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Summary
Population-level single-cell gene expression data captures the gene expressions of thou-

sands of cells for each individual within a sizable cohort. This data enables the con-
struction of cell-type- and individual-specific gene co-expression network by estimating
the covariance matrices. It is important to understand how such co-expression networks 20

are associated with individual-level covariates. This paper considers Fréchet regression
with multivariate Gaussian distribution as an outcome and vector covariates, where the
Wasserstein distance between distributions is used as a replacement for the Euclidean
distance. A test statistic is defined based on Fréchet mean and covariate weighted Fréchet
mean. The asymptotic distribution of the test statistic is derived under the assumption of 25

simultaneously diagonalizable covariance matrices. Although the proposed test statistic
is motivated by considering the multivariate normal distribution as the outcome, it can
be applied for testing the association between covariance matrices and covariates, where
permutation can be used for assessing its statistical significance. Simulations show that
the proposed test has correct type 1 error and adequate power. Results from an analysis 30

of large-scale single-cell data reveal an association between the gene co-expression net-
work of genes in the nutrient sensing pathway and age, indicating the perturbed gene
co-expression network as people age.

Some key words: Fréchet mean, personalized co-expression, single cell gene expression, Wasserstein dis-
tance. 35
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1. Introduction

The recent development of single-cell sequencing technologies, including both single
cell RNA sequencing (scRNA-seq) and single nuclei sequencing, has made it possible to
study cellular heterogeneity at high resolution and scale (Jovic et al., 2022; Tomokazu
& Hafler, 2022). Cellular heterogeneity, which can be revealed by these single cell-level40

data, underlies phenotypic differences among individuals. Studying cellular heterogene-
ity is an important step toward our understanding of the disease onset, progression and
treatment response. As the technologies mature and the cost is reduced, large-scale pop-
ulation level single cell data have been increasingly collected to characterize cellular
heterogeneity from different aspects. These datasets enable the extraction of cell-type-45

specific personalized gene expression variations and molecular interactions, providing
insights into changes in interaction networks with different covariates. However, link-
ing such personalized single-cell data variability with disease phenotypes or covariates
necessitates meticulous statistical analysis and the application of advanced methods.

Single-cell gene expression data enables the estimation of individual-specific, person-50

alized gene co-expression networks within a set of genes (Ribeiro et al., 2022; Harris
et al., 2021). The co-expression network among a set of genes can be approximated by
a gene expression covariance matrix estimated based on the single cell gene expression
data measured for a given individual. It is crucial to investigate how such co-expression
networks are linked to individual covariates, such as age, sex, and genetic background.55

This paper addresses the challenge of associating an individual-specific covariance ma-
trix of a gene set with a vector of covariates within the framework of non-Euclidean
outcome regression. For a given individual, we model the joint distribution of a gene set
with a multivariate normal distribution, incorporating an individual-specific covariance
matrix. Our goal is to perform regression analysis with multivariate normal distribution60

as the outcome for a set of Euclidean covariates. Such a regression model can the be used
to test the association between gene expression covariance matrix and a set of covariates,
and to address the question of how a covariate explains the variability of the covariance
matrices observed over a large set of samples. Although the proposed test statistic is
motivated by considering the multivariate normal distribution as the outcome, it can65

be applied for testing the association between covariance matrices and covariates, where
permutation can be used for assessing its statistical significance.

Petersen & Müller (2019) considered regression relationships between responses that
are complex random objects and vectors of real-valued predictors and developed Fréchet
regression. They developed a global Fréchet regression relation as a generalization of mul-70

tiple linear regression, as well as a class of more flexible local regression methods that
generalizes local linear or polynomial regression. Their proposed regression approach for
random objects incorporates the geometry implied by the metric and can be viewed as
an extension of the Fréchet mean. Petersen et al. (2021) further developed Wasserstein
F -test for association between a random distribution function and a covariate. For the75

special case of univariate density as the outcome, they derived the asymptotic null distri-
bution, which can be used for testing the association between a random density function
and a set of covariates. However, the methods and the theoretical results in Petersen &
Müller (2019) and Petersen et al. (2021) assume that the random objects such as the
univariate densities are observed without uncertainty.80

In this paper, we consider Fréchet regression of Petersen & Müller (2019) for the setting
where multivariate normal distribution is the outcome. In population scale single cell
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studies, for each individual, we have an individual-specific gene expression distribution
across different cells. Alongside, we have covariates (e.g., age, gender, disease status) that
can possibly be connected to the joint distribution of gene expressions. Testing whether 85

or not this connection is significant is important in practice since it allows us to determine
the effect of covariates on the individual specific distributions. A primary reason of using
the entire cell distribution, as obtained from single cell data, is its granularity. A pseudo-
bulk single cell analysis, which reduces the distribution to a summary statistic (e.g., the
sample mean) might not be sufficient to capture this dependence on covariates. 90

We note here that regression involving covariance matrices as responses have been pre-
viously considered in the literature, see, e.g., Hoff & Niu (2012); Zou et al. (2017). How-
ever these works consider a specific model which determines how the covariance matrix
depends on the covariates. In this paper, we use a general framework based on Wasser-
stein distances between multivariate normal distributions which requires no such explicit 95

model for the dependence of covariance matrices. The Wasserstein distance between two
multivariate normal distributions, has an analytical expression (Givens & Shortt, 1984;
Knott & Smith, 1984). Based on the results of Álvarez-Esteban et al. (2016); Chewi et al.
(2020), the sample Wasserstein barycenter of multivariate normal distributions is also
a multivariate normal with closed form expressions of its mean and covariance matrix. 100

