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Summary. The ability to predict individualized treatment effects (ITEs) based on a given patient’s

profile is essential for personalized medicine. We propose a hypothesis testing approach to choosing

between two potential treatments for a given individual in the framework of high-dimensional linear

models. The methodological novelty lies in the construction of a debiased estimator of the ITE and

establishment of its asymptotic normality uniformly for an arbitrary future high-dimensional observa-

tion, while the existing methods can only handle certain specific forms of observations. We introduce

a testing procedure with the type-I error controlled and establish its asymptotic power. The proposed

method can be extended to making inference for general linear contrasts, including both the average

treatment effect and outcome prediction. We introduce the optimality framework for hypothesis test-

ing from both the minimaxity and adaptivity perspectives and establish the optimality of the proposed

procedure. An extension to high-dimensional approximate linear models is also considered. The fi-

nite sample performance of the procedure is demonstrated in simulation studies and further illustrated

through an analysis of electronic health records data from patients with rheumatoid arthritis.

Keywords: Electronic Health Records; Personalized Medicine; Prediction; General Linear Con-

trasts; Confidence Intervals; Bias Correction.

1. Introduction

It has been well recognized that the e↵ectiveness and potential risk of a treatment often vary
significantly by patient subgroups. The ability to predict individualized treatment e↵ects (ITEs)
based on a given covariate profile is essential for precision medicine. Although trial-and-error
and one-size-fits-all approaches remain a common practice, much recent focus has been placed on
predicting treatment e↵ects at a more individual level (La Thangue and Kerr, 2011; Ong et al.,
2012). Genetic mutations and gene-expression profiles are increasingly used to guide treatment
selection for cancer patients (Albain et al., 2010; Eberhard et al., 2005). Large scale clinical trials
are being conducted to evaluate individualized treatment strategies (Chantrill et al., 2015; Evans
and Relling, 2004; Simon et al., 2007). The increasing availability of electronic health records (EHR)
systems with detailed patient data promises a new paradigm for translational precision medicine
research. Models for predicting ITE can be estimated using real world data and can potentially be
deployed more e�ciently to clinical practice.
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Motivated by the ITE estimation using EHR data with high-dimensional covariates, we consider
in this paper e�cient estimation and inference procedures for predicting a future patient’s ITE
given his/her p dimensional covariates when p is potentially much larger than the sample size n.
Specifically, we consider high-dimensional linear regression models for the outcomes in the two
treatment groups:

Yk = Xk�k + ✏k, k = 1, 2, (1)

where Yk = (yk,1, ..., yk,nk
)| and Xk = (Xk,1, ...,Xk,nk

)| are the response and covariates observed
independently for the nk subjects in the treatment group k respectively, ✏k = (✏k,1, ..., ✏k,nk

)| is
the error vector with constant variance �

2
k = var(✏k,i) and �k 2 R

p is the regression vector for the
k

th treatment group. For a given patient with covariate vector xnew 2 R
p, we construct point and

interval estimators for the ITE �new = x|
new
(�1 � �2) and consider the hypothesis testing

H0 : x
|
new
(�1 � �2)  0 vs. H1 : x

|
new
(�1 � �2) > 0. (2)

1.1. Individualized Treatment Selection
While clinical trials and traditional cohort studies remain critical sources for precision medicine
research, they have limitations including the generalizability of study findings and the limited
ability to test broader hypotheses. In recent years, due to the increasing adoption of EHR and
the linkage of EHR with bio-repositories and other research registries, integrated large datasets
now exist as a new source for precision medicine studies. For example, the Partner’s Healthcare
System (PHS) biobank contains both a wealth of clinical (e.g. diagnoses, treatments, laboratory
values) and biological measurements including genomic data (Gainer et al., 2016). These integrated
datasets open opportunities for developing EHR-based individualized treatment selection models,
which can potentially be fed back to the EHR system for guiding clinical decision making.

To enable EHR for such precision medicine research, di↵erent patients cohorts with specific
diseases of interest have been constructed at PHS via the e↵orts of the Informatics for Integrating
Biology and the Bedside (i2b2) (Kohane et al., 2012). An example of such disease cohort is rheuma-
toid arthritis (RA), consisting of 4453 patients identified as having RA using a machine learning
algorithm (Liao et al., 2010). A small subset of these patients have their genetic and biological
markers measured. The biomarker data integrated with EHR data can be used to derive ITE
models for guiding treatment strategies for RA patients. A range of disease modifying treatment
options are now available for RA patients, including methotrexate, tumor necrosis factor inhibitors
often referred to as anti-TNF, and the combination of the two (Calabrese et al., 2016). The superi-
ority of the combination therapy over monotherapy has been well established (Emery et al., 2008;
Breedveld et al., 2006; van der Heijde et al., 2006). Despite its superiority, a significant proportion
of patients do not respond to the combination therapy with reported response rates ranging from
about 30% to 60%. Due to the high cost and significant side e↵ects including serious infection and
malignancy associated with anti-TNF therapy (Bongartz et al., 2006), there is a pressing need to
develop ITE models to guide RA treatment selection. We address this need by deriving an ITE
model for RA using the biomarker linked EHR data at PHS. The proposed procedures are desirable
tools for application since the number of potential predictors is large in this setting.

1.2. Statistical Framework and Contributions
Many statistical and machine learning algorithms have been proposed for estimating the ITEs
(Zhou et al., 2017; Zhao et al., 2012; Imai and Ratkovic, 2013; Qian and Murphy, 2011). However,
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existing methods largely focused on the low-dimensional settings. In the presence of high dimen-
sional predictors, inference for the ITEs becomes significantly more challenging. Several regularized
procedures have been proposed for estimating �new = x|

new
(�1 � �2) (Chen et al., 2001; Tibshirani,

1996; Fan and Li, 2001; Candès and Tao, 2007; Sun and Zhang, 2012; Zhang, 2010; Belloni et al.,
2011; Moon et al., 2007; Song et al., 2015; Belloni et al., 2014). However, when the goal is to con-
struct confidence intervals (CIs) for �new, it is problematic to estimate �new by simply plugging in the
regularized estimators due to their inherent biases. These biases can accumulate when projecting
along the direction of xnew and result in a significant bias in �new; see Table 2 for details.

In this paper, we develop the High-dimensional Individualized Treatment Selection (HITS)
method that aims to choose between two treatments for a given individual based on the observed
high-dimensional covariates. We propose a novel bias-corrected estimator for x|

new
(�1 � �2) and

establish its asymptotic normality for any given xnew. This is achieved by imposing an additional
novel constraint in the construction of the projection direction, which is used to correct the bias
of the plug-in estimator. This additional constraint guarantees that the variance of the HITS es-
timator dominates its bias for any xnew. With this bias-corrected estimator, we construct CIs and
carry out hypothesis test for �new under the challenging setting where xnew is of high-dimension and
of no special structure. Rigorous justifications are given for the coverage and length properties of
the resulted CIs and also for Type I error control and power of the proposed testing procedure.
More generally, the HITS method can be adapted for making inference about any linear contrasts
x|

new
�k for k = 1, 2, which are crucial to inference for average treatment e↵ect (ATE) and inference

related to prediction; see Sections 2.4 and 5 for details. We have also extended the asymptotic nor-
mality results to high-dimensional approximate linear models. We further introduce an optimality
framework for hypothesis testing in the high-dimensional sparse linear model and establish the
optimality of HITS from two perspectives, minimaxity and adaptivity, where minimaxity captures
the di�culty of the testing problem with true sparsity level known a priori and adaptivity is for
the more challenging setting with unknown sparsity.

We summarize two key contributions of the current paper below and then compare the present
work to existing high dimensional inference literature in Section 1.3.

• To the best of our knowledge, the method proposed in the current paper is the first unified
inference procedure with theoretical guarantees for general linear contrasts x|

new
(�1��2) and

x|
new
�k for k = 1, 2, where no structural assumptions are made on the high-dimensional loading

xnew. This is a challenging task as noted in prior literature on inference for linear contrasts in
high dimensional regression (Cai and Guo, 2017; Athey et al., 2018; Zhu and Bradic, 2018).

• Optimal detection boundary without knowledge of the exact sparsity level, noted as an open
question in Zhu and Bradic (2017), is addressed in the current paper. It is shown that HITS
is adaptively optimal for testing the hypotheses (2) over a large class of loadings xnew with
unknown and unconstrained sparsity level.

1.3. Comparisons with High-dimensional Inference Literature
For a single regression coe�cient under sparse linear models, Zhang and Zhang (2014); van de Geer
et al. (2014); Javanmard and Montanari (2014) introduced debiasing methods for CI construction.
Inference for more general linear contrasts has been investigated recently in Cai and Guo (2017);
Athey et al. (2018); Zhu and Bradic (2018). These all require special structure on the loading xnew.
Our work is the first to provide valid inference procedures for general contrasts with arbitrary high-
dimensional loading xnew without special structures. More specifically, in the context of constructing
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CIs, Cai and Guo (2017) showed a significance di↵erence between sparse and dense xnew. The meth-
ods developed for a single regression coe�cient can be extended to a sparse xnew but the construction
of a dense xnew relies on a conservative upper bound and requires the information on sparsity level.
Athey et al. (2018) constructed CI for the general linear contrasts for xnew only if the loading xnew

has a bounded weighted `2 norm and constructed CI for ATE under the overlap assumption; see
Section 2.4 for detailed discussion. Zhu and Bradic (2018) constructed a CI for the linear contrast
under the condition that the conditional expectation E[x|

new
X1,i | v

|
1X1,i, · · · ,v

|
p�1X1,i] is a sparse

linear combination of v|
1X1,i, · · · ,v

|
p�1X1,i, where {vj}1jp�1 span the space orthogonal to xnew.

