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This paper studies federated learning for nonparametric regression in
the context of distributed samples across different servers, each adhering to
distinct differential privacy constraints. The setting we consider is hetero-
geneous, encompassing both varying sample sizes and differential privacy
constraints across servers. Within this framework, both global and pointwise
estimation are considered, and optimal rates of convergence over the Besov
spaces are established.

Distributed privacy-preserving estimators are proposed and their risk
properties are investigated. Matching minimax lower bounds, up to a loga-
rithmic factor, are established for both global and pointwise estimation. To-
gether, these findings shed light on the tradeoff between statistical accuracy
and privacy preservation. In particular, we characterize the compromise not
only in terms of the privacy budget but also concerning the loss incurred by
distributing data within the privacy framework as a whole. This insight cap-
tures the folklore wisdom that it is easier to retain privacy in larger samples,
and explores the differences between pointwise and global estimation under
distributed privacy constraints.

1. Introduction. In today’s data-driven world, the proliferation of personal data and
technological advancements has made the protection of privacy a matter of paramount im-
portance. Developing statistical methods with privacy guarantees is becoming increasingly
important. Differential privacy (DP), one of the most widely adopted privacy frameworks,
ensures that statistical analysis results do not divulge any sensitive information about the in-
put data. DP was introduced in the seminal work by Dwork et al. [30]. Since its inception, DP
has garnered significant academic attention [5, 32, 33] and notable applications within indus-
try leaders, including Google [36], Microsoft [25], and Apple [67]. It has also been embraced
by governmental entities like the US Census Bureau [60].

A common setting in many real-life applications is the distributed nature of data collection
and analysis. For example, medical data is spread across various hospitals in healthcare,
customer data is stored in different branches or databases in financial institutions and various
modern technologies rely on federated learning from networks of users, see, for example, [9,
42, 50, 54, 58]. DP has found applications in many of these domains relating to, for example,
healthcare, finance, tech and social sciences, where preserving individuals’ data privacy is of
utmost concern. In such scenarios, it is vital to develop efficient estimation techniques that
respect privacy constraints while harnessing the collective potential of distributed data.

Federated learning is a machine learning paradigm designed to address the challenges
of data governance and privacy. It enables organizations or groups, whether from diverse
geographic regions or within the same organization, to collaboratively train and improve a
shared global statistical model without external sharing of raw data. The learning process
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occurs locally at each participating entity, which we shall refer to as servers. The servers
exchange only characteristics of their data, such as parameter estimates or gradients, in a way
that preserves privacy of the individuals comprising their data. Federated learning facilitates
secure collaboration across industries like retail, manufacturing, healthcare, and financial
services, allowing them to harness the power of data analysis while upholding data privacy
and security.

Rigorous study of theoretical performance in federated learning settings with communica-
tion constraints has been conducted in, for example, bandwidth constraint parametric prob-
lems [2, 7, 10, 20, 29, 41, 65] and bandwidth constraint nonparametric estimation and testing
[19, 63, 64, 66, 73]. Under DP constraints, theoretical performance in federated learning set-
tings have been studied for various parametric estimation and testing problems [3, 53, 55, 57].
Federated learning settings where each server’s sample consists of one individual observation
(referred to as local differential privacy settings) have been studied in many-normal-means
model, discrete distributions and parametric models [1, 6, 27, 28, 71] and nonparametric
density estimation [12, 51, 61].

This paper investigates the statistical optimality of federated learning under DP constraints
in the context of nonparametric regression. We consider a setting where data is distributed
among different entities, such as hospitals, that are concerned about sharing their data with
other entities due to privacy concerns for their patients. Each entity communicates a transcript
that fulfills a distinct DP requirement, and we assume a setting with m servers, each with nj

observations where j = 1, . . . ,m.
Our goals are two-fold: firstly, to establish optimal rates of convergence, measured in

terms of minimax risk, for estimating the nonparametric regression function while adhering
to DP constraints; secondly, to construct a rate-optimal estimator under these DP constraints.
We explore both global and pointwise estimation, aiming to provide quantifiable measures
of the trade-off between accuracy and privacy preservation. These convergence rates offer
insights into the best achievable estimation performance in distributed settings while ensuring
privacy. Recognizing that global estimation exhibits different characteristics compared to its
pointwise counterpart in the classical setting [15], we investigate how DP constraints impact
global and pointwise estimation risks differently.

1.1. Problem formulation. We will begin by formally introducing the general framework
of distributed estimation under privacy constraints. Consider a family of probability measures
{Pf}f2F on the measurable space (Z,Z ), parameterized by f 2 F . We consider a setting
where N =

Pm
j=1 nj i.i.d. observations are drawn from a distribution Pf and distributed

across m servers. Each server j = 1, . . . ,m holds nj observations.
Let us denote by Z

(j) = {Z(j)
i }nj

i=1 the nj realizations from Pf on the j-th server. For
each server, we output a (randomized) transcript T (j) based on Z

(j), where the law of the
transcript is given by a distribution conditional on Z

(j), P(·|Z(j)) on a measurable space
(T ,T ). The transcript T (j) has to satisfy a ("j , �j)-differential privacy constraint, which is
defined as follows.

DEFINITION 1.1. The transcript T (j) is ("j , �j)-differentially private if for all A 2 T
and z, z

0 2Znj differing in one individual datum, it holds that

P
⇣
T
(j) 2A|Z(j) = z

⌘
 e

"jP
⇣
T
(j) 2A|Z(j) = z

0
⌘
+ �j .

In the above definition, “differing in one datum" should be understood in terms of be-
ing Hamming distance “neighbors." To clarify, the local datasets Z

(j) and Z̃
(j) are deemed

neighboring if their Hamming distance is at most 1. The Hamming distance is calculated
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FIG 1. An illustration of the federated learning framework.

over Znj ⇥ Znj . In other words, Z̃(j) can be derived from Z
(j) by modifying at most one

of the observations Z
(j)
1 , . . . ,Z

(j)
nj . The smaller the value of ✏j and �j , the more stringent

the privacy constraint. We shall consider "j  C" for j = 1, . . . ,m for a fixed but arbitrar-
ily constant C" > 0, where the choice of the constant does not affect the rates in the results
derived.

We focus on distributed protocols that apply to situations in which sensitive data is held by
multiple parties, each generating an output while ensuring differential privacy. Within such
a distributed protocol, the transcripts from each server only depend on its local data, and no
information is exchanged between the servers. This occurs, for example, when multiple trials
concerning the same population are conducted, but each location (e.g. hospital) does not wish
to pool their original data because of privacy concerns.

Each server transmits its transcript to the central server. The central server, utilizing all
transcripts T := (T (1)

, . . . , T
(m)), computes an estimator f̂ : T m ! F . We refer to the pair

(f̂ ,{(P(·|z))z2Z}mj=1) as a distributed estimation protocol, which we shall sometimes just
denote as f̂ . We denote the vector of the differing DP levels by (",�) = {("j , �j)}mj=1 and de-

note the class of distributed estimation protocols, i.e.
⇣
f̂ ,{(P(·|z))z2Z}mj=1

⌘
satisfying Def-

inition 1.1, with M(",�). We let Pf denote the joint law of transcripts and the N =
Pm

j=1 nj

i.i.d. observations generated from Pf . We let Ef denote the expectation corresponding to Pf .
In the context of nonparametric regression, the distributed estimation problem arises when

data is distributed among multiple servers. Specifically, for each server j, the data Z
(j) =

{(Y (j)
i ,X

(j)
i )}nj

i=1 consists of nj pairs of observations (Y (j)
i ,X

(j)
i ). Here, X(j)

i represents
the input variable, and Y

(j)
i represents the corresponding response variable.

We assume that under Pf , X(j)
i and Y

(j)
i are generated by the relationship

(1) Y
(j)
i = f

⇣
X

(j)
i

⌘
+ ⇠

(j)
i , X

(j)
i ⇠ U [0,1].

