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Abstract: High-dimensional group inference is an essential part of statisti-
cal methods for analysing complex data sets, including hierarchical testing,
tests of interaction, detection of heterogeneous treatment effects and in-
ference for local heritability. Group inference in regression models can be
measured with respect to a weighted quadratic functional of the regression
sub-vector corresponding to the group. Asymptotically unbiased estima-
tors of these weighted quadratic functionals are constructed and a novel
procedure using these estimators for inference is proposed. We derive its
asymptotic Gaussian distribution which enables the construction of asymp-
totically valid confidence intervals and tests which perform well in terms of
length or power. The proposed test is computationally efficient even for a
large group, statistically valid for any group size and achieving good power
performance for testing large groups with many small regression coefficients.
We apply the methodology to several interesting statistical problems and
demonstrate its strength and usefulness on simulated and real data.
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1. Introduction

1.1. Motivation and formulation

Statistical inference for high-dimensional linear regression is an important but
also challenging problem. This paper addresses a long-standing statistical prob-
lem, namely inference or testing significance of groups of covariates. Specifically,
we consider the following high-dimensional linear regression

yi = Xᵀ
i·β + εi, for i = 1, . . . , n, (1.1)

where Xi· ∈ Rp are independent and identically distributed random vectors
with Σ = EXi·X

ᵀ
i· and εi are independent and identically distributed centred
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Gaussian errors, independent of Xi·, with variance σ2. For a given index set
G ⊆ {1, 2, . . . , p}, we consider testingH0 : βG = 0 through testing the equivalent
null hypothesis,

H0,A : βᵀ
GAβG = 0, (1.2)

whereA ∈ R
|G|×|G| is a positive-definite matrix with |G| denoting the cardinality

of G. The test (1.2) includes a class of tests for different A. By taking A as ΣG,G,
(1.2) is specifically written as

H0,Σ : βᵀ
GΣG,GβG = 0. (1.3)

In addition, when A is the identity matrix, (1.2) is reduced to H0,I : βᵀ
GβG =

0. The quantity βᵀ
GΣG,GβG in (1.3) is naturally used for group significance

testing as the quantity itself measures the variance explained by the set of
variables Xi,G, β

ᵀ
GΣG,GβG = E|Xᵀ

i,GβG|2. The testing problem (1.3) can be
conducted in both settings where the matrix ΣG,G is known or unknown. If
ΣG,G is known, then it can be simply treated as a special case of (1.2). However,
in the more practical setting with an unknown ΣG,G, we need to estimate ΣG,G

in the construction of the test statistic and quantify the additional uncertainty
of estimating this matrix from data.

In the following, we shall provide a series of motivations for group inference
or significance.

1. Hierarchical Testing. It is often too ambitious to detect significant single
variables and groups of correlated variables are considered instead. Hierarchi-
cal testing is adjusting hierarchically over multiple group tests. It addresses the
trade-off between signal strength and high correlation and it is a most natural
way to deal with large-scale high-dimensional testing problems in real applica-
tions [6, 20]. More details are given in Section 4.1.

2. Interaction Test and Detection of Effect Heterogeneity. Group signif-
icance testing can be used to examine the existence of interaction. We write the
model with interaction terms [32, 7], yi = Xᵀ

i·β +Di ·Xᵀ
i·γ + εi for i = 1, . . . , n

with Di denoting the exposure variable and formulate the interaction test as
H0 : γ = 0. If Di denotes whether the i-th observation receives a treatment,
then one can test against the presence of heterogenous treatment effects, see
also Section 4.2.

3. Local Heritability in Genetics. Local heritability is among the most im-
portant heritability measures [30] and can be defined asE|Xᵀ

i,GβG|2=βᵀ
GΣG,GβG

in (1.1), representing the proportion of variance explained by a subset of geno-
types indexed by the group G. In applications, the group G can be naturally
formulated, e.g., the set of SNPs located on the same chromosome. It is of in-
terest to test whether a group of genotypes with the index set G is significant
and construct confidence intervals for local heritability.
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1.2. Results and contribution

Statistical inference in high dimensional models has been studied in both statis-
tics and econometrics with a focus on confidence interval and hypothesis testing
for individual regression coefficients [19, 34, 37, 11, 8]. Together with a care-
ful use of bootstrap methods, certain maximum tests have been developed in
[11, 13, 38] to conduct the hypothesis testing problem H0 : βG = 0. These tests
rely on the maximum of individual estimates and are tailored for sparse alter-
natives, and they can be computationally costly, especially when the size of G is
large. Instead of the maximum statistics which is favourable for sparse alterna-
tives, we focus on sum-type statistics and also address the computational issue
through directly testing the group significance. In low dimensions, the (partial)
F-test is the classical sum-type procedure for testing group significance. How-
ever, there is a lack of sum-type methods for conducting group significance tests
in high dimensions, especially for large groups. Our proposed group test with
sum-type statistics can hence be viewed as an additional potentially powerful
procedure in the toolkit of high-dimensional data analysis.

The proposed test statistic is constructed via an inference procedure for the
quadratic form βᵀ

GΣG,GβG in (1.3). We illustrate the main idea using QΣ =

βᵀ
GΣG,GβG as an example. Denote by β̂ a reasonably good estimator (e.g. the

Lasso estimator) of β and define Σ̂ =
∑n

i=1 Xi·X
ᵀ
i·/n. The plug-in estimator

β̂ᵀ
GΣ̂G,Gβ̂G is not proper for statistical inference because it has a dominating

bias inherited from β̂. We correct the bias of this plug-in estimator through a
novel projection. The proposed methodology can be extended to deal with the
more general inference problem for βᵀ

GAβG where A ∈ R
|G|×|G| is a positive

definite matrix.

The proposed test is valid for any group size |G| in terms of type-I error
control. As a generalization of the F-test to high-dimensions, the group tests
proposed in [26] and [35] require the group size |G| to be smaller than the
sample size. Our test has good power performance for testing large groups. The
proposed test is asymptotically powerful as long as βᵀ

GΣG,GβG is of a larger
order of magnitude than (1+‖βG‖2+‖βG‖22)/n1/2. In comparison, the detection
threshold of the χ2 test is in the order of (|G|/n)1/2 [26, 35] which is inferior
to the proposed test for a large |G|. Additionally, for certain difficult settings,
our proposed test achieves the same detection boundaries as the maximum test
[11, 13, 38], up to a constant, see the discussion after Corollary 2.

In Section 5, we compare the finite sample performance of the proposed sum-
type test with the maximum test. In simulated data where the regression vector
has many non-zero and small entries, we have observed that the proposed test
has a better power performance; in simulated data with high correlation among
covariates, the proposed confidence intervals achieve the desired coverage prop-
erty while the coordinate-based inference procedures exhibit under-coverage.

Based on the proposed group test, a hierarchical testing algorithm inherits all
of the above advantages in terms of both the computational efficiency and statis-
tical validity. Even conceptually, hierarchical testing is fundamentally requiring
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a group test that is not based on the maximum of individual coordinates: the
latter simply corresponds to a Bonferroni adjustment of individual coordinate
tests and a hierarchical testing procedure would be useless. We illustrate some
practical results in Sections 5.4 and 5.5.

Our proposed group test method has been implemented in the R package
SIHR available from CRAN. More detailed illustration of the R package SIHR

can be found in [27].

1.3. Literature comparison

In addition to the existing work based on the maximum test and generaliza-
tion of F tests mentioned above, there is other related work. Inference for the
quadratic functionals is closely related to the group test. Statistical inference for
βᵀΣβ and ‖β‖22 has been carefully investigated in [36, 9, 15] and the methods
developed in [9] have been extended to signal detection, which is a special case
of (1.1) by setting G = {1, . . . , p}. The group significance test problem is more
challenging than signal detection, mainly due to the fact that the group test
requires a decoupling between variables in G and Gc. The decoupling between
G and Gc essentially requires a novel construction of the projection direction.
See Section 2.2 for more details. The same comments can be made to differen-
tiate the current paper with the signal detection problem considered in [18, 1].
Finally, [24] proposes another group significance test without any compatibility
condition on the design. The price to be paid for this relaxation of conditions is
in terms of a typically large drop in power.

2. Methodology for testing group significance

2.1. Group debiased estimator

We first present an inference procedure for QΣ = βᵀ
GΣG,GβG and will generalize

it to inference for QA = βᵀ
GAβG. Throughout the paper, we use β̂ to denote a

reasonably good estimator of β and use Σ̂ =
∑n

i=1 Xi·X
ᵀ
i·/n as the estimator of

Σ. Without loss of generality, we assume the index set G of the form {1, . . . , |G|}.
To estimate QΣ, we examine the error decomposition of a plug-in estimator
β̂ᵀ
GΣ̂G,Gβ̂G as

β̂ᵀ
GΣ̂G,Gβ̂G − βᵀ

GΣG,GβG =− 2β̂ᵀ
GΣ̂G,G(βG − β̂G) + βᵀ

G(Σ̂G,G − ΣG,G)βG

− (β̂G − βG)
ᵀΣ̂G,G(β̂G − βG).

In this decomposition, we need to estimate 2β̂ᵀ
GΣ̂G,G(βG−β̂G) as this is the dom-

inant term to further calibrate the plug-in estimator β̂ᵀ
GΣ̂G,Gβ̂G. The calibration

can be done through identifying a projection direction û ∈ R
p to approximate

β̂ᵀ
GΣ̂G,G(βG − β̂G). For any u ∈ R

p,

uᵀ 1
n
Xᵀ(y−Xβ̂)−β̂ᵀ

GΣ̂G,G(βG−β̂G) =
1

n
uᵀXᵀε+

{
Σ̂u− (β̂ᵀ

GΣ̂G,G,0)
ᵀ
}ᵀ

(β−β̂).
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In this decomposition, 1
nu

ᵀXᵀε can be viewed as a variance component with
asymptotically normal distribution; the second term on the right hand side can
be controlled by Hölder inequality,∣∣∣{Σ̂u−

(
β̂ᵀ
GΣ̂G,G,0

)ᵀ}ᵀ
(β − β̂)

∣∣∣ ≤ ‖β − β̂‖1
∥∥∥Σ̂u− (β̂ᵀ

GΣ̂G,G,0)
ᵀ
∥∥∥
∞
.