The most significant distinction of the proposed HITS method from the aforementioned literature
is a unified uncertainty quantification method for all high-dimensional loadings xnew.

Hypothesis testing for more general functionals has been recently considered in Javanmard and
Lee (2017) and Zhu and Bradic (2017). Javanmard and Lee (2017) reduced the testing problem for a
general functional to that for the projection of the functional of interest to a given orthogonal basis
and then construct a debiased estimator of the corresponding basis expansion. The test statistic is
constructed by comparing this debiased estimator and its projection to the null parameter space.
This strategy can also be used to construct CIs for a linear contrast, but is only valid if xnew

is sparse. Our proposed method is useful for more general hypothesis testing problems in high
dimensions. After the first version of the present paper was released, Javanmard and Lee (2020)
adopted our proposed construction for the projection direction in (8) and (9) and extended their
testing procedure to handle arbitrary linear contrast; see Remark 2 of Javanmard and Lee (2020)
for details. Zhu and Bradic (2017) proposed a general testing procedure by first constructing an
estimator by `1 projection of the penalized estimator to the null parameter space and then debiasing
both the penalized and projected estimators. The test is based on the di↵erence between these two
debiased estimators and a critical value computed via bootstrap. Although this test, in principle,
controls the type I error of (2), the asymptotic power is established only when the true parameter

is well separated from the null under the `1 norm by n
�

1
4 . There are no results on the power if

the true parameters in the alternative outside this region. Our approach is distinct; we establish
the asymptotic normality of the proposed estimator of �new, uniformly over all loadings xnew and the
whole parameter space of approximately sparse regression vectors. As a consequence, 1) we have an
asymptotic expression of the power of the proposed test for all �new; 2) since the asymptotic power
in Zhu and Bradic (2017) is established by inequalities instead of the limiting distribution, the CIs
for �new by inverting the testing procedure in Zhu and Bradic (2017) can be more conservative than
the CI constructed in the present paper. Additionally, we resolved the open question raised in Zhu
and Bradic (2017) “the minimax detection rate for this problem without knowledge of the sparsity
level is also an open question” in Corollary 4 of the present paper. We provide more technical
comparisons to these two approaches in Remark 1.

Another intuitive inference method for a general linear contrast is to plug-in the debiased es-
timator for individual regression coe�cients developed in Zhang and Zhang (2014); van de Geer
et al. (2014); Javanmard and Montanari (2014). A numerical comparison of this estimator with the
proposed HITS procedure is given in Section 6. The results show that HITS not only is computa-
tionally more e�cient but also has uniformly better coverage properties than the plug-in estimator.

From another perspective, we compare the optimality results for hypothesis testing established
here with those for CIs given in Cai and Guo (2017). The adaptivity framework for hypothesis
testing is di↵erent from that for CI construction. In addition, the current paper considers a broader
classes of loadings than those in Cai and Guo (2017), including the case of decaying loadings and
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a more general class of sparse exact loadings.

1.4. Organization of the Paper
The rest of the paper is organized as follows. Section 2 presents the proposed testing and CI pro-
cedures for �new. Theoretical properties are given in Section 3; Optimality of the testing procedure
is discussed in Section 4; The proposed method is extended in Section 5 to quantify uncertainty
for prediction in high dimensional linear regression; The numerical performance is investigated in
Section 6. In Section 7, we apply the proposed method to infer about ITE of the aforementioned
combination therapy over methotrexate alone for treating RA using EHR data from PHS. Discus-
sions are provided in Section 8 and proofs of the main results are given in Section 9. Additional
discussions, simulations and proofs are presented in the supplement (Cai et al., 2020).

1.5. Notations
For a matrix X 2 R

n⇥p, Xi·, X·j , and Xij denote respectively its i
th row, jth column, and (i, j)

entry. For a vector x 2 R
p, x�j denotes the subvector of x excluding the j

th element, supp(x)

denotes the support of x and the `q norm of x is defined as kxkq = (
Pp

j=1 |xj |
q)

1
q for q � 0

with kxk0 = |supp(x)| and kxk1 = max1jp |xj |. For a matrix A, we define the spectral norm
kAk2 = supkxk2=1 kAxk2; For a symmetric matrix A, �min (A) and �max (A) denote respectively the
smallest and largest eigenvalue of A. We use c and C to denote generic positive constants that may
vary from place to place. For two positive sequences an and bn, an . bn means an  Cbn for all
n and an & bn if bn . an and an ⇣ bn if an . bn and bn . an, and an ⌧ bn if limn!1

an

bn
= 0

and an � bn if bn ⌧ an. For a sequence of random variables Xn indexed by n, we use Xn
d
! X

and Xn
p
! X to represent that Xn converges to X in distribution and in probability, respectively.

For p = p(n), we consider the regime that p(n) ! 1 with n ! 1 and hence write n ! 1 for
min{n, p} ! 1.

2. Methodology

In this section, we detail proposed inference procedures for the ITE �new = x|
new
(�1 � �2). We first

discuss existing bias correction methods in high-dimensional regression in Section 2.1 and introduce
a novel construction of projection direction which adapts to any given loading xnew in Section 2.2,
where throughout we use subscript k 2 {1, 2} to index the treatment group. Then in Section 2.3,
we propose point and interval estimators as well as a hypothesis testing procedure for �new. In
Section 2.4, we extend the proposed method to inference for average treatment e↵ect.

2.1. Existing Method of Bias Correction: Minimize Variance with Bias Constrained
Given the observations Yk 2 R

nk and Xk 2 R
nk⇥p, �k can be estimated by the Lasso estimator,

b�k = argmin
�k2Rp,2R+

kYk � Xk�kk
2
2

2nk
+A

r
log p

nk

pX

j=1

Wk,j |�k,j |, for k = 1, 2, (3)

with a pre-specified positive constant A > 0 and Wk,j =
q

1
nk

Pnk

i=1X
2
k,ij denoting the penalization

weight for the j
th variable in the k

th treatment group. The variance �
2
k is then estimated by
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b�2
k = 1

nk
kYk � Xk

b�kk
2
2 for k = 1, 2. We note that, other initial estimators can also be used,

including the Dantzig Selector (Candès and Tao, 2007) and tuning-free penalized estimators, such
as the scaled Lasso (Sun and Zhang, 2012), square-root Lasso (Belloni et al., 2011), and iterated

Lasso (Belloni et al., 2012), as long as the initial estimators b�k and b�2
k satisfy certain consistency

properties (Conditions (B1) and (B2)) as stated in Section 3.2.
We discuss the bias correction idea for estimating x|

new
�1 and the same approach can be extended

to k = 2. A natural and simple way to estimate x|
new
�1 is to plug in the Lasso estimator b�1 in (3).

However, this plug-in estimator x|
new
b�1 is known to su↵er from the bias induced by the penalty in (3).

For the special case xnew = ej , where ej is the j
th Euclidean basis vector, various forms of debiased

estimators have been introduced in Zhang and Zhang (2014); van de Geer et al. (2014); Javanmard

and Montanari (2014) to correct the bias of the plug-in estimator b�1,j and then construct CIs
centered at the debiased estimators. The idea can be extended to general linear contrasts x|

new
�1

for certain class of xnew, where a key step is to estimate the bias x|
new
(b�1 � �1). To this end, we aim

to identify an e↵ective projection direction u 2 Rp to construct a debiased estimator for x|
new
�1 as

x|
new
b�1 + u|bE1, where bEk =

1

nk

nkX

i=1

Xk,i

⇣
Yk,i �X|

k,i
b�k

⌘
for k = 1, 2. (4)

The error decomposition of the above bias-corrected estimator is

(x|
new
b�1 + u|bE1)� x|

new
�1 = u| 1

n1

n1X

i=1

X1,i✏1,i + (b⌃1u� xnew)
|(b�1 � �1) (5)

where b⌃k = 1
nk

Pnk

i=1Xk,iX
|
k,i for k = 1, 2.