Here, f is an unknown function representing the underlying relationship between the input
and response variables. The term ⇠

(j)
i represents random noise, assumed to be independent
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of X(j)
i , and follows a Gaussian distribution with mean 0 and known variance �2. Without

loss of generality, we shall assume � = 1 throughout the paper.
The aim is to estimate the function f based on the distributed data. The difficulty of this

estimation task arises from both the distributed nature of the data and privacy constraints that
limit the sharing of information between servers. As in the conventional decision-theoretical
framework, for global estimation, the estimation accuracy of a distributed estimator f̂ ⌘ f̂(T )
is measured by the integrated mean squared error (IMSE), Efkf̂�fk22, where the expectation
is taken over the randomness in both the data (under Pf ) and construction of the transcripts.
As in the conventional framework, a quantity of particular interest in federated learning is the
global minimax risk for the distributed private protocols over function class F ,

(2) inf
f̂2M(",�)

sup
f2F

Efkf̂ � fk22.

The global risk characterizes the difficulty of the distributed learning problem over the func-
tion class F when trying to infer the entire function underlying the data whilst adhering to
the heterogeneous privacy constraints.

Besides global estimation, it is also of interest to estimate f at a fixed point x0 2 (0,1)
under the mean squared error (MSE). The pointwise minimax risk in that case is given by

(3) inf
f̂2M(",�)

sup
f2F

Ef (f̂(x0)� f(x0))
2
, for x0 2 (0,1),

where f̂(x0) denotes the estimated function value at x0 2 (0,1). The pointwise risk is partic-
ularly useful in understanding the behavior of estimators at specific points within the domain,
which can be crucial in applications where certain regions are of particular interest or have
higher consequences associated with estimation errors. It is known that in the classical set-
ting, without privacy constraints, there are important differences between the global risk and
pointwise risk in terms of performance. See, for example, [14].

We consider estimating f over the Besov ball of radius R> 0, denoted as B↵,Rp,q [0,1] (de-
fined in (11)), where p � 2, q � 1 and ↵ � 1/p > 1/2. This Besov space offers a suitable
framework for analyzing functions with specific smoothness characteristics. Operating within
this space allows us to encompass diverse function classes, accommodating varying levels of
smoothness and complexity.

1.2. Main contribution. We quantify the cost of differential privacy for both the mini-
max global risk given by (2) and the pointwise risk as in (3). To achieve this, we introduce
two differentially private estimators – one for global and one for pointwise estimation. We
obtain matching minimax lower bounds, up to logarithmic factors, thereby establishing their
optimality.

Our analysis reveals interesting phenomena, that go unobserved in settings where servers
are assumed to have homogeneous privacy budgets. Further discussion on these broader find-
ings is deferred to Section 2. The results for the homogeneous case, where privacy budgets
are equal among servers ("j = ", �j = �, and nj = n for j = 1, . . . ,m), yield novel insights.
In this case, our results yield the following minimax rate for global estimation,

(4) inf
f̂2M(",�)

sup
f2B↵,R

p,q

Efkf̂ � fk22 ⇣min
n
Mm,n ·

⇣
(mn

2
"
2)�

2↵
2↵+2 + (mn)�

2↵
2↵+1

⌘
,1
o
,

where Mm,n � 1 is a sequence at most of the order log(mn) · log(1/�). The rate (mn)�
2↵

2↵+1

is the minimax rate for the global risk in the unconstrained problem, and is attained
whenever n"

2 & (mn)
1

2↵+1 . The unconstrained optimal rate is attainable (up to a possi-
bly poly-logarithmic factor) under DP constraints in the homogeneous setting as long as
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n"
2 & (mn)

1
2↵+1 . Whenever n"2 ⌧ (mn)

1
2↵+1 , the first term dominates and the minimax rate

becomes (mn
2
"
2)�

2↵
2↵+2 . As expected in this regime, a smaller ", which indicates a stronger

privacy guarantee, results in an larger minimax estimation error. Whenever "⌧ (
p
mn)�1,

consistent estimation ceases to be possible altogether.
This result recover the known minimax rates under local DP constraints (i.e. n = 1) that

were derived for the problem of nonparametric density estimation for the L2-risk in [12] and
the squared Hellinger in [61], up to logarithmic factor differences. When n > 1, the different
powers with which n and m appear in the minimax rate reveal an important difference be-
tween the general distributed setting and local DP; if one distributes N =mn observations
across m machines, the task becomes more challenging as the N observations are spread
over a greater number of machines, rather than having a large number of observations on a
smaller number of machines. This phenomenon has an intuitive explanation; it is easier to
retain privacy in larger samples, as each individual’s data will have only a small influence on
the aggregate statistics of interest.

For pointwise estimation, we establish the minimax rate in the homogeneous setting;
(5)

inf
f̂2M(",�)

sup
f2B↵,R

p,q

Ef |f̂(x0)� f(x0)|2 ⇣min
n
Mm,n ·

⇣�
mn

2
"
2
�� 2⌫

2⌫+2 + (mn)�
2⌫

2⌫+1

⌘
,1
o
,

where Mm,n � 1 is a sequence at most of the order log(mn). The rate reveals similar phe-
nomena as the one for the global risk above, where for n= 1 we recover the known minimax
rate for the problem of nonparametric density estimation for the pointwise risk under local
DP constraints as studied in [51]. An important difference is the quantity ⌫ = ↵ � 1/p ap-
pearing in the exponent instead of ↵. This implies that privacy constraints impact pointwise
estimation differently than global estimation, with the Besov parameter p influencing both the
relative privacy cost and the distribution of the N =mn observations, as discussed further in
Section 2.1.

Our findings have substantial implications for the development of federated learning algo-
rithms that balance distributed privacy with accuracy. A clear understanding of the optimal
convergence rate under distributed privacy constraints allows the design of algorithms that
strike the right balance between accuracy and privacy trade-offs. This study contributes sig-
nificantly to the growing knowledge on distributed settings for privacy-preserving machine
learning, offering valuable insights for future research in this domain.

1.3. Related Work. The nonparametric regression setting considered in this work bears
relationships with that of nonparametric density estimation as studied in the privacy setting
for global risk [12, 28, 61] and pointwise risk [51]. The aforementioned papers consider the
setting of local DP, in which the privacy protection is applied at the level of individual data
entries or observations. This corresponds to the case wherein nj = 1 for j = 1, . . . ,m in our
setting.

Distributed DP as considered in this paper, where DP applies at the level of the local
sample consisting of multiple observations, has been studied for the homogeneous estimation
setting for discrete distributions [3, 55] and parametric mean estimation [53, 57]. In the paper
[21], the authors consider discrete distribution testing in a two server setting (m = 2) with
differing DP constraints.

Settings in which the full data is assumed to be on a single server (i.e. m = 1), where a
single privacy constraint applies to all the observations, have also been studied for various
parametric high-dimensional problems [8, 17, 35, 47, 48, 56, 62]. The problem of mean
estimation with a single server having heterogeneous privacy constraints for each individual
observation have been studied in [22, 37].
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1.4. Organization of the paper. The rest of the paper is organized as follows. We con-
clude this section with notation, definitions, and assumptions. Section 2 summarizes and dis-
cusses the minimax optimal convergence rates for global and pointwise risks under privacy
constraints. In Section 3, we present distributed estimation procedures that achieve optimal
global and pointwise risk while adhering to distributed privacy constraints, along with an
upper bound on their statistical performance. The matching minimax lower bounds for the
global and pointwise risks are derived in Section 4. The proofs of the main results are given
in the Supplementary Material [16].

1.5. Notation, definitions and assumptions. Throughout the article, we shall write
N :=

Pm
j=1 nj and consider asymptotics in m, the nj’s and the privacy budget (✏,�) :=

{"j , �j}mj=1, where we assume that N ! 1. For two positive sequences ak, bk we write
ak . bk if the inequality ak  Cbk holds for some universal positive constant C . Similarly,
we write ak ⇣ bk if ak . bk and bk . ak hold simultaneously and let ak ⌧ bk denote that
ak/bk = o(1).

We use the notations a_b and a^b for the maximum and minimum, respectively, between
a and b. For k 2N, [k] shall denote the set {1, . . . , k}. Throughout the paper c and C denote
universal constants whose value can differ from line to line. The Euclidean norm of a vector
v 2 Rd is denoted by kvk2. For a matrix M 2 Rd⇥d, the norm M 7! kMk is the spectral
norm and Tr(M) is its trace. Furthermore, we let Id denote the d⇥ d identity matrix.

