{�q

1 for any MN Ñ 0.

Furthermore, whenever ⇢ satisfies (7), there exists a sequence of distributed p✏, �q-DP testing
protocols TN using only local randomness such that the above display holds as well.

We construct such adaptive distributed p✏, �q-DP testing protocols in Section 4 and their
resulting performance proofs the above theorem. The adaptive methods can be seen as exten-
sions of the methods exhibited in Section 3 for when the smoothness is known. The adaptive
methods can essentially be seen as a multiple testing extension of the known smoothness
methods, testing along a grid of smoothness levels between smin and smax. The strain on the
privacy budget stemming from conducting multiple testing procedures is limited, due to the
fact that the cardinality of this grid is order logpNq. The Type I error control is assured by
a Bonferroni correction, which leverages the exponential bounds on the Type I error of the
individual “known smoothness tests”.

3. Optimal differentially private testing procedures. In this section, we construct dis-
tributed p✏, �q-DP testing procedures that attain the minimax separation rates derived in Sec-
tion 2.

The testing procedures are constructed in three steps. First, in Section 3.1, we construct a
distributed p✏, �q-DP testing procedure that uses only local randomness and that is optimal in
the low privacy-budget regime described in the previous section. We refer to this procedure
as TI. Second, we construct two distributed p✏, �q-DP testing procedures that use local ran-
domness and shared randomness, respectively, and that are optimal in their respective high
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privacy-budget regimes. We refer to these procedures as TII and TIII and describe them in
Sections 3.2 and 3.3, respectively.

The testing procedures differ in terms of the testing strategy. In the low privacy-budget case
where TI is optimal, the testing strategy can be seen to consist of first computing a locally
optimal private test statistic in each machine; that is, a test statistic that would result in the
optimal private test using just the local data. The locally optimal test statistic is based on the
squared Euclidean norm of the truncated observation. To deal with the nonlinearity of the
Euclidean norm, the strategy appropriately restricts the domain of the clipped locally optimal
test statistic, after which we employ a Lipschitz-extension to obtain a test statistic that is well-
defined on the sample space and more robust to outliers than the Euclidean norm itself. The
noisy version of this test statistic is locally optimal under privacy constraints, in the sense that
a corresponding (strict) p-value test attains the lower bound rate (up to a logarithmic factor)
as established by Theorem 2 for the case where m “ 1. When m ° 1, the final test statistic is
obtained by averaging the locally optimal private test statistics.

In the large ✏ regime, instead of computing a locally optimal test statistic, both TII and TIII
are based on truncated, clipped and noisy versions of the local observations. The key differ-
ence between the two is that the latter uses the same random rotation of the local observations,
which is made possible by the availability of shared randomness.

Together, the methods prove Theorem 4 below, which forms the “upper bound” part of the
minimax separation rate described by Theorems 2 and 1. Unlike the formulation of the latter
theorems, we note that the result is not asymptotic.

THEOREM 4. Let s,R ° 0 be given. For all ↵ P p0,1q, there exists a constant C↵ ° 0
such that if
(8)

⇢2 • C↵

ˆ
�2

mn

˙ 2s
2s`1{2

`

ˆ
�2

mn2✏2

˙ 2s
2s`3{2

^

¨

˝
˜

�2

?
mn

?

1 ^ n✏2

¸ 2s
2s`1{2

`

ˆ
�2

mn2✏2

˙˛

‚,

there exists a distributed p✏, �q-DP testing protocol T ” Tm,n,s,� such that

(9) RpHs,R

⇢MN

, T q § ↵,

for all natural numbers m,N and n “ N{m, � P r1{N,�maxs, ✏ P pN´1,1s, � § N´p1`!q for
any constant ! ° 0, �max ° 0 and a nonnegative sequence M2

N
Á log logpNq log3{2

pNq logp1{�q.
Similarly, for any ↵ P p0,1q, there exists a constant C↵ ° 0 such that if

(10)

⇢2 • C↵

ˆ
�2

mn

˙ 2s
2s`1{2

`

ˆ
�2

mn3{2✏
?

1 ^ n✏2

˙ 2s
2s`1

^

˜ˆ
�2

?
mn

˙ 2s
2s`1{2

`

ˆ
�2

mn2✏2

˙¸
,

we have that there exists a distributed p✏, �q-DP shared randomness testing protocol T ”

Tm,n,s,� such that

(11) RpHs,R

⇢MN

, T q § ↵,

for all natural numbers m,N and n “ N{m, � P r1{N,�maxs, ✏ P pN´1,1s, � § N´p1`!q

for any constant ! ° 0 and a nonnegative sequence M2
N

Á log logpNq log3{2
pNq logp1{�q.

The proof of the theorem follows directly from the guarantees proven for each of the
three testing protocols; we defer it to Section B in the supplement. Before giving the de-
tailed construction of the three tests, we introduce some common notation. Let ⇧L denote
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the projection of elements RN onto the first dL :“
∞

L

l“1 2
l coordinates, where the elements

as ordered and indexed as follows;

⇧Lx “ px11, . . . , x12, x21, . . . , x14, . . . , xL1, . . . , xL2L ,0,0,0, . . . q .