To correct the bias of each individual regression coe�cient (that is xnew = ej), Zhang and
Zhang (2014); Javanmard and Montanari (2014) proposed the foundational idea of constructing
a projection direction for bias correction via minimization of variance with the bias constrained.
Specifically, in (5), the projection direction is identified such that the variance of u| 1

n1

Pn1

i=1X1,i✏1,i

is minimized while the bias component (b⌃1u�xnew)|(b�1��1) is constrained. This idea is generalized
in Cai and Guo (2017) to deal with sparse xnew via the following algorithm

eu1 = argmin
u2Rp

n
u| b⌃1u : kb⌃1u� xnewk1  kxnewk2�1

o
(6)

where �1 ⇣
p

log p/n1. Here, u| b⌃1umeasures the variance of u| 1
n1

Pn1

i=1X1,i✏1,i and the constraint

on kb⌃1u� xnewk1 further controls the bias term (b⌃1u� xnew)|(b�1 � �1) in (5) via the inequality

|(b⌃1u� xnew)
|(b�1 � �1)|  kb⌃1u� xnewk1kb�1 � �1k1. (7)

The bias corrected estimator x|
new
b�1 + eu|

1
bE1 and its variant have been studied in the literature

(Cai and Guo, 2017; Tripuraneni and Mackey, 2019; Athey et al., 2018). Cai and Guo (2017) and
Athey et al. (2018) considered inference for xnew of specific structures. It was also shown that eu1 is
e↵ective for bias-correction when xnew is of certain sparse structure (Cai and Guo, 2017) and when
xnew is of a bounded weighted `2 norm (Athey et al., 2018). Tripuraneni and Mackey (2019) focused
exclusively on its estimation error instead of confidence interval construction for x|

new
�. In fact, this
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type of projection direction (6), used in Cai and Guo (2017); Athey et al. (2018) and Tripuraneni
and Mackey (2019), is not always e↵ective for bias correction or the subsequent confidence interval
construction. Proposition 3 of Section 8 shows that if the loading xnew is of certain dense structure,
then the projection direction eu1 is zero and hence the “bias-corrected” estimator using eu1 is reduced
to the plug-in estimator x|

new
b�1. As shown in Table 3, the plug-in estimator can have reasonable

estimation error but is not suitable for confidence interval construction due to its large bias. These
existing inference procedures cannot automatically adapt to arbitrary structure of xnew.

2.2. New Projection Direction: Minimize variance and Constrain Bias and Variance
To e↵ectively debias for an arbitrary xnew, we propose to identify the projection direction buk for the
k

th treatment as

buk = argmin
u2Rp

u| b⌃ku subject to kb⌃ku� xnewk1  kxnewk2�k (8)

|x|
new
b⌃ku� kxnewk

2
2|  kxnewk

2
2�k, (9)

where �k ⇣

p
log p/nk. Our proposed bias corrected estimator for x|

new
�k is then

\x|
new
�k = x|

new
b�k + bu|

k
bEk for k = 1, 2. (10)

The main di↵erence between bu1 and eu1 in (6) is the additional constraint (9). As mentioned ear-
lier, a general strategy for bias correction is to minimize the variance component while constraining
the bias (Zhang and Zhang, 2014; Javanmard and Montanari, 2014). However, to develop a unified
inference method for all xnew, the optimization strategy developed in the current paper is a triplet,
minimizing the variance, constraining the bias and constraining the variance. In particular, the
additional constraint (9) is imposed to constrain the variance such that it is dominating the bias
component, which is essential for CI construction. We refer to the construction defined in (8) and
(9) as “Variance-enhancement Projection Direction”. Such a general triplet optimization strategy
can be of independent interest and applied to other inference problems.

We shall remark that, the further constraint (9) on the variance is not as intuitive as the other
constraints, in the sense that the error decomposition of the bias-corrected estimator in (5) shows
that it is su�cient to obtain an accurate estimator of x|

new
�1 as long as we adopt the existing idea

of minimizing variance under the bias constraint; see the detailed discussion between (5) and (7).
In the error decomposition (5), it seems that the additional constraint (9) is not needed. However,
(9) is the key component to construct a valid inference procedure uniformly over all xnew. For
statistical inference, one not only needs an accurate estimator, but also an accurate assessment of
the uncertainty of the estimator. This is the main reason for adding the additional constraint.

An equivalent way of constructing the projection direction defined in (8) and (9) is,

buk = argmin
u2Rp

u| b⌃ku subject to sup
w2C

|hw, b⌃ku� xnewi|  kxnewk2�k (11)

where C = {e1, · · · , ep,xnew/kxnewk2} with ei denoting the ith standard Euclidean basis vector. The

feasible set in (11) ensures that the projected values hw, b⌃ku � xnewi of b⌃ku � xnew to any of the
p+1 vectors in C are small. In contrast, as motivated in (7), the existing debiased procedures only
constrain that the projected values to all the standard Euclidean basis vectors, max1jp |hej , b⌃ku�
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xnewi|, are small. In the case where xnew = ei, these two constraints are the same; however, in the
case where xnew is of complicated structures, the additional direction xnew/kxnewk2 contained in C is
the key component to conduct the bias correction; see more discussion in Section 8.

2.3. Statistical Inference for Individualized Treatment Effect
Combining \x|

new
�1 and \x|

new
�2, we propose to estimate �new as

d�new = \x|
new
�1 � \x|

new
�2. (12)

Compared to the plug-in estimator x|
new
(b�1�

b�2), the main advantage of d�new is that the variance of
d�new is dominating the bias of d�new while the bias of the plug-in estimator is usually as large as its
variance. (See Table 2 for the numerical illustration.) Such a rebalance of bias and variance is useful
for inference as the variance component is much easier to characterize than the bias component.

To conduct HITS, it remains to quantify the variability of d�new. The asymptotic variance of d�new

is

V =
�
2
1

n1
bu|
1
b⌃1bu1 +

�
2
2

n2
bu|
2
b⌃2bu2, (13)

which can be estimated by bV = b�2
1

n1
bu|
1
b⌃1bu1 +

b�2
2

n2
bu|
2
b⌃2bu2. With d�new and the variance estimator bV,

we may construct a CI for the ITE �new as

CI =
⇣
d�new � z↵/2

p
bV, d�new + z↵/2

p
bV
⌘

(14)

and conduct HITS based on
�↵ = 1

⇣
d�new � z↵

p
bV > 0

⌘
, (15)

where z↵ is the upper ↵ quantile for the standard normal distribution. That is, if d�new > z↵

p
bV,

we would recommend subjects with xnew to receive treatment 1 over treatment 2, vice versa.
It is worth noting that the proposed HITS procedure utilizes the xnew information in the con-

struction of the projection direction buk, where both the constraints in (8) and (9) depend on the
observation xnew. For observations with di↵erent xnew, the corresponding projection directions can
be quite di↵erent. Second, the method is computationally e�cient as the bias correction step
only requires the identification of two projection directions instead of performing debiased of b�k

coordinate by coordinate.

2.4. Application to Inference for Average Treatment Effect
In addition to the individualized treatment selection, the proposed method can also be applied to
study the average treatment e↵ect (ATE). We follow the setting of Athey et al. (2018) where k = 1
corresponds to the control group and k = 2 corresponds to the treatment group. The average
treatment over the treatment group is defined as X̄|

2(�2 � �1) where X̄2 = 1
n2

Pn2

i=1X2,i. The

statistical inference for the ATE X̄|
2(�2 ��1) can be viewed as a special case of x|

new
(�2 ��1) with

xnew = X̄2. Both the point estimator (12) and interval estimator (14) can be directly applied here
to construct point and interval estimators for the ATE by taking xnew = X̄2.

These estimators are di↵erent from those proposed in Athey et al. (2018). The main distinction
is the additional constraint (9) proposed in the current paper. Without (9), Athey et al. (2018)
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requires either the Bounded Loading condition (Lemma 1 of Athey et al. (2018)) or the Overlap

condition (Assumption 5 of Athey et al. (2018)) to guarantee the asymptotic limiting distribution
of the corresponding ATE estimators. We state both conditions in the terminology of the current
paper, 1)Bounded Loading. X̄2⌃

�1
1 X̄2 is assumed to be bounded; 2)Overlap. There exists a constant

⌘ > 0 such that ⌘  e(x)  1 � ⌘ for all x 2 R
p where e(x) is the probability of receiving the

treatment for an individual with covariates x. Both conditions are actually limiting applications
of the developed method to practical settings. As X̄2⌃

�1
1 X̄2 is of the order

p
p/n, the bounded

loading condition is not realistic in the high-dimensional setting p � n. In addition, if e(x) is the
commonly used logit or probit probability function, then the overlap condition only holds if the
support of the probability function is bounded.

3. Theoretical Properties

3.1. Model Assumptions and Initial Estimators
We assume the following conditions on the random designs and the regression errors.

(A1) For k = 1, 2, Xk,i are i.i.d. p-dimensional sub-gaussian random vectors with⌃k = E(Xk,iX
|
k,i)

satisfying c0  �min (⌃k)  �max (⌃k)  C0 for positive constants C0 � c0 > 0. For k = 1, 2,
the error vector ✏k = (✏k,1, ..., ✏k,nk

)| is sub-gaussian and satisfies the moment conditions
E(✏k,i | Xk,i) = 0 and E(✏2k,i | Xk,i) = �

2
k for some unknown positive constant 0 < �

2
k < 1.

The errors {✏1,i}1in1 are independent of {✏2,i}1in2 .