Throughout this paper, we shall let ⌫ := ↵� 1/p > 1/2, which is a required assumption
for estimation in Besov spaces (see e.g. [44]). We let B↵,Rp,q denote the closed Besov ball of
radius R, i.e. {f 2 B↵p,q[0,1] : kfkB↵p,q R}, where R> 0 is taken to be a constant.

For random variables U and V with probability measures P and Q defined on the same
measurable space, we let DTV(U,V ) denote the total variation norm between P and Q, i.e.
kP �QkTV. Whenever P ⌧ Q, we write DKL(U,V ) for the Kullback-Leibler divergence
between P and Q: DKL(P ;Q) =

R
log dP

dQdP . Our lower bound results hold for transcripts
taking values in standard Borel measure spaces. Different measure spaces or larger sigma-
algebras can be considered (which only make the privacy constraint more stringent, see e.g.
[70]) as long as the quantities in the proofs are appropriately measurable.

2. Minimax optimal rates of convergence. In this section, we present our primary find-
ings regarding the minimax rate of convergence under DP constraints. Our results address
both the global and pointwise risks.

For the global risk, the minimax rates are encapsulated in the upper bound of Theorem
3.2 and the lower bound of Theorem 4.1, derived in Sections 3.2 and 4.1. Similarly, for the
pointwise risk, our findings are summarized in Theorems 3.4 and 4.4, in the form of an upper
bound and lower bound respectively, in Sections 3.3 and 4.2. Together, these theorems are
summarized by the following result.

THEOREM 2.1. For � > 0, let D> 0 be the number solving the equation

(6) D
2�+2 =

mX

j=1

�
n
2
j"

2
j

�
^ (njD) .

Taking � = ↵, the minimax rate for the global risk is given by

inf
f̂2M(",�)

sup
f2B↵,R

p,q

Efkf̂ � fk22 ⇣
�
MND

�2↵ ^ 1
�
,

whenever for all j = 1, . . . ,m we have �j . (n1/2
j "

2
j (D_1)�1)1+ for some > 0 and where

MN � 1 is a sequence of the order at most log(N) log(1/minj2[m] �j).
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For � = ⌫, the minimax rate for the pointwise risk is given by

inf
f̂2M(",�)

sup
f2B↵,R

p,q

Ef

���f̂(x0)� f(x0)
���
2
⇣
�
MND

�2⌫ ^ 1
�
,

whenever
P

j nj�j ! 0, for a sequence MN � 1 of the order at most log(N).

We briefly comment on the derived result. First, we note that a unique positive solution to
(14) always exists. To see this, note that the exponent 2� + 2> 2 implies that the left-hand
side is smaller than the right-hand side for D > 0 small enough, whilst the right-hand side
grows linearly for small enough D > 0. Furthermore, the right-hand side increases sublin-
early in D, whilst the left-hand side increases superlinearly (strictly so).

When the privacy budget is large enough (e.g. "j =1 for j = 1, . . . ,m), D can be seen to
correspond with the ‘effective resolution level’ of the estimation problem. That is, D would
be proportional to the number of wavelet coefficients needed to obtain a wavelet estimator
that attains the optimal estimation rate, see for example [26]. For ↵ > 0 smooth functions
in a Besov space, the optimal resolution level of a wavelet estimator would correspond to
(1 + 2↵)�1dlog2Ne for the global risk. However, under privacy constraints, the effective
resolution level changes to (2+2↵)�1dlog2De, which can be substantially different from the
case without privacy constraints. We present several specific cases of Theorem 2.1 through
corollaries that encapsulate its various implications, as discussed in Sections 2.1 and 2.2.

The upper bounds for both types of risk (as given in Theorems 3.2 and 3.4) are derived by
constructing two estimators. One is proven optimal for global risk, while the other is optimal
for pointwise risk. The construction of these estimators is detailed in Section 3. Notably,
the optimal estimators for each risk type take distinct forms and employ different privacy
mechanisms.

Both of these lower bounds require a different technique. For the global risk, the lower
bounding technique is reminiscent of the score attack of [17, 18], which is a generalization of
the tracing adversary argument of [11, 34]. We describe the technique in detail in Section 4.1.
In case of the pointwise risk, we employ a coupling argument akin to [4, 49] in conjunction
with Le Cam’s two point method (see e.g. [52, 72]). The technique for the pointwise risk
lower bound is described in Section 4.2. Whilst the techniques differ, a similarity is that they
both account for the differences in the required levels of privacy between the servers, with
the quantity D > 0 in (14) being the outcome of balancing a bias-variance trade-off, where
the variance for each of the servers is either dominated by the (local) noise in the data itself
or by the privacy requirement of the server.

2.1. The homogeneous setting. Let us start by studying the case where all machines have
both an equal amount of observations, as well as privacy budgets. The following result de-
scribes the global risk behavior under DP constraints when the servers are homogeneous in
both the number of observations, as well as the privacy constraints they adhere to.

COROLLARY 1. Suppose that nj = n, "j = ", �j = � for j = 1, . . . ,m and assume that

� . ("2/
p
m)1+ for some > 0. Then, the global minimax risk over M(",�) satisfies (4).

Whenever n"2 ⌧ (mn)
1

2↵+1 , we have that

inf
f̂2M(",�)

sup
f2B↵,R

p,q

Efkf̂ � fk22 ⇣Mm,n (mn)�
2↵

2↵+1

⇣
m

1
2↵+1n

� 2↵
2↵+1 "

�2
⌘ 2↵

2↵+2
,

which indicates that the minimax estimation error becomes larger than the unconstrained
minimax rate ((mn)�

2↵
2↵+1 ) by a factor of (m

1
(2↵+1)n

� 2↵
2↵+1 "

�2)
2↵

2↵+2 (ignoring the logarithmic
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factor). This factor can be seen to capture the cost of privacy in terms of the global risk.
A smaller " results in an increase in minimax estimation error, where larger smoothness
exacerbates the increase.

A second observation that can be made on the basis of the privacy cost factor, is the cost
of distributing observations in a privacy setting. That is to say, if one distributes N = mn

observations across m machines, the task becomes more challenging as the N observations
are spread over a greater number of machines, rather than having a large number of observa-
tions on a smaller number of machines. The relative cost of distributing observations is also
revealed to be related to the smoothness, where a larger smoothness again exacerbates the
relative cost of distributing data. This observation confirms a folklore understanding that it is
easier to retain privacy within a larger crowd. Distributing data across more machines means
that each machine needs to add additional noise, to compensate for an overall lack of obser-
vations. It also affirms that local differentially private methods perform relatively poorly in
multiple observation settings and that applying a privacy constraint at an observation level is
comparatively costly.

Classically, the pointwise risk is known to be subject to different phenomena than the
global risk over the Besov spaces [15]. Writing ⌫ = ↵ � 1/p and assuming ↵ > 1/p, it is
known that the unconstrained pointwise minimax risk satisfies

(7) inf
f̂

sup
f2B↵,R

p,q

Ef |f̂(x0)� f(x0)|2 ⇣ (mn)�
2⌫

2⌫+1 .

Compared to the unconstrained global risk, this indicates that the estimation error at a point
is subject to a fundamentally slower convergence rate than the global estimation minimax
rate, where the `p-norm used to measure the smoothness of the Besov ellipsoid influences
the minimax estimation performance. Roughly speaking, the “pointwise” integrability of
the derivatives of the function underlying the data impacts the problem of estimation at a
point, whilst the global risk remains unaffected. This effect disappears for Hölder alterna-
tives, where p=1 and the minimax rate for the global risk and the pointwise risk coincide.

The main theorem on the minimax risk for pointwise estimation leads to the following
result for the homogeneous setting.

COROLLARY 2. Suppose that nj = n, "j = ", �j = � for j = 1, . . . ,m and �⌧ (mn)�1
.

Then, for x0 2 [0,1], the pointwise minimax risk at x0 over the class M(",�) satisfies (5).