We shall also use the notation dL :“
∞

L

l“1 2
l and let Xpjq

L;i denote vector in RdL formed by

the first dL coordinates of ⇧LX
pjq
i

and let Xpjq
L

“ pXpjq
L;iqiPrns. Furthermore, we recall that for

v “ pv1, . . . , vnq P X n for a vector space X , v̄ denotes the vector space average n´1∞n

i“1 vi.
In order to obtain statistics with (uniformly) bounded sensitivity it is useful to bound

quantities between certain thresholds. Formally, for a, b, x P R with a † b, let rxs
b
a denote

x clipped between a and b, that is

(12) rxs
b

a :“

$
’&

’%

b if x ° b,

x if a § x § b

a otherwise.

The distributed privacy protocols under consideration in this paper can be seen as noisy ver-
sions of statistics of the data. Roughly put, the “amount” of noise added depends on the
sensitivity of the statistics. This brings us to the concept of sensitivity. Formally, consider a
metric d on a set Y . Given n elements x “ px1, . . . , xnq in a sample space X , the d-sensitivity
at x of a map S :X n

Ñ Y is

�Spxq :“ sup
x̆PXn:dHpx,x̆q§1

d pSpxq, Spx̆qq ,

where dH is the Hamming distance on X n (see Section 1.6 for a definition). The d-sensitivity
of S is defined as �S :“ supx�Spxq. In this paper, the main noise mechanism is the Gaus-
sian mechanism. The Gaussian mechanism yields p✏, �q-differentially private transcripts for
statistics that have bounded L2-sensitivity, with the noise variance scaling with the L2-
sensitivity. See [36] for a thorough treatment. We remark that for the rates in Regime 3
up until 6 in Table 1, p✏,0q-DP can be attained by employing a Laplace mechanism instead.
That is, for the values of ✏ for which Regime 3 up until 6 in Table 1 are optimal, the test
statistics in the sections have matching L1- and L2-sensitivity, so the Gaussian mechanism
can be replaced by the Laplace mechanism instead in these regimes.

3.1. Private testing procedure I: low privacy-budget strategy. In the classical setting
without privacy constraints (and m “ 1), a rate optimal test for the hypotheses of (3) is given
by

(13)
!
Spjq
L

° ↵
)
, where Spjq

L
:“

1a
dL

˜››››�
´1?

nXpjq
L

››››
2

2

´ dL

¸
,

where dL :“
∞

L

l“1 2
l and the rate optimal choice of L is L˚ “

Q
1

2s`1{2 log2pNq

U
. Under

the null hypothesis, Spjq
L˚

is Chi-square distributed degrees of freedom. Under the alternative

hypothesis, the test statistic picks up a positive “bias” as }�´1?
nXpjq

L˚
}
2

„ �2
L˚ p}⇧L˚f}

2
2q

under Pf , which could surpass the critical value ↵ if �´2n}⇧L˚f}
2
2 is large enough. Con-

sequently, the level of the test is controlled by setting ↵ appropriately large. For a proof of
its rate optimality, see e.g. [43].

As is commonly the case for superlinear functions, the test statistic Spjq
L;⌧ has poor sensi-

tivity uniformly over the sample space, meaning that a change in just one datum can result
in a large change in the test statistic. This means that it forms a poor candidate to base a
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privacy preserving transcript on. For example, one would need to add a substantial amount
of noise guarantee DP for the statistic. To remedy this, we follow a similar strategy as pro-
posed in [26] and improved upon by [66]. We construct a clipped and symmetrized version of
the test statistic above, which has small sensitivity on a set CL;⌧ , in which Xpjq takes values
with high probability. We define the test statistic explicitly on CL;⌧ only. By a version of the
McShane–Whitney–Extension Theorem, we obtain a test statistic with the same sensitivity
that is defined on the entire sample space.

Consider for ⌧ ° 0, L P N, dL :“
∞

L

l“1 2
l and V pjq

L;⌧ „ �2
dL

independent of Xpjq the random
map from pRdLq

n to R defined by

(14) S̃pjq
L;⌧ pxq “

„
1

?
dL

´››�´1?
nx

››2
2

´ V pjq
L;⌧

¯⇢⌧

´⌧

.

For any ⌧ , this test statistic S̃pjq
L;⌧ pXpjq

L
q can be seen to have mean zero and bounded variance

under the null hypothesis, by similar reasoning as for the test statistic in (13) (see the proof
of Lemma 1 for details).

Loosely speaking, the test statistic S̃pjq
L;⌧ pXpjq

L
q retains the signal as long as ⌧ ° 0 is chosen

appropriately in comparison to the signal size (i.e. }⇧Lf}
2
2) and has good sensitivity for

“likely” values of Xpjq under Pf , but not uniformly over the sample space. We make the
latter statement precise as follows.

Let K⌧ “ r2⌧D´1
⌧ s and consider the set CL;⌧ “ AL;⌧ X BL;⌧ , where

AL;⌧ “

"
pxiq P pR8

q
n :

ˇ̌
ˇ̌}�´1∞

iPJ ⇧Lxi}22 ´ kdL

ˇ̌
ˇ̌ §

1
8kD⌧n

?
dL @J Ä rns, |J | “ k § K⌧

*
,

(15)

BL;⌧ “

"
pxiq P pR8

q
n :

ˇ̌
x�´1⇧Lxi,�

´1∞
k‰i

⇧Lxky

ˇ̌
§

1

8
kD⌧n

a
dL, @i “ 1, . . . , n

*
.