(A2) For k = 1, 2, the error vector ✏k = (✏k,1, ..., ✏k,nk
)| is independent of Xk and follows Gaussian

distribution with mean zero and covariance �
2
k · Ink .

The assumption (A1) is standard for the design and the regression error in the high-dimension
literature. The condition (A2) on the error vectors is stronger but is only needed to establish the
distributional results. This assumption is further relaxed in Section 3.4.

We consider the capped-`1 sparse regression vectors with

pX

j=1

min{|�k,j |/�k�0, 1}  sk for k = 1, 2. (16)

where �0 =
p

2 log p/n. As remarked in Zhang and Zhang (2014), the capped-`1 condition in (16)
holds if �k is `0 sparse with k�kk0  sk or `q sparse with k�kk

q
q/(�k�0)q  sk for 0 < q  1. We

introduce the following general conditions on the initial estimators.

(B1) With probability larger than 1� g(n1, n2) where g(n1, n2) ! 0 as min{n1, n2} ! 1, kb�k �

�kk1 . sk

p
log p/nk for k = 1, 2,

(B2) b�2
1 and b�2

2 satisfy maxk=1,2

��b�2
k/�

2
k � 1

�� p
! 0 as min{n1, n2} ! 1.

A variety of estimators proposed in the high-dimensional regression literature for estimating the
regression vector and the regression error variance are known to satisfy the above conditions under
various conditions. See Sun and Zhang (2012); Belloni et al. (2011); Bickel et al. (2009); Bühlmann
and van de Geer (2011) and the reference therein for more details.
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3.2. Asymptotic Normality
Before stating the theorem, we present some intuitions for the estimation error of the proposed

estimator, which relies on the following error decompositions of \x|
new
�k,

\x|
new
�k � x|

new
�k = bu|

k

1

nk

nkX

i=1

Xk,i✏k,i + (b⌃kbuk � xnew)
|(b�k � �k). (17)

This decomposition (17) reflects the bias and variance decomposition of \x|
new
�k, where the first

error term bu|
k

1
nk

Pnk

i=1Xk,i✏k,i is the variance while the second error term (b⌃kbuk � xnew)|(b�k � �k)

is the remaining stochastic bias. A similar bias and variance decomposition for the estimator d�new

can be established by applying (17) with k = 1, 2. The following theorem establishes the rate of

convergence for d�new.

Theorem 1. Suppose that the conditions (A1) and (B1) hold and sk  cnk/log p for k = 1, 2,
then with probability larger than 1� p

�c
� g(n1, n2)�

1
t2 for some t > 1,

���d�new ��new

��� . tkxnewk2

✓
1

p
n1

+
1

p
n2

◆
+ kxnewk2

✓
k�1k0 log p

n1
+

k�2k0 log p

n2

◆
. (18)

One of the terms on the right hand side of (18), kxnewk2 (k�1k0 log p/n1 + k�2k0 log p/n2), is an up-
per bound for the remaining bias of the proposed debiased estimator while kxnewk2

�
1/
p
n1 + 1/

p
n2
�

is an upper bound for the corresponding variance. The following theorem shows that under the ad-
ditional condition (A2) and stronger sparsity conditions, the proposed estimator has an asymptotic
normal distribution.

Theorem 2. Suppose that the conditions (A1), (A2) and (B1) hold and sk  c
p
nk/log p for

k = 1, 2, then as min{n1, n2} ! 1,

1
p
V

⇣
d�new ��new

⌘
d
! N(0, 1) (19)

where V is defined in (13).

A key component of establishing the limiting distribution for d�new is to show that the stan-
dard error

p
V dominates the upper bound for the bias term in (18). We present this important

component in the following Lemma, which characterizes the magnitude of V in (13).

Lemma 1. Suppose that the condition (A1) holds, then with probability larger than 1� p
�c
,

c1kxnewk2 (1/
p
n1 + 1/

p
n2) 

p

V  C1kxnewk2 (1/
p
n1 + 1/

p
n2) , (20)

for some positive constants c1, C1 > 0.

We shall highlight that such a characterization of the variance, mainly the lower bound of (20), is
only achieved through incorporating the novel additional constraint (9) to identify the projection
direction. Without this additional constraint, as shown in Proposition 3, the variance level can be
exactly zero and hence the lower bound in (20) does not hold.
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3.3. Hypothesis Testing and Confidence Interval
We discuss two corollaries of Theorem 2, one for the hypothesis testing problem (2) related to the
individualized treatment selection and the other for construction of CIs for �new. Regarding the
testing problem, we consider the following parameter space

⇥ (s) =

8
<

:✓ =
 
B1,⌃1

B2,⌃2

!
:

pX

j=1

min

✓
|�k,j |

�k�0
, 1

◆
 s, 0 < �k  M0, c0  �min (⌃k)  �max (⌃k)  C0, for k = 1, 2

9
=

; ,

where Bk = (�|
k ,�k)

| for k = 1, 2 and M0 > 0 and C0 � c0 > 0 are some positive constants. Then
we define the null hypothesis parameter space as

H0(s) =

⇢
✓ =

 
B1,⌃1

B2,⌃2

!
2 ⇥ (s) : x|

new
(�1 � �2)  0

�
(21)

and the local alternative parameter space as

H1(s, �0) =

⇢
✓ =

 
B1,⌃1

B2,⌃2

!
2 ⇥ (s) : x|

new (�1 � �2) = �0kxnewk2 (1/
p
n1 + 1/

p
n2)

�
, (22)

for �0 > 0. The following corollary provides the theoretical guarantee for the individualized
treatment selection, where the type I error of the proposed HITS procedure in (15) is controlled
and the asymptotic power curve is also established.

Corollary 1. Suppose that the conditions (A1), (A2) and (B1), (B2) hold and sk  c
p
nk/log p

for k = 1, 2 and some positive constant c > 0, then for any xnew 2 R
p
, the type I error of the proposed

test �↵ defined in (15) is controlled as, limmin{n1,n2}!1 sup✓2H0
P✓ (�↵ = 1)  ↵. For any given

✓ 2 H1(�0) and any xnew 2 R
p
, the asymptotic power of the test �↵ is

lim
min{n1,n2}!1

P✓ (�↵ = 1) = 1� ��1

✓
z↵ �

�0
p
V
kxnewk2 (1/

p
n1 + 1/

p
n2)

◆
. (23)

Together with Lemma 1, we observe that the proposed test is powerful with �0 ! 1, where �0

controls the local alternative defined in (22). The main massage for real applications is that the
individualized treatment selection would be easier if the collected data set has larger sample sizes
n1 and n2 and also the future observation of interest has a smaller `2 norm. This phenomenon is
especially interesting for the individualized treatment selection with high-dimensional covariates,
where the corresponding norm kxnewk2 can be of di↵erent orders of magnitude; see Section 6 for
numerical illustrations.

In addition to the hypothesis testing procedure, we also establish the coverage of the proposed
CI in (14) for ITE �new:

Corollary 2. Suppose that (A1), (A2) and (B1), (B2) hold and sk  c
p
nk/log p for k = 1, 2

and some positive constant c > 0. Then the CI defined in (14) satisfies

lim
min{n1,n2}!1

P✓ (�new 2 CI) � 1� ↵ for any xnew 2 R
p
.
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Another important perspective of CI construction is the precision of the CIs, which can be measured
by the length. It follows from Lemma 1 that the length of the constructed CI in (14) is controlled
at the order of magnitude kxnewk2(1/

p
n1 + 1/

p
n2), which means that the length depends on both

the sample sizes n1 and n2 and also the `2 norm of the future observation kxnewk2. For observations
with di↵erent xnew, the lengths of the corresponding CIs for ITE �new can be quite di↵erent, where
the length is determined by kxnewk2 and the numerical illustration is present in Section 6.

Remark 1. It is helpful to compare some of the technical details with the related work Zhu
and Bradic (2017); Javanmard and Lee (2017). The type I error control in Theorem 1 of Zhu
and Bradic (2017) required stronger model complexity assumptions than Corollary 1. Specifically,

using our notation, Zhu and Bradic (2017) required log p = o(n1/8) and sk ⌧ n
1
4 /
p
log p while

we only need sk ⌧
p
n/ log p. More fundamentally, Zhu and Bradic (2017) did not establish the

asymptotic limiting distribution as Theorem 2 in the present paper. Instead of using the asymptotic
limiting distribution, Theorems 2 and 4 in Zhu and Bradic (2017) used inequalities to show that
the asymptotic powers are close to 1 if the parameters in the alternative are well separated from the
null under the `1 norm by n

�
1
4 ; as a consequence, the power function for the local neighborhood

cannot be established as in (23). Javanmard and Lee (2017) required the loading to be sparse
and particularly, in Lemma 2.4 , the loading xnew is required to satisfy µku1k1 < 1 where, using our
notation, µ = kxnewk2

p
log p/n and u1 = xnew. This required the condition kxnewk1kxnewk2 <

p
n/ log p

on the loading xnew (see more discussion after Proposition 3 in Section 8). This stringent condition
has been removed in the published version Javanmard and Lee (2020) by applying our proposed
projection direction in (8) and (9); see Remark 2 of Javanmard and Lee (2020) for details.