As long as β̂ is a reasonable estimator with a small ‖β − β̂‖1, it remains to

construct the projection direction u ∈ R
p such that

∥∥Σ̂u − (β̂ᵀ
GΣ̂G,G,0)

ᵀ∥∥
∞

is constrained. A direct generalization of “constraining bias and minimizing
variance” in [19] leads to

ũ = argmin uᵀΣ̂u s.t. ‖Σ̂u− (β̂ᵀ
GΣ̂G,G,0)

ᵀ‖∞ ≤ ‖Σ̂G,Gβ̂G‖2λn (2.1)

where λn = C(log p/n)1/2 for some constant C > 0. However, such a general-

ization does not always work: if ‖Σ̂G,Gβ̂G‖2λn ≥ ‖Σ̂G,Gβ̂G‖∞, we have ũ = 0
as the solution and do not conduct any bias correction. When |G| is large and

the elements of the vector Σ̂G,Gβ̂G are of a similar order, then ũ = 0 as long as√
|G| log p/n ≥ C for some positive constant C > 0.
To do the bias correction for arbitrary groups, we construct the projection

direction u as

û = argmin uᵀΣ̂u s.t. max
w∈C

〈
w, Σ̂u− (β̂ᵀ

GΣ̂G,G,0)
ᵀ
〉
≤ ‖Σ̂G,Gβ̂G‖2λn

(2.2)
where λn = C(log p/n)1/2 for some constant C > 0, and

C = {e1, . . . , ep, (β̂ᵀ
GΣ̂G,G/‖Σ̂G,Gβ̂G‖2,0)ᵀ}. (2.3)

The choice of the tuning parameter λn in (2.2) is discussed in details in Sec-

tion 5.1. In comparison to (2.1), an additional direction (β̂ᵀ
GΣ̂G,G,0)

ᵀ in C is
introduced to ensure that the projection works for any group size and the main
intuition of this additional constraint is to ensure the variance component dom-
inates the remaining bias after the bias correction. Particularly, it rules out the
trivial solution for a large |G|. The final estimator of βᵀ

GΣG,GβG is

Q̂Σ = β̂ᵀ
GΣ̂G,Gβ̂G +

2

n
ûᵀXᵀ(y −Xβ̂) with Σ̂ =

1

n
XᵀX. (2.4)

We estimate σ2 by σ̂2 = ‖y −Xβ̂‖22/n and estimate the variance of Q̂Σ by

V̂Σ(τ) =
4σ̂2

n
ûᵀΣ̂û+

1

n2

n∑
i=1

(
β̂ᵀ
GXiGX

ᵀ
iGβ̂G − β̂ᵀ

GΣ̂G,Gβ̂G

)2

+
τ

n
, (2.5)

for some positive constant τ > 0. We propose the α-level test for H0,Σ:

φΣ(τ) = 1
(
Q̂Σ ≥ (1 + η)z1−α(V̂Σ(τ))

1/2
)
, (2.6)
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where z1−α is the 1− α quantile of the standard normal distribution and η > 0
is a small constant and is typically set to 0.1. A (1−α)-level confidence interval
for QΣ is given by

CIΣ(τ) =
(
Q̂Σ − (1 + η)z1−α

2
(V̂Σ(τ))

1/2, Q̂Σ + (1 + η)z1−α
2
(V̂Σ(τ))

1/2
)
(2.7)

We briefly discuss now the inclusion of τ and η in (2.6). The constant τ is
essential to deal with super-efficiency issues. In the simulation studies, we have
carefully investigated the effect of τ on the proposed inference procedures. We
recommend τ = 0.5 or τ = 1; see Section C in the supplement for the details. We
include additional discussion about the choice of τ after Theorem 1. The value
η is solely used for more reliable finite sample performance controlling the type
I error for situations where the level of sparsity k = ‖β‖0 might be too large
while being valid asymptotically as the assumption k ≤ cn1/2/log p in Theorem
1.

Remark 1. The computational cost of the estimator in (2.4) does not depend
on the group size |G|. The construction of the projection direction û involves
solving a constrained optimization problem, or its dual penalized optimization
problem, with a p-dimensional parameter. We de-bias β̂ᵀ

GΣ̂G,Gβ̂G directly, in-

stead of coordinate-wise de-biasing β̂. In comparison, the maximum test based
on the debiased Lasso [34] or its bootstrap version [11, 13, 38] requires solving
|G| + 1 optimization problems. When |G| is large, the computational improve-
ment can be significant. See Table 2.

The main idea of estimating QA = βᵀ
GAβG is similar to that of estimating QΣ

though the problem itself is slightly easier due to the fact that the matrix A is
known. We start with the error decomposition of the plug-in estimator β̂ᵀ

GAβ̂G,

β̂ᵀ
GAβ̂G − βᵀ

GAβG = −2β̂ᵀ
GA(βG − β̂G)− (β̂G − βG)

ᵀA(β̂G − βG).

Similarly, we can construct the projection direction ûA as

ûA = argmin uᵀΣ̂u s.t. max
w∈CA

〈
w, Σ̂u−

(
β̂ᵀ
GA 0

)ᵀ〉
≤ ‖Aβ̂G‖2λn (2.8)

where λn = C
√
log p/n and CA =

{
e1, . . . , ep, (β̂

ᵀ
GA/‖Aβ̂G‖2,0)ᵀ

}
. Then we

propose the final estimator of QA as

Q̂A = β̂ᵀ
GAβ̂G + 2ûᵀ

AX
ᵀ(y −Xβ̂)/n (2.9)

and estimate the variance of Q̂A by V̂A(τ) with V̂A(τ) = 4σ̂2ûᵀ
AΣ̂ûA/n + τ/n

for some positive constant τ > 0. Having introduced the point estimator and
the quantification of the variance, we propose the following α-level significance
test using a small η > 0 (typically η = 0.1):

φA(τ) = 1
(
Q̂A ≥ (1 + η)z1−α(V̂A(τ))

1/2
)
, (2.10)
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and construct CI as

CIA(τ) =
(
Q̂A − (1 + η)z1−α

2
(V̂A(τ))

1/2, Q̂A + (1 + η)z1−α
2
(V̂A(τ))

1/2
)
.

(2.11)

Inference for ‖βG‖22. We now consider a commonly used special example by

setting A = I and decompose the error of the plug-in estimator as, ‖β̂G‖22 −
‖βG‖22 = 2〈β̂G, β̂G − βG〉 − ‖β̂G − βG‖22. For this special case, the projection
direction can actually be identified via the following optimization algorithm,

ûI = argmin uᵀΣ̂u s.t.
∥∥∥Σ̂u−

(
β̂ᵀ
G 0

)ᵀ∥∥∥
∞

≤ ‖β̂G‖2λn. (2.12)

Note that
∥∥∥Σ̂u−

(
β̂ᵀ
G 0

)ᵀ∥∥∥
∞

can be viewed as maxw∈C0

〈
w, Σ̂u−

(
β̂ᵀ
G 0

)ᵀ〉
where C0 = {e1, . . . , ep}. In contrast to û and ûA, this algorithm for constructing
ûI is simpler since the constraint set C0 is smaller than C, that is, we do not

need to impose the additional constraint along the direction 1

‖β̂G‖2

(
β̂ᵀ
G 0

)ᵀ
.

The reason is that β̂G is close to βG, which is a sparse vector no matter how
large the set G is.

2.2. Comparison to existing methods

We now compare our proposed methods with the literature results. Firstly, the
group significance test for arbitrary group G is more challenging than inference
for ‖β‖22 in [15] and for βᵀΣβ in [9, 36]. Specifically, the bias-corrected estimator
of ‖β‖22 in [15] was constructed with the projection direction in (2.12) with
G = {1, · · · , p}. In contrast, our proposed significance inference for a general

group G requires the additional constraint (β̂ᵀ
GΣ̂G,G/‖Σ̂G,Gβ̂G‖2,0)ᵀ in (2.3) or

(β̂ᵀ
GA/‖Aβ̂G‖2,0)ᵀ in the definition of CA. These additional constraints ensure

that the dominating component of the bias-corrected estimator is asymptotically
normal without imposing any constraint on the group size |G|. Without these
additional constraints, the bias-correction is only effective when |G| is relatively
small or the vectors Aβ̂G or Σ̂G,Gβ̂G are sparse. Note that, for A = I, Aβ̂G = β̂G

is approximately sparse but Aβ̂G or Σ̂G,Gβ̂G are in general not sparse, especially
for a large group size |G|. Furthermore, the bias-corrected estimator of βᵀΣβ in

[9] set the projection direction û as β̂. The projection direction was constructed
even without solving the optimization problem as in (2.2). In contrast, the
optimization (2.2) is necessary for βᵀ

GΣG,GβG since the corresponding projection
direction needs to decouple the relationship between variables in G and Gc. To
sum up, the construction of the projection direction in (2.2) and (2.8) are new
and crucial for our proposed general group inference method.

Secondly, an alternative way of testing the group significance is through the
maximum test. Test of H0 : βG = 0 is equivalent to simultaneously testing
H0,j : βj = 0 for j ∈ G. Similarly, for A = BBᵀ with the matrix B =
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b1 b2 · · · b|G|

)
∈ R

|G|×|G|, then the test of H0,A : βᵀ
GAβG = 0 is equiva-

lent to simultaneously testing H0,j : b
ᵀ
j βG = 0 for 1 ≤ j ≤ |G|. In Section 5, we

have compared our proposed group test with the maximin test in finite samples.
In theory, the proposed sum-type test is more immune to high correlation among
the covariates than the maximum coordinate based test. It is worth noting that
both the sum-type test and maximum coordinate test need a reasonably good
initial estimator and in theory, this requires that the high-dimensional covariates
are not highly correlated; See Assumptions 1 and 2. Hence, robustness to high
correlation of the sum-type test only happens at the bias-correction part, instead
of the whole procedure. In the special setting where Xi,G and Xi,Gc are inde-

pendent, we can construct û = (β̂ᵀ
G,0)

ᵀ and hence de-biasing β̂ᵀ
GΣ̂G,Gβ̂G does

not require the inversion of Σ̂GG, which is useful when the covariates in Xi,G

are highly correlated. In comparison, bias correction for constructing debiased
estimators of β, on which the (bootstrapped) maximum test is based, tends to
suffer from the high correlations. This observation shows that the proposed test
is more reliable in high-correlation settings. Additionally, QΣ = E|Xᵀ

i,GβG|2
accounts for the variance of the regression surface with ỹi = yi − Xᵀ

i,GcβGc .
Therefore, QΣ is identifiable even if the components of Xi,G exhibit high corre-
lations. See Section 5.3 for the numerical comparison.