Although the test statistics we consider follow the general form of the Wasserstein F -test
of Petersen et al. (2021), we show that, under simultaneously diagonalizable covariance
matrices, the Wasserstein F -test follows a mixture of χ2 limiting distribution under the
null hypothesis of no association. We emphasize that our results do not assume that
the multivariate normal densities are observed, instead, we allow these densities to be 105

estimated using the observed data. Our results account for such an uncertainty. The as-
sumption of simultaneously diagonalizable covariance matrices allow us to obtain more
accurate estimate of the individual-specific covariance matrices. Additionally, we present
the Wasserstein F -test for assessing the partial effect of a covariate while adjusting for
other covariates. 110

2. Distributional Regression with Multivariate Normal Density
Outcome

2.1. Gene co-expression network from single cell data
For typical single cell gene expression studies of n individuals, we observe the log-

expression Yijk for the ith individual, jth cell and kth gene. The indices run as i = 1, . . . , n
j = 1, . . . , mi and k = 1, . . . , d. The model assumptions are as follows:

Yij
iid∼ Nd (µi, Σi) for j = 1, . . . , mi; i = 1, . . . , n.

We have estimates

µ̂i = 1
mi

mi∑
j=1

Yij ; Σ̂i = 1
mi − 1

mi∑
j=1

(Yij − µ̂i)(Yij − µ̂i)⊤.

In genomics, Σi represents the individual-specific co-expression of d gene across the cells
of a given type, and Σ̂i is its sample estimate. We also assume that we have p covariates 115

measured, denoted by Xi ∈ Rp for the ith individual.
We will use the multivariate normal distribution as a motivating model for our work.

This is different from the results in Petersen & Müller (2019) that are derived for univari-
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ate distributions. In our applications to single cell genomics, it is necessary to consider
multivariate distributions, and the Gaussian distribution is a natural starting point.120

While this motivates the specific form of the F -statistic we consider, we will find later
that many of our results can in fact be generalized to other multivariate distributions
provided some assumptions are satisfied.

2.2. Fréchet regression with distribution as the outcome
We begin with some preliminaries on regression where the responses are probability125

distributions. We will use the framework of Petersen & Müller (2019); Petersen et al.
(2021), where the Wasserstein distance between two distributions is used as a replacement
for the Euclidean distance used in typical regression scenarios with scalar responses.

Suppose that we observe response variables that are N(µi, Σi) distributions, together
with covariates Xi ∈ Rp for i = 1, . . . , n. For two d-variate Gaussian distributions, say130

N(µ1, Σ1) and N(µ2, Σ2), the Wasserstein distance between them can be shown to have
the explicit form (Givens & Shortt, 1984; Knott & Smith, 1984):

d2
W (N(µ1, Σ1), N(µ2, Σ2)) = ∥µ1 − µ2∥2

2 + trace(Σ1 + Σ2) − 2trace((Σ
1
2
1 Σ2Σ

1
2
1 )

1
2 ). (1)

We follow the Fréchet regression approach of Petersen & Müller (2019); Petersen et al.
(2021) as follows. Let us define the weights

sin(x) = 1 + (Xi − X̄)⊤Σ̂−1
X (x − X̄) for i = 1, . . . , n. (2)

Given a set of weights we solve the weighted Wasserstein barycenter problem:

(µ∗, Σ∗)(x) = argmin
µ∈Rd,Σ∈Rd×d

⪰0

n∑
i=1

sin(x)d2
W (N(µ, Σ), N(µi, Σi)).

By the results from Álvarez-Esteban et al. (2016); Chewi et al. (2020), the sample Wasser-135

stein barycenter of N(µi, Σi) for i = 1, . . . , n is given by a normal distribution N(µ0, Σ0).
Moreover, the parameters of the barycenter distribution satisfy:

µ0 = 1
n

n∑
i=1

µi (3)

and Σ0 satisfies the fixed-point equation

Σ0 = 1
n

n∑
i=1

(Σ1/2
0 ΣiΣ1/2

0 )1/2. (4)

In the context of regression, we consider a weighted barycenter problem, with weights
sin(x) depending on the covariates x. Once again using the Gaussian Wasserstein140

barycenter results of Álvarez-Esteban et al. (2016); Chewi et al. (2020), we have

µ∗(x) = 1∑
i sin(x)

n∑
i=1

sin(x)µi (5)

while Σ∗(x) satisfies the fixed-point equation

Σ∗ = 1∑
i sin(x)

n∑
i=1

sin(x)(Σ1/2
∗ ΣiΣ1/2

∗ )1/2. (6)
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In (2), we obtain sin(X̄) = 1 and hence (µ∗, Σ∗)(X̄) = (µ0, Σ0), the sample mean Wasser-
stein barycenter given in equations (3) and (4).

3. Wasserstein F -test for no effects of covariates on multivariate 145

normal distribution
3.1. Wasserstein F -test

We consider the problem of testing for the effect of covariates on the distribution valued
response variables. More specifically, suppose for i = 1, . . . , n we observe Fi, which are
distributions of random vectors Yi ∈ Rd. We consider the hypothesis of whether covariates 150

Xi influence Fi. Motivated by our applications in gene co-expression network analysis, we
will consider a parametric form of Fi, in particular, we will assume that Fi ≡ N(µi, Σi)
for i = 1, . . . , n. While this assumption might seem restrictive in practice, we use this
only to motivate a specific form of the test statistic. In later sections, we show that, one
can remove the normality assumption and still use the same test statistic to infer about 155

certain forms of dependence of Fi on Xi.
We want to test the hypothesis that regressing on Xi has no effect on the multivari-

ate distribution. Since a Gaussian distribution is completely specified by its mean and
variance, this is equivalent to testing

H0 : (µ∗, Σ∗)(x) = (µ0, Σ0) for all x.