3.4. Further Extensions: Approximately Linear Models and Non-Gaussianity
The inference results established under model (1) can be further extended to approximate linear
models (Belloni et al., 2011, 2012),

Yk = Xk�k + rk + ✏k, k = 1, 2, (24)

where the high-dimensional vector �k 2 R
p satisfies the capped `1 sparsity (16) and the approxima-

tion error rk = (rk,1, · · · , rk,nk
)| 2 R

nk is defined with rk,i = E (Yk,i | Xk,i)�X|
k,i�k. We also relax

the Gaussian error assumption (A2) through modifying construction of the projection direction as
follows,

buk = argmin
u2Rp

u| b⌃ku subject to kb⌃ku� xnewk1  kxnewk2�k

|x|
new
b⌃ku� kxnewk

2
2|  kxnewk

2
2�k,

kXkuk1  kxnewk2⌧k,

(25)

where �k ⇣

p
log p/nk and

p
log nk . ⌧k ⌧ min{

p
n1,

p
n2}. The additional constraint kXkuk1 

kxnewk2⌧k has been proposed in Javanmard and Montanari (2014) to relax the Gaussian error as-
sumption for establishing asymptotic normality for a single regression coe�cient with xnew = ej .
The following result establishes the asymptotic normality of HITS under the general model (24)
with a small approximation error rk and non-Gaussian error ✏k.

Proposition 1. Suppose Condition (A1) holds and for k = 1, 2, sk  c
p
nk/log p, krkk2

p
! 0

as nk ! 1 and maxk=1,2max1in E(✏
2+⌫
k,i | Xk,i)  M0 for some constants ⌫ > 0 and M0 > 0.
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For the initial estimator b�k given in (3) and the projection direction buk
in (25), the estimator d�new

given in (12) satisfies the asymptotic limiting distribution (19) under the model (24).

A few remarks are in order. Firstly, the asymptotic normality in Proposition 1 holds for a broad
class of estimators satisfying the condition (B1), with the Lasso estimator b�k in (3) as an example.
Other examples include the iterated Lasso estimator (Belloni et al., 2012), which is tuning free
and shown to satisfy this condition by Theorem 1 of Belloni et al. (2012) and Proposition 9.7 of
Javanmard and Lee (2017) under the model (24) with exact sparse �k. Secondly, to make the e↵ect
of the approximation errors rk negligible for estimating �k under the model (24), the requirement

is krkk2/k�kk0
p
! 0 (Belloni et al., 2012) as nk ! 1; a stronger condition krkk2

p
! 0 is imposed

to guarantee the asymptotic normality, which is needed to show that the approximation error in
estimating �new is negligible in comparison to the main term that is the asymptotically normal.
Thirdly, this limiting distribution result does not require independence between ✏k and Xk and the
conditional moment conditions are su�cient for establishing the asymptotic normality. Lastly, this
result can be used to construct CIs and conduct hypothesis testing as in (14) and (15), respectively,
and the theoretical properties for hypothesis testing and confidence interval analogous to those in
Corollaries 1 and 2 can be established.

4. Optimality for Hypothesis Testing

We establish in this section the optimality of the proposed procedure in the hypothesis testing
framework from two perspectives, minimaxity and adaptivity. To simplify the presentation, we
present the optimality results for the case n1 ⇣ n2, denoted by n and s1 ⇣ s2, denoted by s, the
results can be extended to the case where n1 (or s1) is of a di↵erent order from n2 (or s2).

4.1. Optimality Framework for Hypothesis Testing: Minimaxity and Adaptivity
The performance of a testing procedure can be evaluated in terms of its size and its power. For a
given null parameter space H0(s), we define a set of testing procedures � with the corresponding
size asymptotically controlled at ↵, that is,

I(s,↵) =

(
� : ↵(s,�) = sup

✓2H0(s)
E✓�  ↵(1 + o(1))

)
. (26)

It has been shown in Corollary 1 that the proposed test �↵ 2 I(s,↵) for s . p
n/ log p. To investigate

the power, we consider the local alternative space H1(s, ⌧) = {✓ 2 ⇥(s) : x|
new

(�1 � �2) = ⌧} , for a
given ⌧ > 0. The power of a test � over the parameter space H1(s, ⌧) is

!(s, ⌧,�) = inf
✓2H1(s,⌧)

E✓�. (27)

With a larger value of ⌧ , the alternative parameter space is further away from the null parameter
space and hence it is easier to construct a test of higher power. The minimax optimality can be re-
duced to identifying the smallest ⌧ such that the size is controlled over H0(s) and the corresponding
power over H1(s, ⌧) is large, that is,

⌧mini(s,xnew) = argmin
⌧

(
⌧ : sup

�2I(s,↵)
!(s, ⌧,�) � 1� ⌘

)
, (28)



14 Cai, Cai & Guo

where ⌘ 2 [0, 1) is a small positive constant controlling the type II error probability. The quantity
⌧mini(s,xnew) depends on xnew, the sparsity level s and the constants ↵, ⌘ 2 (0, 1). Throughout
the discussion, we omit ↵ and ⌘ in the arguments of ⌧mini(s,xnew) for simplicity. This quantity
⌧mini(s,xnew) is referred to as the minimax detection boundary of the hypothesis testing problem
(2). In other words, ⌧mini(s,xnew) is the minimum distance such that there exists a test controlling
size and achieving a good power. If a test � satisfies the following property,

� 2 I(s,↵) and !(s,�, ⌧) � 1� ⌘ for ⌧ ⇣ ⌧mini(s,xnew) (29)

then � is defined to be minimax optimal. The minimax detection boundary in (28) is defined for
a given sparsity level s, which is assumed to be known a priori. However, the exact sparsity level
is typically unknown in practice. Hence, it is also of great importance to consider the optimality
from the following two perspectives on adaptivity,

Q1. Whether it is possible to construct a test achieving the minimax detection boundary defined
in (28) if the true sparsity level s is unknown.

Q2. What is the optimal procedure in the absence of accurate sparsity information?

To facilitate the definition of adaptivity, we consider two sparsity levels, s  su. Here s denotes the
true sparsity level, which is typically not available in practice while su denotes the prior knowledge
of an upper bound for the sparsity level. If we do not have a good prior knowledge about the
sparsity level s, then su can be much larger than s. To answer Q1 and Q2, we assume that only
the upper bound su is known instead of the exact sparsity level s. As a consequence, we focus on
the set of tests I(su,↵), which is defined in (26) by replacing s with su. I(su,↵) consists of tests
whose size is uniformly controlled over the parameter space H0(su). In contrast to I(s,↵) in (26),
the control of size in I(su,↵) is with respect to H0(su), a larger parameter space than H0(s), due
to the fact that the true sparsity level s is unknown in constructing the testing procedure. Similar
to (28), we define the adaptive detection boundary ⌧adap(su, s,xnew) as

⌧adap(su, s,xnew) = argmin
⌧

(
⌧ : sup

�2I(su,↵)
!(s, ⌧,�) � 1� ⌘

)
. (30)

Comparing (30) with (28), the imprecise information about the sparsity level only a↵ects the control
of size, where the power functions in (30) and (28) are evaluated over the same parameter space,
H1(s, ⌧). If a test � satisfies the following property,

� 2 I(su,↵) and !(s, ⌧,�) � 1� ⌘ for ⌧ ⇣ ⌧adap(su, s,xnew) (31)

then � is defined to be adaptive optimal.
The quantities ⌧mini(s,xnew) and ⌧adap(su, s,xnew) do not depend on the specific testing procedure

but mainly reflect the di�culty of the testing problem (2), which depends on the parameter space
and also the loading vector xnew. The question Q1 can be addressed through comparing ⌧mini(s,xnew)
and ⌧adap(su, s,xnew); if ⌧mini(s,xnew) ⇣ ⌧adap(su, s,xnew), then the hypothesis testing problem (2) is
defined to be adaptive, that is, even if one does not know the exact sparsity level, it is possible to
construct a test as if the sparsity level is known; in contrast, if ⌧mini(s,xnew) ⌧ ⌧adap(su, s,xnew), the
hypothesis testing problem (2) is defined to be not adaptive. The information on the sparsity level
is crucial. In this case, the adaptive detection boundary itself is of great interest as it quantifies



Individualized Treatment Selection 15

the e↵ect of the knowledge of sparsity level. The question Q2 can be addressed using the adaptive
detection boundary ⌧adap(su, s,xnew) and an adaptive optimal test satisfying (31) would be the best
that we can aim for if there is lack of accurate information on sparsity.

As a concluding remark, the minimax detection boundary characterizes the di�culty of the test-
ing problem for the case of known sparsity level while the adaptive detection boundary characterizes
a more challenging problem due to the unknown sparsity. The adaptive optimal test satisfying (31)
is more useful in practice than that of a minimax optimal test because the exact sparsity level is
typically unknown in applications.

