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Abstract

This paper develops a general framework for exploiting the sparsity information

in two-sample multiple testing problems. We propose to first construct a covariate se-

quence, in addition to the usual primary test statistics, to capture the sparsity structure,

and then incorporate the auxiliary covariates in inference via a three-step algorithm

consisting of grouping, adjusting and pooling (GAP). The GAP procedure provides

a simple and effective framework for information pooling. An important advantage

of GAP is its capability of handling various dependence structures such as those arise

from high-dimensional linear regression, differential correlation analysis, and differential

network analysis. We establish general conditions under which GAP is asymptotically

valid for false discovery rate control, and show that these conditions are fulfilled in a

range of settings, including testing multivariate normal means, high-dimensional linear

regression, differential covariance or correlation matrices, and Gaussian graphical mod-

els. Numerical results demonstrate that existing methods can be significantly improved

by the proposed framework. The GAP procedure is illustrated using a breast cancer

study for identifying gene-gene interactions.
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1 Introduction

Comparison of two high-dimensional objects that are measured under different conditions

arises in a wide range of scientific fields such as genomics, neuroimaging, astrophysics and

network analysis. Examples include identifying differences in the coordinates of two mean

vectors, detecting changes in the entries of two correlation/covariance matrices, and com-

paring the connectivity between two networks. One phenomenon that arises particularly

frequently in high dimensional data analysis is sparsity : out of a large number of features

most of them are noise, and only a few features contain information of interest. This article

focuses on large-scale multiple testing in a setting where both high-dimensional objects

(vectors, matrices, networks, etc) are individually sparse.

Statistically, these problems can be formulated as follows. For d = 1, 2, let Yd ∼

Pβd,ηηηd be p-dimensional random vectors, where βd ∈ Rm are the parameters of interest

that are sparse, and ηηηd are nuisance parameters. Suppose we observe random samples

{Y1,·,d, · · · ,Ynd,·,d} as independent copies of Yd, d = 1, 2, where Yk,·,d = {Yk,i,d : 1 ≤ i ≤ p}

and nd are the sample sizes. The goal is to test simultaneously the hypotheses

H0,i : βi,1 = βi,2 vs. H1,i : βi,1 6= βi,2, 1 ≤ i ≤ m. (1.1)

We discuss a few examples before presenting the general framework.

Detection of gene-environment interactions. Recent research reveals that many com-

plex diseases result from the interplay between genetic make-up and exposures to environ-

mental risk factors (Hunter, 2005; Caspi and Moffitt, 2006). Identifying gene-environment

interactions can improve the understanding of many disease phenotypes, say, how an ex-

ternal environmental factor interacts with internal genetic factors to generate disordered

symptoms. When the environmental factor is binary such as smoking or alcohol status, the

interaction effects can be captured by a two-sample high-dimensional regression model:

Y ∗d = µd +Xdβd + εd, (1.2)
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where d = 1, 2 denotes the environmental condition, Y ∗d = (Y ∗1,d, . . . , Y
∗
nd,d

)T are mea-

surements of phenotypes, µµµd = µd111
T are the intercepts, with 111T being a vector of ones,

βd = (β1,d, . . . , βm,d)
T are the vectors of regression coefficients, Xd = (XT

1,·,d, . . . ,X
T
nd,·,d)

T

are the matrices of measurements of genomic markers, and εd = (ε1,d, . . . , εnd,d)
T are ran-

dom errors. Interaction detection can be formulated as the two-sample multiple testing

problem (1.1), where Yk,·,d = {Y ∗k,d,Xk,·,d}T ∈ Rp, and βd ∈ Rm with m = p − 1, d = 1, 2,

are both individually sparse. The nuisance parameters ηηηd include the intercepts µd, the

variance of εd and the distributional parameters of Xd.

Identification of sequentially activated genes. In microarray time-course experi-

ments, the identification of genes that exhibit a specific temporal pattern of differential

expression (DE) helps gain insights into the mechanisms of the underlying biological pro-

cesses (Storey et al., 2005; Tai and Speed, 2006; Sun and Wei, 2011). The expression levels

at the first time point usually serve as baseline levels and we expect that only a small

proportion of genes would exhibit DE from the baseline. Among DE genes in response to

treatment/intervention, some may be detected early while some cannot be detected until

the change reaches its peak. A sequential perturbation pattern can be revealed by testing

varied levels of DE genes between multiple consecutive time points, which can be formu-

lated as a two-sample multiple testing problem (1.1). Here Yd ∈ Rp with m = p are random

vectors recording genes’ measurements at times d = 1, 2, the parameters of primary inter-

ests are the mean expression level after baseline removal, i.e., βd = E(Yd) ∈ Rm, and the

nuisance parameters ηηηd include the covariance matrix of Yd.

Analysis of differential networks. Detecting gene-gene interactions is a crucial step

for understanding how groups of genes act together in different biological processes. A

gene association network is a set of genes connected by edges representing their functional

relationships. Recent research showed that it is of great importance to study how the

association network structures change between two or more biological settings (Gill et al.,

2010). To identify the set of genes whose connectivities have changed between two networks,

a two-sample multiple testing problem (1.1) can be formulated to test the varied strengths
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of associations between gene pairs in the two networks, where Yd ∼ N(µd,Σd) ∈ Rp with

the precision matrices Ωd = Σ−1d , βd ∈ Rm is the vectorized upper (or lower) off-diagonal

elements of Ωd with m = p(p−1)/2, and the nuisance parameters ηηηd include the means µd.

Both objects (networks) being tested tend to be very sparse. In Section 6 we illustrate the

proposed method by analyzing a breast cancer study to identify gene-gene interactions.

1.1 Multiple comparisons with two sparse objects

In two-sample multiple testing, we are interested in making inference for θi = I(βi,1 6= βi,2),

1 ≤ i ≤ m, where I(·) is an indicator function. The conventional approach would begin with

summarizing the data into a single vector of test statistics {T1, · · · , Tm} for comparing the

coordinates of β1 and β2 and then choose a significance threshold to control the multiplicity.

This approach ignores the important feature of the two-sample inference problem that both

objects β1 and β2 are individually sparse. As a result, it suffers from substantial information

loss. This can be intuitvely seen as follows. Let Id = {1 ≤ i ≤ m : βi,d 6= 0} denote the

support of βd, d = 1, 2, and I = I1 ∪ I2 the union support. Note that the cardinality of I

is small if both β1 and β2 are sparse; hence information about I can be potentially utilized

to narrow down the focus in multiple testing via the following logical relationship

i /∈ I implies that θi = 0. (1.3)

In the setting of testing sparse normal mean vectors, Cai et al. (2019) demonstrated in

a recent paper that conventional practice leads to inefficient procedures. It is shown that

an auxiliary covariate sequence can be constructed from the data to provide supplemen-

tary information and a data-driven procedure, which employs a covariate-assisted ranking

and screening (CARS) approach, achieves substantial power gain over existing methods.

However, CARS cannot be applied to dependent tests.

The goal of the present paper is to develop a new framework for two-sample multiple

testing with auxiliary information. An important advantage of the proposed framework is

its capability of handling a wide range of dependence structures such as those arise from

4



high-dimensional linear regression, differential correlation analysis, and differential network

analysis.

Our idea is to construct a covariate sequence {Si : 1 ≤ i ≤ m}, in addition to the

primary test statistics {Ti : 1 ≤ i ≤ m}, to capture the sparsity information, and then

incorporate the information in the testing procedure to improve the efficiency. In contrast

with conventional practice which only uses Ti to assess the significance of the difference, we

aim to develop new methodologies that utilize m pairs of statistics {(Ti, Si) : 1 ≤ i ≤ m}.

Denote a multiple testing procedure by a binary rule δδδ = {δi : 1 ≤ i ≤ m} ∈ {0, 1}m,

where δi = 1 if we reject H0,i and δi = 0 otherwise. In large-scale testing, the false discovery

rate (FDR, Benjamini and Hochberg, 1995) has been widely used as a practical and powerful

error criterion. For a given decision rule δδδ, the FDR is defined as

FDRδδδ = E
[∑m

i=1(1− θi)δi
(
∑m

i=1 δi) ∨ 1

]
, (1.4)

where x ∨ y = max(x, y). To evaluate the efficiency of a testing procedure, we define the

power of decision rule δδδ as the expected proportion of correctly rejected non-null hypotheses,

Ψδδδ = E
[∑m

i=1 θiδi∑m
i=1 θi

]
. (1.5)

The next section discusses a general framework for FDR control with pairs of observations.