Lemma 18 in the supplement shows that Xpjq concentrates on CL;⌧ when the underlying sig-
nal is, roughly speaking, not too large compared to ⌧ (in particular under the null hypothesis).

It can be shown that, on the set CL;⌧ , x fiÑ Spjq
pxq is D⌧ -Lipschitz with respect to the

Hamming distance, see Lemma 19 in the supplement. Lemma 20 in the supplement shows
that there exists a measurable function Spjq

L;⌧ : pRdLq
n

Ñ R, D⌧ -Lipschitz with respect to the

Hamming distance, such that Spjq
L;⌧ pXpjq

L
q “ S̃pjq

L;⌧ pXpjq
L

q whenever Xpjq
P CL;⌧ . Lemma 20 is

essentially the construction of McShane [64] for obtaining a Lipschitz extension with respect
to the Hamming distance, but our lemma verifies in addition the Borel measurability of the
resulting map.

The Lipschitz constant upper bounds the sensitivity of a test statistic that is Lipschitz
continuous with respect to the Hamming distance. Specifically, we have that

�Spjq “ sup
x,x̆P`2pNqn:dHpx,x̆q§1

ˇ̌
ˇSpjq

pxq ´ Spjq
px̆q

ˇ̌
ˇ § D⌧ .

Using the Gaussian mechanism, the transcripts

(16) Y pjq
L;⌧ “ �⌧ S̆

pjq
L;⌧ pXpjq

L
q ` W pjq

⌧ , where W pjq
⌧ „ Np0,1q independent for j P rms,

�⌧ “ ✏{pD⌧

a
2c logp2{�qq and ⌧ ° 0, are p✏{

?
c, �q-differentially private for any ✏ ° 0 (see

e.g. [36]). These transcripts are mean zero and have bounded variance under the null hypoth-
esis, so a test of the form

(17) '⌧ :“

#
1

?
m

mÿ

j“1

Y pjq
L;⌧ • p�⌧ _ 1q

+
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has an arbitrarily small level for large enough  ° 0 (see Lemma 21 in the supplement).
Furthermore, the lemma below shows that, if the signal size is large enough in the

∞
L

l“1 2
l

first coordinates, the above test enjoys a small Type II error probability as well.

LEMMA 1. Consider the test '⌧ as defined by (17). If

(18) ⌧{4 §
n}fL}

2
2

logpNq

a
2c logp2{�q�2

?

d
§ ⌧{2

and

(19) }⇧Lf}
2
2 • C↵ logpNq

a
c logp1{�q

˜ ?

2L

�2
?

N
?
np

?
n✏ ^ 1q

¸
™ˆ

1

�2Nn✏2

˙

for C↵ ° 0 large enough, it holds that Pf p1 ´ '⌧ q § ↵.

A proof of the above lemma is given in Section B.1 of the supplement. The above test is
calibrated for the detection of signals size between ⌧{4 and ⌧{2. In order to detect signals of
any size larger than the right-hand side of (19), we follow what is essentially a multiple testing
procedure. For large signals, we need a larger clipping to detect them, as well as a larger set
CL;⌧ to assure that the data is in CL;⌧ with high probability, as larger signals increase the
probability of “outliers” from the perspective of the sensitivity of the L2-norm.

It turns out that a sufficient range of clipping thresholds to consider (for detecting the
signals f P Bs,R

p,q under consideration in Lemma 2) is given by

(20) ⌧ P TL :“

#
2´k`2np1 ´ 2´s

q
2´2{qR2

�2
?

2L
: k “ 1, . . . , r1 ` 2 log2pNR{�qs

+
.

The p✏, �q-differentially private testing procedure TI is now constructed as follows. For each
⌧ P TL, the machine transfers (16) with c “ |TL|. By the independence of the Gaussian noise
added in (16) for each ⌧ P TL, the transcript Y pjq

“ tY pjq
L;⌧ : ⌧ P TLu is p✏, �q-differentially

private (see e.g. Theorem A.1 in [36]).
The test

(21) TI :“

#
max
⌧PTL

1
?
m

mÿ

j“1

Y pjq
L;⌧ • ↵

˜
✏

D⌧

a
2|TL| logp2{�q

_ 1

¸
a
log |TL|

+

then satisfies P0TI § ↵ via a union bound and sub-exponential tail bound, we defer the reader
to the proof of Lemma 2 for details. Furthermore, for f P Bs,R

p,q , we have }⇧Lf}2 § }f}2 À R.
If f in addition satisfies (19), there exists ⌧˚

P TL such that (18) is satisfied and consequently

Pf p1 ´ TIq § Pf p1 ´ '⌧˚ q § ↵{2.

The optimal choice of L depends on the regularity level of the signal f , balancing the ap-
proximation error }f ´⇧Lf}

2
2 and the right-hand side of (19), for which we defer the details

to Section B.1 in the supplement. To summarize, we have obtained the following lemma.

LEMMA 2. For all R ° 0, ↵ P p0,1q there exists ↵ ° 0 and C↵ ° 0 such that the test
TI defined in (21) satisfies P0TI § ↵. Furthermore, if f P Bs,R

p,q is such that for some L and
MN,�,⌧ “ logpNq

a
log logpNR{�q logpNR{�q logp1{�q,

}⇧Lf}
2
2 • C↵MN,�,⌧

˜ ?