4.2. Detection Boundary for Testing Problem (2)
We now demonstrate the optimality of the proposed procedure by considering the following two
types of loadings xnew, Exact Loading and Decaying Loading.
(E) Exact Loading. xnew is defined as an exact loading if it satisfies,

c  max
{i:xnew,i 6=0}

|xnew,i| / min
{i:xnew,i 6=0}

|xnew,i|  C, (32)

for some positive constants C � c > 0. The condition (32) assumes that all non-zero coe�cients of
the loading vector xnew are of the same order of magnitude and hence the complexity of an exact
loading xnew is captured by its sparsity level. We calibrate the sparsity levels of the regression vectors
and the exact loading xnew as

s = p
�
, su = p

�u , kxnewk0 = p
�new for 0  � < �u  1, 0  �new  1. (33)

Based on the sparsity level of xnew, we define the following types of loadings,

(E1) xnew is called an exact sparse loading if it satisfies (32) with �new  2�;

(E2) xnew is called an exact dense loading if it satisfies (32) with �new > 2�.

Exact loadings are commonly seen in the genetic studies, where the loading xnew represents a
specific observation’s SNP and only takes the value from {0, 1, 2}.

(D) Decaying Loading. Let |xnew,(1)| �
��xnew,(2)

�� � · · · �

��xnew,(p)

�� be the sorted coordinates of
|xnew|. We say that xnew is decaying at the rate � if

��xnew,(i)

�� ⇣ i
�� for some constant � � 0. (34)

Depending on the decaying rate �, we define the following two types of loadings,

(D1) xnew is called a fast decaying loading if it satisfies (34) with � �
1
2 ;

(D2) xnew is called a slow decaying loading if it satisfies (34) with 0  � <
1
2 .

We focus on the exact loading and give a summary of the results for the decaying loading in
Table 1. The detailed results about decaying loadings are deferred to Section A in the supplement
(Cai et al., 2020). The following theorem establishes the lower bounds for the adaptive detection
boundary for exact loadings.

Theorem 3. Suppose that s  su . n/log p. We calibrate s, su and kxnewk0 by �, �u and �new,

respectively, as defined in (33).
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(E1) If xnew is an exact sparse loading, then

⌧adap(su, s,xnew) &
p

kxnewk0kxnewk1
p
n

⇣
kxnewk2
p
n

; (35)

(E2) If xnew is an exact dense loading, then

⌧adap(su, s,xnew) &

8
<

:
kxnewk1su

q
log p
n if �new > 2�u;

kxnewk2
p
n

if �new  2�u.
(36)

We shall point out here that establishing the adaptive detection boundaries in Theorem 3 re-
quires technical novelty. A closely related problem, adaptivity of confidence sets, has been carefully
studied in the context of high-dimensional linear regression (Nickl and van de Geer, 2013; Cai and
Guo, 2017, 2018). However, it requires new technical tools to establish the adaptive detection
boundaries, due to the di↵erent geometries demonstrated in Figure 1. The main idea of construct-
ing the lower bounds in Nickl and van de Geer (2013); Cai and Guo (2017, 2018) is illustrated in
Figure 2(a), where one interior point is first chosen in the smaller parameter space ⇥(s) and the
corresponding least favorable set is constructed in the larger parameter space ⇥(su) such that they
are not distinguishable.

In comparison to Figure 2(a), the lower bound construction for the testing problem related to
Figure 2(b) is more challenging due to the fact that the alternative parameter space H1(su, ⌧) does
not contain the indi↵erence region 0 < x|

new
(�1 ��2) < ⌧ . A new technique, transferring technique,

is developed for establishing the sharp lower bounds for the adaptive detection boundary. Define
the index of xnew with the largest absolute value as imax = argmax |xnew,i|. In constructing the least
favorable set in H0(su), we first perturb the regression coe�cients at other locations except for
imax and then choose the regression coe�cient at imax such that xnew,imax(�1,imax � �2,imax) > 0 and
x|

new
(�1 � �2)  0; in construction of the corresponding least favorable set in H1(s, ⌧), we simply

set the regression coe�cient with index imax to be the same as the corresponding coe�cient at
imax in H0(su) and set all other coe�cients to be zero. The above construction is transferring the
parameter space complexity from H0(su) to H1(s, ⌧) by matching the regression coe�cient at imax.
Such a transferring technique can be of independent interest in establishing the adaptive detection
boundaries for other inference problems.

The following corollary presents the matched upper bounds for the detection boundaries estab-
lished in Theorem 3 over certain regimes.

Corollary 3. Suppose that s  su . p
n/log p.

(E1) If the loading xnew is an exact sparse loading, then

⌧adap(su, s,xnew) ⇣ ⌧mini(s,xnew) ⇣
kxnewk2
p
n

(37)

(E2) If the loading xnew is an exact dense loading, then the results are divided into the following

two cases,
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⇥(s)

⇥(su)

(a)

H0(su) H1(s, ⌧)

x|
new
(�1 � �2) = 0

x|
new
(�1 � �2) = ⌧

(b)

Fig. 1: (a) Null and alternative parameter spaces for the confidence set construction; (b) Null and
alternative parameter spaces for the hypothesis testing problem.

(E2-a) If � < �u <
1
2�new, then

⌧adap(su, s,xnew) ⇣ kxnewk1su

r
log p

n
� ⌧mini(s,xnew) ⇣ kxnewk1s

r
log p

n
. (38)

(E2-b) If � <
1
2�new  �u, then

⌧adap(su, s,xnew) ⇣
kxnewk2
p
n

� ⌧mini(s,xnew) ⇣ kxnewk1s

r
log p

n
. (39)

The question Q1 about the possibility of adaptivity of the testing problem (2) can be addressed by
the above corollary, where the testing problem is adaptive for the exact sparse loading case (E1) but
not adaptive for the exact dense loading case (E2). The specific cut-o↵ for the “dense” and “sparse”
cases occurs at �new = 2�. For the case (E2), depending on the value of �u, the adaptive detection
boundaries can be quite di↵erent. The case (E2-a) corresponds to the case that the exact sparsity
level is unknown but the upper bound su is relatively precise (both � and �u are below 1/2·�new), then
we can utilize the proposed procedure �↵ with the sparsity information su to construct a testing
procedure matching the adaptive detection boundary; see the detailed construction in Section B
in the supplement (Cai et al., 2020). In contrast, the case (E2-b) corresponds to the setting where
the prior knowledge of the upper bound su is quite rough. For such a case, the proposed testing
procedure �↵ defined in (15) achieves the adaptive detection boundary ⌧adap(su, s,xnew), but not the
minimax detection boundary ⌧mini(s,xnew).

Beyond answering Q1, we can also address the question Q2 with the following corollary, which
considers the practical setting that there is limited information on sparsity and presents a unified
optimality result for the case of exact loadings.

Corollary 4. Suppose that s  su . p
n/log p and �u � �new/2. Then the testing procedure

�↵ in (15) achieves the adaptive detection boundary ⌧adap(su, s,xnew) ⇣ kxnewk2/
p
n for any xnew

satisfying (32).

The above corollary states that, in absence of accurate sparsity information, the proposed procedure
�↵ is an adaptive optimal test for all exact loadings xnew.
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4.3. Comparison with Existing Optimality Results on CI
It is helpful to compare the established optimality results to the related work Cai and Guo (2017) on
the minimaxity and adaptivity of confidence intervals for the linear contrast in the one-sample high-
dimensional regression. Beyond the technical di↵erence highlighted in Figure 1, we also observed
the following three distinct features between the present paper and Cai and Guo (2017).

(a) The current paper closes the gap between the sparse loading regime and the dense loading
regime in Cai and Guo (2017), where the lower bounds for the exact sparse loading only
covered the case �new  � instead of the complete regime �new  2� defined in this paper.

(b) In comparison to Cai and Guo (2017), the current paper considers the additional setting
(E2-b), which corresponds to the case where the knowledge on the sparsity level is rough.
This additional result is not only of technical interest, but has broad implications to practical
applications. It addresses the important question, “what is the optimal testing procedure in a
practical setting where no accurate sparsity information is available? ” As shown in Corollary
4, the proposed procedure �↵ is an adaptive optimal test for all exact loadings xnew.

(c) In addition, Theorem 4 develops the technical tools for a general loading xnew, which includes
the loadings not considered in Cai and Guo (2017). Specifically, we summarize in Table 1
the optimality results for the decaying loading defined in (34). As shown in Table 1, the fast
decaying loading (D1) is similar to the exact sparse loading (E1) while the slow decaying
loading (D2) is similar to the exact dense loading (E2). In contrast, the decaying loading
has the distinct setting (D2-c) from the exact loading case where the hypotheses (2) can be
tested adaptively if both � and �u are above 1/2; see the detailed discussion in Section A of
the supplement (Cai et al., 2020).

� Setting �, �u ⌧mini(s,xnew) Rel ⌧adap(su, s,xnew) Adpt

[1/2,1) (D1) � < �u kxnewk2/
p
n ⇣ kxnewk2/

p
n Yes

[0, 1/2)

(D2-a) � < �u 
1
2 s

1�2� (log p)
1
2
��

/
p
n ⌧ s

1�2�
u (log p)

1
2
��

/
p
n No

(D2-b) � <
1
2  �u s

1�2� (log p)
1
2
��

/
p
n ⌧ kxnewk2/

p
n No

(D2-c) 1
2  � < �u kxnewk2/

p
n ⇣ kxnewk2/

p
n Yes

Table 1: Optimality for the decaying loading xnew defined in (34) over the regime s . su . p
n/log p.