1.2 GAP: An Integrative Framework for Two-sample Sparse Inference

There are two key issues in the methodological development: one is to construct the pair

of test statistics (Ti, Si) to capture the sample information accurately, and another is to

integrate the information in Ti and Si effectively.

To illustrate the proposed testing framework, we first discuss a simple example and then

describe how the idea may be generalized to more complicated settings. Let Yd ∼ N(βd, III),

where βd = E(Yd) = (β1,d, · · · , βm,d) are the population mean vectors, and III is an identity

matrix, d = 1, 2. Denote {Y1,·,d, · · · ,Yn,·,d} independent copies of Yd, d = 1, 2, where

Yk,·,d = {Yk,i,d : 1 ≤ i ≤ m}, and n is the sample size. The population means are estimated
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as Ȳi,d = n−1
∑n

k=1 Yk,i,d, 1 ≤ i ≤ m. To identify differential levels between β1 and β2, our

proposed framework suggests using the usual two-sample z statistic Ti =
√

n
2 (Ȳi,1 − Ȳi,2)

as the primary statistic to assess the difference, and Si =
√

n
2 (Ȳi,1 + Ȳi,2) as the auxiliary

statistic to capture the information on I (since a large |Si| provides strong evidence that

i ∈ I). By construction, Ti and Si are independent.

Consider a multiple testing problem with pairs of statistics {(Ti, Si) : 1 ≤ i ≤ m}. The

main idea is to exploit the information in Si to construct more efficient procedures. Our

proposed algorithm, detailed in Section 2.2, operates in three steps: grouping, adjusting

and pooling (GAP). According to the logical relationship (1.3), the hypotheses become

“unequal” in light of Si. To reflect this heterogeneity, it is desirable to treat those more

likely to be on the union support differently from the rest. The first grouping step divides

all testing units into K groups based on Si; this leads to heterogeneous groups with varied

sparsity levels. The second adjusting step adjusts the p-values to incorporate the structural

information revealed by grouping. The final pooling step combines the adjusted p-values

from all groups and chooses a threshold to control the global FDR at the desired level.

The GAP algorithm provides a simple and effective framework for exploiting the auxil-

iary information in the covariate sequence. We establish in Section 3 the general conditions

under which GAP is valid for FDR control, and show in Section 4 that these conditions

are fulfilled by various dependency structures. Our numerical results demonstrate that the

performance of existing methods can be greatly improved by GAP.

1.3 Our Contributions

Multiple testing under dependency is an important problem that has been extensively

studied in the literature (Benjamini and Yekutieli, 2001; Sarkar, 2002; Efron, 2007; Sun

and Cai, 2009). While recent progress has been made towards utilizing external covariates

in multiple testing (Du and Zhang, 2014; Liu, 2014; Scott et al., 2015; Cai et al., 2019),

most methods do not have a theoretical guarantee for FDR control under dependency.

This important issue is addressed by our proposed framework. We show that, under mild

conditions that are fulfilled by a class of models, GAP controls the FDR at the nominal
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level asymptotically.

Liu (2014) proposed the uncorrelated screening (US) method and showed that it controls

the FDR and outperforms other methods. US first divides the hypotheses into two groups

based on a screening statistic, and then applies the BH procedure to unadjusted p-values in

both groups. Compared to US, GAP provides a more general and efficient framework for

information pooling. In addition to its capability of handling dependency, the GAP proce-

dure allows for more than two groups and hence captures the structural information more

accurately. Moreover, GAP utilizes adjusted p-values so that the heterogeneity between

groups can be exploited more efficiently. When pooling the testing results, the group-wise

FDR levels are adaptively weighted among groups by GAP; the adaptivity leads to valid

FDR control with much improved power. In contrast, US uses the same FDR across all

groups. The simulation in Section 5 demonstrates that the efficiency gain of GAP over US

via grouping and weighting can be substantial in many settings.

Our work also makes new contributions to multiple testing with groups. First, existing

methods for testing with grouping structure [e.g. Efron (2008); Ferkingstad et al. (2008);

Cai and Sun (2009); Hu et al. (2012)] have been mostly developed for the independent case

that do not have guaranteed FDR control when the tests are dependent. Second, existing

methods assume that the groups have been specified a priori. In contrast, GAP constructs

the covariate sequence from the original data and determines the groups adaptively to

maximize the power. Third, a major concern in Efron (2008) and Cai and Sun (2009) is

that improper grouping may distort the null distribution of p-values and lead to invalid

FDR analyses. This concern has been addressed by GAP, which employs the conditional

independence principle to ensure proper grouping and validity in asymptotic FDR control.

Finally, GAP utilizes a novel weighting strategy (via normalizing), which enables the de-

velopment of a general theory for FDR control that can handle a wider class of dependency

structures compared to existing works on weighted FDR.
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1.4 Notation and Definitions

We summarize the notation and definitions that will be used throughout the paper. We

follow the convention that vi stands for the ith entry of a vector v and Mi,j for the entry

in the ith row and jth column of a matrix M . For a vector βd = (β1,d, . . . , βm,d)
T ∈ Rm,

define the `q norm by |βd|q = (
∑m

i=1 |βi,d|q)1/q for 1 ≤ q ≤ ∞. For a symmetric matrix M,

let λmax(M) and λmin(M) denote the largest and smallest eigenvalues of M, respectively.

For a set H, denote |H| the cardinality of H. For two sequences of real numbers {an} and

{bn}, write an = O(bn) if there exists a constant C such that |an| ≤ C|bn| holds for all n,

write an = o(bn) if limn→∞ an/bn = 0, and write an � bn if there are positive constants c

and C such that c ≤ an/bn ≤ C for all n.

1.5 Organization of the Paper

The rest of the paper is organized as follows. Section 2 describes the GAP procedure

and develops a general framework for information pooling in two-sample sparse inference.

Theoretical properties of GAP are established in Section 3. This general framework is

further illustrated in Section 4 under several specific settings. In Section 5, numerical

comparisons with competitive methods demonstrate the merits of GAP. In Section 7, we

apply the GAP procedure to a breast cancer study for identifying gene-gene interactions.

The proofs and additional numerical results are given in the Appendix.

2 GAP: A General Framework for Two-Sample Inference

The GAP procedure for simultaneous comparisons of two high-dimensional sparse objects

is based on m pairs of test statistics {(Ti, Si) : 1 ≤ i ≤ m}. In Section 2.1, we discuss a

few principles on how to construct the pairs. The GAP algorithm is described in detail in

Section 2.2. Section 2.3 explains some key ideas to provide insights on why GAP works.
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2.1 Constructing (Ti, Si): Some Principles

Our proposed GAP procedure requires carefully constructed pairs (Ti, Si). The roles of Ti

and Si are different: Ti is the primary test statistic to assess the significance of the difference,

and Si, which captures the sparsity information of the union support, is an auxiliary statistic

to assist inference. A simple example of the pair is given in the introduction. However,

the construction can be complicated in settings such as high-dimensional regression and

Gaussian graphical models. We discuss here the important principles; related technical

details are deferred until Section 4.

First, we construct (Ti, Si) as standardized statistics so that they are faithful in reflect-

ing the true data structure and comparable across tests. Second, Ti and Si need to be

asymptotically independent. The independence requirement guarantees that the null dis-

tribution of Ti would not be distorted by incorporating Si in the inference. This is crucial

for the validity of the proposed methodology. Specifically, we shall see that, in Steps 2 and

3 of the GAP algorithm, the Benjamini-Hochberg (BH, Benjamini and Hochberg, 1995)

procedure is employed to control the FDR. BH assumes that the null distribution of the

p-value is uniform. If Ti and Si are correlated, then the grouping step would distort the

null distribution of the p-values, which would lead to an invalid FDR control.

2.2 The GAP Procedure

We now give a precise description of the GAP algorithm and explain its merits as a general

framework for information pooling. Let pi be the p-value associated with Ti for testing H0,i

vs. H1,i. The GAP procedure consists of three steps: grouping, adjusting and pooling.