2L

�2
?

N
?
np

?
n✏ ^ 1q

¸
™ˆ

1

�2Nn✏2

˙
,

we have that Pf p1 ´ TIq § ↵.
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3.2. Private testing procedure II: high privacy-budget strategy. In the high-privacy bud-
get regime, we construct a testing procedure that consists essentially of two steps. In the first
step, the data is truncated, clipped and averaged over the coordinates, after which Gaussian
noise is added to obtain a private summary of the original data. Then, as a second step, the
transcripts are averaged, and based on this average, a test statistic that is reminiscent of a chi-
square test is computed in the central server. This is in contrast to the strategy of the previous
section, where each server computes a (private version of) a chi-square test statistic.

The approach taken here is to divide the servers equally over the first dL coordinates (i.e.
as uniformly as possible), where we recall the notation dL :“

∞
L

l“1 2
l. That is to say, for

L,KL P N, we partition the coordinates t1, . . . , dLu into approximately dL{KL sets of size
KL. The servers are then equally divided over each of these partitions and communicate the
sum of the clipped Xpjq

L;i’s coefficients corresponding to their partition, were we also recall

that the notation Xpjq
L;i denotes the vector in RdL formed by the first dL coordinates of ⇧LX

pjq
i

.
More formally, take KL “ rn✏2 ^ dLs and consider sets Jlk;L Ä rms for indexes pl, kq P

tl “ 1, . . . ,L, k “ 1, . . . ,2lu “: IL, such that |Jlk;L| “ rmKL

dL

s and each j P t1, . . . ,mu is in
Jlk;L for at least KL different indexes k P t1, . . . , dLu. For pl, kq P IL, j P Jlk;L, generate the
transcripts according to

(22) Y pjq
lk;L|Xpjq

” Y pjq
lk;LpXpjq

q “ �L

nÿ

i“1

r�´1
pXpjq

i
qlks

⌧

´⌧ ` W pjq
lk

with �L “ ✏{p2
a
2KL logp2{�q⌧q, ⌧ “ ̃↵

a
logpN{�q and pW pjq

lk
qjPrms,pl,kqPIL i.i.d. stan-

dard Gaussian noise.
Since x fiÑ

∞
n

i“1r�pxpjq
i

qlks
⌧´⌧ has sensitivity bounded by 2⌧ , for k “ 1, . . . ,K , releasing

Y pjq
L

pXpjq
q “ pY pjq

L,l1k1
pXpjq

q, . . . , Y pjq
L,lKL

kKL

pXpjq
qq

satisfies p✏, �q-DP, see Lemma 23 in the supplement for details.
If the privacy budget were of no concern, submitting the above transcripts with 2L —

N1{p2s`1{2q would be sufficient to construct a test statistic that attains the unconstrained
rate of ⇢2 — N´2s{p2s`1{2q. Under (more stringent) privacy constraints, however, the optimal
number of coordinates to be transmitted should depend on the privacy budget. Whenever
✏ À 1{

?
n, it turns out that submitting just one coordinate is in fact rate optimal. Sending

more than one coordinate leads to worse rates as the noise overpowers the benefit of having
a higher dimensional transcript. As ✏ increases, the optimal number of coordinates to be
transmitted increases as well. Whenever ✏ Á �´ 2

4s`1m
1

4s`1n
1{2´2s

4s`1 , the optimal number of
coordinates to be transmitted is 2L — N1{p2s`1{2q.

The test
(23)

TII “

$
&

%
1

?
dL

ÿ

pl,kqPIL

»

–

¨

˝ 1a
|Jlk;L|

ÿ

jPJlk;L

Y pjq
lk;L

˛

‚
2

´
n✏2

4KL⌧2
´ 1

fi

fl • ↵

ˆ
n✏2

4KL⌧2
_ 1

˙,
.

-

satisfies P0TII § ↵ by Lemma 24 in the supplement whenever ̃↵ ° 0 and ↵ ° 0 are chosen
large enough.

The power that the test attains depends on the signal size up until resolution level L, i.e.
}⇧Lf}2. Specifically, the test Type II error Pf p1 ´ TIIq § ↵ whenever

(24) }⇧Lf}
2
2 • C↵

log logpNq logpNq logp1{�q2p3{2qL

mn2✏2
.
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The optimal choice of L for is determined by the trade-off between the approximation error
}f ´ ⇧Lf}

2
2 and the right-hand side of (24). The proof of the following lemma is given in

Section B.2 of the supplement.

LEMMA 3. Take ↵ P p0,1q. Suppose f satisfies (24) and that ✏ •
2L`1?
mn

for some L P N.
Then, the distributed p✏, �q-DP testing protocol TII of level ↵ has Type II error Pf p1´T q § ↵
for a large enough constant C↵ ° 0 and ̃↵ ° 0, depending only on ↵.

3.3. Private testing procedure III: high privacy-budget shared randomness strategy. In
this section, we construct a testing procedure that is based on the same principles as the one
in the previous section, but with the difference that the servers a source of randomness. The
transcripts are still based on the clipped and averaged coordinates of the truncated data, but
instead of dividing the servers across the coordinates, we apply the same random rotation
across the servers.