The minimax rate for the pointwise risk seemingly takes on a similar form as that of
the global risk and it coincides with the global risk whenever p = 1. However, for finite
values of p, the cost of privacy can be seen to differ. In particular, to attain the unconstrained
optimal pointwise minimax rate (7), it can be seen that a relatively larger " is needed, where
a smaller value of p in fact exacerbates the demand. More precisely, whenever (mn)

1
2↵+1 .

n"
2 ⌧ (mn)

1
2⌫+1 , the pointwise risk suffers from the DP constraints, whereas the global risk

performance is the same as in the problem without the DP constraints.
Whenever n"

2 ⌧ (mn)
1

2⌫+1 , comparing (5) to (7) shows that the minimax rate of the
classical (unconstrained) pointwise risk increases by a factor of (m

1
2⌫+1n

� 2⌫
2⌫+1 "

�2)
2⌫

2⌫+2 (ig-
noring the logarithmic factor). This shows that the pointwise risk is subject to a similar cost-
relationship as the global risk. What is similar is that more stringent privacy demands in
terms of a smaller " translate to an increased cost in terms of the pointwise risk. However, the
relative increase in privacy cost resulting from a decrease in " for the case of pointwise risk,
is smaller than the relative increase in privacy cost of the global risk, where this discrepancy
is further exacarbated for smaller values of p. This shows that stringent privacy demands are
comparatively less costly for the pointwise risk.
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On the other hand, the cost of distributing observations (i.e. increasing m when distribut-
ing N = nm observations) is relatively larger for smaller values of p. That is to say, differ-
entially private estimation in pointwise risk suffers less from stringent per machine privacy
demands, while it suffers more from the fact that data is distributed before privacy preserva-
tion is applied. This surprising phenomenon shows that in a distributed setting with privacy
constraints, the distribution of the data across servers impacts the rate differently depending
on the inferential task at hand.

2.2. The heterogeneous setting. While the homogeneous setting described in the intro-
duction serves to illustrate fundamental phenomena, real-world scenarios often involve het-
erogeneous data and privacy constraints across various data silos. In applications, data may
not be uniformly distributed among different sources. For instance, consider cases where data
is observed and processed locally, as in the context of hospitals. The results presented here
highlight the optimal estimation under differential privacy in such a heterogeneous setting.

Theorems 4.1 and 3.2 describe the minimax rate for the global risk for the full spectrum of
possibilities in terms of heterogeneous constraints. Similarly, Theorems 4.4 and 3.4 describe
the minimax rate for the local risk in the heterogeneous setting. Here, for the sake of clarity of
interpretation, we will focus on two different regimes of privacy budgets. For both regimes,
whenever minj "& 1/(mn), we require that minj �j ⌧ 1/(mn)2, which translates to � hav-
ing no further impact on the minimax performance except for incurring a logarithmic factor
in case of the global risk. For the first regime, we shall consider privacy budgets where the
no single server has much more data than the other servers, comparatively to the stringency
in terms of the DP parameter ". This amounts to

(8)

0

@
mX

j=1

n
2
j"

2
j

1

A

1
2�+2

�max
j

nj"
2
j ,

where N =
Pm

j=1 nj and � = ↵ or � = ⌫ for the global and pointwise risk respectively. The
following result describes the minimax rate in this regime for the global and pointwise risks.

COROLLARY 3. Suppose that (✏,�) is such that
Pm

j=1 n
2
j"

2
j !1, for j = 1, . . . ,m we

have �j . ("2j/
p
m)1+ for some > 0 and (8) holds with � = ↵. Then, it holds that

inf
f̂2M(",�)

sup
f2B↵,R

p,q

Ef

���f̂ � f

���
2

2
⇣MN

0

@
mX

j=1

n
2
j"

2
j

1

A
� 2↵

2↵+2

.

for some MN � 1 of the order at most log(N) · log(1/minj �j).
If (8) holds for � = ⌫ and

Pm
j=1 nj�j ! 0, it holds that

inf
f̂2M(",�)

sup
f2B↵,R

p,q

Ef

���f̂(x0)� f(x0)
���
2
⇣MN

0

@
mX

j=1

n
2
j"

2
j

1

A
� 2⌫

2⌫+2

for some MN � 1 of the order at most log(N).

In such a setting, the behaviour in terms of the privacy cost is similar to that described by
Corollaries 1 and 2. A first glance shows that in the distributed privacy setup, the problem
is much more difficult compared to the problem without privacy constraints: the rate when
no privacy constraints are in place, which is N� 2↵

2↵+1 . Furthermore, the minimax rate shows



10

that, when N observations are divided over m machines somewhat equally, there is benefit
in dividing over as few machines as possible and there is an additional benefit to having
machines with a relatively large amount of data. The explanation for this is the same as
described in the homogeneous case: it is easier to retain privacy within large local samples.
When the samples are “spread thinly” across the servers, the cost of DP is larger. Between the
pointwise risk and the global risk, the phenomenon of pointwise risk incurring relatively less
cost when "j’s are decreased compared to the global risk is also still observed when p <1,
whilst the cost of distributing is relatively higher.

In the regime of (8), even though the privacy budgets vary between the servers, all the
servers can be seen to provide a non-negligible contribution to the central estimator. Another
regime which we highlight, is the case where some j

⇤ 2 [m] the privacy budget satisfies
�
n
2
j⇤"

2
j⇤
�
^
✓
n

2�+4
2�+2

j⇤ "

2
2�+2

j⇤

◆
^ n

2�+2
2�+1

j⇤ �
X

[m]\{j⇤}

n
2
j"

2
j ,(9)

where we consider � = ↵ or � = ⌫ for the global and pointwise risk respectively. This regime
is in a sense the juxtaposition of (8). Where in (8), no server has a substantially better privacy
budget compared to its number of observations, in the case of (9), there is (at least) one
server with a substantially larger sample and/or a relatively better privacy budget than the
other servers. The following result captures the minimax rate for the global and pointwise
risks in such a regime.

COROLLARY 4. Suppose that (✏,�) satisfies �j . (
p
nj"

2
j/(n

2/3
j⇤ "

2/3
j⇤ ))1+ for some >

0 and all j = 1, . . . ,m, (9) holds for � = ↵ and "j⇤ > (nj⇤)�1
. Then, it holds that

inf
f̂2M(",�)

sup
f2B↵,R

p,q

Efkf̂ � fk22 ⇣Mm,n

⇣�
n
2
j⇤"

2
j⇤
�� 2↵

2↵+2 + (nj⇤)
� 2↵

2↵+1

⌘

for some MN � 1 of the order at most log(N) · log(1/minj �j). If (9) holds for � = ⌫, it

holds that

inf
f̂2M(",�)

sup
f2B↵,R

p,q

Ef |f̂(x0)� f(x0)|2 ⇣Mm,n

⇣�
n
2
j⇤"

2
j⇤
�� 2⌫

2⌫+2 + (nj⇤)
� 2⌫

2⌫+1

⌘

for some MN � 1 of the order at most log(N).

In the regime described by the theorem, certain servers have a large sample and relatively
large privacy budget, compared to the “majority” of the other servers in the sense of (9).
The minimax rate derived describes that in such settings these large sample/budget servers
dictate the statistical accuracy of estimation. This is true both for the global, as well as the
pointwise risk. In terms of optimal estimation procedures, the minimax rate can be achieved
by only using estimators based on the data of the server(s) with relatively large samples and
privacy budget, as the benefit of the servers with smaller samples and privacy budgets have
an asymptotically negligible benefit.

3. Optimal Distributed (", �)-DP Estimators. In this section, we present two estima-
tors that attain the optimal rates as described by the theorems of the previous section. One
estimator specifically targets the global risk, the other is constructed specifically to perform
well in terms of the pointwise risk. Whilst it perhaps natural to estimate f(x0) using the
global risk DP-estimator evaluated at x0, the specific pointwise estimator we propose com-
bines DP-estimates of f(x0) computed locally (i.e. estimators of f(x0) computed at each of
the servers). This approach offers several benefits, such as an improved performance regard-
less of the value of �j � 0. Both estimators are constructed using a wavelet basis.
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Wavelets are known to have many favourable properties when using them for function
estimation in classical settings, see for example [13, 26, 40]. Under DP constraints, wavelet
constructions have other desirable properties: they allow for exact control of the estimator’s
sensitivity to changes in the data. Loosely speaking, this allows us to control the “influence”
each individual observation has on the outcome of the estimator, whilst retaining the infor-
mation the full sample has to a large extent.