3. Theoretical justification

We first introduce the following regularity conditions before stating the main
results.

Assumption 1. The rows Xi,· ∈ Rp are independent and identically distributed
sub-Gaussian random vectors with Σ = E(Xi,·X

ᵀ
i,·) satisfying c0 ≤ λmin (Σ) ≤

λmax (Σ) ≤ C0 for constants C0 > c0 > 0. The errors ε1, ..., εn are independent
and identically distributed centred Gaussian variables with variance σ2 and are
independent of X.

Assumption 2. With probability larger than 1 − p−c − exp(−cn) for some

positive constant c > 0, the initial estimator β̂ and σ̂2 satisfy,

‖β̂ − β‖2 ≤ C(‖β‖0 log p/n)1/2, ‖β̂ − β‖1 ≤ C‖β‖0(log p/n)1/2∣∣σ̂2/σ2 − 1
∣∣ ≤ C(1/n1/2 + ‖β‖0 log p/n).

for some positive constant C > 0.

Assumption 3. The initial estimator β̂ is independent of (X, y) used in the
construction of (2.4) and (2.9). (For example by using sample splitting, see
below).

Assumption 1 implies the restricted eigenvalue condition introduced in [3]
under the sparsity condition ‖β‖0 ≤ cn/ log p for some positive constant c > 0;
see [39, 28] for the exact statement. The Gaussianity of εi is imposed to simplify
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the analysis and it can be weakened to sub-Gaussianity using a more refined
analysis.

Most of the high-dimensional estimators proposed in the literature satisfy the
above Assumption 2 under regularity and sparsity conditions. See [31, 2, 3] and
the references therein for more details.

Assumption 3 is imposed for technical analysis. With such an independence
assumption, the asymptotic normality of the proposed estimators is easier to es-
tablish. However, such a condition is believed to be only technical and not neces-
sary for the proposed method. As shown in the simulation study, we demonstrate
that the proposed method, even not satisfying the independence assumption
imposed in Assumption 3, still works well numerically. We can also use sample
splitting to create the independence. We randomly split the data into two sub-
samples (X(1), y(1)) with sample size n1 = 
n/2� and (X(2), y(2)) with sample

size n2 = n− n1 and estimate β̂ based on the data (X(1), y(1)) and conduct the
correction in (2.4) in the following form,

Q̂Σ = β̂ᵀ
GΣ̂

(2)
G,Gβ̂G + 2ûᵀ(X(2))ᵀ(y(2) −X(2)β̂)/n2

with Σ̂(2) = (X(2))ᵀX(2)/n2 and

û = argmin uᵀΣ̂(2)u s.t. max
w∈C

〈
w, Σ̂(2)u−

(
β̂ᵀ
GΣ̂

(2) 0
)ᵀ〉

≤ ‖Σ̂(2)
G,Gβ̂G‖2λn,

(3.1)

where C is defined in (2.3) with Σ̂G,G replaced by Σ̂
(2)
G,G. As a result, the esti-

mator using sample-splitting is less efficient due to the fact that only half of
the data is used in constructing the initial estimator and correcting the bias. In
Theorem 1 and all corresponding theoretical statement, one would then need to
replace n by n/2. Multiple sample splitting and aggregation [25], single sample
splitting and cross-fitting [10] or data-swapping [16] are commonly used sample
splitting techniques, typically improving on the inefficiency of sample splitting
and reducing the dependence how the sample is actually split.

The following theorem characterizes the behaviour of the proposed estimator
Q̂Σ.

Theorem 1. Suppose Assumptions 1-3 hold and 1
n û

ᵀΣ̂û converges in probability

to a positive constant, then Q̂Σ satisfies Q̂Σ−QΣ = MΣ+BΣ where, as n, p → ∞,

MΣ

/
(V0

Σ)
1/2 → N(0, 1) with V0

Σ= 4σ2

n ûᵀΣ̂û+ 1
nE (βᵀ

GXiGX
ᵀ
iGβG − βᵀ

GΣG,GβG)
2

and

pr
{
|BΣ| ≥ C

(
‖Σ̂G,Gβ̂G‖2 + ‖ΣG,G‖2

)
k log p

n

}
≤ p−c + exp(−cn1/2), (3.2)

for some positive constants C > 0 and c > 0. Furthermore, for any constants
η > 0 and τ > 0, under the condition ‖β‖0 ≤ c1n

1/2/log p with some positive
constant c1 > 0,

lim sup
n,p→∞

pr
{∣∣∣Q̂Σ −QΣ

∣∣∣ ≥ (1 + η)z1−α
2
(VΣ)

1/2
}
≤ α with VΣ = τ/n+V0

Σ.

(3.3)
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The above theorem establishes that the main error component MΣ has an
asymptotic normal limit and the remaining part BΣ is controlled in terms of
the convergence rate in (3.2). Such a decomposition is useful from the inference
perspective, where (3.3) establishes that if the sparsity level is small enough,

then the α/2 quantile of the standardized difference (Q̂Σ−QΣ)/(VΣ)
1/2 is similar

to that of the standard normal distribution, and BΣ is negligible in comparison
to (VΣ)

1/2 = (τ/n+V0
Σ)

1/2, for any constant τ > 0.

The variance VΣ is slightly enlarged from V0
Σ to τ/n + V0

Σ to quantify the
uncertainty of MΣ+BΣ. Since there is no distributional result for BΣ, an upper
bound for BΣ would be a conservative alternative to quantify the uncertainty
of BΣ. The enlargement of the variance is closely related to “super-efficiency”.
The standard error (V0

Σ)
1/2 is of the order of magnitude (‖βG‖2 + ‖βG‖22)/n1/2.

If the null hypothesis QΣ = 0 holds, then the standard error (V0
Σ)

1/2 converges
to zero at a faster rate than 1/

√
n, which corresponds to the “super-efficiency”

phenomenon. In this case, the worst upper bound for BΣ is (1+‖βG‖2)·k log p/n,
which can dominate (V0

Σ)
1/2 even if k = ‖β‖0 ≤ cn1/2/log p. To overcome the

challenge posed by “super-efficiency”, we enlarge the variance a bit by τ/n such
that it always dominates the upper bound for BΣ. In theory, it is sufficient
to set τ = C

√
n/(k log p) for a large positive constant C > 0. However, such a

selection of τ is not practical due to the unknown sparsity level and the unknown
constant. In practice, we recommend to choose τ = 0.5 or 1.

Additionally, the accuracy of the test statistic depends only weakly on the
group size |G|, in the sense that the standard deviation of the test statistic
depends on ‖βG‖2, in the order of magnitude (‖βG‖2 + ‖βG‖22)/n1/2; but since
‖βG‖2 ≤ ‖β‖2 and β is sparse, the standard deviation is not always strictly
increasing with a growing set G and this phenomenon explains the statistical
efficiency of the proposed test, especially when the test size G is large. In con-
trast, the χ2 test proposed in [26, 35] has the standard deviation at order of
(|G|/n)1/2, which is strictly increasing with |G|. This also explains their condi-
tion |G| � n. An important feature of our proposed testing procedure is that
it imposes no conditions on the group size G. It works for both small and large
groups.

The following theorem characterizes the estimator Q̂A, analogously to Theo-
rem 1.

Theorem 2. Suppose that Assumption 1-3 holds and λmax(A) is bounded, then

Q̂A satisfies Q̂A −QA = MA +BA where as n, p → ∞, MA

/
(V0

A)
1/2 → N(0, 1)

with V0
A = 4σ2ûᵀ

AΣ̂ûA/n and

pr(|BA| � (‖Aβ̂G‖2 + ‖A‖2) · k log p/n) ≤ p−c + exp(−cn1/2) (3.4)

for some positive constants C > 0 and c > 0. Furthermore, for any given
constants η > 0 and τ > 0, under the condition ‖β‖0 ≤ c1n

1/2/log p with
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some positive constant c1 > 0, we have

lim sup
n,p→∞

pr(|Q̂A −QA| ≥ (1 + η)z1−α
2
(VA)

1/2) ≤ α with VA = V0
A + τ/n.

(3.5)

In contrast to Theorem 1, the main difference in Theorem 2 is the variance
level of MA. In comparison, the variance of MΣ consists of two components, the
uncertainty of estimating β and Σ while the variance of MA only reflects the
uncertainty of estimating β.

In the following, we control the type I error of the proposed testing procedure
and analyse its asymptotic power. We consider the following parameter space
for θ = (β,Σ, σ),

Θ (k) = {θ = (β,Σ, σ) : ‖β‖0 ≤ k, c0 ≤ λmin (Σ) ≤ λmax (Σ) ≤ C0, σ ≤ C} ,

where C0 > c0 > 0 and C > 0 are positive constants. For a fixed group G, we
define the null parameter space as

H0 = {θ = (β,Σ, σ) ∈ Θ(k) : ‖βG‖2 = 0} .

Check this revised corollary.

Corollary 1. Suppose that Assumption 1-3 holds, and k ≤ cn1/2/ log p with
some positive constant c > 0.

• If 1
n û

ᵀΣ̂û converges in probability to a positive constant, then for any
constants η > 0 and τ > 0, the test φΣ(τ) in (2.6) satisfies

sup
θ∈H0

lim inf
n,p→∞

prθ (φΣ(τ) = 1) ≤ α.

• If λmax(A) is bounded, then for any constants η > 0 and τ > 0, the test
φA(τ) in (2.10) satisfies

sup
θ∈H0

lim inf
n,p→∞

prθ (φA(τ) = 1) ≤ α.

As a remark, the equalities are not always achieved in the above type I
error control. The main reason is that we slightly enlarge the variance as VΣ =
τ/n+V0

Σ in (3.3) to overcome the super-efficiency issue, which has been discussed
after Theorem 1; see Section 5 for the control of type I error in finite samples.