By equation (3.1) of Petersen et al. (2021), a natural test statistic is

F∗ =
n∑

i=1
d2

W (N((µ∗, Σ∗)(Xi)), N((µ∗, Σ∗)(X̄))), (7)

where µ∗(x) and Σ∗(x) are as defined in equations (5) and (6). By the form of Wasserstein
distance between Gaussian distributions (see equation (1)) we have

F∗ =
n∑

i=1

∥∥∥µ∗(Xi) − µ∗(X̄)
∥∥∥2

2
+

n∑
j=1

trace(Σ∗(Xj)) + ntrace(Σ∗(X̄)) 160

− 2
n∑

j=1
trace

{
((Σ1/2

∗ (Xj))(Σ∗(X̄))(Σ1/2
∗ (Xj)))1/2

}
. (8)

To better understand the effect of the covariates, let us define the weights

wij := sin(Xj)∑n
i=1 sin(Xj) = 1 + (Xi − X̄)⊤Σ̂−1

X (Xj − X̄)
n

,

and their centered versions

w̌ij := sin(Xj)∑n
i=1 sin(Xj) − 1

n
= (Xi − X̄)⊤Σ̂−1

X (Xj − X̄)
n

. (9)

We define the matrix of means

Mµ := (µ1 µ2 . . . µn) ∈ Rd×n. (10)

Then the first term of F∗ can then be written as
n∑

i=1

∥∥∥µ∗(Xi) − µ∗(X̄)
∥∥∥2

2
=

n∑
i=1

w̌⊤
·i M⊤

µ Mµw̌·i = trace
(

M⊤
µ Mµ

n∑
i=1

w̌·iw̌
⊤
·i

)
, (11)
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where w̌·i = (w̌1i, . . . , w̌ni) ∈ Rn is the vector of centered weights at Xi.165

3.2. Simultaneously Diagonalizable Covariance Matrices
We next consider the effect of covariates Xi on the covariances. Our results will be

derived under a structural assumption that the covariance matrices Σi ∈ Rd×d are simul-
taneously diagonalizable, for i = 1, . . . , n. In particular, they share the same matrix of
eigenvectors. Specifically,

Σi = UΛiU
⊤ for i = 1, . . . , n.

Here Λi ∈ Rd×d are diagonal matrices of eigenvalues; and U ∈ Rd×d is an orthonormal
matrix of common eigenvectors. This assumption is also called common principal compo-
nents analysis in the literature (see Flury (1984, 1986)). In our single cell application, this
assumes that the underlying factors affecting the gene expressions are the same across170

different individuals, which is very plausible and is also verified in our data analysis in
Section 6.

We first show that the solution Σ∗(x) to equation (6) also has the same eigenma-
trix, i.e., Σ∗(x) = UΛ∗(x)U⊤ for a diagonal Λ∗(x) ∈ Rd×d. If this holds, we then rewrite
equation (6) to get175

UΛ∗U⊤ = 1
n

n∑
i=1

sin(x)(Σ1/2
∗ ΣiΣ1/2

∗ )1/2

= 1
n

n∑
i=1

sin(x)(UΛ1/2
∗ ΛiΛ1/2

∗ U⊤)1/2

= U

(
1
n

n∑
i=1

sin(x)(Λ∗Λi)1/2
)

U⊤,

which implies

Λ∗ = 1
n

n∑
i=1

sin(x)(Λ∗Λi)1/2 = Λ1/2
∗

(
1
n

n∑
i=1

sin(x)Λ1/2
i

)
180

where the last line follows since Λ∗ and Λi are diagonal matrices. We thus obtain the
explicit form

Λ∗(x) =
(

1
n

n∑
i=1

sin(x)Λ1/2
i

)2

and

Σ∗(x) = U

(
1
n

n∑
i=1

sin(x)Λ1/2
i

)2

U⊤. (12)

This implies, to satisfy the fixed point equation, Σ∗(x) indeed has the same eigenmatrix
U .

We denote the vectors of eigenvalues of Σ1/2
i by

γi :=
(√

λi1 . . . ,
√

λid

)
= diag(U⊤Σ1/2

i U).

and the matrix

Γ = (γ1 γ2 . . . γn) ∈ Rd×n. (13)
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We also define the matrix of scaled and centered covariates: 185

ZX =
(
Σ̂−1/2

X (X1 − X̄) . . . Σ̂−1/2
X (Xn − X̄)

)
∈ Rp×n. (14)

We then have the following theorem that gives an explicit expression for the F -statistic.

Theorem 1. For i = 1, . . . , n if Σi are simultaneously diagonalizable, F∗ defined in
equation (8) can be written as F∗ = 1

n
∥MµZ⊤

X∥2
F + 1

n
∥ΓZ⊤

X∥2
F, where ∥ · ∥F denotes the

Frobenius norm of a matrix.

3.3. Estimating simultaneously diagonalizable covariance matrices 190

Computation of the F -statistic derived in the previous section requires the knowledge
of µi and Σi. In practice we only observe samples from the N(µi, Σi) distributions, and
have to estimate µi and Σi from the data. To this end, suppose we have i.i.d. observations
(Yi1, . . . , Yimi) for i = 1, . . . , n. We now describe the estimation of µ and Σ under the
additional structural assumption imposed on the covariance matrices. 195

Under the assumption of diagonalizable covariance matrices, Σi = UΛiU
⊤, where U ∈

Rd×d is the matrix of common eigenvectors. It follows that

Σ∗ = 1
n

n∑
i=1

Σi = U

(
1
n

n∑
i=1

Λi

)
U⊤.