3.1. Wavelets and Besov spaces. In the context of nonparametric regression, we aim to
construct an optimal estimator for an unknown function f based on the distributed data. Here,
we assume that f belongs to the Besov space B↵p,q . Roughly stated, the Besov space B↵p,q
containts functions having ↵ bounded derivatives in Lp-space, with q giving a finer control
of the degree of smoothness. We refer the reader to [69] for a detailed description.

Wavelet bases allow characterization of the Besov spaces, where ↵, p and q are parameters
that capture the decay rate of wavelet basis coefficients. Before presenting the two optimal
estimators for global and pointwise risk in Sections 3.2 and 3.3 respectively, we first briefly
introduce wavelets and collect some properties used to define the Besov space. For a more
detailed and elaborate introduction of wavelets in the context of Besov spaces, we refer to
[43, 46].

In our work we consider the Cohen, Daubechies and Vial construction of compactly sup-
ported, orthonormal, A-regular wavelet basis of L2[0,1], see for instance [23]. First for any
A 2 N one can follow Daubechies’ construction of the father �(·) and mother  (·) wavelets
with A vanishing moments and bounded support on [0,2A�1] and [�A+1,A], respectively,
for which we refer to [24]. The basis functions are then obtained as

�
�l0+1,m, lk : m 2 {0, ...,2l0+1 � 1}, l� l0 + 1, k 2 {0, ...,2l � 1}

 
,

with  lk(x) = 2l/2 (2lx�k), for k 2 [A�1,2l�A], and �l0+1,k(x) = 2l0+1
�(2l0+1

x�m),
for m 2 [0,2l0+1 � 2A], while for other values of k and m, the functions are specially con-
structed, to form a basis with the required smoothness property. In a slight abuse of notation,
we shall denote the father wavelet by  l0k = �l0+1,k and represent any function f 2 L2[0,1]
in the form

f =
1X

l=l0

2l�1X

k=0

flk lk,(10)

where the flk = hf, lki are called the wavelet coefficients. Note that in view of the orthonor-
mality of the wavelet basis the L2-norm of the function f is equal to

kfk22 =
1X

l=l0

2l�1X

k=0

f
2
lk.

Next we give definition of Besov spaces using wavelets. Let us define the norms

kfkB↵p,q :=

8
>>><

>>>:

 
1P
l=l0

✓
2l(↵+1/2�1/p)

���(flk)2
l�1

k=0

���
p

◆q
!1/q

for 1 q <1,

sup
l�l0

2l(↵+1/2�1/p)
���(flk)2

l�1
k=0

���
p

for q =1,

for ↵ 2 (0,A), 1  q  1, 2  p  1. Then, the Besov space B↵p,q[0,1] and Besov ball
B↵,Rp,q [0,1] of radius R> 0 can be defined as
(11)
B↵p,q[0,1] = {f 2 L2[0,1] : kfkB↵p,q <1} and B↵,Rp,q [0,1] = {f 2 L2[0,1] : kfkB↵p,q R},
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respectively. The above definition of the Besov space and norm is equivalent to the classical
one based on the weak derivatives of the function (see e.g. Chapter 4 in [39]).

For the construction of our estimators, we consider a A-smooth wavelet basis (A > ↵)
with a compactly supported mother wavelet  such that wavelets  lk(x) = 2l/2 (2lx� k)
for l� l0 and k = 0, . . . ,2l � 1 form an orthonormal basis for B↵p,q[0,1].

We will briefly describe in broad terms the idea behind using the wavelet transform (10) to
construct the global and pointwise optimal estimators. Both estimators are based on wavelet
approximations up until a limited resolution level. Besides the excellent approximation prop-
erties of wavelets in Besov spaces (see e.g. [39]), the first property ensures that a change in
the data in terms of X(j)

i has a limited change in terms of the “size” the wavelet estimator.
The second and third property yield a limited support that shrinks at higher “resolution lev-
els” of the wavelet functions, which controls the number of wavelet coefficients affected by
a change in X

(j)
i . Making sure that changes in individual datums have a limited effect on the

shared transcript is crucial for assuring privacy. A further, more detailed description of how
these properties interlink is given in the Sections 3.2 and 3.3 below.

3.2. Constructing an optimal global estimator. We now proceed to construct the estima-
tor, utilizing the wavelet transform of (10), allowing the representation of a function f in
L2 as a linear combination of wavelet basis functions. We first introduce some notation. For
⌧ > 0, x 2R, let [x]⌧ denote x clipped at the threshold ⌧ :

[x]⌧ :=

8
><

>:

⌧ if x > ⌧,

x if � ⌧  x ⌧

�⌧ otherwise.

Given L 2N and ⌧ > 0, each machine j = 1, . . . ,m computes the real numbers

(12) f̂
(j)
lk;⌧ =

1

nj

njX

i=1

h
Y

(j)
i

i

⌧
 lk

⇣
X

(j)
i

⌘
,

for l, k 2N such that l0  l L, 0 k  2l � 1. We will specify the exact choice of ⌧ and L

later. These numbers, which we denote as the vector

f̂
(j)
L,⌧ :=

n
f̂
(j)
lk;⌧ : k = 0, . . . ,2l � 1, l= l0, . . . ,L

o
,

will form the statistic underlying our transcript. To assure privacy, we aim to communicate a
noisy version of this vector. Adding additional noise leads to an estimator that is necessarily
worse, adding noise of a large enough magnitude yields a final transcript satisfies the privacy
guarantee of Definition 1.1. To control the magnitude of the noise that needs to be added, it
is important to have a statistic that does not change too drastically when the underlying data
is changed in one data point. We formalize this in terms of the sensitivity of the statistic f̂

(j)
L,⌧ .

The following lemma controls the L2-sensitivity of the statistic f̂
(j)
L,⌧ , i.e. the difference in

Euclidian distance when applied to two neighboring data sets.

LEMMA 3.1. Let Z
(j)

and Z̃
(j)

any realizations of neighboring data sets. It holds that

���f̂
(j)
L,⌧ (Z

(j))� f̂
(j)
L,⌧ (Z̃

(j))
���
2
 c 

⌧

p
2L

nj

where c is a constant depending only on the choice of wavelet basis.
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We provide a proof for the lemma in Section B.1.1. The limited L2-sensitivity of the f̂
(j)
L,⌧

is a consequence of merging two elements in its construction. First of, clipping limits the
change in (12) when Y

(j)
i is exchanged for another data point Ỹ (j)

i . In the vector as a whole,
the coordinate wise change is limited by the compact support of the wavelet basis. The es-
sential feature of the wavelet basis here is that, even though the basis elements increase ex-
ponentially as the resolution levels l increases, their support shrinks proportionally, ensuring
that each X

(j)
i is in the support of only finitely many wavelets at each resolution level. That

is, there are at most cA > 0 number of basis functions  lk with overlapping support at each
resolution level l, where cA > 0 depends on A> ↵. This means that changing one datum in
Z

(j), say (Y (j)
i ,X

(j)
i ) to (Ỹ (j)

i , X̃
(j)
i ), has only a limited impact at the level of the transcript

f̂
(j)
L,⌧ (Z

(j)).