The column indexed with “Rel” compares ⌧mini(s,xnew) and ⌧adap(su, s,xnew) and the column indexed
with “Adpt” reports whether the testing problem is adaptive in the corresponding setting.

5. Uncertainty Quantification related to High-dimensional Prediction

As mentioned in the introduction, the hypothesis testing method developed in the current paper
can also be used for the prediction problem in a single high-dimensional regression. Consider the
regression model with i.i.d observations {(Xi·, yi)}1in satisfying

yi = X
|
i·� + ✏i where ✏i

iid
⇠ N(0,�2) for 1  i  n, (40)
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and {✏i}1in is independent of the design matrix X. The problem of interest is inference for
the conditional expectation E(yi | Xi· = xnew) = x|

new
�. Uncertainty quantification for x|

new
� is a

one-sample version of the testing problem (15). Due to its importance and for clarity, we present

a separate result on this prediction problem. We use b� to denote the Lasso estimator in (3) based
on the observations {(Xi·, yi)}1in and construct the following bias-corrected point estimator,
[x|

new
� = x|

new
b� + bu| 1

n

Pn
i=1Xi·(yi �X|

i·
b�) with the projection direction defined as

bu = argmin
u2Rp

u| b⌃u subject to
���b⌃u� xnew

���
1

 kxnewk2�

���x|
new
b⌃u� kxnewk

2
2

���  kxnewk
2
2�,

where b⌃ = 1
n

Pn
i=1Xi·X

|
i· and � ⇣

p
log p/n. The key di↵erence between this construction and the

projection construction for the single regression coe�cient in Zhang and Zhang (2014); van de Geer
et al. (2014); Javanmard and Montanari (2014); Athey et al. (2018) is the additional constraint���x|

new
b⌃u� kxnewk

2
2

���  kxnewk
2
2�, which guarantees the asymptotic limiting distribution for any xnew 2

R
p. We consider the capped-`1 sparsity as in (16),

Pp
j=1min{|�j |/��0, 1}  s, and introduce the

following general condition for the initial estimator b� and then establish the limiting distribution

for the point estimator [x|
new
� in Corollary 5.

(P) With probability at least 1� g(n) where g(n) ! 0 as n ! 1, kb� � �k1 . s

p
log p/n.

Corollary 5. Suppose that the regression model (40) holds where s  c
p
n/log p and the rows

Xi· are i.i.d. p-dimensional sub-gaussian random vectors with ⌃ = E(Xi·X
|
i·) satisfying c0 

�min (⌃)  �max (⌃)  C0 for positive constants C0, c0 > 0. For any initial estimator b� satisfying

the condition (P), then 1p
�2bu| b⌃bu/n

⇣
[x|

new
� � x|

new
�
⌘

d
! N(0, 1).

Based on this corollary, we construct b�2 = ky �X b�k22/n and use bV = b�2bu| b⌃bu/n to estimate the

variance of [x|
new
� and construct the CI,

✓
[x|

new
� � z↵/2

q
b�2bu| b⌃bu/n, [x|

new
� + z↵/2

q
b�2bu| b⌃bu/n

◆
.

If b�2 is a consistent estimator of �2, then this constructed CI is guaranteed to have coverage for
x|

new
� for any xnew 2 R

p
. The optimality theory established in Section 4 can be easily extended to

the one-sample case.

6. Simulation Studies

In this section, we present numerical studies comparing our proposed HITS method and the existing
state-of-the-art methods. In Section 6.2, we consider the setting with exact sparse regression vectors
and loadings xnew generated from Gaussian distributions. Results for the setting with decaying
loadings are given in Section D.1 in the supplement (Cai et al., 2020). In Section 6.3, we consider
settings of approximately sparse regression. Throughout, we let p = 501 including intercept and
n1 = n2 = n with various choices of n. For simplicity, we generate the covariates (Xk,i)�1 from the
same multivariate normal distribution with zero mean and covariance ⌃ = [0.51+|j�l|](p�1)⇥(p�1).
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6.1. Algorithm Implementation
We specify the tuning parameter selection in our proposed HITS algorithm. For k = 1, 2, the initial
estimator b�k in (3) is implemented by the Lasso algorithm in glmnet (Friedman et al., 2010) with
the tuning parameter chosen by cross validation or the tuning-free scaled Lasso algorithm in the R
package FLARE (Li et al., 2015).

Regarding the bias correction step, we first introduce the equivalent dual form to find the
projection direction defined in (8) and (9).

Proposition 2. The constrained optimizer buk 2 R
p
for k = 1, 2 defined in (8) and (9) can be

computed in the form of buk = �
1
2 [bv

k
�1 +

xnew

kxnewk2
bvk
1 ], where bvk

2 R
p+1

is defined as

bvk = argmin
v2Rp+1

⇢
1

4
v|

H
| b⌃kHv + x|

new
Hv + �kkxnewk2 · kvk1

�
(41)

with H =
h

xnew

kxnewk2
, Ip⇥p

i
2 R

p⇥(p+1)
.

Proposition 2 shows that the constrained minimization problem can be transformed to the uncon-
strained minimization problem in (41). In the high-dimensional setting p > n, the objective in the
dual problem is unbounded from below if the value of �k � 0 is too small. We shall select the small-
est �k > 0 such that the objective in the dual problem (41) is bounded from below. The code for
implementing our proposed method is available on the website https://github.com/zijguo/ITE.

6.2. Exact Sparse Regression with General Loading
We consider the exact sparse regression in the following. To simulate Y1 and Y2, we generate
✏k,i from the standard normal and set �1,1 = �0.1,�1,j = �1(2  j  11)0.4(j � 1),�2,1 = �0.5,
and �2,j = 0.2(j � 1)1(2  j  6). We consider the case with the loading xnew being a dense
vector, generated via two steps. In the first step, we generate xbasis = [1,x|

basis,�1]
|
2 R

p with
xbasis,�1 ⇠ N(0,⌃). In the second step, we generate xnew based on xbasis in two specific settings,

Setting 1: generate xnew as a shrunk version of xbasis with

xnew,j = S · 1(j � 12) · xbasis,j , for j = 1, ..., p (42)

and S 2 {1, 0.5, 0.2, 0.1}.

Setting 2: let xnew,j = 1(j = 1) � 2
31(j = 2) + S · 1(j � 12) · xbasis,j for j = 1, ..., p and

S 2 {1, 0.5, 0.2, 0.1}.

Under the above configurations, the scale parameter S controls the magnitude of the noise variables
in xnew. As S increases, kxnewk2 increases but �new remains the same for all choices of S. Setting
1 corresponds to an alternative setting with �new = 1.082 and Setting 2 corresponds to the null
setting with �new = 0.

We report the simulation results based on 1, 000 replications for each setting in Tables 2 and
3. Under Setting 1, as the sample size n increases and as the magnitude of the noise variables
decreases, the statistical inference problem becomes “easier” in the sense that the CI length and
root mean square error (RMSE) get smaller, the empirical rejection rate (ERR) gets closer to
100%, where ERR denotes the proportion of null hypotheses being rejected out of the total 1, 000

https://github.com/zijguo/ITE
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replications and is an empirical measure of power under the alternative. This is consistent with the
established theoretical results. The most challenging setting for HITS is the case with S = 1, where
the noise variables are of high magnitude. As a result, the HITS procedure has a lower power in
detecting the treatment e↵ect even when n = 1, 000. When S drops to 0.2, the power of the HITS
is about 72% when n = 200 and 95% when n = 400. Across all sample sizes considered including
when n = 100, the empirical coverages of the CIs are close to the nominal level.

In Table 2, HITS is compared with the plug-in Lasso estimator (shorthanded as Lasso) and
plug-in debiased estimator (shorthanded as Deb) in terms of RMSE. For Lasso, the regression
vectors are estimated by the scaled Lasso in the R package FLARE (Li et al., 2015); For Deb,
the regression vectors are estimated by the debiased estimators Javanmard and Montanari (2014)
using the code at https://web.stanford.edu/~montanar/sslasso/code.html. We remark that
the debiased estimators are mainly developed for inference for a single regression coe�cient but
not for a general linear contrast. Across all settings, HITS always outperforms Deb; in comparison
to Lasso, HITS has substantially smaller bias but at the expense of larger variance, reflecting the
bias-variance trade-o↵. Specifically, when S is small (taking values in {0.2, 0, 1}), HITS generally
has a smaller RMSE than Lasso. When S = 1, 0.5 in which case xnew is dense, HITS has a much
larger variability compared to Lasso. This suggests that under the challenging dense scenario, a
high price is paid to ensure the validity of the interval estimation.