We present the power result in the following corollary and define the local
alternative hypothesis parameter space as

H1(A, δ) = {θ = (β,Σ, σ) ∈ Θ(k) : βᵀ
GAβG = δ} .

Check this revised corollary.

Corollary 2. Suppose that Assumption 1-3 holds, and k ≤ cn1/2/ log p with
some positive constant c > 0.



Group inference in high dimensions 6645

• If 1
n û

ᵀΣ̂û converges in probability to a positive constant, then for any
constants η > 0 and τ > 0 and any θ ∈ H1(ΣG,G, δ(t)) with t ≥ 0 and
δ(t) = ((1+2η)z1−α+t)(VΣ)

1/2, the test φΣ(τ) in (2.6) has the asymptotic
power

lim inf
n,p→∞

prθ (φΣ(τ) = 1) ≥ 1− Φ(−t),

where VΣ is defined in (3.3) and Φ(·) is the quantile function of standard
normal distribution.

• If λmax(A) is bounded, then for any constants η > 0 and τ > 0 and any
θ ∈ H1(A, δ(t)) with t ≥ 0 and δ(t) = ((1 + 2η)z1−α + t)(VA)

1/2, the test
φA(τ) in (2.10) has the asymptotic power,

lim inf
n,p→∞

prθ (φA(τ) = 1) ≥ 1− Φ(−t),

where VA is defined in (3.5).

As a remark, the separation parameter of the defined local alternative space
δ(t) = ((1 + 2η)z1−α + t)(VΣ)

1/2 is of the order (τ1/2 + ‖βG‖2 + ‖βG‖22)/n1/2

and the proposed test φΣ has power converging to 1 as long as t → ∞. For a
positive t ∈ (0,∞), the power lower bound 1 − Φ(−t) does not convergence to
1. Finite-sample power performance will be explored in subsections 5.2 and 5.3.

It is interesting to make a more technical comparison with the maximum
test with or without the bootstrapped version. Consider the dense alternative
setting, which is a special yet challenging setting for the significance test. Specif-
ically, we set βi ∈ {0, cβ(log |G|/n)1/2} for i ∈ G, the signal is relatively dense
with k = ‖β‖0 = c

√
n/ log p for some constant c > 0 and the group size |G| � p.

It is known that the maximum test has nontrivial power for sufficiently large
cβ . Let kG = |{i ∈ G : βi �= 0}|; when |G| gets larger, we have kG ≈ k and
‖βG‖22 = c2βkG log |G|/n ≈ c2βc/n

1/2 · (log |G|/ log p). Corollary 2 implies that
the proposed test has nontrivial power for a sufficiently large cβ . Hence, for
this specific scenario, the maximum test and the proposed test have the same
boundary in terms of convergence rate and the difference is in the order of a
constant. We have further examined the finite sample numerical performance
for dense alternative settings and observe that the proposed test can be much
more powerful than the maximum test. See Section 5.2 for details.

4. Statistical applications

4.1. Hierarchical testing

It is often too ambitious to detect significant single variables, in particular in
presence of high correlation or near collinearity among the variables. On the
other hand, a group is easier to be detected as significant, especially in presence
of strong correlation. Hierarchical sequential testing is a powerful method to
go through a sequence of significance tests, from larger groups to smaller ones.
Thanks to its sequential nature, it automatically adapts to the strength of the
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signal and in relation to correlation among the variables, and it does not need
any pre-specification of the size of the groups to be tested. It is typically much
more powerful than performing Bonferroni-Holm adjustment over the entire
number of hypotheses under consideration. Such hierarchical procedures have
been proposed in general by [23], tailored for high-dimensional regression by
[21], [29] and used and validated in applications in [6] and [20].

A particular hierarchical testing scheme is described in Supplement A. It
requires as input a hierarchical tree of groups of variables, often taken as a
hierarchical cluster tree based on the covariates only. Starting at the top of
the tree, corresponding to the group of all variables {1, . . . , p}, our proposed
group test is used and if found to be significant, we proceed by testing more
refined groups G ⊆ {1, . . . , p} further down the tree. As output we obtain a set
of significant (disjoint) groups such that the familywise error rate is controlled.
Our new group significance test for hierarchical sequential testing H0,G : βG = 0
for many different G is perfectly tailored for such hierarchical applications as it is
computationally fast and has good power properties. In practice, we recommend
using φΣ(τ) in (2.6) with τ = 0.5 to test H0,G.

4.2. Testing interaction and detection of effect heterogeneity

The proposed significance test is useful in testing the existence of interaction,
which itself is an important statistical problem. We focus on the interaction
model yi = Xᵀ

i·β+Di ·Xᵀ
i·γ+ εi and re-express the model as yi = W ᵀ

i·η+ εi with
Wi = (Di ·Xᵀ

i·, X
ᵀ
i·)

ᵀ and η = (γᵀ, βᵀ)ᵀ. We adopt the convention that Xi1 = 1
and then the detection of interaction terms between Di and Xi,−1 is reduced
to the group significance test H0 : ηG = 0 for G = {2, . . . , p}. The detection
of heterogeneous treatment effect can be viewed as a special case of testing the
interaction term. If Di in the interaction model is taken as a binary variable,
where Di = 0 or 1 denotes that the subject belongs to the control group or the
treatment group, respectively, then this specific test for interaction amounts to
testing whether the treatment effect is heterogeneous. In a very similar way, if
Di takes two values where Di = 1 and Di = 2 represent the subject is receiving
treatment 1 and 2, respectively, then the test of interaction is for testing whether
the difference between two treatment effects is heterogeneous. The current de-
veloped method of detecting heterogeneous treatment effects is definitely not
restricted to the case of a binary treatment. It can be applied to basically any
type of treatment variables, such as count, categorical or continuous variables.

4.3. Local heritability

Local heritability is defined as a measure of the partial variance explained by a
given set of genetic variables. In contrast to the (global) heritability, the local
heritability is more informative as it describes the variability explained by a
pre-specified set of genetic variants and takes the global heritability as one
special case. Assuming the regression model (1.1), the local heritability can be
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represented by the quantities, βᵀ
GΣG,GβG and ‖βG‖22, where G denotes the index

set of interest. The following corollary establishes the coverage properties of the
proposed confidence intervals for two measures of local heritability, βᵀ

GΣG,GβG

and ‖βG‖22.
Check this revised corollary.

Corollary 3. Suppose that Assumption 1-3 holds, and ‖β‖0 ≤ cn1/2/ log p with
some positive constant c > 0.

• If 1
n û

ᵀΣ̂û converges in probability to a positive constant, then for any
constants η > 0 and τ > 0, the CIΣ(τ) defined in (2.7) satisfies,

lim inf
n,p→∞

pr(QΣ ∈ CIΣ(τ)) ≥ 1− α;

• If λmax(A) is bounded, then for any constants η > 0 and τ > 0, CIA(τ)
defined in (2.11) satisfies,

lim inf
n,p→∞

pr(QA ∈ CIA(τ)) ≥ 1− α.

5. Simulation study and real data application

5.1. General set up

Throughout the simulation study, we consider high dimensional linear models
yi =

∑p
j=1 Xijβj + εi for i = 1, . . . , n, with p = 500. We generate the covariates

following Xi· ∼ N(0,Σ) and the error εi ∼ N(0, 1), both being independent of
each other and independent and identically distributed over the indices i. The
results are calculated based on 500 simulation runs.

We take β̂ as the Lasso estimator [33], which is computed using the R-package
cv.glmnet [14] with the tuning parameter λ chosen by cross-validation. For the
construction of the projection direction in (2.2), we first solve its dual problem

v̂ = arg min
v∈Rp+1

1

4
vᵀHᵀΣ̂Hv+bᵀHv+λ‖v‖1 with H =

[
b, Ip×p

]
, b =

(
β̂
ᵀ
G
Σ̂G,G

‖Σ̂G,Gβ̂G‖2
,0ᵀ

)ᵀ

where we adopt the notation 0/0 = 0. We then construct the direction as

û = −(v̂−1 + v̂1b)/2. When HᵀΣ̂H is singular and λ is close to zero, then dual
problem is unbounded from below. Hence, the tuning parameter λ is chosen as
the smallest λ > 0 such that the dual problem has a bounded optimal value.

We consider four tests, φI(0.5), φI(1), φΣ(0.5), φΣ(1) where φΣ(0.5), φΣ(1) are
defined in (2.6) with τ = 0.5 and τ = 1, respectively and φI(0.5), φI(1) are
defined in (2.6) (by taking A = I) with τ = 0 and τ = 1, respectively. We
set τ = 0.5 or τ = 1 thereby providing a conservative upper bound for the bias
component. We explore how the value τ affects the performance of the proposed
methods in Section C in the supplement.

The proposed method is compared with two alternative procedures, the max-
imum test based on the debiased estimator proposed in [19], shorthanded as
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FD (Fast Debiased) and the maximum test based on the debiased estimator
proposed in [34], shorthanded as hdi. Specifically, we produce the FD debi-

ased estimators {β̂FD
j }j=1,...p by the online code of [19] and the hdi estima-

tor {β̂hdi
j }j=1,...p by using the R package hdi [12]. The additional products of

these implemented algorithms include the corresponding covariance matrix, de-
noted as cov(β̂FD) ∈ R

p×p and cov(β̂hdi) ∈ R
p×p, respectively. For the max-

imum test for group G, we sample independent and identically distributed
copies Z1, . . . , Z10,000 ∈ R

|G| following N
(
0, cov(β̂FD)G×G

)
and calculate qFDα

as the empirical 1−α quantile of maxj∈G |Z1,j |, . . . ,maxj∈G |Z10,000,j |. We sim-

ilarly define qhdiα by replacing cov(β̂FD)G×G with cov(β̂hdi)G×G. Then we de-

fine the following tests for group significance φFD = 1(maxj∈G |β̂FD
j | ≥ qFDα ) and

φhdi = 1(maxj∈G |β̂hdi
j | ≥ qhdiα ).

We shall compare φI(0.5), φI(1), φΣ(0.5), φΣ(1) and φFD, φhdi in two settings,
dense alternatives (Section 5.2) and high correlation (Section 5.3).