The bounded L2-sensitivity means that the statistic f̂
(j)
L,⌧ (Z

(j)), combined with addi-
tive, appropriately scaled Gaussian noise satisfies ("j , �j)-differentially privacy. This re-
sult for mappings with bounded L2-sensitivity is well known and a proof can be found in
e.g. Appendix A of [31]. To be precise, the j-th server outputs T̃

(j)
lk;⌧ = f̂

(j)
lk;⌧ + W

(j)
lk for

k = 0, . . . ,2l � 1, l = l0, . . . ,L, where the coordinates of W (j) := (W (j)
lk : k = 0, . . . ,2l �

1, l = l0, . . . ,L) are i.i.d. mean zero gaussian with variance 4⌧22Lc2 log(2/�j)
n2

j"
2
j

. The constant

c := 2
p
2
p
cAk k1 matches the constant in Lemma 3.1. The addition of the gaussian noise

ensures that the transcript

T
(j)
L,⌧ :=

n
T
(j)
lk;⌧ : k = 0, . . . ,2l � 1, l= l0, . . . ,L

o
= f̂

(j)
L,⌧ (Z

(j)) +W (j)

is ("j , �j)-differentially private.
The final estimator of f is then obtained via a post-processing step in which each of the

transcripts is reweighted, taking the heterogeneity between the servers into account. The
choice of weight depends crucially on the local number of observations nj and the local
privacy constraint "j . Given the transcripts T = (T (1)

L,⌧ , . . . , T
(m)
L,⌧ ), the final estimator takes

the form of

f̂L,⌧ (x) =
LX

l=l0

2l�1X

k=0

0

@
mX

j=1

ujT
(j)
lk;⌧

1

A k,l(x),

where the weights are given by

(13) uj =
vjP
j vj

with vj =
�
n
2
j"

2
j

�
^
�
nj2

L
�
.

The following theorem captures the global risk attained by the estimator f̂L,⌧ resulting from
the distributed (✏,�)-DP procedure outlined above, with optimal selection of L and a suffi-
ciently large choice of ⌧ . For the latter, a choice of C↵,R +

p
(2↵+ 1)L is adequate, where

C↵,R > 0 is a constant, as specified by Lemma B.6 or a larger constant.
The variance of the Gaussian noise vectors W (j), which yield the privacy guarantee, in-

creases with L. Consequently, the optimal choice of L is not just governed by the classical
bias variance trade-off, but also by the trade-off in the additional noise required to guarantee
privacy.

The optimal choice of L is taken as follows. Let D> 0 be the number solving the equation

(14) D
2↵+2 =

mX

j=1

�
n
2
j"

2
j

�
^ (njD) .
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Setting L= (l0+1)_dlog2(D)e yields the optimal performance as described by the theorem
below, in terms of a bias-variance-sensitivity trade-off. Furthermore, this performance turns
out to be the theoretically best possible performance in a minimax sense, as established by
the lower bound of Theorem 4.1 in Section 4.

THEOREM 3.2. Set ⌧ =C↵,R +
p

(2↵+ 1)L and take L= (l0 +1)_ dlog2(D)e, where

D> 0 is the solution to (14).
Then, the L2-risk of the distributed (",�)-DP protocol f̂L,⌧ satisfies

sup
f2B↵,R

p,q

Ef

���f̂L,⌧ � f

���
2

2
C log(N)2�2L↵ log(2/�0),

where �
0 =mini2[m] �i and C denotes a constant depending on  .

We briefly comment on the derived result. We first note that the choice of wavelet basis
(in particular the father wavelet  ) influences the constants in the theorem, but not the con-
vergence rate. The rate attained by the choice of L as directed by (14) yields optimal rate as
given in Corollary 1 in case of homogeneous servers, the optimal rate of Corollary 3 in case
the privacy budgets satisfy (8) or the optimal rates of Corollary 4 in case the budget satisfies
(9).

3.3. Constructing an optimal estimator of f at a point. We now turn to the task of esti-
mating the unknown function f 2 B↵,Rp,q at a given point x0 2 (0,1). That is to say, we will
construct an estimator f̂ such that Ef (f̂(x0)� f(x0))2 achieves the optimal rates as predi-
cated by Corollaries 2, 3 and 4.

A natural estimator of f(x0) is to use the global plug-in estimator of the previous sec-
tion, f̂L,⌧ (x0), with f̂L,⌧ as constructed in the previous section. However, for estimation at
a point as goal of inference, we instead opt for estimating f(x0) locally. Similarly to the
pre-processing step in Section 3.2, the preliminary local estimator is to be perturbed with
noise to ensure it satisfies the DP constraint of Definition 1.1. Adding Laplacian noise turns
out to suffice to ensure ("j ,0)-DP, which is a stronger guarantee than ("j , �j)-DP. Another
advantage to this approach compared to the plug-in estimator f̂L,⌧ (x0) is that the procedure
derived below has a log(N)-factor improved rate compared to the plug-in estimator.

As a first step in constructing the estimator of f(x0), we consider for L 2 N and ⌧ > 0

the first wavelet coefficients f̂
(j)
L,⌧ as computed in (12). On the j-th server, we construct the

estimator corresponding to f̂
(j)
L,⌧ , which we then evaluate in the point x0,

(15) f̂
(j)
L,⌧ (x0)⌘ f̂

(j)
L,⌧ (x0|Z

(j)) :=
LX

l=l0

2l�1X

k=0

f̂
(j)
lk;⌧ lk(x0).

In order to create a ("j ,0)-DP transcript, we add Laplacian noise to f̂
(j)
L,⌧ (x0) directly. Lapla-

cian noise performs well for statistics with small L1-sensitivity, i.e. the change in L1-norm
when one datum is changed underlying the statistic. The L1-sensitivity scales poorly in the
dimension of the statistic compared to the L2-sensitivity dictating the noise of the Gaussian
mechanism of Section 3.2. Essentially, the estimator proposed in (15) has large sensitivity
only for observations that are “close” to x0. To see this, note that  lk . 2l/2 and that the
latter estimator can be written as

f̂
(j)
L,⌧ (x0|Z

(j)) =
LX

l=l0

X

k2Kl(x0)

f̂
(j)
lk;⌧ lk(x0),
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where Kl(x0) := {k :  lk(x0) 6= 0}. Using this fact, the lemma below gives an exact bound
on the L1-sensitivity of the functional f̂ (j)

L,⌧ (x0).

LEMMA 3.3. Let Z
(j)

and Z̃
(j)

any realizations of neighboring data sets. It holds that

(16)
���f̂ (j)

L,⌧ (x0|Z
(j))� f̂

(j)
L,⌧ (x0|Z̃

(j))
���
1
 c

0
 
⌧2L

nj
,

where c
00
 := 2cAk k21 is a constant depending only on the choice of wavelet basis.

This bound on the L1-sensitivity yields that as a privacy mechanism it suffices to add
Laplace noise with variance c0 ⌧2

L

nj"j
to the functional f̂ (j)

L,⌧ (x0). That is, the transcript T (j)
lk,⌧ for

j 2 [m] given by

T
(j)
L,⌧ = f̂

(j)
L,⌧ (x0) +W

(j)
, where W

(j) i.i.d⇠ Lap

 
0,

c
0
 ⌧2

L

nj"j

!

is ("j ,0)-DP (see e.g. [31]). With each j-th server transmitting T
(j)
L,⌧ , the estimator computed

in the central server is given by f̂(x0) =
Pm

j=1 ujT
(j)
L,⌧ .

It remains to determine the optimal choice of L. Similarly as in in the case of the estimator
of global risk as presented in Section 3.2, there is a trade-off between bias, variance and
sensitivity, where the L1-sensitivity can be seen to have a dependence on L. The explanation
for this, is that even though the functional f̂ (j)

L,⌧ (x0) is unidimensional, the wavelet resolution
level L still determines how a change in an individual datum can potentially change the value
of a local estimator defined in (15).

Here, the choice of L is governed by L = (l0 + 1) _ dlog2(D)e, where D > 0 be the
number solving the equation

(17) D
2⌫+2 =

mX

j=1

�
n
2
j"

2
j

�
^ (njD) .

The following theorem describes the performance of the pointwise estimator on the basis of
the (",�)-DP transcript T = (T (1)

L,⌧ , . . . , T
(m)
L,⌧ ) for a sufficiently large choice of ⌧ , such as

⌧ =C↵,R +
p

(2↵+ 1)L, with C↵,R > 0 as given by Lemma B.6.

THEOREM 3.4. Set ⌧ =C↵,R +
p

(2↵+ 1)L and take L= (l0 +1)_ dlog2(D)e, where

D is governed by (17).
Then, the pointwise `2-risk of the distributed (",�)-DP protocol f̂L,⌧ satisfies

sup
f2B↵,R

p,q

Ef (f̂(x0)� f(x0))
2 C log(N)2�2L⌫

.

for a constant C > 0 depending only on the choice of wavelet basis.