To leverage this additional structure of shared eigenvectors, we therefore estimate Σi in
the following manner: 200

1. Split the samples into two halves and denote them by Y
(1)

ij and Y
(2)

ij .
2. Estimate Σ∗ by pooling all the samples in the first half, i.e.,

Σ̂∗ = 1∑
mi

n∑
i=1

mi∑
j=1

(
Y

(1)
ij − ¯̄Y

) (
Y

(1)
ij − ¯̄Y

)⊤
. (15)

3. Estimate U by Û∗, which are the left singular vectors of Σ̂∗.
4. Estimate the vector of eigenvalues of Σi via:

Λ̂i := diag
({

λ̂ik : 1 ≤ k ≤ d
})

where λ̂ik := 1
mi

mi∑
j=1

(û⊤
k Y(2)

ij )2 for 1 ≤ k ≤ d.

(16)
5. Estimate Σi as follows: 205

Σ̂i = Û⊤
∗ Λ̂iÛ∗. (17)

Now in the definition of F∗, we replace all occurrences of the true, unknown Σi by the
Σ̂i and its related quantities defined above. In particular, let us define

F̂∗ =
n∑

i=1
d2

W (N((µ̂∗, Σ̂∗)(Xi)), N((µ̂∗, Σ̂∗)(X̄))). (18)

For simplicity let us assume that Yij are suitably centered so that

µ1 = µ2 = · · · = µn = 0.

Note that we can estimate Γ in (13) by

Γ̂ = (γ̂1 γ̂2 . . . γ̂n) ∈ Rd×n (19)
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where

γ̂i = vec(diag(Λ̂i)
1
2 ) ∈ Rd (20)

for i = 1, . . . , n. Moreover we will write

γ̂k· ∈ Rn for k = 1, . . . , d

to denote the rows of Γ̂. Then following the calculations leading to the alternative defi-210

nition of F∗ in Theorem 1, we have the following proposition.

Proposition 1. For i = 1, . . . , n if Σi are simultaneously diagonalizable, F̂∗ defined
in equation (18) can be written as

F̂∗ =
p∑

s=1

d∑
k=1

(
n∑

i=1
(vX,s)i

√
λ̂ik

)2

,

where vX,s are the eigenvectors of Z⊤
XZX .

We are now ready to present the main result of this section, namely, the null distri-
bution of F̂∗. We remind the reader that our null hypothesis is H0 : Σ(x) = Σ0 for all
covariate values x ∈ Rp. Let Σ have the eigendecomposition

H0 : Σ(x) = Σ0 for all x ∈ Rp; Σ0 = UΛU⊤.

The following theorem presents the null distribution of F̂∗.

Theorem 2. Under H0 as described above, and F̂∗ defined in equation (18), there
exists a constant C > 0 such that215

P
(
F̂∗ ≤ x

)
∈
[
P
{

F̃∗ ≤ x

(
1 − C

√
d∑
i mi

)}
,P
{

F̃∗ ≤ x

(
1 + C

√
d∑
i mi

)}]
(21)

for all x ∈ R. Here F̃∗ =
d∑

k=1

p∑
s=1

η∗
ks(χ2

1)ks, where (χ2
1)ks for k = 1, . . . , d and s = 1, . . . , p

denote d × p i.i.d. χ2
1 random variables. Moreover, η∗

ks are the eigenvalues of ZXD∗
kZ⊤

X ,
where

D∗
k = diag

({
λk

2m1
. . .

λk

2mn

})
. (22)

Finally, λk are the eigenvalues of Σ0, i.e, the common covariance matrix under H0.

We add a few remarks here to interpret the results of the previous theorem.220

Remark 1. (Asymptotic null distribution) When
∑

i mi ≫ d, it follows from the above
theorem that

F̂∗
L→

d∑
k=1

p∑
s=1

η∗
ks(χ2

1)ks,

where (χ2
1)ks for k = 1, . . . , d and s = 1, . . . , p denote dp many i.i.d. χ2

1 random variables.

Remark 2. (Dependence on sample size) Theorem 2 provides a non-asymptotic version
of the convergence of F̂∗, in terms of the sample sizes

∑
i mi and the dimension d. We

recognize an advantage of using the simultaneously diagonalizable assumption here. If
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we were to use the individual covariance matrices to consistently estimate their popula- 225

tion counterparts, the distribution convergence would require mi ≫ d for all 1 ≤ i ≤ n.
However, under our assumption, it suffices to estimate the common eigenvectors from
the pooled covariance matrix, which is possible as soon as

∑
i mi ≫ d.

Remark 3. (Single covariate) A case of special interest is p = 1. In this case, the null
distribution has the simpler expression

∑d
k=1 η∗

k(χ2
1)k in terms of the eigenvalues 230

η∗
k = λk

1
n

∑n
i=1(Xi − X̄)2

n∑
i=1

(Xi − X̄)2

2mi
(23)

for k = 1, . . . , d.

Remark 4. (Equal sample sizes) Suppose that the individual specific sample sizes are
all equal, i.e., m1 = m2 = · · · = mn = m. In this case the null distribution simplifies to∑d

k=1 η∗
k(χ2

p)k in terms of the eigenvalues

η∗
k = nλk

2m
(24)

for k = 1, . . . , d. 235

Although our test statistic has been derived as the Wasserstein distance between two
Normal distributions, we can treat F∗, as defined in Theorem 1, as a statistic for testing
the effect of covariates on the mean and covariance matrix of a random vector Y ∈ Rd. In
particular, the normality assumption is not required if we intend to use F∗ in this manner.
More interestingly, the asymptotic null distribution of F̂∗ holds true more generally, even 240

when the normality assumption is violated. It remains the same as long as the common
covariance matrix is Σ0 under H0, and the eigenvectors of (D∗

k)1/2Z⊤
XZX(D∗

k)1/2, for
k = 1, . . . , d, are sufficiently incoherent. Here D∗

k ∈ Rd×d are as defined in (22).
Thus, although the assumption that observations are normal is too restrictive in prac-

tice, we can bypass this issue and use the equivalent form of F∗ and F̂∗ and still determine 245

the effect of covariates. It is important to keep in mind that in this new form, we are
only able to capture the influence of the predictors on the mean and variance of Y , as
opposed to the entire distribution of Y , for which one requires the full strength of the
Wasserstein distance based Fréchet regression introduced in Petersen & Müller (2019);
Petersen et al. (2021). 250