5.2. Dense alternatives

In this section, we consider the setting where the regression vector is relatively
dense but with small non-zero coefficients, as this is a challenging scenario for
detecting the signals. We generate the regression vector β as βj = δ for 25 ≤
j ≤ 50 and βj = 0 otherwise and generate the covariance matrix Σij = 0.6|i−j|

for 1 ≤ i, j ≤ 500. We consider the group significance test, H0,G : βi = 0 for i ∈
G, with G = {30, 31, . . . , 200}. We vary the signal strength parameter δ over
{0, 0.04, 0.06} and the sample size n over {250, 350, 500}.

Table 1

Empirical Rejection Rate (ERR) for the Dense Alternative scenario (5% significance level).
We report the ERR for six different tests φI(0.5), φI(1), φΣ(0.5), φΣ(1), φFD and φhdi, where

ERR denotes the proportion of rejected hypothesis among the total 500 simulations.

δ n φI(0.5) φI(1) φΣ(0.5) φΣ(1) φFD φhdi

0

250 0.002 0.000 0.016 0.004 0.112 0.044
350 0.002 0.002 0.014 0.006 0.086 0.042
500 0.006 0.000 0.006 0.000 0.078 0.048

0.04

250 0.182 0.040 0.568 0.350 0.226 0.084
350 0.338 0.062 0.750 0.504 0.184 0.106
500 0.518 0.170 0.928 0.732 0.128 0.112

0.06

250 0.770 0.400 0.978 0.938 0.344 0.162
350 0.928 0.650 0.998 0.996 0.316 0.192
500 0.998 0.902 1.000 1.000 0.252 0.272

Table 1 summarizes the hypothesis testing results. For δ = 0, the empirical
detection rate is an empirical measure of the type I error; For δ �= 0, the empirical
detection rate is an empirical measure of the power. The proposed procedures
φI(0.5), φI(1), φΣ(0.5) and φΣ(1) control the type I error. As comparison, the
maximum test φhdi controls the type I error while the other maximum test φFD

does not reliably control the type I error. To compare the power, we observe
that φΣ(0.5) and φΣ(1) are in general more powerful than the corresponding
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φI(0.5) and φI(1). Across all settings, the power of both φhdi and φFD are lower
than the proposed φΣ(0.5), φΣ(1). In most settings, the power of both φhdi and
φFD are much lower than φI(0.5). An interesting observation is that, although
the proposed testing procedures φΣ(1) and φI(1) control the type I error in a
conservative sense, they still achieve a higher power than the existing maximum
tests.

We report the computational time (averaged over 50 simulations) of φhdi, φFD

and φI and φΣ in Table 2. The proposed methods φI and φΣ are computationally
efficient as they correct the bias all at once while the bias correction step of φhdi

or φFD requires the implementation of |G| = 171 penalized regression in the
dimension of p = 500.

Table 2

Average computing time (in seconds) over 50 simulation for the Dense Alternative scenario.

δ n φI φΣ FD hdi

0
250 10.82 10.93 74.37 274.42
350 17.35 22.60 65.07 297.36
500 37.79 35.30 88.76 2202.34

0.04
250 17.57 23.30 78.09 283.82
350 37.50 48.78 64.58 296.27
500 58.08 77.87 89.13 2226.97

0.06
250 15.73 24.20 72.81 269.28
350 42.00 67.35 113.01 475.94
500 49.74 76.06 89.66 2303.65

In Figure C.1 in the supplement, we report the ERR for other choices of
τ and observe that for τ = 0, the testing procedures φI(0) and φΣ(0) do not
reliably control the type I error while for τ ≥ 0.5 they do. This matches with
the theoretical results in Corollary 1, where a positive constant τ > 0 is needed
to address the super-efficiency and control the type I error. In Figure C.2 in the
supplement, we have further explored the coverage properties for the proposed
confidence intervals CII(τ) for ‖βG‖22 and CIΣ(τ) for βᵀ

GΣG,GβG: CII(τ = 0)
and CIΣ(τ = 0) are not guaranteed to have coverage while CII(τ) and CIΣ(τ),
for τ ≥ 0.5, nearly achieve the desired coverage levels in most settings.

We have examined the performance of the data-splitting version of the al-
gorithm described in (3.1). In Figures C.7 and C.8 in the supplement, we ob-
serve that the testing procedures and confidence intervals with data-splitting
are worse than those using the full data (except for type I error control, which
reliably holds with sample splitting as well). However, with a larger sample size,
the testing procedures achieve reasonable power and the confidence intervals
attain the coverage level. The sample splitting is only introduced to facilitate
the technical proof and the procedures using the full data work well in practical
settings.

We have also explored the testing and coverage properties over different spar-
sity levels and report the results in Figures C.5 and C.6 in the supplement.
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5.3. Highly correlated covariates

Here, we consider the setting where the regression vector is relatively sparse but
a few variables are highly correlated. We generate the regression vector β as
β1 = β3 = δ and βj = 0 for j �= 1, 3 and we generate the covariance matrix as
follows: Σij = 0.8 for 1 ≤ i �= j ≤ 5 and Σij = 0.6|i−j|, otherwise. There exists
high correlations among the first five variables, where the pairwise correlation
is 0.8 inside this group of five variables. In contrast to the previous simulation
setting in Section 5.2, we do not generate a large number of non-zero entries
in the regression coefficient but only assign the first and third coefficients to
be possibly non-zero. We test the group hypothesis generated by the first five
regression coefficients, H0,G : βi = 0 for i ∈ G, where G = {1, 2, . . . , 5}. We
vary the signal strength parameter δ over {0, 0.2, 0.3} and the sample size n over
{250, 350, 500}.

As reported in Table 3, the proposed testing φI(0.5), φI(1), φΣ(0.5), φΣ(1)
and the maximum test procedure φhdi control the type I error while φFD barely
controls it. Regarding the power, φhdi and φFD are better for δ = 0.2 while our
proposed testing procedures φΣ(0.5) and φΣ(1) are comparable to φhdi and φFD

when δ reaches 0.3.
Seemingly, our proposed procedures φΣ and φI do not perform better than the

maximum test φhdi and φFD. The performance of the latter two for testing is in
sharp contrast to the individual coverage. We shall emphasize that the individual
coverage properties related to the maximum test φhdi and φFD are not guaranteed
although this is not visible in Table 3. Specifically, since we are testing βi = 0
for i = 1, 2, 3, 4, 5, we can look at the coverage properties of these two proposed
tests in terms of βi. As reported in Table 4, for δ �= 0, we have observed that
the coordinate-wise coverage properties are not guaranteed due to the high
correlation among the first five variables. The reason for this phenomenon is that
the coverage for an individual coordinate βj requires a decoupling between the
j-th and all other variables and if there exists high correlations, this decoupling
step is difficult to be conducted accurately. In contrast, even though the first
five variables are highly correlated, the constructed confidence intervals CII(τ =
0.5),CII(τ = 1),CIΣ(τ = 0.5) and CIΣ(τ = 1) achieve the 95% coverage. This
is reported in Table 5. Our proposed testing procedure is more robust to high
correlations inside the testing group as the whole group is tested as a unit
instead of decoupling variables inside the testing group.

We explore the effect of τ in the supplement and report the dependence of
the proposed testing procedure on τ in Figure C.3 and the dependence of the
coverage properties on τ in Figure C.4. The phenomenon is similar to the dense
alternative setting: the proposed methods are reliable for τ ≥ 0.5.

5.4. Hierarchical testing

We simulate data under two settings which differ in the set of active covariates
S = supp(β) and Σ. In both cases, Σ is block diagonal. We fix p = 500, |S| =
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Table 3

Empirical Rejection Rate for the Highly Correlated scenario (5% significance level). We
report the ERR for six different tests φI(0.5), φI(1), φΣ(0.5), φΣ(1), φFD and φhdi, where ERR

denotes the proportion of rejected hypothesis among the total 500 simulations.

δ n φI(0.5) φI(1) φΣ(0.5) φΣ(1) φFD φhdi

0
250 0.000 0.000 0.000 0.000 0.070 0.036
350 0.000 0.000 0.000 0.000 0.082 0.062
500 0.000 0.000 0.000 0.000 0.082 0.056

0.2
250 0.194 0.112 0.674 0.414 0.998 0.936
350 0.196 0.124 0.878 0.692 1.000 0.972
500 0.272 0.166 0.984 0.924 1.000 0.994

0.3
250 0.472 0.384 1.000 0.998 1.000 1.000
350 0.462 0.434 1.000 1.000 1.000 1.000
500 0.518 0.498 1.000 1.000 1.000 1.000

Table 4

Empirical Coverage for first five regression coefficients for Highly Correlated scenario (95%
nominal coverage). The numbers under CIFD represent the empirical coverage for βj

(1 ≤ j ≤ 5) using the method proposed in [19] and the numbers under CIhdi represent the
empirical coverage for βj (1 ≤ j ≤ 5) using the method proposed in [34].

CIFD CIhdi
δ n β1 β2 β3 β4 β5 β1 β2 β3 β4 β5

0
250 0.972 0.968 0.970 0.976 0.976 0.952 0.950 0.944 0.950 0.946
350 0.968 0.972 0.962 0.970 0.968 0.942 0.942 0.932 0.966 0.948
500 0.974 0.972 0.964 0.970 0.982 0.950 0.936 0.956 0.950 0.956

0.2
250 0.400 0.714 0.418 0.720 0.758 0.864 0.798 0.910 0.828 0.268
350 0.464 0.696 0.414 0.722 0.680 0.910 0.822 0.922 0.844 0.234
500 0.424 0.702 0.408 0.686 0.674 0.876 0.860 0.916 0.842 0.298

0.3
250 0.430 0.724 0.426 0.720 0.740 0.870 0.808 0.890 0.818 0.218
350 0.386 0.732 0.432 0.682 0.720 0.832 0.836 0.904 0.836 0.258
500 0.422 0.692 0.426 0.694 0.686 0.860 0.856 0.900 0.854 0.280

‖β‖0 = 10, and βj = 1 for j ∈ S and vary the number of observations n between
100, 200, 300, 500, and 800.

In setting 1, the first 20 covariates have high correlations within small blocks
of size 2. The covariance matrix Σ has 1’s on the diagonal, Σi,i+1 = Σi+1,i = 0.7
for i = 1, 3, 5, . . . , 19, and 0’s otherwise. The set of active covariates is S =
{1, 3, 5, . . . , 19}.