The rate attained by the choice of L as directed by (17) does not just yield the best possible
bias-variance-sensitivity trade-off for the estimator class under consideration, but it turns out
to be minimax optimal (up to a log factor) as established in the lower bound of Theorem
4.4. It consequently yields the optimal rate as given in Corollary 2 in case of homogeneous
servers, the optimal rate of Corollary 3 in case the privacy budgets satisfy (8) or the optimal
rates of Corollary 4 in case the budget satisfies (9). As is the case with Theorem 3.2, the
choice of wavelet basis influences the constants in the theorem, but not the convergence rate.
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4. Minimax Lower Bounds. Theorems 3.2 and 3.4 provide the rates of convergence for
the proposed estimators of f and f(x0), respectively. In this section we shall show that these
rates of convergence are indeed optimal among all estimators by establishing two matching
minimax lower bounds, up to logarithmic factors, for global and pointwise estimation. These
results affirm the optimality of the estimators presented in Section 3.

The lower bounds are presented in Theorems 4.1 and 4.4 for the global and pointwise
risks, respectively. The derivation of each lower bound relies on entirely distinct techniques,
elaborated in Section 4.1 and Section 4.2.

4.1. Minimax lower bounds under heterogeneous distributed DP constraints. The fol-
lowing theorem states a lower bound on the minimax risk for global estimation.

THEOREM 4.1. Let D > 0 be the solution to (14) and assume that �j < (n1/2
j "

2
j (D _

1)�1) for some  > 0 and all j 2 [m]. Then, we have the following lower bound on the

minimax risk:

(18) inf
f̂2M(",�)

sup
f2B↵,R

p,q

Efkf̂ � fk22 &D
�2↵ ^ 1.

Before outlining the proof, we briefly note that this lower bound matches that of the upper
bound of Theorem 3.2 (up to a log-factor), for the choice L = (l0 + 1) _ dlog2(D)e in the
estimator under consideration in Section 3.2. The theorem affirms that, up to a log factor, the
proposed estimator attains the best rate among all privacy constrained estimators.

Next, we discuss the most important steps in the proof here, whilst leaving the technical
details to the appendix. To lower bound the global risk, we first restrict to a finite-dimensional
sub-model of the Besov space B↵,Rp,q . To align notation with the previous section, we shall use
the wavelet basis from before to do so. Given L 2 N, we consider the finite-dimensional
subspace

B↵,R,L
p,q :=

8
<

:f 2 B↵,Rp,q : f =
2L�1X

k=0

fLk Lk, fLk 2 [�2�L(↵+1/2)
R,2�L(↵+1/2)

R]

9
=

; .

Let  (X) denote the 2L dimensional vector { Lk(X)}2L

k=1 and define

(19) Sf

⇣
Z

(j)
i

⌘
:= �

�1

0

@Y
(j)
i �

2L�1X

k=0

fLk Lk

⇣
X

(j)
i

⌘
1

A 
⇣
X

(j)
i

⌘
.

The random vector Sf (Z
(j)
i ) can be seen as an “score function” of the i-th observation on the

j�th server, within the finite dimensional sub-model. Similarly, consider the “score function”
for local data Z(j) on the jth server; Sf (Z(j)) :=

Pnj

i=1Sf (Z
(j)
i ). Furthermore, let Cf (T (j))

denote the 2L dimensional matrix

(20) E E
h
Sf

⇣
Z

(j)
⌘
| T (j)

i
E
h
Sf

⇣
Z

(j)
⌘
| T (j)

iT
.

We shall write Cf (Z(j)) for the unconditional version covariance matrix of Sf (Z(j))and let
C(j)

f,i = E
h
Sf (Z

(j)
i )Sf (Z

(j)
i )T

i
, such that Cf =

Pnj

i=1C
(j)
f,i .

Using the Van-Trees inequality (with a prior as specified later on in the section), we obtain
an expression in terms of the sum-of-traces of the matrices in display (20), i.e. the covariance
of the score function Sf (Z(j)), conditionally on the released transcripts.
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As the conditional expectation contracts the L2-norm, we have the “data processing”
bound Cf (T (j))Cf (Z(j)), which in turn implies that

(21) Tr(Cf (T
(j))) Tr(Cf (Z

(j))).

The right-hand side can be bounded by 2Lnj by direct calculation, which we defer to Section
B.2. These standard bounds do not take the privacy constraints into account and would lead
to the unconstrained minimax rate.

To capture the loss of information stemming from the DP constraint of Definition 1.1,
a more sophisticated data processing argument is required. This bring us to one of the key
technical innovations of the paper, which comes in the form of a data-processing inequal-
ity (Lemma 4.2 below) for the conditional covariance given a ("j , �j)-differentially private
transcripts of linear functionals of the data such as the score Sf (Z

(j)
i ). The lemma can be

seen as a geometric version of the “score attack” lower bound of [18]. Combining this data
processing step with the linearity of the trace accommodates for the heterogeneity between
the servers.

LEMMA 4.2. Let �j log(1/�j) < n
1/2
j "

2
j (D _ 1)�1

for j = 1, . . . ,m. There exists a uni-

versal constant C > 0 such that

E
h
Tr(Cf (T

(j)))
i
Cnj"j

q
E
⇥
Tr(Cf (T (j)))

⇤q
�max(Cf,i)

+C�j

⇣
2Ln1/2

j log(1/�j) + nj

⌘
.

In Section B.2 of the appendix, we show that the largest eigenvalue of Cf,i; �max(Cf,i), is
bounded, from which it follows from the E

⇥
Tr(Cf (T (j)))

⇤
. n

2
j"

2
j uniformly for f 2 B↵,R,L

p,q

whenever �j is of smaller than n
1/2
j "

2
jD

�1.
With the two bounds on the trace of Cf (T (j)) in hand, we now lower bound global esti-

mation risk using the Van-Trees inequality. The Van-Trees inequality provides an expression
in terms of the trace of a certain covariance matrix, which is the conditional covariance of a
linear functional of the data. Combined with the data processing inequalities, the linearity of
the trace accommodates for the heterogeneity between the servers.

In order to apply the Van-Trees inequality, we first define a prior such that the worst-
case global risk is lower bounded by the corresponding Bayes risk. To that extent, we de-
fine a prior ⇧ that is supported on B↵,R,L

p,q . Given the resolution level L 2 N, we draw
fLk independently from the probability distribution ⇧Lk, defined through an appropriately
rescaled version of the density t 7! cos2(⇡t/2) |t|1) such that has its support equal to
[�2�L(↵+1/2)

R,2�L(↵+1/2)
R] for k = 0 . . . ,2L�1 and set flk = 0 otherwise. For this choice

of prior, the Van-Trees inequality of [38] yields the following lemma, for which we defer the
details of the proof to Section B.2 in the appendix.

LEMMA 4.3. It holds that supf2B↵,R
p,q

Efkf̂ � fk22 is lower bounded by the Bayes risk
R
Efkf̂ � fk22d⇧(f), which is further lower bounded as follows

Z
Efkf̂ � fk22d⇧(f)�

22L

supf2B↵,R,L
p,q

Pm
j=1Tr(Cf (T (j))) + ⇡22L(2↵+2)

.

Combining the upper bound on the trace of Cf (T (j)) of (21) and Lemma 4.2, we have, by
Lemma 4.3, that

sup
f2B↵,R

p,q

Efkf̂ � fk22 &
22LPm

j=1 n
2
j"

2
j ^ nj2L + ⇡22L(2↵+2)

.
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We obtain the desired lower bound by choosing an L that maximizes the lower bound. Setting
L= (l0+1)_dlog2(D)e can be seen to do so by the relationship (14), which proves Theorem
4.1.

4.2. Lower bound for the pointwise risk. In this section, we derive the minimax lower
bound for the pointwise risk. We first present the lower bound as the main result of the section
in the form of Theorem 4.4, after which we discuss its proof. The theorem tells us that the
pointwise risk estimator proposed in Section 3.3 performs optimally in terms of achieving
the minimax privacy constrained rate up to a logarithmic factor.

THEOREM 4.4. Let D> 0 be the number solving the equation

(22) D
2⌫+2 =

mX

j=1

�
n
2
j"

2
j

�
^ (njD) .