4. Wasserstein F -test for Partial Effects of Covariates
Using the same setup, we can also test for presence of partial effects of regression. In

particular, suppose x ∈ Rp can be split into two sub-vectors (x(1), x(2)). Here

x(1) ∈ Rp1 and x(2) ∈ Rp2 with p = p1 + p2.

We want to test the hypothesis that x(2) has no effect, i.e.,

HP
0 : (µ∗, Σ∗)(x) = (µ∗, Σ∗)(x(1))
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versus H1 : HP
0 is not true. Following Section 3.2 of Petersen et al. (2021), a suitable

statistic for testing this hypothesis is given by

F P
∗ =

n∑
i=1

d2
W (N((µ∗, Σ∗)(Xi)), N((µ∗, Σ∗)(X̄)))

−
n∑

i=1
d2

W (N((µ∗, Σ∗)(X(1)
i )), N((µ∗, Σ∗)(X̄(1)))). (25)255

Following (14), we define

ZX(1) =
(
Σ̂−1/2

X(1) (X(1)
1 − X̄(1)) . . . Σ̂−1/2

X(1) (X(1)
n − X̄(1))

)
∈ Rp1×n. (26)

For simplicity let us assume that Yij are suitably centered so that µ1 = µ2 = · · · = µn = 0.
Then following the computation behind (32), we get

F̂ P
∗ = 1

n

∥∥∥Γ̂Z⊤
X

∥∥∥2

F
− 1

n

∥∥∥Γ̂Z⊤
X(1)

∥∥∥2

F
= 1

n

d∑
k=1

γ̂⊤
k·

(
Z⊤

XZX − Z⊤
X(1)ZX(1)

)
γ̂k· (27)

The following proposition furnishes an alternative expression for F̂ P
∗ , which will be260

more amenable to our existing framework for deriving null distributions.

Proposition 2. For i = 1, . . . , n if Σi are simultaneously diagonalizable, F̂ P
∗ defined

in equation (27) can be written as

F̂ P
∗ = 1

n

d∑
k=1

γ̂⊤
k·Z

⊤
X(2|1)ZX(2|1) γ̂k·

where ZX(2|1) ∈ Rp2×n is a matrix whose s-th column is equal to

(ZX(2|1))s := Σ−1/2
22|1

(
Σ⊤

12Σ−1
X(1)(X(1)

s − X̄(1)) − (X(2)
s − X̄(2))

)
∈ Rp2 , for s = 1, . . . , n.

Then as before we use the eigendecomposition of Z⊤
XZX − Z⊤

X(1)ZX(1) to conclude that
the null distribution will be a mixture of d × p2 i.i.d. χ2

1 random variables. In particular,
we have the following theorem.

Theorem 3. Under HP
0 as described above, and F̂ P

∗ defined in equation (25), Under265

H0 as described above, and F̂∗ defined in equation (18), there exists a constant C > 0
such that

P
(
F̂∗ ≤ x

)
∈
[
P
{

F̃ P
∗ ≤ x

(
1 − C

√
d∑
i mi

)}
,P
{

F̃ P
∗ ≤ x

(
1 + C

√
d∑
i mi

)}]
(28)

for all x ∈ R. Here F̃ P
∗ =

d∑
k=1

p2∑
s=1

η∗
ks,(2)|(1)(χ

2
1)ks, where (χ2

1)ks for k = 1, . . . , d and s =

1, . . . , p2 denote dp2 many i.i.d. χ2
1 random variables, and η∗

ks,(2)|(1) are the eigenvalues
of ZX(2)|(1)D∗

kZ⊤
X(2)|(1), where

D∗
k = diag

({
λ1k

2m1
. . .

λnk

2mn

})
.

Finally, λik are the k-th eigenvalues of Σi, for k = 1, . . . , d, where Σi, for i = 1, . . . , n
are the covariance matrices under HP

0 .
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5. Numerical Experiments 270

The proposed test is computationally is easy to implement. In this section, we inves-
tigate its numerical performance and practical implications in a simulation study.

In the first set of simulation experiments, we test the accuracy of the null distribution
of the F-statistic for no effects. The simulation setting was as follows. We fix d = 50,
p = 2, n = 800 and mi = 200 for i = 1, . . . , n. In the first simulation setting, we use the 275

null model where there is no effect of covariates. The true eigenvalues of all the covariance
matrices Σi are taken to be 5 and 2 with multiplicity 25 each. The common matrix of
eigenvectors is simulated from the Haar measure on orthonormal matrices. The QQ-plot
of F̂∗ against the theoretically derived null distribution is presented in Figure 1 (a), and
shows a very close match of the observed and theoretically obtained quantiles. 280

We then assess the power of the F -test in the second simulation setting. We again use
the same values of d, p, n and mi. The common matrix of eigenvectors is simulated from
the Haar measure on orthonormal matrices. The true eigenvalues of all the covariance
matrices Σi are taken to be λ1 and λ2 with multiplicity 25 each. Here λ1 = 5 + δX1 + δX2
and λ2 = 2 + δX1 + δX2, where X1, X2 ∼ Uniform(21, 70) are the covariates. The power 285

of the test as a function of δ is plotted in Figure 1 (b).
In the second set of simulation experiments, we test the accuracy of the null distribution

of the F-statistic for partial effects. The simulation setting was exactly the same as in the
case of testing for no effects. In the first experiment, we use the partial null model where
there is only an effect of the first covariate. The true eigenvalues of all the covariance 290

matrices Σi are taken to be 0.001 times X1. The common matrix of eigenvectors is
simulated from the Haar measure on orthonormal matrices. The QQ-plot of F̂∗ against
the theoretically derived null distribution is presented in Figure 1 (c) , and shows a very
close match of the observed and theoretically obtained quantiles.