In setting 2, there are ten blocks each corresponding to 50 covariates that
have a high pairwise correlation of 0.7. The covariance matrix Σ has 1’s on the
diagonal, ΣBl

= 0.7 for Bl =
{
(i, j) : i �= j and i, j ∈ {l, l + 1, . . . , l + 50}

}
for l = 1, 51, 101, . . . 451, and 0’s otherwise. The set of active covariates is
S = {1, 51, 101, . . . , 451}.

For every simulation run, a hierarchical cluster tree is estimated using 1 −
(empirical correlation)2 as dissimilarity measure and average linkage. The hier-
archical procedure with our proposed group testing method φΣ(τ = 1) performs
testing top-down through this tree.

We do not consider a single group but instead, we aim with hierarchical
testing to find as many significant groups as possible. We use a modified ver-
sion of the power to measure the performance of the hierarchical procedure
because groups of variable sizes are returned. The adaptive power is defined
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Table 5

Empirical Coverage for the Highly Correlated scenario (95% nominal coverage). We report
the empirical coverage of CII(τ = 0.5) and CII(τ = 1) for ‖βG‖22 and the empirical coverage

of CIΣ(τ = 0.5) and CIΣ(τ = 1) for βᵀ
GΣG,GβG.

δ n CII(τ = 0.5) CII(τ = 1) CIΣ(τ = 0.5) CIΣ(τ = 1)

0
250 1.000 1.000 1.000 1.000
350 1.000 1.000 1.000 1.000
500 0.988 0.988 0.986 0.986

0.2
250 0.992 0.992 0.942 0.994
350 0.998 0.998 0.972 0.998
500 0.990 0.992 0.970 1.000

0.3
250 0.970 0.986 0.916 0.962
350 0.966 0.986 0.900 0.954
500 0.966 0.978 0.954 0.972

by Poweradap = (1/|S|) ·
∑

C ∈MTD 1/|C| where MTD stands for Minimal True
Detections, i.e., there is no significant subgroup (“Minimal”), the group has to
be significant (“Detection”), and the group contains at least one active variable
(“True”); see [21].

The results are reported in Table 6. The hierarchical procedure performs very
well for setting 1 with the adaptive power around 0.9 till 1.0 and the procedure
finds 10 significant groups of average size 1.0 till 1.2 for all values of n except
n = 100. Setting 2 is much harder because the 10 active covariates are each
highly correlated with 49 non-active covariates. It is difficult to distinguish the
active variables from the correlated ones and hence, the procedure stops further
up in the tree resulting in larger significant groups and smaller adaptive power
compared to setting 1. Note that the usual measure of power (where a significant
group is counted as true if at least one active covariate is in it) is close to or
even 1 for both settings. The familywise error rate is well controlled for both
settings.

Table 6

Results from the simulation study of the hierarchical procedure (FWER level 5%). The last
six columns are familywise error rate (FWER), power, adaptive power, average number,

average size, and median size of the significant groups.

Setting n FWER power adaptive power avg number avg size median size
1 100 0.038 0.923 0.692 9.3 4.6 1.0
1 200 0.004 1.000 0.947 10.0 1.2 1.0
1 300 0.002 1.000 0.898 10.0 1.2 1.0
1 500 0.000 1.000 0.985 10.0 1.0 1.0
1 800 0.000 1.000 1.000 10.0 1.0 1.0
2 100 0.082 0.959 0.185 9.7 32.8 40.5
2 200 0.006 1.000 0.175 10.0 30.3 39.5
2 300 0.002 1.000 0.428 10.0 19.2 16.0
2 500 0.002 1.000 0.478 10.0 18.8 15.8
2 800 0.000 1.000 0.766 10.0 8.6 1.0
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5.5. Real data analysis for yeast colony growth

Bloom et al. [4] performed a genome-wide association study of 46 quantitative
traits to investigate the sources of missing heritability. The authors crossbred
1,008 yeast Saccharomyces cerevisiae segregates from a laboratory strain and
a wine strain and measured 11,623 genotype markers which they reduced to
4,410 markers that show less correlation. Bloom et al. [4] processed the data
such that the covariates encode from which of the two strains a given genotype
was passed on. This is encoded using the values 1 and −1. Each crossbred was
exposed to 46 different conditions like different temperatures, pH values, carbon
sources, additional metal ions, and small molecules. The traits of interest are
the end-point colony size normalized by the colony size on control medium, see
Bloom et al. [4] for further details.

We use this data set to illustrate the hierarchical procedure with our pro-
posed group testing method φΣ(τ = 1). We consider each trait separately
resulting in 46 different regression problems. The hierarchical procedure goes
top-down through a hierarchical cluster tree which was estimated using 1 −
(empirical correlation)2 as dissimilarity measure and average linkage. We only
use complete observations without any missing values, leading to sample sizes
between n = 599 and n = 1, 007 depending on the trait while the number of
covariates is always p = 4, 410.

The results across the first 23 traits are given in Figure 1 and the complete
results across all 46 traits are given in Figure C.11 in the supplement. The
hierarchical procedure always finds some significant groups of SNP covariates.
Some of the significant findings include small groups while some of them are large
groups with cardinality bigger than 1, 000. It is plausible that one cannot find
many single variables or very small groups but it is reasonable and convincing
to see that the hierarchical method finds a substantial amount of significant
groups. The amount of “signal”, in terms of significant findings, varies quite a
bit across the 46 traits.

Appendix A: Additional discussion on hierarchical testing

Hierarchical testing is a powerful method to go through a sequence of groups to
be tested, from larger groups to smaller ones depending on the strength of the
signal and the amount of correlation among the variables in and between the
groups. As such, it is a multiple testing scheme which controls the familywise
error rate. The details are as follows.

The p covariates are structured into groups of variables in a hierarchical
tree T such that at every level of the tree, the groups build a partition of
{1, . . . , p}. At a given level, the variables in a group have high correlation within
groups (and a tendency for low correlations between groups). The default choice
for constructing such a tree is hierarchical clustering of the variables [17, cf.],
typically using 1− correlation2 as dissimilarity measure and average linkage.

We assume that the output of hierarchical clustering T is deterministic, for
example when conditioning on the covariates in the linear model. Hierarchical
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Fig 1. Size of significant groups (FWER level 5%) by applying the hierarchical procedure to
each of the first 23 traits of the Yeast Colony Growth data set. The number of significant
groups is displayed on the top. See also Figure C.11 in the supplement.

testing with respect to T is then a sequential multiple testing adjustment pro-
cedure as described in the Algorithm 1. A schematic illustration with a binary
hierarchical tree is shown in Figure 2.

Algorithm 1. Hierarchical testing procedure

INPUT: Hierarchical tree T with nodes corresponding to groups of variables;
Group testing procedure returning p-values PG for each group of variables G,
e.g. as described in Section 2; Significance level α.
OUTPUT: Significant groups of variables controlling familywise error rate.
REPEAT:

Go top-down the tree T and perform group significance testing for groups G.
The raw p-value is corrected for multiplicity using

PG;adjusted = maxG′⊇G P̃G′ with P̃G = PG · p/|G|,
where G′ is any group in the tree T . The second line enforces monotonicity of
the adjusted p-values.
For each group G when going top-down in T : if PG;adjusted ≤ α, continue to
consider the children of G for group testing.

UNTIL: No more groups are left for testing.

There are a few interesting properties of hierarchical testing. First, it can
be viewed as a hybrid of a sequential procedure and Bonferroni correction: for
every level in the tree, the p-value adjustment is a weighted Bonferroni correction
(the standard Bonferroni correction if the groups have equal size) and across
different levels it is a sequential procedure with no correction but a stopping
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Fig A.1. The hierarchical procedure returns the three groups G1, G2, and G3. The green and
brown colors highlight significant groups and non-significant groups, respectively.

criterion to not go further down the tree when no rejection happens. Indeed,
the root node needs no adjustment at all and for each level in the tree, the
correction depends only on the partitioning on that level and not on how many
tests have been done before. Second, there is no need to pre-define the level of
resolution of the groups. The depth is fully data-driven based on the hierarchical
testing procedure. Third, the hierarchical testing method is computationally
attractive as no further tests are considered once a certain group does not exhibit
any significance. [23] showed that the procedure controls the familywise error
rate. The hierarchical testing method has been used for high-dimensional linear
models in [21] with a further refinement in [22] using multi-sample-splitting
testing for the groups. The latter is justified with the strong and questionable
assumption that the lasso detects all the relevant variables and in this sense,
the procedure is not fully reliable in terms of error control. See [29] for further
details.

Appendix B: Proofs

B.1. Proof of Theorem 1

Throughout the proof, we use the following notations. We use c and C to denote
generic positive constants that may vary from place to place. For two positive
sequences an and bn, an � bn means an ≤ Cbn for all n, an � bn if an � bn and
bn � an.

This proposed estimator Q̂Σ has the following error decomposition,

Q̂Σ −QΣ =
2

n
ûᵀXᵀε+ βᵀ

G(Σ̂G,G − ΣG,G)βG

+ 2
[
Σ̂û− (β̂ᵀ

GΣ̂G,G,0)
ᵀ
]ᵀ

(β − β̂)− (β̂G − βG)
ᵀΣ̂G,G(β̂G − βG).

We define

MΣ =
2

n
ûᵀXᵀε+ βᵀ

G(Σ̂G,G − ΣG,G)βG
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and

BΣ = 2
[
Σ̂û− (β̂ᵀ

GΣ̂G,G,0)
ᵀ
]ᵀ

(β − β̂)− (β̂G − βG)
ᵀΣ̂G,G(β̂G − βG).

Under assumptions 1 and 3, ε is a Gaussian random vector independent of X
and û and hence

2

n
ûᵀXᵀε | X, û ∼ N

(
0,

4σ2

n
ûᵀΣ̂û

)
. (B.1)

By the central limit theorem and sub-Gaussianity of X, we have

βᵀ
G(Σ̂G,G − ΣG,G)βG

d→ N
(
0, 1

nE (βᵀ
GXiGX

ᵀ
iGβG − βᵀ

GΣG,GβG)
2
)
. (B.2)

We compute the characteristic function of MΣ/(V
0
Σ)

1/2,

E exp
(
itMΣ/(V

0
Σ)

1/2
)

= E
(
E
(
exp(itMΣ/(V

0
Σ)

1/2) | X, û
))

= E

[
E

(
exp(it

2

n
ûᵀXᵀε/(V0

Σ)
1/2) | X, û

)
· exp(itβᵀ

G(Σ̂G,G − ΣG,G)βG/(V
0
Σ)

1/2)

]
.