Step 1 (Grouping). Divide hypotheses into K groups to reflect the heterogeneity be-

tween testing units in light of Si. Let λ0 = −∞, −4
√

logm ≤ λ1 < λ2 < · · · < λK−1 ≤

4
√

logm and λK = ∞, where Λ = {λl : 1 ≤ l ≤ K − 1} is a subset of points from a

regular grid X = {(j/N)
√

logm : j = −4N,−4N + 1, . . . ,−1, 0, 1, . . . , 4N − 1, 4N},

with N being a large integer. The corresponding groups are Gl = {1 ≤ i ≤ m : λl−1 <

Si ≤ λl}, for 1 ≤ l ≤ K. The optimal choice of Λ will be determined in Step 2.
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Step 2 (Adjusting). Define ml = |Gl|. Calculated adjusted p-values pwi = min{pi/wol , 1}

if i ∈ Gl, 1 ≤ l ≤ K, where wol will be calculated as follows.

• Initial adjusting. For a given grouping {Gl : 1 ≤ l ≤ K}, let π̂l be the estimated

proportion of non-nulls in Gl. The group-wise weights are computed as

wl =

{
K∑
l=1

mlπ̂l
1− π̂l

}−1
mπ̂l

(1− π̂l)
, 1 ≤ l ≤ K. (2.6)

Define adjusted p-values as pwi = min{pi/wl, 1} for i ∈ Gl.

• Further refining. We search among all possible Λ ⊂ X to determine the optimal

grouping (in the search we allow Λ to be an empty set, which means that we

only have one group). Specifically, for each Λ, combine adjusted p-values from

all groups and apply the BH procedure at level α to all adjusted p-values. Specif-

ically, denote pw(1) ≤ · · · ≤ pw(m) the ordered adjusted p-values. The threshold is

chosen as

k = max{i : pw(i) ≤ iα/m}. (2.7)

The weights wol are computed using (2.6) based on the optimal grouping that

yields the most rejections.

This step up-weights the hypotheses from groups with higher proportions of signals,

and down-weight hypotheses from groups with lower proportions.

Step 3 (Pooling). Combine the adjusted p-values from all groups, where pwi are com-

puted from Step 2 based on the optimal grouping. To control the FDR at a global

level, apply BH (2.7) again to all adjusted p-values {pwi : 1 ≤ i ≤ m}.

The following remarks explain GAP in more detail and address some technical points.

Remark 1 There is a tradeoff in the choice of the number of groups K. Ideally, Si should

be modeled as a continuous variable as done in Cai et al. (2019) to maximize the power.

However, it is difficult to achieve optimality under dependence. Our grouping step can be
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viewed as a discrete approximation to the ideal solution. Having more groups is helpful

to reduce the approximation bias, whereas the algorithm becomes significantly slower and

tends to be less stable with too many groups. In practice, we recommend K = 3 or 4.

Remark 2 In Step 2 we need to estimate the non-null proportion for each group. The

sparsity estimation problem has been extensively studied in the literature; see Langaas

et al. (2005); Meinshausen et al. (2006); Jin and Cai (2007) and Cai and Jin (2010) for

recent developments. We use the method by Schweder and Spjøtvoll (1982) and Storey

(2002) to estimate the non-null proportions, denoted by π̂∗l . The resulting weights are ad

hoc but will be justified in the next section. We use π̂l = (ε∨ π̂∗l )∧ (1− ε) with ε = 10−5 to

restrict the estimated proportion in the range [ε, 1− ε]; this would increase the stability of

the algorithm. The procedure is robust to the choice of such ε. Theoretically, for any ε that

is larger than m−C for some constant C > 0, the asymptotic FDR control in Theorem 1

below will always hold, as shown in the Step 1 from the proof of Theorem 1. With ε = 10−5,

such C can be any constant that is larger than 5 log 10/ logm.

2.3 Some Insights on Why GAP Works

Before we rigorously establish the theoretical properties of GAP in Section 3, it is helpful

to provide some important insights on the merit of the grouping strategy adopted by GAP

as well as the weights used in GAP. The discussion here is informal as it is based on

existing theory for independent tests. The theoretical results given in Section 3 are for the

dependent case.

For multiple testing with known groups, the naive pooled analysis ignores the grouping

information and applies the BH procedure to all the tests combined. The pooled analysis is

inefficient and can even be invalid (Efron, 2008). Another natural approach is the separate

analysis, which first applies BH to individual groups and then combine all the rejected

hypotheses. This strategy is adopted by the US method proposed in Liu (2014). Although

the separate analysis is always valid, it is inefficient because a common FDR level is used

for all groups. To increase the power, one should adopt a more flexible strategy that allows

the FDR levels to vary across groups (Cai and Sun, 2009; Hu et al., 2012).

11



The proposed GAP procedure adaptively chooses the group-wise FDR levels by utilizing

adjusted p-values. This weighting approach in GAP is superior to both pooled and sepa-

rate analyses as it incorporates group-wise information more effectively. Intuitively, GAP

increases the overall power by allocating higher FDR levels to groups where signals are

more common. Finally, it is important to emphasize that different from Efron (2008), Cai

and Sun (2009) and Hu et al. (2012), GAP does not assume known groups. It constructs

its own covariate sequence and searches the optimal grouping to maximize the power.

Genovese et al. (2006) and Basu et al. (2017) consider weighted multiple testing problems

and show that multiple testing procedures with proper weights can control the FDR, but the

power may be affected by the informativeness of the weights. A key step in our methodology

is the standardization of the weights via (2.6), which ensures that after all groups are

combined, the weights are always “proper” in the sense of Genovese et al. (2006). It

follows that the inaccuracy of the estimates would not affect the validity of GAP for FDR

control. Moreover, although proportion estimation is ad hoc, it should in general lead to

informative weights; this point is further explained and confirmed by our simulation studies.

We will consider the dependent case and show that GAP is valid for FDR control.

3 Theoretical Properties of GAP

In this section, we show that GAP guarantees FDR control asymptotically under regularity

conditions on the pairs (Ti, Si). We verify in Section 4 that these conditions are fulfilled by

(Ti, Si) that are carefully constructed in a range of important problems, including testing

multivariate normal means, high-dimensional linear regression, differential covariance or

correlation matrices, and Gaussian graphical models.

Denote {pwi : 1 ≤ i ≤ m} the adjusted p-values determined by GAP and {pw(i) : 1 ≤ i ≤

m} the ordered adjusted p-values. The false discovery proportion (FDP) of GAP is

FDPGAP =

∑
i∈H0

I(pwi ≤ pw(k̂w)
)∑m

i=1 I(pwi ≤ pw(k̂w)
) ∨ 1

,
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where k̂w = max{i : pw(i) ≤ αi/m}. Then FDRGAP = E (FDPGAP). The following technical

assumptions on Ti and Si are needed in our theoretical development. Let Aτ be a subset

of H0 with |Aτ | = o(mν) for any ν > 0. Define H̃0 = H0 \Aτ , and n = n1 + n2.

(A1) Asymptotic Normality: For the primary test statistics {Ti, i ∈ H̃0}, there exist

two independent sets of i.i.d random variables {Zk,i, k = 1, . . . , n1} and {Zk,i, k =

n1 + 1, . . . , n} satisfying EZk,i = 0 and E exp(KZk,i) <∞ for some K > 0, such that,

for any constant M > 0, there exists some bm satisfying bm = o{(logm)−1/2} that,

PH0,i

(∣∣∣∣∣Ti −
∑n

k=1 Zk,i

Var(
∑n

k=1 Zk,i)
1/2

∣∣∣∣∣ ≥ bm
)

= O(m−M ).

(A2) Weak Dependency: Define (ρi,j,1)m×m = R1 = Corr(Zk) for 1 ≤ k ≤ n1 and

(ρi,j,2)m×m = R2 = Corr(Zk) for n1 + 1 ≤ k ≤ n, where Zk = (Zk,1, . . . , Zk,m).

Then max1≤i<j≤m |ρi,j,d| ≤ ρd < 1 for some constant ρd > 0 for d = 1, 2. Moreover,

there exists γ > 0 such that max1≤i≤m |Γi(γ)| ≤ C for some constant C > 0, where

Γi(γ) = {j : 1 ≤ j ≤ m, |ρi,j,d| ≥ (logm)−2−γ , for d = 1 or 2}.

(A3) Asymptotic Independency: Ti and Si are asymptotically independent under the

null, i.e. for any constant M > 0,

PH0,i(|Ti| ≥ t, |Si| ≥ λ) = (1 + o(1))G(t)P(|N(0, 1) + si| ≥ λ) +O(m−M ),

uniformly for 0 ≤ t ≤ 4
√

logm, 0 ≤ λ ≤ 4
√

logm and i ∈ H̃0, where si = E(Si), and

for all 0 ≤ j ≤ 4N with fixed N ,

PH0,i(|Ti| ≥ t, |Si| < λj) = (1 + o(1))G(t)P(|N(0, 1) + si| < λj) +O(m−M ),

uniformly for 0 ≤ t ≤ 4
√

logm and i ∈ H̃0, where λj = (j/N)
√

logm.