We assess the power of the partial F -test in the second simulation setting. We again use 295

the same values of d, p, n and mi. The common matrix of eigenvectors is simulated from
the Haar measure on orthonormal matrices. The true eigenvalues of all the covariance
matrices Σi are taken to be λ1 and λ2 with multiplicity 25 each. Here λ1 = 5 + 0.001X1 +
δX2 and λ2 = 2 + 0.001X1 + δX2, where X1, X2 ∼ Uniform(21, 70) are the covariates.
The power of the partial F -test as a function of δ is plotted in Figure 1 (d). 300

6. Analysis of single cell gene expressions across different ages
Aging is a complex process of accumulation of molecular, cellular, and organ damage,

leading to loss of function and increased vulnerability to disease and death. Nutrient-
sensing pathways, namely insulin/insulin-like growth factor signaling and target-of- ra-
pamycin can substantially increase healthy life span of laboratory model organisms 305

(Davinelli et al., 2012; de Lucia et al., 2020). These nutrient signaling pathways are
conserved in various organisms. We are interested in understanding the co-expression
structure of 61 genes in this KEGG nutrient-sensing pathways based on the recently
published population scale single cell RNA-seq data of human peripheral blood mononu-
clear cells (PBMCs) from blood samples of over 982 healthy individuals with ages ranging 310

from 20 to 90 (Yazar et al., 2022).
We focus our analysis on CD4+ naive and central memory T (CD4NC) cells, which is

the most common cell type observed in the data. Age-associated changes in CD4 T-cell
functionality have been linked to chronic inflammation and decreased immunity (Elyahu
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Fig. 1: (a) and (b): Performance of the F -test when testing for no effects on simulated
data; (c) and(d): Performance of the F -test when testing for partial effects on simulated
data.

et al., 2019). There are a total of 50 genes that are expressed in this cell type. We use the315

F -test in Section 3 to test whether the gene distributions across different cells changes
with age of an individual. We select 734 donors for each of whom at least 200 cells
are observed. For each individual and each cell, we have the gene expression across 50
genes, so that they are expressed in at least one cell for every individual. Alongside we
have the age of each individual. The gene expression data is very sparse. To reduce the320

dimensionality of the data, we further select the 26 genes which have been expressed in
at least 3% of the cells, across different donors. We note here that the gene expression
data is extremely sparse, and we use this fact when centering the data. That is, we center
the nonzero values around the mean of the nonzero values, while the zero values are left
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Fig. 2: Plot of the first three eigenvalues of donor-specific covariance matrices: the Y-
axis has the actual eigenvalues computed directly from covariance matrices, while the
X-axis has the estimates obtained from (16) under the simultaneous diagonalizability
assumption.

unchanged. Then the individual as well as the grand covariance matrices are calculated 325

with respect to this centered dataset.
Before presenting our results, we provide some empirical justification behind using

the assumption of simultaneous diagonalizability of the covariance matrices. Figure 2
shows the top three eigenvalues of the individual specific covariance matrices with and
without the assumption of the simultaneous diagonalizability. That is, each point rep- 330

resents (λ̂ik, λ̃ik) for k = 1, 2, 3 and i = 1, . . . , 734. The X-axis plots the estimates λ̂ik,
i.e., the k-th eigenvalue of Σ̂i under the assumption of simultaneous diagonalizability,
as calculated in (16). On the other hand, the Y-axis plots the values λ̃ik, which are the
k-th eigenvalue calculated directly from Σ̂i’s. The line y = x is added for reference. Each
subplot in Figure 2 shows that the estimated eigenvalues (under the common eigenvector 335

assumption) are reasonably close to the true eigenvalues.
Next, we perform the F -test of no effects to test whether the covariance matrices

have a significant dependence on age. With the test statistic computed in Section 3, we
perform the test of no effects with i) the null distribution derived in Theorem 2 as well as
ii) permutation based test. Both tests of no effects are rejected with a p-value of 0. The 340

value of the F-statistic is 199.04. The permutation test is performed with 10000 random
permutations.

In Figure 3 we separately plot the first two eigenvalues against age together with the
Lowess fits of the data. It is evident that for higher age, the eigenvalues take larger values,
indicating overall changes of covariances among these genes. In addition, we observe a 345

larger variability of the first and second eigenvalues for the older individuals. This implies
larger variability of co-expressions in older ages than younger ages.

7. Discussion
This paper has developed test for association between multivariate normal distribution

and a set of covariates in the framework of Fréchet regression. We specifically considered 350

the setting that the covariance matrices are simultaneously diagonalizable, which enable
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Fig. 3: The above figure plots the first two eigenvalues of donor-specific covariance ma-
trices under the common eigenvector assumption. Both figures show a general increasing
trend as age increases.

efficient estimation of all the covariance matrices. We have developed the Wasserstein
F-tests for association between a multivariate normal distribution outcome and a set of
covariates, which has a mixture of χ2 distributions under the null.