Next, we describe the testing procedure in detail. Consider for L P N the quantities dL “∞
L

l“1 2
l and KL “ rn✏2 ^ dLs and let UL denote a random rotation uniformly drawn (i.e.

from the Haar measure) on the group of random orthonormal dL ˆ dL-matrices.
For IL :“ tpl, kq : l “ 1, . . . , rlog2pKLqs, k “ 1, . . . ,2lu, pl, kq P IL and j “ 1, . . . ,m, gen-

erate the transcripts according to

(25) Y pjq
lk;L|pXpjq,Uq “ �L

nÿ

i“1

rpUXpjq
L;iqlks

⌧

´⌧ ` W pjq
lk

,

with �L “
✏

2
?

2KL logp2{�q logpNq⌧ , ⌧ “ ̃↵
a
logpN{�q, ̃↵ ° 0 and pW pjq

l
qj,l i.i.d. cen-

tered standard Gaussian noise. By an application of Lemma 25, the transcript Y pjq
L

:“

pY pjq
lk;Lqpl,kqPIL is p✏, �q-differentially private.

In the shared randomness strategy above, we essentially only send the first
∞rlog2pKLqs

l“1 2l

coordinates. The random rotation UL ensures that, roughly speaking, a sufficient amount of
the signal is present in these first coordinates, with high probability.

We then construct the test

(26) TIII “

$
&

%
1

?
KL

ÿ

pl,kqPIL

»

–
˜

1
?
m

mÿ

j“1

Y pjq
lk;L

¸2

´ n�2L ´ 1

fi

fl • ↵
`
n�2L _ 1

˘
,
.

- ,

which satisfies P0' § ↵{2 by Lemma 26 in the supplement, for ↵ ° 0 large enough. The
lemma below is proven in Section B of the supplement, and yields that the Type II error of
the test satisfies Pf p1 ´ TIIIq § ↵ whenever the coordinates up to resolution level L are of
sufficient size. The optimal value for L depends on the truncation level s, and is chosen by
balancing the approximation error }f ´ ⇧Lf}

2
2 and the right-hand side of (27), we defer the

reader to Section B.3 of the supplement for details.

LEMMA 4. The testing protocol TIII, with level ↵ and has corresponding Type II error
probability Pf p1 ´ TIIIq § ↵ whenever

(27) }⇧Lf}
2
2 • C↵

2L logp1{�q logpNq

mn
?

n✏2 ^ 2L
?

n✏2 ^ 1

for constant C↵ ° 0 and ̃↵ ° 0 depending only on ↵.
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4. Adaptive tests under DP constraints. In the previous section we have derived meth-
ods that match (up to logarithmic factors) the theoretical lower bound established in Section
2. The proposed tests, however, depend on the regularity parameter s of the functional pa-
rameter of interest f .

In this section we derive an distributed p✏, �q-DP testing protocol that adapts to the regular-
ity when it is unknown. This method attains the optimal rate of Theorem 3, and consequently
proves the aforementioned theorem.

The adaptive procedure builds on the tests constructed in Section 3 and combines them
using essentially a multiple testing strategy. Roughly speaking, the method consists of taking
approximately a 1{ logN -mesh-size grid in the regularity interval rsmin, smaxs, constructing
optimal tests for each of the grid points and combining them using a type of Bonferroni’s
correction. By design, the tests constructed in Section 3 are based on sub-exponential private
test statistics, which allows a combination of the test statistics with a Bonferroni correction
of the order of log logN .

Combining logN many p✏1, �q-differentially private transcripts using Gaussian mecha-
nisms, results in a p✏, �q-differentially private protocol, with ✏ “ ✏1?logN . This means that
the erosion of the privacy budget by conducting a test for each grid-point is limited to a log-
arithmic factor, means the method greatly improves over the potentially polynomially worse
rate of a non-adaptive method.

The detailed adaptive testing procedures are given as follows. Let ⇢s equal the right-hand
side of (7) in case there is access to local randomness only, or the right-hand side of (6) in
case shared randomness is available. Let Ls “ ts´1 log2p1{⇢squ _ 1 and define furthermore
S :“ tLsmin , . . . ,Lsmaxu such that Ls P S for all s P rsmin, smaxs. Furthermore, we note that
the resulting “collection of resolution levels” satisfies |S| § Csmax logN for some constant
Csmax ° 0 depending only on smax.

Consider the first the case without access to shared randomness. We partition the collection
of resolution levels S , depending on the model characteristics, as follows.

(28) SLOW
LR “

!
L P S : 2L § ✏

?
mnp1 `

?
n t?

n✏°1uq

)
, SHIGH

LR “ SzSLOW
LR .

If the true regularity s0 is such that Ls0 P SLOW, the low privacy-budget test of Section 3.1
(with L “ Ls0 ) is a rate optimal strategy. If Ls0 P SHIGH, the high privacy-budget test of
Section 3.2 is rate optimal.

For the case of shared randomness, the phase transitions occur for different values of
s P rsmin, smaxs, or their respective resolution levels Ls. So in this case, we partition the
collection of resolution levels as

(29) SLOW
SHR “

 
L P S : 2L § ✏2mn

(
, SHIGH

SHR “ SzSLOW
SHR .