By (B.1), we have

E

(
exp(it

2

n
ûᵀXᵀε/(V0

Σ)
1/2) | X, β̂

)
= exp

(
− t2

2
·

4σ2

n ûᵀΣ̂û
V0

Σ

)
.

Hence

E exp
(
itMΣ/(V

0
Σ)

1/2
)
=E

[
exp

(
− t2

2
·

4σ2

n
ûᵀΣ̂û

V0
Σ

)
· exp

(
it
βᵀ
G(Σ̂G,G − ΣG,G)βG

(V0
Σ)

1/2

)]
.

By (B.2) and the condition that 1
n û

ᵀΣ̂û converges in probability to a positive
constant C1 > 0, we have

βᵀ
G(Σ̂G,G − ΣG,G)βG

(V0
Σ)

1/2

d→ N

(
0,

1
nE (βᵀ

GXiGX
ᵀ
iGβG − βᵀ

GΣG,GβG)
2

4σ2C1 +
1
nE (βᵀ

GXiGX
ᵀ
iGβG − βᵀ

GΣG,GβG)
2

)
,

and hence E exp
(
itMΣ/(V

0
Σ)

1/2
)
→ exp(− t2

2 ).
We control (3.2) by the following lemma, whose proof is present in Section

B.3.

Lemma 1. Suppose that Assumptions 1, 2 and 3 hold, then with probability
larger than 1− p−c − g(n)− exp(−cn1/2),∣∣∣[Σ̂û− (β̂ᵀ

GΣ̂G,G,0)
ᵀ
]ᵀ

(β − β̂)
∣∣∣ � ‖Σ̂G,Gβ̂G‖2

k log p

n
; (B.3)∣∣∣(β̂G − βG)

ᵀΣ̂G,G(β̂G − βG)
∣∣∣ � ‖ΣG,G‖2

k log p

n
; (B.4)(

1

n
ûᵀXᵀXû

)1/2

� ‖Σ̂G,Gβ̂G‖2. (B.5)
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Then the control of the reminder term (3.2) follows from (B.3) and (B.4). By
the expression of VΣ in (3.3), we then establish |BΣ| ≤ ηz1−α/2(VΣ)

1/2 with a

high probability by applying (3.2), (B.5) and the condition k ≤ cn1/2/log p for
some positive constant c > 0. As a consequence, we establish (3.3).

B.2. Proofs of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1. We start with the
decomposition

Q̂A −QA =
2

n
ûᵀ
AX

ᵀε+ 2
[
Σ̂ûA −

(
β̂ᵀ
GA 0

)ᵀ]ᵀ
(β − β̂)

− (β̂G − βG)
ᵀA(β̂G − βG).

Define

MA =
2

n
ûᵀ
AX

ᵀε,

and

BA = 2
[
Σ̂ûA −

(
β̂ᵀ
GA 0

)ᵀ]ᵀ
(β − β̂)− (β̂G − βG)

ᵀA(β̂G − βG).

We can establish a similar Lemma as Lemma 1 and present the corresponding
proof in Section B.3 of the supplementary materials.

Lemma 2. Suppose that Assumptions 1, 2 and 3 hold, then with probability
larger than 1− p−c − g(n, p), for some positive constant c > 0,∣∣∣∣[Σ̂ûA −

(
β̂ᵀ
GA 0

)ᵀ]ᵀ
(β − β̂)

∣∣∣∣ � ‖Aβ̂G‖2
k log p

n
; (B.6)∣∣∣(β̂G − βG)

ᵀA(β̂G − βG)
∣∣∣ � ‖A‖2

k log p

n
; (B.7)(

1

n
ûᵀ
AX

ᵀXûA

)1/2

� ‖Aβ̂G‖2. (B.8)

Then we establish the asymptotic normality of MA by the fact that εi are
normal random variables. The high probability bound in (3.4) follows from (B.6)
and (B.7). Then (3.5) follows from the fact that |BA| ≤ ηz1−α/2(VA)

1/2, where

this inequality follows from (B.8) and the condition k ≤ cn1/2/log p for some
positive constant c > 0.

B.3. Proofs of Lemmas 1 and 2

The proof of (B.3) follows from∣∣∣[Σ̂û− (β̂ᵀ
GΣ̂G,G,0)

ᵀ
]ᵀ

(β − β̂)
∣∣∣ ≤ ‖Σ̂û− (β̂ᵀ

GΣ̂G,G,0)
ᵀ‖∞‖β − β̂‖1,
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together with the constraint (2.2) and Assumption 2. The proof of (B.6) follows
from ∣∣∣∣[Σ̂ûA −

(
β̂ᵀ
GA 0

)ᵀ]ᵀ
(β − β̂)

∣∣∣∣ ≤ ‖Σ̂ûA −
(
β̂ᵀ
GA 0

)ᵀ
‖∞‖β − β̂‖1,

together with the constraint for constructing ûA and Assumption 2.

The proof of (B.7) follows from
∣∣∣(β̂G − βG)

ᵀA(β̂G − βG)
∣∣∣ ≤ ‖A‖2‖β̂G−βG‖22

and Assumption 2. The proof of (B.4) follows from Lemma 11 of [9], specifically,

the definition of event G6(β̂G − βG, β̂G − βG, n
1/2) and hence with probability

larger than 1− exp(−n1/2),∣∣∣(β̂G − βG)
ᵀΣ̂G,G(β̂G − βG)

∣∣∣ � ∣∣∣(β̂G − βG)
ᵀΣG,G(β̂G − βG)

∣∣∣
≤‖ΣG,G‖2‖β̂G − βG‖22.

Under the independence assumption imposed Assumption 3, we apply Lemma
1 of [7] by taking xnew = (β̂ᵀ

GΣ̂G,G,0)
ᵀ and consider the one sample setting and

then we establish (B.5). Similarly, we can also establish (B.8).

B.4. Proofs of Corollaries 1, 2 and 3

Define dn(τ) =

√
V̂Σ(τ)√
VΣ(τ)

− 1. By Assumption 2 and k log p � n1/2, we have√
V̂Σ(τ)√
VΣ(τ)

p→ 1. (B.9)

The above variance consistency result is implied by Lemma 4 of [9]. In partic-
ularly, we apply Lemma 4 of [9] with taking ρ therein as 1 and the following
equivalent expression,

E (βᵀ
GXiGX

ᵀ
iGβG − βᵀ

GΣG,GβG)
2

= E
((
βᵀ
G 0ᵀ)Xi,·X

ᵀ
i,·
(
βᵀ
G 0ᵀ)ᵀ −

(
βᵀ
G 0ᵀ)Σ (

βᵀ
G 0ᵀ)ᵀ)2 .

Note that

prθ (φΣ(τ) = 1) = prθ

(
Q̂Σ ≥ z1−α

√
V̂Σ(τ)

)
= prθ

(
QΣ +MΣ + BΣ ≥ z1−α

√
V̂Σ(τ)

)
.

Together with the definition of dn(τ), we can further control the above proba-
bility by

prθ

(
MΣ ≥ (1 + dn(τ))z1−α

√
VΣ + ηz1−α(1 + dn(τ))

√
VΣ − BΣ −QΣ

)
= prθ

(
MΣ√
VΣ

≥ (1 + dn(τ))z1−α + ηz1−α(1 + dn(τ))−
BΣ√
VΣ

− QΣ√
VΣ

)
.

(B.10)
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Then we control the type I error in Corollary 1, following from the limiting
distribution established in Theorem 1 and the fact that ηz1−α(1 + dn(τ)) −
BΣ√
VΣ

is asymptotically positive under the condition k � n1/2/log p. We can also

establish the lower bound for the asymptotic power in Corollary 2 by (B.10),
the definition δ(t) = ((1 + 2η)z1−α + t)(VΣ)

1/2 and the fact that ηz1−α(1 +
dn(τ))− BΣ√

VΣ
is asymptotically positive under the condition k � n1/2/log p. We

can use the same argument to control the type I error and the asymptotic power
of φA(τ).

The proof of Corollary 3 follows from (3.3) and (3.5), Assumption 2 that σ̂2

is a consistent estimator of σ2 and (B.9).

Appendix C: Additional numerical results

C.1. Additional simulations for dense alternative setting

We take the same simulation setting for dense alternative as in Section 5.2 in
the main paper and vary the signal strength δ over {0, 0.04, 0.06, 0.08, 0.2, 0.4}
and the sample size n over {250, 350, 500, 650}. We examine the finite sample
performance of the proposed method by varying τ ∈ {0, 0.1, 0.2, · · · , 1.4, 1.5}.
The main observations are similar to those reported in Section 5.2 in the main
paper. We shall focus more on how τ will affect the proposed inference methods.

We report the empirical rejection rate for φI(τ) and φΣ(τ) in Figure C.1.
The test φΣ is in general more powerful than φI. It is observed that for the null
setting with δ = 0, the testing procedure with τ = 0 does not guarantee the
type I error while the type I error is controlled as long as τ reaches 0.1. We have
seen that for a small δ ∈ {0.04, 0.06, 0.08}, the choice of τ has a relatively strong
effect on the power of φI; the larger the τ value, the less powerful the test is.
When the signal strength is large enough (that is, δ = 0.2, 0.4), the effect of τ
on the powers of the tests φΣ and φI are marginal.

We report the coverage properties of the constructed confidence intervals
CII(τ) and CIΣ(τ) in Figure C.2. It is observed that, for τ = 1, the empirical
coverage of the constructed confidence intervals reaches the 95% level, which is
the dashed line plotted in each plot. For most cases, τ = 0.5 leads to reasonable
coverage properties though the empirical coverage properties do not always reach
95%. The empirical coverage of CIΣ(τ) is general better than that of CII(τ). This
reflects that the inference problem for ‖βG‖22 might be harder due to inverting
ΣG,G in the construction of the projection direction. We point out that we only
report the empirical coverage above 0.25. Specifically, for δ = 0, the empirical
coverage of CII(τ) and CIΣ(τ) with τ = 0 are not plotted as their values are
below 0.25.