Although the tests are developed treating the multivariate normal distribution as the355

outcome, the test statistic itself can still be applied without the normality assumption,
in which case the covariance matrix itself is treated as an outcome. Under some technical
assumptions, the limiting null distribution still holds. In many applications when the
multivariate normality assumptions do not hold, one can apply certain transformations
to ensure the normality.360
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8. Appendix - Proofs

Proof of Theorem 1. We analyze the last term in F∗ next:

trace
{

((Σ1/2
∗ (Xj))(Σ∗(X̄))(Σ1/2

∗ (Xj)))1/2
}

= trace
{

(Λ1/2
∗ (Xj))(Λ∗(X̄))(Λ1/2

∗ (Xj))1/2
}

=
d∑

k=1
(λk(Xj)λk(X̄))1/2. 365

Consequently

trace(Σ∗(Xj)) + trace(Σ∗(X̄)) − 2trace
{

((Σ1/2
∗ (Xj))(Σ∗(X̄))(Σ1/2

∗ (Xj)))1/2
}

=
d∑

k=1
(
√

λk(Xj) −
√

λk(X̄))2

=
d∑

k=1

(
1
n

n∑
i=1

(sin(Xj) − sin(X̄))λ1/2
ik

)2

=
d∑

k=1

(
n∑

i=1
w̌ijλ

1/2
ik

)2

(29)

Now summing (29) over j = 1, . . . , n we have 370

n∑
j=1

[
trace(Σ∗(Xj)) + trace(Σ∗(X̄))

]
− 2

[
trace

{
((Σ1/2

∗ (Xj))(Σ∗(X̄))(Σ1/2
∗ (Xj)))1/2

}]

=
n∑

j=1

d∑
k=1

(
n∑

i=1
w̌ijγik

)2

=
n∑

j=1
w̌⊤

.jΓ
⊤Γw̌.j = trace

(
Γ⊤Γ

n∑
i=1

w̌.iw̌
⊤
.i

)
. (30)

We next compute the (j, k) entries(
n∑

i=1
w̌·iw̌

⊤
·i

)
jk

= 1
n2 (Xj − X̄)⊤Σ̂−1

X

(
n∑

i=1
(Xi − X̄)(Xi − X̄)⊤

)
Σ̂−1

X (Xk − X̄)

= 1
n

(Xj − X̄)⊤Σ̂−1
X (Xk − X̄) 375

for 1 ≤ j, k ≤ n. In particular, we have the Gram matrix representation
n∑

i=1
w̌·iw̌

⊤
·i = 1

n
Z⊤

XZX . (31)

By the definition of F∗ from equation (8), and using equations (11), (29), and (30) we
have

F∗

= trace
({

M⊤
µ Mµ + Γ⊤Γ

} n∑
i=1

w̌·iw̌
⊤
·i

)
380

= 1
n

n∑
j=1

n∑
k=1

(⟨µj , µk⟩ + ⟨γj , γk⟩)(Xj − X̄)⊤Σ̂−1
X (Xk − X̄)

= 1
n

∥MµZ⊤
X∥2

F + 1
n

∥ΓZ⊤
X∥2

F (32)
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where ∥ · ∥F denotes the Frobenius norm of a matrix. □

Proof of Proposition 1. We have using (18) that

F̂∗ = 1
n

∥∥∥Γ̂Z⊤
X

∥∥∥2

F
= 1

n

∥∥∥ZX Γ̂⊤
∥∥∥2

F
385

= 1
n

d∑
k=1

∥ZX γ̂k·∥2 = 1
n

d∑
k=1

γ̂⊤
k·Z

⊤
XZX γ̂k·

= 1
n

p∑
s=1

λX,s

d∑
k=1

(
v⊤

X,sγ̂k·
)2

=
p∑

s=1
λX,s

d∑
k=1

(
1√
n

n∑
i=1

(vX,s)i

√
λ̂ik

)2

(33)

where we use the eigendecomposition

Z⊤
XZX =

p∑
s=1

λX,svX,sv⊤
X,s.

We can determine the eigenvalues λX,s as follows:

ZXZ⊤
X = Σ̂−1/2

X

 n∑
j=1

(Xj − X̄)(Xj − X̄)⊤

 Σ̂−1/2
X = nIp.390

Since ZXZ⊤
X and Z⊤

XZX have the same eigenvalues, it follows that

λX,s = n for s = 1, . . . , p.

Plugging in the last equality into equation (33) finishes the proof. □

Proof of Theorem 2. Note that by the definition in (16) it is clear that, conditional
on Y

(1)
ij , {λ̂ik : 1 ≤ i ≤ n; 1 ≤ k ≤ d} are independent random variables, owing to the

orthogonality of ûk and the independence of Yij ’s. Note that since the columns of ZX

have mean zero, we have
∑n

i=1(vX,s)i = 0.395

Under H0, we have

E(
√

λ̂1k|Y (1)
ij ) = · · · = E(

√
λ̂nk|Y (1)

ij ).

and hence

E
(

n∑
i=1

(vX,s)i

√
λ̂ik|Y (1)

ij

)
= 0. (34)
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Moreover, by delta method,

σ2
ik := Var

(√
λ̂ik|Y (1)

ij

)
= Var

√√√√ 1
mi

mi∑
j=1

(û⊤
k Y

(2)
ij )2|Y (1)

ij


= 1

4miû⊤
k Σ0ûk

Var
(
(û⊤

k Y
(2)

i1 )2|Y (1)
ij

)
+ O(m−2

i )

= û⊤
k Σ0ûk

2mi
+ O(m−2

i ). 400

Thus, under H0 we have

F̂∗ =
d∑

k=1
γ̂⊤

k·Z
⊤
XZX γ̂k· =

d∑
k=1

(γ̂k· − Eγ̂k·)⊤ Z⊤
XZX (γ̂k· − Eγ̂k·)

where the second equality follows from equation (34). Defining Dk :=
diag(σ2

1k σ2
2k . . . σ2

nk), it follows from the independence of the random variables
{λ̂ik : 1 ≤ i ≤ n; 1 ≤ k ≤ d} that under H0 405