Remark 3 Assumption (A1) is mild, as it only requires that Ti follows a standard normal

distribution asymptotically. The assumption can be easily checked; see Section 4 for more

details. Assumption (A2) indicates that not many primary statistics are strongly correlated
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with each other. Our testing framework is very different from that in conventional two-

sample testing problems where one only needs to deal with the correlations between pairs

of p-values. By contrast, due to the existence of a sequence of auxiliary statistics, we need

to handle a more complicated correlation structure between pairs of (Ti, Si). Thus the weak

dependence condition is slightly stronger, which we speculate could be further relaxed with

more sophisticated tools. Assumption (A3) is satisfied by our construction; see Propositions

1 and 3 in Section 4 for proofs.

Define Sρ =
{
i : 1 ≤ i ≤ m, |βi,1 − βi,2| ≥ {(logm)1+ρ/n}1/2

}
. The next theorem shows

that GAP controls both the FDP and FDR at the nominal level asymptotically.

Theorem 1 Suppose for some ρ > 0 and some δ > 0, |Sρ| ≥ [1/(π1/2α) + δ](logm)3/2.

Assume that n1 � n2 and m0 = |H0| ≥ cm for some c > 0. Then under (A1) - (A3) with

logm = o(n1/C) for some C > 5, we have

lim
(n,m)→∞

FDRGAP ≤ α, and lim
(n,m)→∞

P(FDPGAP ≤ α+ ε) = 1.

for any ε > 0.

Remark 4 The condition on |Sρ| is mild. It only requires that there are a few coordinates

with differential effects exceeding {(logm)1+ρ/n}1/2 for some constant ρ > 0 among m hy-

potheses in total. A more precise definition of Sρ can be formulated by the standardized dif-

ference between βi,1 and βi,2, namely, Sρ =

{
i : 1 ≤ i ≤ m, |βi,1−βi,2|

(σ2
w,i,1+σ

2
w,i,2)

1/2 ≥ (logm)1/2+ρ
}
,

where σ2w,i,1 + σ2w,i,2 = Var(
∑n

k=1 Zk,i)/n
2
1 is defined in (A1), and will be discussed in detail

in Section 4 under various settings.

We now turn to the power analysis. The next theorem shows that GAP dominates BH

in power asymptotically. Our simulation results in Section 5 indicate that the power gain

can be substantial in many settings. By applying the definition in (1.5), the powers of GAP

and BH procedures can be calculated as follows

ΨBH = E

[∑
i∈H1

I(pi ≤ p(k̂))
|H1|

]
,
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where k̂ = max{i, p(i) ≤ αi/m}, and

ΨGAP = E

[∑
i∈H1

I(pwi ≤ pw(k̂w)
)

|H1|

]
,

where k̂w = max{i, pw(i) ≤ αi/m}. The next theorem shows that the GAP procedure is

more powerful than the BH procedure asymptotically.

Theorem 2 Under the same conditions of Theorem 1, we have ΨGAP ≥ ΨBH + o(1) as

m→∞.

The previous theorem shows that GAP is more powerful than BH. To illustrate the

power gain in a more explicit manner, we present an example based on theoretical calcula-

tions under a simple model; more details are given in Section ?? in the Supplement.

Example 1 Consider a two-point Gaussian mixture model: YYY d ∼ N(βββd, I), d = 1, 2, with

βi,1 = 0 for 1 ≤ i ≤ m, βi,2 = µ0 for 1 ≤ i ≤ m1, and βi,2 = 0 for m1 + 1 ≤ i ≤ m.

The primary and auxiliary statistics are respectively given by Ti = 1√
2
(Yi,2 − Yi,1) and

Si = 1√
2
(Yi,2 + Yi,1). Let tBH , derived in Section ??, denote the asymptotic threshold for

the BH procedure. The asymptotic p-value threshold of GAP tGAP is difficult to derive but

a conservative threshold t∗BH , defined in Section ??, may be obtained. Specifically, we show

that tGAP ≥ t∗BH ; hence t∗BH may be used in place of tGAP to characterize a lower bound

on the power difference. The top and bottom rows of Figure 1 illustrate the powers of BH

and GAP as functions of µ0 and π = m1/m, respectively. On the top row, we fix π = 0.1

and vary µ0. On the bottom row, we fix µ0 = 3.5 and vary π. The nominal FDR level is

0.1. We can see that GAP with the conservative threshold t∗BH controls the FDR below the

nominal level and outperforms BH in power. The power ratios in the third column show

that the auxiliary information is more helpful when signals are weak and sparse. We stress

that due to the difficulty in obtaining an explicit formula for tGAP , our result only provides

a lower bound. In practice when tGAP is used, the actual power gain may be even larger.
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Figure 1: Theoretical calculations for the asymptotic powers of GAP vs. BH. The more
conservative threshold t∗BH has been used for calculating the FDR and power of GAP.

4 Construction of Primary and Auxiliary Statistics

The construction of (Ti, Si) is a key step in our methodological development. We present

the construction in detail for testing multivariate normal means and high-dimensional linear

regression in Sections 4.1 and 4.2, respectively. The constructions for testing differential

covariance or correlation matrices and Gaussian graphical models are similar and are sum-

marized in Section 4.3. We show that the general conditions given in Section 3 are fulfilled

by the constructed statistics and hence GAP is valid for FDR control in these settings.

4.1 Multivariate Normal Models

Let Y1 and Y2 be two random vectors recording the measurement levels of the same m

features under two conditions, respectively. We assume that Yd ∼ N(βd,Σd), where βd =

E(Yd) = (β1,d, · · · , βm,d) denote the population mean vectors, and Σd = (σi,j,d : 1 ≤

i, j ≤ m) the covariance matrices, d = 1, 2. Suppose we have collected random samples

{Y1,·,d, · · · ,Ynd,·,d} as independent copies of Yd, d = 1, 2, where Yk,·,d = {Yk,i,d : 1 ≤ i ≤ m},

nd is the sample size in condition d.
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We use Ti to capture the information on the difference. It is natural to start with

the sample difference Ȳ1 − Ȳ2 = (1/n1)
∑n1

k=1 Yk,·,1 − (1/n2)
∑n2

k=1 Yk,·,2. Let ◦ denote a

Hadamard product and κκκ = (κ1, · · · , κm) a vector of weights. To extract information on

the union support, we focus on a class of linear combinations of the form β1 +κκκ◦β2, which

can be estimated as Ȳ1 + κκκ ◦ Ȳ2. The weights κi should be chosen carefully so that the

pair Ti and Si are asymptotically independent. If the true variances σi,i,d are unknown,

the weights can be estimated as κ̂i = (n2σ̂
2
i,1)/(n1σ̂

2
i,2), where σ̂2i,d are the sample variances

(nd)
−1∑nd

k=1(Yk,i,d − Ȳi,d)
2, d = 1, 2. Finally, Ti and Si are standardized to ensure the

comparability of the tests. Let σ̂2w,i,d = σ̂2i,d/nd, we propose the following pair of statistics:

(Ti, Si) =

(
Ȳi,1 − Ȳi,2

(σ̂2w,i,1 + σ̂2w,i,2)
1/2

,
Ȳi,1 + κ̂iȲi,2

(σ̂2w,i,1 + κ̂2i σ̂
2
w,i,2)

1/2

)
. (4.8)

It is easy to see that Ti is asymptotically standard normal under the null. It follows that

the two-sided (approximate) p-values is pi = 2{1 − Φ(|Ti|)}. Moreover, Ti and Si are

asymptotically independent as shown in the following proposition. Let ti =
βi,1−βi,2

(σ2
w,i,1+σ

2
w,i,2)

1/2

and si =
βi,1+κiβi,2

(σ2
w,i,1+κ

2
i σ

2
w,i,2)

1/2 with κi = σ2w,i,1/σ
2
w,i,2 and σ2w,i,d = σ2i,d/nd.

Proposition 1 For any constant M > 0, we have

P(|Ti| ≥ t, |Si| ≥ λ) = (1 + o(1))P(|N(0, 1) + ti| ≥ t)P(|N(0, 1) + si| ≥ λ) +O(m−M ),

uniformly for 0 ≤ t ≤ 4
√

logm, 0 ≤ λ ≤ 4
√

logm and i = 1, . . . ,m. Furthermore, for all

0 ≤ j ≤ 4N with fixed N ,

P(|Ti| ≥ t, |Si| < λj) = (1 + o(1))P(|N(0, 1) + ti| ≥ t)P(|N(0, 1) + si| < λj) +O(m−M ),

uniformly for 0 ≤ t ≤ 4
√

logm and i = 1, . . . ,m, where λj = (j/N)
√

logm.