We shall highlight two interesting observations with further explanations.
Firstly, for CIΣ(τ), when δ is relatively large, say 0.2 or 0.4, the choice of τ does
not affect the empirical coverage much. This matches with the established theo-
retical results in Theorem 1 that, when β has a relatively large norm value, the
super-efficiency phenomenon disappears. That is, even for τ = 0, the variance
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of Q̂Σ is of order 1/
√
n and dominates the bias in the setting of a sufficiently

sparse β.

Secondly, we observe that the coverage property of CII(τ) for δ = 0.4 is bad
even when n = 650. This under-coverage happens due to the large sparsity
of this simulation setting. Note that there are 21 non-zero coordinates in the
simulation setting and for small δ, its effective sparsity level (e.g. the capped
�1 sparsity) can be smaller than 21. However, for the relatively strong signal
δ = 0.4, the effective sparsity is large and violates the key sparsity assumption
k ≤ c

√
n/ log p in Theorem 2. As a further remark, for δ = 0.4, the center

of the confidence interval CII(τ) is still close to ‖βG‖22 but the uncertainty
quantification is not accurate enough since we only quantify the uncertainty
of the asymptotic normal component. In Section C.3, we consider a similar
simulation setting with a reduced sparsity level and observe that the constructed
confidence intervals achieve the desired coverage level for δ = 0.4.

C.2. Additional simulations for high correlation setting

We take the same simulation setting as the high correlation setting in Sec-
tion 5.3 in the main paper. We vary the signal strength parameter δ over
{0, 0.1, 0.2, 0.3, 0.4, 0.5} and the sample size n over {250, 350, 500, 650}. We have
examined the finite sample performance of the proposed methods over differ-
ent values of τ ∈ {0, 0.1, 0.2, · · · , 1.4, 1.5}. The main observations are similar to
those reported in Section 5.3 in the main paper.

Regarding the effect τ , the observation is similar to the dense alternative
setting reported in Section C.1. τ = 0.5 or τ = 1 leads to reliable testing and
coverage properties and when δ is above 0.3, the effect of τ is marginal. We
report the empirical rejection rate for φI(τ) and φΣ(τ) in Figure C.3 and the
coverage properties of the constructed confidence intervals CII(τ) and CIΣ(τ)
in Figure C.4. The main observations are similar to those in Section C.1. We
observe that the test φΣ is in general more powerful than φI and the empirical
coverage of both CII(τ) and CIΣ(τ) reaches the desired level even for the high
correlation setting.

C.3. Dependence on sparsity

We take the same simulation as the dense alternative simulation in Section
5.2, except for generating a sparser regression vector β: βj =

√
7 · δ for 30 ≤

j ≤ 32 and βj = 0 otherwise. We consider the same group significance test
as in Section 5.2, H0,G : βi = 0 for i ∈ G, with G = {30, 31, · · · , 200}. The
rescaling parameter

√
7 in generating β guarantees the same values of ‖βG‖22

and βᵀ
GΣG,GβG as in the dense alternative setting in Section 5.2. We vary the

signal strength parameter δ over {0, 0.04, 0.06, 0.08, 0.2, 0.4} and the sample size
n over {250, 350, 500, 650}. We have examined the finite sample performance of
the proposed method over different values of τ ∈ {0, 0.1, 0.2, · · · , 1.4, 1.5}.
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Fig C.1. Dense alternative setting: the dependence of Empirical Rejection Rate (ERR) on τ .
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Fig C.2. Dense alternative setting: the dependence of Empirical Coverage on τ .
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Fig C.3. High correlation setting: the dependence of Empirical Rejection Rate (ERR) on τ .
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Fig C.4. High correlation setting: the dependence of Empirical Coverage on τ .
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We report the empirical rejection rate for φI(τ) and φΣ(τ) in Figure C.5
and the coverage properties of the constructed confidence intervals CII(τ) and
CIΣ(τ) in Figure C.6. By comparing Figure C.2 and Figure C.6, we observe that
for δ = 0.4, CII(τ) achieves the desired coverage level when the sample size n
reaches 350. This comparison shows that the inference problem is easier for a
smaller sparsity level.

C.4. Sample splitting

We implement the sample-splitting estimator detailed in (3.1). Recall that this
sample splitting estimator is mainly created to facilitate the proof. We take the
same simulation settings as in Section 5.2. We vary the signal strength δ over
{0, 0.04, 0.06, 0.08, 0.2, 0.4} and the sample size n over {250, 350, 500, 650, 800}.
We have examined the finite sample performance of the proposed method over
different values of τ ∈ {0, 0.1, 0.2, · · · , 1.4, 1.5}. We report the empirical rejec-
tion rate for φI(τ) and φΣ(τ) in Figure C.7 and the coverage properties of the
constructed confidence intervals CII(τ) and CIΣ(τ) in Figure C.8. In comparison
to the results in Section C.1, we observe that the proposed tests are less power-
ful than the corresponding tests using full sample and the empirical coverage of
the constructed confidence intervals is lower than that using the full data. This
loss of efficiency is as expected as only half of the sample are used to construct
the initial estimator and the other half are used to correct the bias.

C.5. High-dimensional setting with p = 4, 000

We consider the group significance inference for a higher dimension with p =
4, 000. We vary the sample size across {500, 1000, 2000} to mimic the dimension
and the sample size of the colony growth data in Section 5.5. Regarding the
generating parameters, we mimic Section 5.2, where the regression vector β ∈
R

4000 is generated as βj = δ for 25 ≤ j ≤ 50 and βj = 0 otherwise and generate
the covariance matrix Σij = 0.6|i−j| for 1 ≤ i, j ≤ 4, 000. We consider the group
significance test, H0,G : βi = 0 for i ∈ G, with G = {30, 31, · · · , 200} or G =
{30, 31, · · · , 60}. We vary the signal strength parameter δ over {0, 0.08, 0.2, 0.4}.

We report the empirical rejection rate of φΣ(τ) defined in (2.6) in Figure C.9.
The results are similar to the results for dense alternative presented in Section
5.2 and C.1: for the null setting with δ = 0, the testing procedure controls the
type I error for τ ≥ 0.1; for the alternative settings, the proposed test is powerful
when δ reaches 0.08. The observations are uniform for testing both a larger group
with G = {30, 31, · · · , 200} or a smaller group with G = {30, 31, · · · , 60}.

We report the empirical coverage of the confidence interval construction
CII(τ) defined in (2.7) in Figure C.10. We can take τ = 0.5 or 1 and in most
settings, the empirical coverages are reliable when n reaches 1, 000, which cor-
responds to the sample size for the colony growth data in Section 5.5. We note
that, for n = 500, the empirical coverages do not reach 95% though the corre-
sponding tests can still detect the signals when δ reaches 0.08.
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Fig C.5. Dense alternative setting with a sparser signal: the dependence of Empirical Rejec-
tion Rate (ERR) on τ .
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Fig C.6. Dense alternative setting with a sparser signal: the dependence of Empirical Cover-
age on τ .
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Fig C.7. Sample splitting estimators for the dense alternative setting: the dependence of
Empirical Rejection Rate (ERR) on τ .
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Fig C.8. Sample splitting estimators for the dense alternative setting: the dependence of
Empirical Coverage on τ .
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Fig C.9. High-dimensional setting with p = 4, 000: the dependence of Empirical Rejection
Rate (ERR) of φΣ(τ) defined in (2.6) on τ .
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Fig C.10. High-dimensional setting with p = 4, 000: the dependence of Empirical Coverage
of CIΣ(τ) defined in (2.7) on τ .
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C.6. Additional real data analysis for the yeast colony growth data

Figure C.11 describes the results for the colony data set from Section 5.5, but
now for all 46 traits.

Fig C.11. Size of significant groups (FWER level 5%) by applying the hierarchical procedure
to each of the 46 traits of the Yeast Colony Growth data set. The number of significant groups
is displayed on the top. The top panel is the same as Figure 1 in the main paper.
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C.7. Additional real data analysis for the Riboflavin data

We apply the hierarchical procedure on a data set about Riboflavin production
with Bacillus Subtilis, made publicly available by [5]. It consists of n = 71
samples of strains of Bacillus Subtilis with response being riboflavin (vitamin
B2) production rate and covariates measuring the log-expression levels of p =
4088 genes.

The hierarchical procedure using our group test φΣ(τ = 1) goes top-down
through a hierarchical cluster tree constructed using 1−(empirical correlation)2

as dissimilarity measure and average linkage. The results of the hierarchical pro-
cedure are displayed in Table C.1. Hierarchical testing finds two single covariates,
five small groups, and two large groups. The debiased estimator as implemented
in the R package hdi [12] cannot reject any of the single covariates (when test-
ing for all single covariates and adjusting p-values for controlling the FWER).
Hence, the maximum test cannot reject the global null hypothesis, implying
that no significant group is found using hierarchical testing.

Table C.1

Results from applying the hierarchical procedure to the Riboflavin data set (FWER level
5%). The number in square brackets indicates the number of covariates which are not

displayed in the table, i.e. [2] means that two covariates are not displayed for this group.

p-value significant cluster
6.113e-09 LICT_at, GLYQ_at, PROA_at, HEME_at, PCP_at, ... [5]
1.438e-05 MURE_at, YCGB_at, YQEU_at, SPOVC_at, THDF_at, ... [106]
0.0002475 YWAE_at, YQZH_at, YSGA_at, YVDJ_at, YQJU_at, ... [2]
< 2.2e-16 LYSC_at, YDBH_at, YDJL_at, YDJK_at, YHXA_at, ... [2]
0.0047295 YEBC_at
1.768e-10 CSPD_at, OPUAB_at, OPUAC_at, OPUAA_at, YLNA_at, ... [924]
0.0001776 YOAB_at
< 2.2e-16 XLYA_at, YBFG_at, XHLA_at, XHLB_at, XTMA_at, ... [9]
1.455e-11 YXLE_at, YXLF_at, YXLC_at, YXLD_at, YXLG_at
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