Consider some S 1
Ä S . The “adaptive version” of the low privacy-budget test defined in (21)

takes the form

(30) TS

I :“

#
max

LPS 1, ⌧PTL

1
?
m p�L _ 1q

a
log |TL||S 1|

mÿ

j“1

Y pjq
L;⌧ • ↵

+
,

where TL is as defined in (20) and Y pjq
L

“ tY pjq
L;⌧ : ⌧ P TLu is generated according to (16) for

L P S with

�⌧ “
✏

2D⌧

a
|TL||S 1| logp4{�q

.

The above choice of ✏ yields that pY pjq
L

qLPS is p✏{2, �{2q-DP due to the Gaussian mechanism.
The enlargement of the critical region, which is now effectively rescaled by

a
log |T|L|S 1|
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instead of
a
log |T|L, accounts for the potentially larger set of test statistics over which the

maximum is taken. In the case of having access only to local sources of randomness, we
set S 1

“ SLOW
LR . If SLOW

LR is empty, we set TI “ 0 instead, which forms an p0,0q-differentially
private protocol.

In the case of having access to local sources of randomness only; if SHIGH
LR is non-empty,

the adaptive version of the high privacy-budget test defined in (B.3) is given by
(31)

TII “

$
&

% max
LPSHIGH

LR

1
?
dL p⌘L _ 1q

ÿ

pl,kqPIL

»

–

¨

˝ 1a
|Jlk;L|

ÿ

jPJlk;L

Y pjq
lk;L

˛

‚
2

´ ⌘L ´ 1

fi

fl • ↵
a
log |SHIGH|

,
.

- ,

where the transcripts are generated according to (S.74) for L P SHIGH, with �L “ ✏{p4
a

|SHIGH|KL logp4{�q⌧q,
⌘L “

n✏
2

4KL⌧
2 , ⌧ “ ̃↵

a
logpN{�q. Due to the Gaussian mechanism, the transcripts satisfy an

p✏{2, �{2q-DP constraint. As before, if SHIGH is empty, set TII “ 0 instead.
In the case of having access to local randomness only, the adaptive testing procedure then

consists of computing the tests TSLOW

I and TII, for which the released transcripts satisfy p✏, �q-
DP. The final test is then given by

(32) T “ TSLOW

I _ TII.

In Section B in the supplement, it is shown that this test is adaptive and rate optimal (up to
logarithmic factors), proving the first part of Theorem 3.

In case of shared randomness, the adaptive version of the high privacy-budget test defined
in (S.84) is given by
(33)

TIII “

$
&

% max
LPSHIGH

SHR

1
?
KL

`
n�2

L
_ 1

˘
ÿ

pl,kqPIL

»

–
˜

1
?
m

mÿ

j“1

Y pjq
lk;L

¸2

´ n�2L ´ 1

fi

fl • ↵
a
log |S|

,
.

- ,

where the transcripts are generated according to (S.83) for L P SHIGH
SHR , �L “

✏

4
?

KL|SHIGH
SHR | logp4{�q logpNq⌧ ,

⌧ “ ̃↵
a
logpN{�q. By similar reasoning as earlier, the transcripts tY pjq

L
: L P §HIGHSHR u are

p✏{2, �{2q-DP. If SHIGH
SHR is empty, we set TIII “ 0 instead.

The adaptive testing procedure in the case of shared randomness then consists of comput-
ing the tests TS

LOW

I and TIII, for which the released transcripts satisfy p✏, �q-DP. The final test
is then given by

(34) T “ T
S
LOW
SHR

I _ TIII.

In the supplement’s Section B, we prove that this test is adaptive, attaining the optimal rate
for shared randomness protocols (up to logarithmic factors), giving us the second statement
Theorem 3.

5. The minimax private testing lower bound. In this section, we present a single the-
orem outlining the lower bound for the detection threshold for distributed testing protocols
that adhere to DP constraints, with and without the use of shared randomness. The theorem
directly yields the “lower bound part” of Theorems 2 and 1 presented in Section 2. In con-
junction with Theorem 4, the theorem shows that the tests constructed in Section 3 are rate
optimal up to logarithmic factors.
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THEOREM 5. Let s,R ° 0 be given. For all ↵ P p0,1q, there exists a constant c↵ ° 0
such that if
(35)

⇢2 § c↵

ˆ
�2

mn

˙ 2s
2s`1{2

`

ˆ
�2

mn2✏2

˙ 2s
2s`3{2

^

¨

˝
˜

�2

?
mn

?

1 ^ n✏2

¸ 2s
2s`1{2

`

ˆ
�2

mn2✏2

˙˛

‚,

it holds that

(36) inf
TPT p✏,�q

RpHs,R

⇢ , T q ° 1 ´ ↵,

for all natural numbers m,N and n “ N{m, � ° 0, ✏ P pN´1,1s and � § N´p1`!q for any
constant ! ° 0.

Similarly, for any ↵ P p0,1q, there exists a constant c↵ ° 0 such that if
(37)

⇢2 § c↵

ˆ
�2

mn

˙ 2s
2s`1{2

`

ˆ
�2

mn3{2✏
?