4.2 High-dimensional Linear Regression

Consider the two-sample regression model (1.2). Let Xd = (XT
1,·,d, . . . ,X

T
nd,·,d)

T be the

nd ×m data matrix, and Y ∗d = (Y ∗1,d, . . . , Y
∗
nd,d

)T be the nd × 1 data matrix, for d = 1, 2.
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Throughout, suppose that we have i.i.d random samples {Y ∗k,d,Xk,·,d, 1 ≤ k ≤ nd} with

Xk,·,d = (Xk,1,d, . . . , Xk,m,d) being a random vector with covariance matrix Σd for d = 1, 2.

Define Σ−1d = Ωd = (ωi,j,d). For any vector µd ∈ Rm, let µ−i,d denote the (m − 1)-

dimensional vector by removing the ith entry from µd. For any n ×m matrix Ad, Ai,−j,d

denotes the ith row of Ad with its jth entry removed and A−i,j,d denotes the jth column of

Ad with its ith entry removed. A−i,−j,d denotes the (n−1)× (m−1) submatrix of Ad with

its ith row and jth column removed. Let A·,−j,d denote the n×(m−1) submatrix of Ad with

the jth column removed, Ai,·,d denote the ith row of Ad, A·,j,d denote the jth column of Ad

and Ā·,j,d = 1/n
∑n

i=1Ai,j,d. Let Ā·,−j,d = 1/n
∑n

i=1Ai,−j,d, Ā·,j,d = (Ā·,j,d, . . . , Ā·,j,d)
T
n×1,

and Ā(·,−j,d) = (ĀT
·,−j,d, . . . , Ā

T
·,−j,d)

T

n×(m−1). Let Ād = 1/n
∑n

i=1Ai,·,d.

4.2.1 Construction of the primary statistic

We divide the process into four steps, which are described below.

Step 1. Reformulation via inverse regression. We first explain the idea of inverse

regression (Liu and Luo, 2014; Xia et al., 2018). Suppose we swap the response vector with

one of the columns in the design matrix, then we obtain the following model

Xk,i,d = αi,d + (Y ∗k,d,Xk,−i,d)γi,d + ηk,i,d, d = 1, 2, (4.9)

where γi,d = (γi,1,d, . . . , γi,m,d)
T, and ηk,i,d has mean zero and variance σ2ηi,d , and is uncor-

related with (Y ∗k,d,Xk,−i,d). The covariance between the old error term and new error term

can be calculated as

ri,d = Cov(εk,d, ηk,i,d) = −σ2ηi,dβi,d,

where σ2ηi,d = (β2i,d/σ
2
εd

+ ωi,i,d)
−1. Hence the problem (1.1) can be equivalently stated as

H0,i : ri,1/σ
2
ηi,1 = ri,2/σ

2
ηi,2 versus H1,i : ri,1/σ

2
ηi,1 6= ri,2/σ

2
ηi,2 , 1 ≤ i ≤ m. (4.10)

We shall see that the new formulation (4.10) is instrumental because the ratios can be easily

estimated from data and enjoy good theoretical properties.
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Step 2. Estimating the ratios. Let β̂d = (β̂1,d, . . . , β̂m,d) and γ̂i,d = (γ̂i,1,d, . . . , γ̂i,m,d)

be estimates of the coefficients using standard methods such as LASSO or Dantzig selector.

Then the corresponding residuals can be calculated as

ε̂k,d = Yk,d − Ȳd − (Xk,·,d − X̄d)β̂d,

η̂k,i,d = Xk,i,d − X̄i,d −
{
Yk,d − Ȳd, (Xk,−i,d − X̄·,−i,d)

}
γ̂i,d.

The sample covariance and variances are given by

r̃i,d = n−1d

nd∑
k=1

ε̂k,dη̂k,i,d , σ̂
2
εd

= n−1d

nd∑
k=1

ε̂2k,d, and σ̂2ηi,d = n−1d

nd∑
k=1

η̂2k,i,d.

The ratios in (4.10) can thus be obtained correspondingly.

Step 3. Bias correction. The empirical estimates r̃i,d in the previous step are biased

[this has been noted, for example, in Xia et al. (2018)]. Some calculations show that the

following step can be used to remove the bias:

r̂i,d = r̃i,d + σ̂2εd γ̂i,1,d + σ̂2ηi,d β̂i,d. (4.11)

Step 4. Standardization. The goal of this step is to make the estimated differences

comparable across tests. Consider the estimated ratios r̂i,d/σ̂
2
ηi,d

. The corresponding vari-

ances σ2w,i,d = (σ2εd/σ
2
ηi,d

+ β2i,d)/nd can be estimated by σ̂2w,i,d = (σ̂2εd/σ̂
2
ηi,d

+ β̂2i,d)/nd. The

standardization step gives the following primary test statistic:

Ti =
r̂i,1/σ̂

2
ηi,1 − r̂i,2/σ̂

2
ηi,2

(σ̂2w,i,1 + σ̂2w,i,2)
1/2

, 1 ≤ i ≤ m. (4.12)

4.2.2 Construction of the auxiliary statistic

Next we explain the main idea in constructing Si. To capture the information on the union

support effectively, we focus on βi,1 + κi · βi,2, or equivalently, a class of weighted sums

(ri,1/σ
2
ηi,1) + κi(ri,2/σ

2
ηi,2). The inverse regression technique can be used to obtain r̂i,d and

σ̂2ηid. To make the pair Ti and Si asymptotically independent, we choose the weights as
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κ̂i = σ̂2w,i,1/σ̂
2
w,i,2. Similar as before, we need to standardize the estimated weighted sums to

make the test statistics comparable. The variances of the weighted sums can be calculated

similarly as Step 4 in the previous subsection. Therefore we propose the following auxiliary

statistic

Si =
r̂i,1/σ̂

2
ηi,1 + (σ̂2w,i,1/σ̂

2
w,i,2)(r̂i,2/σ̂

2
ηi,2)

{σ̂2w,i,1(1 + σ̂2w,i,1/σ̂
2
w,i,2)}1/2

, 1 ≤ i ≤ m. (4.13)

4.2.3 Theoretical properties of Ti and Si

This section establishes two important theoretical properties that are crucial for proving

the validity of the GAP procedure in FDR control: (i) the asymptotic normality of Ti

(Proposition 2) and (ii) the asymptotic independence between Ti and Si (Proposition 3).

We assume that the estimators of βd and γi,d satisfy

P

(
max{|β̂d − βd|1, max

1≤i≤m
|γ̂i,d − γi,d|1} ≥ an1

)
= O(m−M ),

P

(
max{|β̂d − βd|2, max

1≤i≤m
|γ̂i,d − γi,d|2} ≥ an2

)
= O(m−M ), (4.14)

for any constant M > 0, where an1 and an2 satisfy

max{an1an2, a2n2} = o{(n logm)−1/2}, and an1 = o(1/ logm). (4.15)

Similar conditions are fulfilled by estimates obtained from standard high-dimensional re-

gression methods such as the LASSO, SCAD or Dantzig Selector with mild sparsity assump-

tions (see, e.g., Zhang and Huang (2008), Candes and Tao (2007), Liu (2013) and Xia et al.

(2018)). The next proposition shows that Ti follows a standard normal distribution asymp-

totically; according to this proposition we define two-sided p-values as pi = 2{1−Φ(|Ti|)}.

Proposition 2 Suppose (4.14) and (4.15), and the following two conditions hold:

(C1) Assume that logm = o(n1/5), n1 � n2, and for some constants C0, C1, C2 > 0,

C−10 ≤ λmin(Ωd) ≤ λmax(Ωd) ≤ C0, C−11 ≤ σ2εd ≤ C1, and |βd|∞ ≤ C2 for d = 1, 2.

(C2) There exists some constant K > 0 such that maxVar(aTXT
k,·,d)=1 E exp(K(aTXT

k,·,d)
2)
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and E exp(Kε2k,d) are finite.

