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Web Appendix A: Integration in the presence of direct

effects

Power for SNPs with direct effects

In Section 3 we showed that our method can have more power to detect o-eSNPs. Here we
discuss its power to detect SNPs whose functional mechanisms have non-regulatory com-
ponents. For simplicity we again consider only continuous Yi, Gi, and a single SNP Si in
the ordinary linear model, where the variables have all been centered. We now consider
the outcome model Yi = GT

i αG + αSSi + εi1, where the direct effect αS is nonzero. The
transcript model remains GT

i αG = βSSi + εi2. We again compare to the usual approach of
fitting Yi = β∗

SSi +N(0, σ∗2).

We are interested in comparing the power of tests based on β̂S and β̂∗
S under this direct

effect model, so we study βS/var (β̂S) and β∗
S/var (β̂∗

S). First, we still have var (β̂∗
S) = (σ2

1 +

σ2
2)/var (Si). To calculate var (β̂S) note that Step 1 of our integrative procedure is equivalent

to marginalizing over Si in the true outcome model, which gives E(Yi | Gi) = GT
i αG +

αSE(Si | Gi) and var (Yi | Gi) = α2
Svar (Si | Gi) + σ2

1. Without knowing more about the
distribution of Si given Gi it is hard to draw further conclusions. But when Si is weakly
correlated with Gi, the outcome model is approximately correctly specified and

var (β̂S) ≈ σ2
2/var (Si) + {σ2

1 + α2
Svar (Si | Gi)}ΣSGΣ−1

GGΣGS/var (Si)
2. (1)

Second, β∗
S = αS + βS. Thus when αS is large relative to βS with the same sign, standard

analysis will be more powerful. Otherwise, denoting c = ΣSGΣ−1
GGΣGS/var (Si), var (β̂S) <

var (β̂∗
S) if α2

S < σ2
1(1 − c)/var (Si | Gi)c. Since c is small when Si and Gi are weakly

correlated and σ2
1 tends to be large, our approach will still have more power unless αS is very

large, though when it is so large that αSE(Si | Gi) is not close to zero the outcome model
will not be approximately correctly specified.

Alternative integrative procedures

One reviewer raised the question of whether accounting for these direct effects in Step 1 of
our procedure might improve the power of our integrative approach. We consider testing βS
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in two alternative integrative models:

Yi = GT
i αG + αSSi + εi1

GT
i αG + αSSi = βSSi + εi2,

(2)

which we refer to as the total effect approach, because βS now encompasses both the direct
and regulatory effects of Si on Yi, and

Yi = GT
i αG + αSSi + εi1

GT
i αG = βSSi + εi2,

(3)

which we refer to as the conditional approach, because βS is the regulatory effect of Si

conditional on the presence of the direct effect.
To analyze (2) and (3) we require the covariance matrix of

√
n(α̂T

G, α̂S)T , which equals

σ2
1

(
ΣGG ΣGS

ΣSG var (Si)

)−1

= σ2
1

(
Σ−1

GG + k−1Σ−1
GGΣGSΣSGΣ−1

GG −k−1Σ−1
GGΣGS

−k−1ΣSGΣ−1
GG k−1

)
,

where k = var (Si) − ΣSGΣ−1
GGΣGS. We again let c = ΣSGΣ−1

GGΣGS/var (Si) so that k =
(1 − c)var (Si). The inverse of the covariance matrix has determinant det (ΣGG)k, which
must positive because the matrix is positive-definite. Therefore k > 0, which implies c < 1.
Under (2), βS = β∗

S, and our calculations in Section 3 imply that

var (β̂S) = σ2
2/var (Si) + σ2

1{c/var (Si) + k−1(1− c)2} = var (β̂∗
S).

Thus the total effect approach provides no advantage over standard association analysis.
Under (3) similar calculations imply that

var (β̂S) = σ2
2/var (Si) + σ2

1{c/var (Si) + k−1c2} = σ2
2/var (Si) + σ2

1c/(1− c)var (Si).

Compared to the variance (1) of our original integrative procedure without the direct effect,
the conditional approach will be less powerful if α2

s < σ2
1c/(1 − c)var (Si | Gi). Thus if the

direct effect is large, the conditional approach may have more power, but it will always be
worse than our original procedure for SNPs with no direct effect.

Simulations and data analysis

We applied the conditional approach to the simulated data studied in the main paper. Table 1
reports the type I errors and shows that the conditional approach also maintains the nominal
error rate. Figures 1 and 2 show that for continuous Yi its power is nearly identical to that
of our integrative procedure without the direct effect, but for binary Yi it is noticeably less
powerful even in Example 2, which was simulated with a direct effect. Table 2 shows that
it is much less powerful in high dimensions, most likely because the data were simulated
without direct effects.

Finally, we also used the conditional approach to analyze the yeast data studied in the
main paper. We discovered no significant SNPs after Bonferroni correction, but this may be
because we only tested pairs of genes and SNPs located in cis. Our analysis of the conditional
approach suggests that it may outperform our original integrative analysis formulation when
the direct effect is large, but cis-SNPs tend not to have large direct effects. Our cis-pairwise
approach may not be optimal for applying the conditional approach to high-dimensional
genomic data.
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Figure 1: Average power curves for linear outcomes using conditional integrative approach.
Integration: proposed method; Standard: standard univariate regression analysis; Overlap:
overlap method.
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Figure 2: Average power curves for binary outcomes using conditional integrative approach.
Integration: proposed method; Standard: standard univariate regression analysis; Overlap:
overlap method.
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Table 1: Average type I errors at nominal 0.05 level using conditional integrative approach.
Integration: proposed method; Standard: standard univariate regression analysis; Overlap:
overlap method.

Linear Binary
Example Integrative Standard Overlap Integrative Standard Overlap

1 0.064 0.052 0.000 0.052 0.040 0.000
2 0.044 0.028 0.000 0.052 0.060 0.000
3 0.036 0.052 0.000 0.052 0.040 0.000
4 0.044 0.048 0.000 0.036 0.024 0.012
5 0.064 0.056 0.000 0.064 0.028 0.000

Table 2: SNP detection in high-dimensions (Example 6), after Bonferroni correction to
give a family-wise error rate of 0.05. We simulated a total of 14 o-eSNPs. Integration:
proposed method, 20,000 tests; Standard: standard univariate regression analysis, 10,000
tests. Performance metrics (SD): TP = true positive rate, FD = false discovery rate; Median
size is reported (interquartile range).

Outcome Method TP FD Size
Continuous Integration 29.71(7.81) 1.87(6.1) 4(2)

Standard 1.14(2.85) 5.2(22.25) 0(0)
Binary Integration 8.17(6.22) 0.2(3.16) 1(1)

Standard 0.14(1) 0(0) 0(0)
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