1 ^ n✏2

˙ 2s
2s`1

^

˜ˆ
�2

?
mn

˙ 2s
2s`1{2

`

ˆ
�2

mn2✏2

˙¸
,

we have that there exists a distributed p✏, �q-DP shared randomness testing protocol T ”

Tm,n,s,� such that

(38) inf
TPT p✏,�q

SHR

RpHs,R

⇢ , T q ° 1 ´ ↵,

for all natural numbers m,N and n “ N{m, � ° 0, ✏ P pN´1,1s and � § N´p1`!q for any
constant ! ° 0.

The theorem states that, whenever the signal-to-noise ratio ⇢ is below a certain threshold
times the minimax separation rate, no distributed testing protocol can achieve a combined
Type I and Type II error rate below ↵. Its proof is lengthy and involves a combination of
various techniques. We defer the full details of the proof to Section A of the supplement, but
provide an overview of the main steps below.

For Steps 1, 2 and 3, there is no distinction between local and shared randomness. We use
the same notation for distributed protocols in these steps, but simply assume U is degenerate
in the case of local randomness.

Step 1: The first step is standard in minimax testing analysis: we lower bound the testing risk
by a Bayes risk,

(39) inf
TPT

RpH⇢, T q • inf
TPT

sup
⇡

ˆ
P0pT pY q “ 1q `

ª
Pf pT pY q “ 0qd⇡pfq ´ ⇡pHc

⇢q

˙
,

where T denotes either the class of local randomness or shared randomness p✏, �q-DP
protocols. This inequality allows the prior ⇡ to be chosen adversarially to the distribution
of the transcripts. This turns out to be crucial in the context of local randomness protocols,
as is further highlighted in Step 4. The specific prior distribution is chosen to be a centered
Gaussian distribution, with a finite rank covariance, where the rank is of the order 2L, for
some L P N. This covariance is constructed in a way that it puts most of its mass in the
dimensions in which the privacy protocol is the least informative, whilst at the same time
it assures that the probability mass outside of the alternative hypothesis ⇡pHc

⇢q is small.
The particular choice for a Gaussian prior (instead of e.g. the two point prior in [45]) is
motivated by Step 3.
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Step 2: In this step, we approximate the distribution of the transcripts with another distribu-
tion that results in approximately the same testing risk, but has two particular favorable
properties for our purposes.
• Whenever the distribution of a transcript satisfies an p✏, �q-DP constraint with � ° 0, the

transcript’s density can be unbounded on a set of small probability mass (proportional
to �). Consequently, the local likelihoods of the transcripts can have erratic behavior
in the tails. To remedy this, we consider approximations to the transcripts that have
bounded likelihoods, that differ only on a set that is negligible in terms of its impact
on the testing risk. Furthermore, these approximating transcripts satisfy a p✏,2�q-DP
privacy constraint. These bounded likelihoods enable the argument of Step 5.

• Similarly, whenever � ° 0, the distribution of the data conditionally on the transcript
potentially has an unbounded density. For the argument employed in Step 3, we require
a uniform abound on the density of the distribution of X|Y . We mitigate this by ap-
proximating the distribution of the transcripts by a distribution that induces a bounded
density for the data conditionally on the transcript. This approximation of the original
transcript satisfies a p✏,3�q-DP constraint.

Furthermore, we show that both approximations can be done in a way that the approxi-
mating transcript distribution is p✏,6�q-DP.

Step 3: By standard arguments, on can further lower bound the testing risk in (39) for a
particular transcript distribution PY |X,U

“
Â

m

j“1 PY
pjq|Xpjq

,U and prior distribution ⇡ by

a quantity depending on the chi-square divergence between PY |U“u

⇡ and PY |U“u

0 ;

(40) 1 ´

¨

˚̋

gfffep1{2q

ª
EY |U“u

0

¨

˝
˜
dPY |U“u

⇡

dPY |U“u

0

¸2

´ 1

˛

‚
2

dPU puq ` ⇡pHc

⇢q

˛

‹‚.

The likelihood ratio of the transcripts depends on the privacy protocol, and is difficult to
analyze directly. We employ the technique developed in [77]. Specifically, Lemma 10.1 in
[77], which states, roughly speaking, that the inequality

(41) EY |U“u

0

˜
dPY |U“u

⇡

dPY |U“u

0

¸2

§ G
m

⇧
j“1

EY
pjq|U“u

0

˜
dPY

pjq|U“u

⇡

dPY pjq|U“u

0

¸2

holds for a finite constant 0 † G † 8 and equality with the smallest possible G is attained
whenever the conditional distribution of the data given the transcripts is Gaussian in an ap-
propriate sense (we defer the details here to Section A.3 in the supplement). This result is
a type of Brascamp-Lieb inequality [16, 60]. There is an existing literature on Brascamp-
Lieb inequality in relation to information theoretical problems, in relation to mutual in-
formation [28, 61, 62], in addition to the communication constraint testing problem in
[77]. That (41) has a “Gaussian maximizer” allows tractable analysis of the chi-square
divergence in (40), yielding that the latter display is further lower bounded by

(42) 1 ´

d

p1{2q

ª
pA⇡

uB
⇡
u ´ 1qdPU puq ` ⇡pHc

⇢q,

where

(43) A⇡

u :“

ª
ef

J ∞
m

j“1 ⌅
j

u
gdp⇡ ˆ ⇡qpf, gq, B⇡

u :“
m

⇧
j“1

EY
pjq|U“u

0

˜
dPY

pjq|U“u

⇡

dPY pjq|U“u

0

¸
,
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where ⌅j
u denotes the covariance of (a subset of) the data Xpjq

L
(defined as in (44)) condi-

tionally on the transcript Y pjq and U “ u;

(44) ⌅j

u :“ EY
pjq|U“u

0 E0

«
nÿ

i“1

�´1Xpjq
L;i

ˇ̌
ˇ̌Y pjq,U “ u

�
E0

«
nÿ

i“1

�´1Xpjq
L;i

ˇ̌
ˇ̌Y pjq,U “ u

�J
.