Then, as n1, n2,m→∞,

Ti −
fi

(σ2w,i,1 + σ2w,i,2)
1/2
⇒ N(0, 1),

uniformly in i = 1, . . . ,m, where fi = (σ̃2ε1/σ
2
ε1 + σ̃2ηi,1/σ

2
ηi,1 −1)βi,1− (σ̃2ε2/σ

2
ε2 + σ̃2ηi,2/σ

2
ηi,2 −

1)βi,2 and σ̃2εd = n−1d
∑nd

k=1(εk,d − ε̄k,d)
2 and σ̃2ηi,d = n−1d

∑nd
k=1(ηk,i,d − η̄k,i,d)

2 with ε̄k,d =

n−1d
∑nd

k=1 εk,d and η̄k,i,d = n−1d
∑nd

k=1 ηk,i,d.

Remark 5 Note that under (C1), fi = {1+OP(
√

logm/n)}βi,1−{1+OP(
√

logm/n)}βi,2 =

OP(
√

logm/n) max{|βi,1|, |βi,2|} under the null hypothesis Hi,0 : βi,1 = βi,2. Furthermore,

the detailed convergence rate as required in (A1) is shown in the proof.

Define si =
βi,1+(σ2

w,i,1/σ
2
w,i,2)βi,2√

σ2
w,i,1(1+σ

2
w,i,1/σ

2
w,i,2)

. Let G(t) = 2(1−Φ(t)) with Φ(t) to be the cumulative

distribution function of standard normal random variable. The next proposition shows that

Ti and Si are asymptotically independent under the null Hi,0 : βi,1 = βi,2.

Proposition 3 Suppose (C1), (C2), (4.14) and (4.15) hold. Then for any constant M > 0,

P

(∣∣∣∣∣Ti − fi

(σ2w,i,1 + σ2w,i,2)
1/2

∣∣∣∣∣ ≥ t, |Si| ≥ λ
)

= (1+o(1))G(t)P(|N(0, 1)+si| ≥ λ)+O(m−M ),

uniformly for 0 ≤ t ≤ 4
√

logm, 0 ≤ λ ≤ 4
√

logm and i = 1, . . . ,m. Furthermore, for all

0 ≤ j ≤ 4N with fixed N ,

P

(∣∣∣∣∣Ti − fi

(σ2w,i,1 + σ2w,i,2)
1/2

∣∣∣∣∣ ≥ t, |Si| < λj

)
= (1+o(1))G(t)P(|N(0, 1)+si| < λj)+O(m−M ),

uniformly for 0 ≤ t ≤ 4
√

logm and i = 1, . . . ,m, where λj = (j/N)
√

logm.

4.3 Covariance, Correlation and Precision Matrices

This section considers simultaneous inference with two sparse matrices. The ideas and

techniques in the derivation of Ti and Si in the regression context carry over to the settings
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for two-sample inference of covariance and precision matrices. Hence we omit the details

and only outline the main steps in the derivation. Suppose we observe random samples

{Y1,·,d, · · · ,Ynd,·,d} as independent copies of Yd, where we denote the covariance matrix of

Yd by Σd = (βi,j,d : 1 ≤ i, j ≤ p), d = 1, 2. The goal is to make inference of θi,j = I(βi,j,1 6=

βi,j,2). The two sparse objects are B1 = (βi,j,1)p×p and B2 = (βi,j,2)p×p.

4.3.1 Covariance/Correlation Matrices

Suppose we are interested in detecting significant correlations/covariances changes between

two populations. The problem can be formulated as a two-sample multiple testing problem

(1.1) with Bd = Σd. Define the sample covariance matrices

(β̂i,j,d)p×p := Σ̂d =
1

nd

nd∑
k=1

(Yk,d − Ȳd)(Yk,d − Ȳd)
′
,

where Ȳd = 1
nd

∑nd
k=1 Yk,d. We standardize β̂i,j,1 − β̂i,j,2 by estimating the variances as

introduced in Cai et al. (2013), namely,

σ̂2i,j,d =
1

n2d

nd∑
k=1

[
(Yk,i,d − Ȳi,d)(Yk,j,d − Ȳj,d)− β̂i,j,1

]2
, Ȳi,d =

1

nd

nd∑
k=1

Yk,i,d.

Then we define the primary test statistics by

Ti,j =
β̂i,j,1 − β̂i,j,2

(σ̂2i,j,1 + σ̂2i,j,2)
1/2

, 1 ≤ i ≤ j ≤ p. (4.16)

To capture the information on the union support, we focus on βi,j,1 + κi,j · βi,j,2. To make

Ti and Si asymptotically independent, we choose the weights as κ̂i,j = σ̂2i,j,1/σ̂
2
i,j,2, which

leads to the following auxiliary statistic

Si,j =
β̂i,j,1 + (σ̂2i,j,1/σ̂

2
i,j,2)β̂i,j,2

{σ̂2i,j,1(1 + σ̂2i,j,1/σ̂
2
i,j,2)}1/2

.

For notational consistency, we rearrange the two-dimensional indices {(i, j) : 1 ≤ i ≤ j ≤ p}

as {(ai, bi) : 1 ≤ i ≤ m}, where m = p(p+ 1)/2. Then the primary and auxiliary statistics
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can be denoted

Ti =
β̂i,1 − β̂i,2

(σ̂2w,i,1 + σ̂2w,i,2)
1/2

, and Si =
β̂i,1 + (σ̂2w,i,1/σ̂

2
w,i,2)β̂i,2

{σ̂2w,i,1(1 + σ̂2w,i,1/σ̂
2
w,i,2)}1/2

1 ≤ i ≤ m, (4.17)

where β̂i,d = β̂ai,bi,d and σ̂2w,i,d = σ̂2ai,bi,d.

For testing the correlation matrices, we have Bd = D
−1/2
d ΣdD

−1/2
d , with Dd being the

diagonal matrix of Σd. The primary and auxiliary statistics can be constructed based on

β̂i,d =

∑nd
k=1(Yk,ai,d − Ȳai,d)(Yk,bi,d − Ȳbi,d)

{
∑nd

k=1(Yk,ai,d − Ȳai,d)2
∑nd

k=1(Yk,bi,d − Ȳbi,d)2}1/2
,

where σ̂2w,i,d are the variance estimates of the above defined β̂i,d as introduced in the de-

nominator of equation (5) of Cai and Liu (2016). In the correlation matrix testing scenario,

we have m = p(p − 1)/2 because only off-diagonal elements are of primary interest. For

both settings we can similarly show that {(Ti, Si), 1 ≤ i ≤ m} satisfy (A1) and (A3) in

Section 3 under the regularity conditions as described in Cai et al. (2013), and the detailed

proof is shown in Section ??.

4.3.2 Gaussian Graphical Models

Suppose that Yd ∈ Rp ∼ N(µd,Σd), then under the Gaussian Graphical Model (GGM)

framework, we translate the problem of identifying changes of conditional dependency be-

tween variables of interest into testing the off-diagonal elements of two precision matrices

Ωd = Σ−1d , namely, we have Bd = Ωd, and one wishes to test

H0,i,j : βi,j,1 = βi,j,2 versus H1,i,j : βi,j,1 6= βi,j,2, 1 ≤ i < j ≤ p.

We utilize the inverse regression models to estimate Ωd as studied in Xia et al. (2015), i.e.,

Yk,i,d = αi,d + Yk,−i,dγi,2 + εk,i,d, (i = 1, . . . , p; k = 1, . . . , nd), (4.18)
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where εk,i,d ∼ N(0, σi,i,d −Σi,−i,dΣ
−1
−i,−i,dΣ−i,i,d) (d = 1, 2) are independent of Yk,−i,d, and

αi,d = µi,d−Σi,−i,dΣ
−1
−i,−i,dµ−i,d. The regression coefficient vectors γi,d and the error terms

εk,i,d satisfy γi,d = −ω−1i,i,dΩ−i,i,d and ri,j,d = Cov(εk,i,d, εk,j,d) =
ωi,j,d

ωi,i,dωj,j,d
. We construct the

debiased estimators of ri,j,d by r̂i,j,d = −(r̃i,j,d + r̃i,i,dγ̂i,j,d + r̃j,j,dγ̂j−1,i,d), for 1 ≤ i < j ≤ p,

and r̂i,j,d = r̃i,j,d when i = j, where r̃i,j,d = 1
nd

∑nd
k=1 ε̂k,i,dε̂k,j,d, ε̂k,i,d = Yk,i,d − Ȳi,d −

(Yk,−i,d − Ȳ·,−i,d)γ̂i,d, and γ̂i,d are estimators of γi,d that can be obtained via Lasso and

Dantzig selector. The primary test statistics can be constructed as

Ti,j =
r̂i,j,1/(r̂i,i,1r̂j,j,1)− r̂i,j,2/(r̂i,i,2r̂j,j,2)

(σ̂2i,j,1 + σ̂2i,j,2)
1/2

, 1 ≤ i < j ≤ p,

where σ̂2i,j,d = (1 + γ̂2i,j,dr̂i,i,d/r̂j,j,d)/(ndr̂i,i,dr̂j,j,d) are the estimators of the variances. The

auxiliary statistics are constructed as

Si,j =
r̂i,j,1/(r̂i,i,1r̂j,j,1) + (σ̂2i,j,1/σ̂

2
i,j,2)r̂i,j,2/(r̂i,i,2r̂j,j,2)

{σ̂2i,j,1(1 + σ̂2i,j,1/σ̂
2
i,j,2)}1/2

.