(γ̂k· − Eγ̂k·) ∼ N(0, Dk), for 1 ≤ k ≤ d (35)

conditional on Y
(1)

ij . We can then write

(γ̂k· − Eγ̂k·)⊤ Z⊤
XZX (γ̂k· − Eγ̂k·)

= (γ̂k· − Eγ̂k·)⊤ D
−1/2
k D

1/2
k Z⊤

XZXD
1/2
k D

−1/2
k (γ̂k· − Eγ̂k·)

=
(
D

−1/2
k (γ̂k· − Eγ̂k·)

)⊤
( p∑

s=1
ηksvksv⊤

ks

)(
D

−1/2
k (γ̂k· − Eγ̂k·)

)
=

p∑
s=1

ηks

(
v⊤

ksD
−1/2
k (γ̂k· − Eγ̂k·)

)2
. 410

Here we use the eigendecomposition

D
1/2
k Z⊤

XZXD
1/2
k =

p∑
s=1

ηksvksv⊤
ks ∈ Rn×n

where for s = 1, . . . , p; ηks are the eigenvalues and vks ∈ Rn are mutually orthonormal
eigenvectors.

Finally, under H0, we have from (35) that(
v⊤

ksD
−1/2
k (γ̂k· − Eγ̂k·)

)2 iid∼ χ2
1, for k = 1, . . . , d,

conditional on Y
(1)

ij . We note here that the same conclusion is asymptotically correct if
the eigenvectors vks are incoherent.

Moreover, if
n∑

i=1
mj ≫ d, it follows by consistency of sample eigenvectors that there

exists an eigendecomposition Σ0 =
∑

k λkuku⊤
k such that the following holds. Let us write

Σ̂0 := 1∑
mi

∑
ij Y

(1)
ij (Y (1)

ij )⊤. Then by covariance matrix concentration results it follows
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that ∥∥∥Σ̂0 − Σ0

∥∥∥ = Op

(√
d∑
i mi

)
.

By Weyl’s theorem, we then have λ̂k = û⊤
k Σ̂0ûk satisfies

|λ̂k − λk| = Op

(√
d∑
i mi

)
.

and hence415 ∣∣∣û⊤
k Σ0ûk − λk

∣∣∣ ≤
∣∣∣û⊤

k (Σ0 − Σ̂0)ûk

∣∣∣+ ∣∣∣λ̂k − λk

∣∣∣ = Op

(√
d∑
i mi

)
. (36)

Since two square matrices A and B have the same eigenvalues for AB and BA, note that
ηks are the eigenvalues of DkZ⊤

XZX . Now similarly let η∗
ks be the eigenvalues of D∗

kZ⊤
XZX .

Here

D∗
k = diag

({
λk

2m1
. . .

λk

2mn

})
.

It follows from (36) that

ηks = η∗
ks

{
1 + Op

(√
d∑
i mi

)}
.

Let us define a random variable F̃∗ =
∑d

k=1
∑p

s=1 η∗
ks(χ2

1)ks where (χ2
1)ks for k = 1, . . . , d

and s = 1, . . . , p denote dp i.i.d. χ2
1 random variables. By the previous equation it follows

that there exists a constant C > 0 such that

P
(
F̂∗ ≤ x

)
∈
[
P
{

F̃∗ ≤ x

(
1 − C

√
d∑
i mi

)}
,P
{

F̃∗ ≤ x

(
1 + C

√
d∑
i mi

)}]
for all x ∈ R.

(37)

Proof of Proposition 2. Note that for 1 ≤ s, t ≤ n, we have(
Z⊤

XZX − Z⊤
X(1)ZX(1)

)
st

= (Xs − X̄)⊤Σ−1
X (Xt − X̄) − (X(1)

s − X̄(1))⊤Σ−1
X(1)(X

(1)
t − X̄(1))420

By block matrix inversion lemma, we have

Σ−1
X =

(
Σ−1

X(1) + Σ−1
X(1)Σ12Σ−1

22|1Σ⊤
12Σ−1

X(1) −Σ−1
X(1)Σ12Σ−1

22|1
−Σ−1

22|1Σ⊤
12Σ−1

X(1) Σ−1
22|1

)
.

Thus, for 1 ≤ s, t ≤ n, we obtain(
Z⊤

XZX − Z⊤
X(1)ZX(1)

)
st

= (X(1)
s − X̄(1))⊤Σ−1

X(1)Σ12Σ−1
22|1Σ⊤

12Σ−1
X(1)(X

(1)
t − X̄(1)) 425

− (X(1)
s − X̄(1))⊤Σ−1

X(1)Σ12Σ−1
22|1(X(2)

t − X̄(2))

− (X(2)
s − X̄(2))⊤Σ−1

22|1Σ⊤
12Σ−1

X(1)(X
(1)
t − X̄(1)) + (X(2)

s − X̄(2))Σ−1
22|1(X(2)

t − X̄(2))

=
(
Σ⊤

12Σ−1
X(1)(X(1)

s − X̄(1)) − (X(2)
s − X̄(2))

)⊤
Σ−1

22|1

(
Σ⊤

12Σ−1
X(1)(X

(1)
t − X̄(1)) − (X(2)

t − X̄(2))
)

.
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In particular, we can rewrite(

Z⊤
XZX − Z⊤

X(1)ZX(1)

)
= Z⊤

X(2|1)ZX(2|1) 430

where ZX(2|1) is as defined in the statement of the proposition. The conclusion now follows
by the definition of F̂ ∗

P from equation (25). □
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