Whilst the quantities Au and B⇡
u are still not fully tractable, sharp bounds for both are

possible and form the content of Steps 4 and 5, respectively.
Step 4: As remarked earlier, class of local randomness protocols is a strictly smaller class.

To attain the sharper (i.e. larger) lower bound for local randomness protocols, we exploit
the fact that Step 2 allows us to choose the prior adversarially to the distribution of the
transcripts. In particular, since U is degenerate in the case of local randomness only, this
means that the covariance of ⇡ to be more diffuse in the directions in which ⌅j

u is the
smallest. When considering shared randomness protocols, U is not degenerate, and the
lower bound follows by taking the covariance of ⇡ to be an order 2L-rank approximation
of the identity map on `2pNq. The bounds for A⇡

u are

(45) A⇡

u “ exp

ˆ
C

⇢4

c↵23L
Tr p⌅uq

2
˙

and A⇡

u § exp

ˆ
C

⇢4

c↵22L
}⌅u}Tr p⌅uq

˙

for local randomness protocols and shared randomness protocols, respectively.
Step 5: So far, Steps 1-4 have not used the fact that the transcripts are necessarily less infor-

mative than the original data, as a consequence of the transcripts being p✏, �q-DP. In this
step, we exploit the privacy constraint to argue that A⇡

u and B⇡
u are small at the detection

boundary for ⇢.
In order to capture the information loss due to privacy in A⇡

u , it suffices to bound the
trace and operator norm of ⌅u. The quantity ⌅u can be seen as the Fisher information of
the finite dimensional submodel spanned by the covariance of ⇡. This quantity, loosely
speaking, captures how much information the transcript contains on the original data. In
order to analyze ⌅u, we rely on a “score attack” type of technique, as employed in [23, 20].

The quantity B⇡
u corresponds to the (product of) the local likelihoods of the transcripts.

Whenever ✏ • 1{
?
n, it suffices to consider the trivial bound

(46) EY
pjq|U“u

0

˜
dPY

pjq|U“u

⇡

dPY pjq|U“u

0

¸
§ EX

pjq|U“u

0

˜
dPX

pjq
⇡

dPXpjq
0

¸
,

and further bounding the right-hand side without privacy specific arguments. Whenever
✏ † 1{

?
n, more sophisticated methods are need to capture the effect of privacy. Our ar-

gument uses a coupling method, which, combined with the fact that the likelihoods of the
transcripts are bounded in our construction, allows us to obtain a sharp bound for B⇡

u . Af-
ter obtaining the bounds in terms of the rank 2L and ⇢, the proof is finished by choosing
L such that the second and third term in (40) are balanced (minimizing their sum).

6. Discussion. The findings in this paper highlight the trade-off between statistical ac-
curacy and privacy in federated goodness-of-fit testing under differential privacy (DP) con-
straints. We characterize the problem in terms of the minimax separation rate, which quan-
tifies the difficulty of the testing problem based on the regularity of the underlying function,
the sample size, the degree of data distribution, and the stringency of the DP constraint. The
minimax separation rate varies depending on whether the distributed testing protocol has ac-
cess to local or shared randomness. Furthermore, we construct data-driven adaptive testing
procedures that achieve the same optimal performance, up to logarithmic factors, even when
the regularity of the functional parameter is unknown.
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One possible extension of this work is to consider a more general distribution of the pri-
vacy budget across the servers. Our current analysis supports differing budgets to the extent
that ✏j — ✏k, �j — �k, and nj — nk. However, one could explore more heterogeneous settings
where severs differ significantly in their differential privacy constraints and number of obser-
vations. Although this would complicate the presentation of results, the techniques developed
in this paper could, in principle, be extended to such settings.

Another interesting direction is to consider multiple testing problems, where the goal is
to test multiple hypotheses simultaneously. We anticipate that the framework, insights, and
theoretical results provided in the current paper will serve as valuable resources for future
studies in this domain.

Regarding adaptation, not much is known about the cost of privacy outside the local DP
setting (i.e., one observation per server; n “ 1 in our context). Interestingly, the cost of adap-
tation is minimal in the privacy setting considered in this paper. It remains an open question
whether this minimal cost is a general phenomenon, whether it can be characterized exactly,
or whether the cost of adaptation is more severe in other settings. We leave these questions
for future research.

SUPPLEMENTARY MATERIAL

Supplementary Material to “Federated Nonparametric Hypothesis Testing with Dif-
ferential Privacy Constraints: Optimal Rates and Adaptive Tests”
In this supplement, we present the detailed proofs for the main results in the paper “Federated
Nonparametric Hypothesis Testing with Differential Privacy Constraints: Optimal Rates and
Adaptive Tests”.
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