Rearranging the two-dimensional indices {(i, j) : 1 ≤ i < j ≤ p} and setting {(ai, bi) : 1 ≤

i ≤ m}, the primary and auxiliary statistics can be denoted

Ti =
β̂i,1 − β̂i,2

(σ̂2w,i,1 + σ̂2w,i,2)
1/2

, and Si =
β̂i,1 + (σ̂2w,i,1/σ̂

2
w,i,2)β̂i,2

{σ̂2w,i,1(1 + σ̂2w,i,1/σ̂
2
w,i,2)}1/2

1 ≤ i ≤ m, (4.19)

where m = p(p − 1)/2, β̂i,d = r̂ai,bi,d/(r̂ai,ai r̂bi,bi) and σ̂2w,i,d = σ̂2ai,bi,d. Again, it can be

shown that {(Ti, Si), 1 ≤ i ≤ m} satisfy (A1) and (A3) in Section 3 under the regularity

conditions described in Xia et al. (2015).

5 Simulation studies

We now turn to the numerical performance of the GAP algorithm. Simulation studies

are carried out to compare the performance of the following methods: (a) The BH pro-

cedure (naive pooled analysis), denoted by BH. (b). Separate analysis (grouping without

weighting) with 2 and 3 groups, denoted by 2G and 3G respectively. (c). The proposed
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GAP procedure with 3 groups, denoted by GAP. We present the results for weakly depen-

dent tests and high-dimensional linear regression in Sections 5.1 and 5.2, respectively. The

results for Gaussian graphical models are provided in the Supplementary Material.

5.1 Weakly Dependent Tests

We simulate two vectors of correlated z-values of dimension p = 2000 from YYY d ∼ N(βd,Σ),

d = 1, 2, from the following three models, where three covariance matrices Σ(1), Σ(2) and

Σ(3) are considered, respectively.

• Model 1: Σ(1) = (σ
(1)
i,j ), where σ

(1)
i,j = 0.8|i−j| for 1 ≤ i, j ≤ m.

• Model 2: Σ(2) = (σ
(2)
i,j ), where σ

(2)
i,i = 1, σ

(1)
i,j = 0.5 for 3(k − 1) + 1 ≤ i 6= j ≤ 3k,

k = 1, ..., [m/3], and σ
(2)
ij = 0 otherwise.

• Model 3: Σ∗(3) = (σ
∗(3)
i,j ) where σ

∗(3)
i,i = 1, σ

∗(3)
i,j = 0.5∗Bernoulli(1, 0.05) for i < j and

σ
∗(3)
j,i = σ

∗(3)
i,j . For positive definiteness, further let Σ(3) = (Σ∗(3) + δI)/(1 + δ) with

δ = |λmin(Σ∗(3))|+ 0.05.

The mean vectors βd, d = 1, 2, are generated as follows. We first set βi,1 = 3, βi,2 = β for

1 ≤ i ≤ 50, βi,1 = −3, βi,2 = −β for 51 ≤ i ≤ 100, then vary β with values 6.5, 7.0, 7.5, 8.0,

and finally apply different methods at FDR level α = 0.05. Empirical FDRs and powers are

estimated based on 200 replications. The standard error of the estimated FDR for GAP is

stable and is around 0.02 in all settings. Hence we feel that using 200 replications should

to be sufficient for reaching a reliable conclusion. The FDR and power comparisons are

illustrated in Figure 2. We make the following remarks based on the simulation results.

(a). The three plots in the left column show that all methods control the FDR reasonably

well in all three settings.

(b). The power of BH can be greatly improved by 2G, which exploits the information in

the auxiliary sequence.

(c). The power of 2G can be further increased by 3G and GAP.
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(d). GAP has smaller FDR level and similar power compared to 3G.

(e). To further illustrate the difference between GAP and 3G, we adjust the FDR levels

of GAP according to the ratios of the empirical FDRs for GAP and 3G, and then

match the corresponding powers of GAP and 3G at roughly the same FDR level.

The results are displayed in the three plots in the right column. We can see that

GAP outperforms 3G in power under this new setting where the FDRs are matched

at roughly the same level; this indicates that GAP has greater power than 3G at the

same FDR level.

Remark 6 GAP utilizes a standardization step in its operation. This standardization

step, which guarantees the FDR control, tends to lead to more conservative FDR levels as

observed in our simulation studies. This normalizing step is desirable as it guarantees the

validity of GAP for FDR control in more complicated situations such as high-dimensional

regression models and large GGM. As we shall see in later simulation studies on GGM, 3G

fails to control the FDR but GAP still works.

5.2 High-dimensional Linear Regression

Consider the two-sample regression model (1.2). The following three models considered in

Xia et al. (2018) are used to generate the design matrices. Let D = (Di,j) be a diagonal

matrix with Di,i = Unif(1, 3) for i = 1, . . . ,m.

• Model 1: Ω∗(1) = (ω
∗(1)
i,j ) where ω

∗(1)
i,i = 1, ω

∗(1)
i,i+1 = ω

∗(1)
i+1,i = 0.6, ω

∗(1)
i,i+2 = ω

∗(1)
i+2,i = 0.3

and ω
∗(1)
i,j = 0 otherwise. Let Ω(1) = D1/2Ω∗(1)D1/2.

• Model 2: Ω∗(2) = (ω
∗(2)
i,j ) where ω

∗(2)
i,j = ω

∗(2)
j,i = 0.5 for i = 10(k − 1) + 1 and

10(k − 1) + 2 ≤ j ≤ 10(k − 1) + 10, 1 ≤ k ≤ m/10. ω
∗(2)
i,j = 0 otherwise. Let

Ω(2) = D1/2(Ω∗(2) + δI)/(1 + δ)D1/2 with δ = |λmin(Ω∗(2))|+ 0.05.

• Model 3: Ω∗(3) = (ω
∗(3)
i,j ) where ω

∗(3)
i,i = 1, ω

∗(3)
i,j = 0.8×Bernoulli(1, 2/p) for i < j and

ω
∗(3)
j,i = ω

∗(3)
i,j . Let Ω(3) = D1/2(Ω∗(3) + δI)/(1 + δ)D1/2 with δ = |λmin(Ω∗(3))|+ 0.05.
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Figure 2: FDR, Power and adjusted Power comparisons on weakly dependent normal vec-
tors between BH, 2G, 3G and GAP.
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The design matrices are Xk,·,d, for k = 1, . . . , nd and d = 1, 2, generated with some of the

covariates being continuous and the others being discrete. We first obtain i.i.d samples

Xk,·,d ∼ N(0,Σ(f)) with Σ(f) = (Ω(f))−1, for k = 1, . . . , nd, with f = 1, 2 and 3, from

three models above, and then replace l covariates of Xk,·,d by one of three discrete values

0, 1 or 2, with probability 1/3 each, where l is a random integer between bm/2c and m.

Let m = 200 and s = 15. We randomly select s nonzero locations to form set Λ0 =

{k1, . . . , ks}. Let βki,1 = 2i0.5n−a1 and βki,2 = 2.5i0.5n−a2 for i = 1, . . . , bs/2c, βki,1 =

−2i0.5n−a1 , and βki,2 = −2.5i0.5n−a2 for i = bs/2c + 1, . . . , s, with a = 0.05, 0.1, 0.15 and

0.2. Finally, we randomly select s nonzero locations respectively to form Λ1 and Λ2. Let

βki,1 = −2i0.5n−a1 for ki ∈ Λ1 \Λ0, and βki,2 = 2.5i0.5n−a2 for ki ∈ Λ2 \Λ0. The sample sizes

are taken to be n = n1 = n2 = 200. The reported FDR and power levels are calculated

by averaging the results based on 50 replications. The regression coefficients βd and γi,d

are estimated by Lasso; see Section 5.1 of Xia et al. (2018) for a detailed description of

the estimation procedure. We then construct the primary and auxiliary statistics based on

estimated coefficients and apply different methods at the nominal FDR level α = 0.05.