Assume furthermore that
P

j nj�j ! 0. Then, for any x0 2 (0,1), the minimax pointwise risk

is lower bounded as follows:

sup
f2B↵,R

p,q

Ef

⇣
f̂(x0)� f(x0)

⌘2
&D

�2⌫ ^ 1.

Whenever

⇣Pm
j=1 n

2
j"

2
j

⌘ 1
2⌫+2 �maxj nj✏

2
j , the right hand side is further bounded from below

by

⇣Pm
j=1 n

2
j"

2
j

⌘� 2⌫
2⌫+2 ^ 1.

The proof of the theorem is based around the Le Cam two point method, which is a com-
mon approach to lower bounding the pointwise risk, see for example [72]. However, to cap-
ture the effect of the transcripts satisfying the DP constraint of Definition 1.1, we introduce a
coupling argument in conjunction.

We briefly sketch the two point method and coupling argument here, leaving the technical
details to the appendix. Take any function f 2 B↵p,q such that kfkB↵p,q = R

0
<R and a com-

pactly supported function g 2 B↵p,q such that kgkB↵p,q  R�R
0 and g(0)> 0. Define a third

function

f̃(t) := �
�1
D g(�D(t� x0)) + f(t),

where �D := c
�1
0 D

⌫ and �D = �
1/⌫
D , where we recall that ⌫ = ↵� 1

p . By e.g. Lemma 1 from
[15], kfkB↵p,q R.

Let (Y (j)
i ,X

(j)
i ) ⇠ Pf and (Ỹ (j)

i , X̃
(j)
i ) ⇠ Pf̃ for individual observations generated ac-

cording to (1) with either f or f̃ the true underlying regression function respectively. We
construct a coupling between Pf and Pf̃ such that (Y (j)

i ,X
(j)
i ) and (Ỹ (j)

i , X̃
(j)
i ) are equal

with probability proportional to �
�1kf̃ � fk1, which forms the content of the following

lemma.

LEMMA 4.5. There exists a joint distribution Pf,f̃ of

⇣
(Y (j)

i ,X
(j)
i ), (Ỹ (j)

i , X̃
(j)
i )
⌘

such

that

(23) ⇢ := Pf,f̃

⇣⇣
Y

(j)
i ,X

(j)
i

⌘
6=
⇣
Ỹ

(j)
i , X̃

(j)
i

⌘⌘
 c

�
kf̃ � fk1,

for a universal constant c > 0.
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We prove the above lemma in Section C.3. Loosely speaking, the quantity ⇢ captures the
difficulty of distinguishing individual observations from Pf of those generated from Pf̃ .

Consider now transcripts T = (T (1)
, . . . , T

(m)) each satisfying the DP constraint of Defi-
nition 1.1 with a privacy budget (",�), and let Pf denote the joint law of transcripts and the
N =

Pm
j=1 nj observations generated from Pf . Let PT

f denote the push-forward measure of
the transcript, i.e. its marginal distribution given that the data is generated by Pf . Similarly,
let Pf̃ denote the joint law of T with the data generated from Pf̃ and let PT

f̃
denote the corre-

sponding marginal distribution of T . With the coupling of Lemma 4.5 in hand, we derive the
following lemma.

LEMMA 4.6. For any subset S ✓ [m],

(24)
���PT

f � PT
f̃

���
TV


p
2

sX

j2S
"̄j (e"̄j � 1) +

X

j2Sc

njDKL(Pf ;Pf̃ ) + 4
X

j2S
e
"̄jnj�j⇢,

where "̄j = 6nj"j⇢, ⇢ as defined in (23).

We defer a proof of the lemma to Section C.3 of the appendix. The lemma allows analysis
of the contributions of the separate the servers, accounting for the heterogeneity in the pri-
vacy budgets (✏j , �j) and the differing number of observations. Roughly speaking, for servers
with relatively large privacy budgets, their contribution to the estimator is to be captured by
njDKL(Pf ;P T

f̃
), which does not involve the privacy budget all together. Servers for which

the privacy budget is more stringent, contribute with the (potentially) smaller quantity "̄j ,
where ⇢ corresponds to the probability in (23), established in the coupling relationship of
Lemma 4.5.

The optimal division into these stringent and non-stringent privacy budgets is made by
taking

S =

⇢
j 2 [m] : "j 

q
D/nj

�
,

in the sense that this choice of S minimizes the right-hand side of (24). With this choice of
S, the bound on ⇢ established in Lemma 4.5 and the fact that by the construction of f̃ we
have kf̃ � fk1 = �

�1
D �

�1
D kgk1 with �D := c

�1
0 D

⌫ and �D = �
1/⌫
D , we obtain that

X

j2S
"̄j
�
e
"̄j � 1

�
.
X

j2S
n
2
j"

2
j⇢

2  �
�2
D �

�2
D kgk21

X

j2S
n
2
j"

2
j = c

2+2/⌫
0 D

�2�2⌫kgk21
X

j2S
n
2
j"

2
j .

The bound DKL(Pf̃ ;Pf ) . �
�2kf̃ � fk22, which is obtained through standard calculations,

combined with the fact that kf̃ � fk22 . �
�2
D �

�1
D kgk22 by construction,

X

j2Sc

njDKL(Pf ;Pf̃ ). c
1+2/⌫
0 D

�2�2⌫kgk22
X

j2Sc

njD.

In Section C.3 of the appendix, it is shown that if
P

j2S nj�j = o(1) as is assumed in the
theorem, it holds that

P
j2S

e
"̄jnj�j⇢ = o(1) for the particular choice of S as well. Per the

choice of the set S and D satisfying (17), we obtain that for c0 < 1,
���PT

f � PT
f̃

���
TV

Cc
1+2/⌫
0 + o(1).
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By taking the constant c0 sufficiently small, the conclusion of Theorem 4.4 follows by Le
Cam’s two point method (see e.g. Lemma 1 in [72]), which then yields that

sup
f2B↵,R

p,q

Ef

⇣
f̂(x0)� f(x0)

⌘2
&
⇣
f̃(x0)� f0(x0)

⌘2
& �

�2
n g

2(0)&D
�2⌫

,

proving the theorem.

5. Discussion. The findings in the present paper highlight the trade-off between statisti-
cal accuracy and privacy preservation within the context of federated nonparametric regres-
sion. The results under the heterogeneous setting quantify the degree to which the individual
DP constraints, as well as the degree to which observations are distributed among the differ-
ent servers, impact the statistical performance as measured by the minimax risk. Furthermore,
we find that the influence of the privacy constraints on the optimal performance depends on
the inferential task at hand, with global estimation of an unknown function being subject to
a different performance impact than estimation of a function at a point. For each of these
inferential tasks, we provide an estimation procedure that attains the optimal statistical per-
formance up to a logarithmic factor.

One promising direction for future research is the exploration of adaptive estimation in
the federated learning framework. While our paper characterizes the statistical performance
for nonparametric regression in a heterogeneous setting, the estimation procedures in this
paper assume knowledge about the regularity of the underlying function. However, in many
real-world applications, the regularity is unknown and estimators that can adapt to the true
underlying regularity are required to attain the best possible performance. while such adaptive
techniques exist for problems without privacy constraints (see e.g. [15, 26]), the theoretical
(im)possibilities of adaptation under privacy constraints are relatively understudied. Such
adaptive techniques might serve dual purposes: they could potentially refine the statistical
accuracy while also optimizing the DP constraints for individual servers, especially when the
constraints are dynamic or based on real-time needs. We leave this for future work.

Another promising avenue for future research is nonparametric hypothesis testing. It is
well known that testing in nonparametric settings is subject to different phenomena than
estimation, see for example [45]. However, under privacy constraints, the theoretical best
possible performance in nonparametric hypothesis testing is not well understood. Addressing
this question complements our understanding of the estimation problem.

Funding. The research of Tony Cai was supported in part by NIH grants R01-GM123056
and R01-GM129781.

SUPPLEMENTARY MATERIAL

Supplement to “Optimal Federated Learning for Nonparametric Regression with
Heterogenous Distributed Differential Privacy Constraints"
In the supplement to this paper, we present the detailed proofs for the main theorems in the
paper “Optimal Federated Learning for Nonparametric Regression with Heterogenous Dis-
tributed Differential Privacy Constraints”.
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