The FDR and power comparisons are illustrated in Figure 3. Similar conclusions can

be drawn as before base on the simulation results: all the methods control the FDR at the

pre-specified level; the power of BH is improved by 2G, which is further improved by 3G;

and GAP is the most powerful method. It is important to note that GAP simultaneously

has smaller FDR and larger power than 3G in all settings.

5.3 Simulations on Gaussian Graphical Models

We consider additional simulation comparisons on Gaussian Graphical Models in this sec-

tion. The following four methods are studied: (a) The BH procedure, denoted BH. (b).

Separate analysis (grouping without weighting) with 2 and 3 groups, denoted 2G, 3G. (c).

The proposed GAP procedure with 3 groups, denoted by GAP.

Let D = (Di,j) be a diagonal matrix with Di,i = Unif(0.5, 2.5) for i = 1, . . . ,m. We

considered the three graphical models as studied in Xia et al. (2015).

• Model 1: Ω∗(1) = (ω
∗(1)
i,j ) where ω

∗(1)
i,i = 1, ω

∗(1)
i,i+1 = ω

∗(1)
i+1,i = 0.6, ω

∗(1)
i,i+2 = ω

∗(1)
i+2,i = 0.3
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Figure 3: FDR and Power comparisons on regression models between BH, 2G, 3G and
GAP.
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and ω
∗(1)
i,j = 0 otherwise. Ω(1) = D1/2Ω∗(1)D1/2.

• Model 2: Ω∗(2) = (ω
∗(2)
i,j ) where ω

∗(2)
i,j = ω

∗(2)
j,i = 0.5 for i = 10(k − 1) + 1 and

10(k − 1) + 2 ≤ j ≤ 10(k − 1) + 10, 1 ≤ k ≤ p/10. ω
∗(2)
i,j = 0 otherwise. Ω(2) =

D1/2(Ω∗(2) + δI)/(1 + δ)D1/2 with δ = |λmin(Ω∗(2))|+ 0.05.

• Model 3: Ω∗(3) = (ω
∗(3)
i,j ) where ω

∗(3)
i,i = 1, ω

∗(3)
i,j = 0.8 × Bernoulli(1, 0.05) for i < j

and ω
∗(3)
j,i = ω

∗(3)
i,j . Ω(3) = D1/2(Ω∗(3) +δI)/(1+δ)D1/2 with δ = |λmin(Ω∗(3))|+0.05.

We let Ω∗1 = Ω(s) = (ω
(s)
i,j ) for s = 1, 2, 3, and construct Ω∗2 by removing half of the

nonzero entries in Ω∗1 and setting the rest have magnitudes half of the original values. Let

δ = |λmin(Ω∗2)|+ 0.05, and set Ω1 = Ω∗1 + δI and Ω2 = Ω∗2 + δI. We select the dimension

p = 50, 100 and 200, and set n = n1 = n2 = 100. The nominal level is chosen to be α = 0.1.

Empirical sizes and powers are estimated based on 50 replications.

The FDR and power comparisons are illustrated in Figure 4. We can see from the

figure that most of the methods control the FDR at the pre-specified level well, while the

3G method has serious FDR distortions in Models 2 and 3. Figure 4 also shows that the

power difference is very clear among these four procedures, and in all three models, the

GAP procedure shows the clear advantage over BH, and 2G across all dimensions, and it

has similar power performance as 3G. However, the power gain of 3G is due to the inflation

of its FDR.

6 Analysis of Differential Gene Networks

This section applies the GAP algorithm for analyzing a breast cancer dataset to identify

gene-gene interactions whose effect sizes have changed significantly between two groups of

patients. In clinical practice, it has been discovered that many prominent genomic markers

are useful predictors of breast cancer survival, and increasingly, pharmacogenomic endpoints

are being incorporated into the design of clinical trials (Olopade et al., 2008). Empirical

evidence from model organisms and human studies suggests that gene-gene interactions

make an important contribution to total genetic variation of complex traits (Zerba et al.,
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Figure 4: FDR and Power comparisons on Gaussian Graphical Models between BH, 2G,
3G and GAP.
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2000; Marchini et al., 2005). However, most existing studies (Nathanson et al., 2001)

have only established molecular pathways of pathogenesis for breast cancer, and few have

investigated the interactions between genes, within and across pathways, that are associated

with breast cancer survival.

Our analysis focuses on 32 pathways related to breast cancer survival (a total of 754

genes) based on the molecular signature database. This leads to
(
754
2

)
= 283881 pairs of

potential gene-gene interactions. We consider two types of survivors in the study: 78 short

term survivors who died within 5 years; and 69 long term survivors who have survived

more than 10 years. Previous studies [Segal et al. (2003); Dobra et al. (2004)] revealed that

transcriptional regulation of a single gene is generally defined by a small set of regulatory

elements; hence we assume that the gene-gene interactions in the selected pathways are

sparse, and propose to use an auxiliary sequence to capture the sparsity information in

the data. Our goal is to identify gene-gene interactions that have significant changes of

magnitude between the two types of survivors; this leads to a two-sample multiple testing

problem as formulated in (1.1). We apply BH, 2G and GAP to carry out the analysis.

The BH procedure identifies 6 pairs of genes with significant changes in interaction

at the FDR level of 0.1. For the 2G method, we first construct auxiliary statistics using

the formulae in Section 4.3.2 and then divide the m pairs of genes into two groups. By

setting the same FDR level for both groups, 2G identifies 15 pairs of genes. Finally we

apply the GAP procedure by dividing the pairs into three groups and set up the FDR

level for each group adaptively based on the non-null proportions. The data-driven cutoffs

in Step 1 of GAP are λ1 = −3.9 and λ2 = −1.3, resulting in three groups with sizes

|G1| = 346, |G2| = 35086 and |G3| = 248449, respectively. Group G1 has the highest non-

null proportions and is assigned with the highest weight w1 = 176.17. The GAP procedure

selected 6 pairs of genes out of G1, whereas both BH procedure and 2G did not select any

from this group. Group G2 has the second highest non-null proportions and is assigned the

weight of w2 = 5.25. GAP selected 13 pairs of genes from this group, again greater than

the number of pairs selected by both 2G and BH. Finally, G3 has the lowest proportion of

non-nulls, and is assigned with the weight of w3 = 0.16. All three methods selected 3 pairs
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of genes from G3. In summary, the GAP procedure identifies 22 pairs of significant changes

in interactions by combing all three groups.

If we set the FDR level at 0.05, then BH cannot identify any pairs of genes, 2G identifies

7 pairs, and GAP identifies 11 pairs. The above analysis has illustrated that the GAP

procedure helps to discover more interactions. Nonetheless it is necessary to point out that

more rejections do not always correspond to greater power of making true discoveries. The

power gain should be corroborated by carefully designed new biological studies to replicate

these findings.

7 Discussion

This paper develops a general framework for information pooling in two-sample sparse

inference. The framework is illustrated and applied to different examples with various de-

pendence structures, including testing multivariate normal means, high-dimensional linear

regression, differential covariance or correlation matrices, and Gaussian graphical models.

It is shown that the GAP procedure, which effectively exploits the auxiliary information on

the sparsity structure of the data, controls the FDR at the nominal level and outperforms

existing FDR methods in power.

Although the grouping and weighting strategy provides a powerful tool to capture the

structural information in the data, the proposed GAP framework has several limitations.

First, the grouping step involves the discretization of a continuous variable, which fails to

fully utilize the auxiliary information and lead to some information loss. Creating more

groups would reduce the information loss. However, the GAP framework cannot handle

too many groups due to the increased computational burden (in searching for the optimal

cutoffs) and the decreased accuracy of the proportion estimates. The study of the optimal

tradeoffs between grouping, computation and estimation is an interesting but complicated

problem. Finally, it remains an open issue regarding whether our proposed weights are

optimal. Intuitively, the weights only encode the sparsity structure, but other structural

or side information, such as prior knowledge, heteroscedasticity, clustering and hierarchical
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structures may also be helpful in improving the efficiency in large-scale statistical inference.

Much research is still needed for developing new strategies that fully capture various aux-

iliary information alongside the primary data and optimally incorporate such information

into existing multiple testing procedures.
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