We further compare HITS with the two plug-in estimators in the context of hypothesis testing.
The Lasso estimator is not useful in hypothesis testing or CI construction due to the fact that the
bias component is as large as the variance. In contrast, the variance component of both HITS and
Deb dominates the corresponding bias component. Due to this reason, we only report the empirical
comparison between the HITS method and the Deb method. As illustrated in the coverage property,
the empirical coverage of CIs based on the Deb estimator is about 10% below the nominal level
while our proposed CI achieves the nominal level. In Table 3, we report the results in Setting
2 where the null hypothesis holds. We observe a similar pattern as in Setting 1 for estimation
accuracy and relative performance compared to the Lasso and Deb estimators. All the ERRs in
this case, which correspond to the empirical size, are close to the nominal level 5% for the HITS
method while the corresponding ERRs cannot be controlled for the Deb estimators.

6.3. Approximate Sparse Regression
For approximately sparse regression vectors, we generate the first few coe�cients of �1 and �2 as
in Section 6.2, �1,1 = �0.1,�1,j = �0.4(j � 1) for 2  j  11 and �2,1 = �0.5, �2,j = 0.2(j � 1) for
2  j  6 and then generate the remaining coe�cients under the following two settings.

(1) Approximate sparse with decaying coe�cients: �1,j = (j� 1)��1 for 12  j  501 and
�2,j = 0.5 · (j � 1)��1 for 7  j  501 and we vary �1 across {0.5, 1, 2, 3}.

(2) Capped-`1 sparse: �1,j = �2 · �0 and �2,j = �1,j/2 for 11  j  50 with �0 =
p

2log p/n
and �1,j = �2,j = 0 for 51  j  501. We vary �2 across {0.5, 0.2, 0.1, 0.05}.

For the decaying coe�cients setting, the decay rate �1 controls the sparsity. For the capped-`1
sparse setting, the sparsity is measured by capped-`1 sparsity defined in (16), where sk denotes the
capped-`1 sparsity of �k, for k = 1, 2. We vary �2 over {0.5, 0.2, 0.1, 0.05} and the upper bound for
s1 ranges over 11 + {20, 8, 4, 2} and the upper bound for s2 ranges over 6 + {10, 4, 2, 1}. In both
cases, we consider the dense loading xnew generated in (42) with S = 0.2.

https://web.stanford.edu/~montanar/sslasso/code.html


22 Cai, Cai & Guo

ERR Coverage Len HITS Lasso Deb
S n HITS Deb HITS Deb HITS RMSE Bias SE RMSE Bias SE RMSE Bias SE

1

100 0.10 0.25 0.97 0.81 9.33 2.10 0.05 2.10 0.90 0.61 0.66 2.56 0.07 2.56
200 0.11 0.26 0.97 0.86 7.65 1.79 0.01 1.79 0.61 0.41 0.45 1.97 0.02 1.97
400 0.20 0.30 0.97 0.85 5.38 1.30 0.03 1.30 0.43 0.31 0.30 1.62 0.02 1.62
600 0.23 0.36 0.97 0.87 4.47 1.02 0.07 1.02 0.34 0.24 0.24 1.34 0.05 1.34

1000 0.34 0.32 0.97 0.85 3.49 0.83 0.02 0.83 0.26 0.19 0.19 1.49 0.05 1.49

0.5

100 0.16 0.36 0.96 0.83 4.80 1.10 0.13 1.09 0.81 0.64 0.49 1.27 0.03 1.27
200 0.30 0.46 0.95 0.83 3.90 0.96 0.08 0.96 0.51 0.40 0.33 1.09 0.08 1.09
400 0.49 0.57 0.94 0.86 2.74 0.67 0.09 0.67 0.34 0.25 0.22 0.82 0.05 0.81
600 0.59 0.62 0.96 0.84 2.30 0.57 0.02 0.57 0.29 0.23 0.17 0.73 0.02 0.73

1000 0.76 0.52 0.96 0.87 1.80 0.45 0.02 0.45 0.23 0.18 0.14 0.76 0.12 0.75

0.2

100 0.59 0.77 0.94 0.80 2.27 0.60 0.04 0.60 0.72 0.58 0.42 0.65 0.07 0.65
200 0.72 0.82 0.95 0.83 1.81 0.45 0.03 0.45 0.50 0.41 0.28 0.51 0.00 0.51
400 0.95 0.95 0.95 0.85 1.28 0.32 0.05 0.32 0.32 0.26 0.20 0.39 0.04 0.38
600 0.98 0.98 0.94 0.84 1.10 0.28 0.02 0.28 0.27 0.22 0.16 0.32 0.00 0.32

1000 1.00 0.98 0.95 0.88 0.85 0.21 0.02 0.21 0.21 0.17 0.12 0.33 0.01 0.33

0.1

100 0.75 0.91 0.91 0.80 1.67 0.48 0.06 0.48 0.70 0.56 0.42 0.51 0.07 0.50
200 0.94 0.97 0.93 0.80 1.29 0.35 0.01 0.35 0.49 0.40 0.29 0.38 0.05 0.38
400 1.00 1.00 0.94 0.83 0.91 0.24 0.01 0.24 0.33 0.28 0.19 0.28 0.02 0.28
600 1.00 1.00 0.96 0.87 0.80 0.19 0.02 0.19 0.28 0.24 0.16 0.22 0.02 0.22

1000 1.00 1.00 0.94 0.84 0.62 0.16 0.02 0.16 0.20 0.16 0.12 0.24 0.01 0.24

Table 2: Performance of HITS, in comparison with the Deb Estimator, with respect to ERR as well as
the empirical coverage (Coverage) and length (Len) of the CIs under dense Setting 1 where �new = 1.082.
Reported also are the RMSE, bias and the standard error (SE) of the HITS estimator compared to the Lasso
and Deb estimators.

ERR Coverage Len HITS Lasso Deb
S n HITS Deb HITS Deb HITS RMSE Bias SE RMSE Bias SE RMSE Bias SE

1

100 0.02 0.10 0.98 0.83 9.18 1.97 0.20 1.96 0.56 0.16 0.53 2.37 0.21 2.36
200 0.03 0.10 0.97 0.84 7.61 1.75 0.07 1.75 0.38 0.15 0.35 1.98 0.10 1.97
400 0.03 0.09 0.96 0.87 5.35 1.31 0.10 1.31 0.26 0.10 0.24 1.58 0.08 1.58
600 0.03 0.11 0.97 0.87 4.45 1.03 0.04 1.03 0.21 0.07 0.20 1.32 0.02 1.32

1000 0.03 0.10 0.97 0.83 3.49 0.82 0.05 0.81 0.16 0.06 0.15 1.53 0.08 1.53

0.5

100 0.02 0.13 0.97 0.82 4.68 1.00 0.04 1.00 0.38 0.21 0.31 1.24 0.02 1.24
200 0.04 0.13 0.97 0.84 3.82 0.91 0.04 0.91 0.26 0.15 0.21 1.02 0.02 1.02
400 0.03 0.07 0.96 0.87 2.70 0.62 0.07 0.62 0.17 0.09 0.14 0.76 0.08 0.75
600 0.03 0.09 0.97 0.86 2.24 0.52 0.02 0.52 0.15 0.09 0.12 0.68 0.04 0.68

1000 0.04 0.13 0.95 0.83 1.75 0.45 0.00 0.45 0.11 0.06 0.09 0.78 0.02 0.78

0.2

100 0.06 0.18 0.97 0.80 1.96 0.46 0.11 0.44 0.33 0.22 0.24 0.53 0.09 0.52
200 0.05 0.13 0.96 0.85 1.62 0.38 0.02 0.38 0.23 0.17 0.16 0.44 0.03 0.44
400 0.03 0.12 0.96 0.85 1.13 0.27 0.00 0.27 0.16 0.11 0.11 0.34 0.01 0.34
600 0.03 0.08 0.96 0.88 0.94 0.22 0.01 0.22 0.13 0.09 0.09 0.27 0.01 0.27

1000 0.03 0.09 0.97 0.88 0.74 0.18 0.01 0.18 0.10 0.07 0.07 0.31 0.01 0.31

0.1

100 0.07 0.20 0.93 0.77 1.12 0.29 0.05 0.29 0.31 0.21 0.22 0.33 0.04 0.32
200 0.04 0.12 0.96 0.84 0.94 0.23 0.01 0.23 0.21 0.15 0.15 0.25 0.01 0.25
400 0.04 0.11 0.96 0.87 0.66 0.16 0.00 0.16 0.16 0.12 0.10 0.19 0.01 0.19
600 0.03 0.10 0.95 0.87 0.55 0.13 0.01 0.13 0.13 0.09 0.09 0.16 0.00 0.16

1000 0.03 0.08 0.96 0.87 0.43 0.10 0.00 0.10 0.10 0.07 0.06 0.17 0.00 0.17

Table 3: Performance of HITS, in comparison with the Deb Estimator, with respect to ERR as well as the
empirical coverage (Coverage) and length (Len) of the CIs under dense setting 2 where �new = 0. Reported
also are the RMSE, bias and the standard error (SE) of the HITS estimator compared to the Lasso and Deb
stimators.
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The simulation results are reported in in Table 4. The results for the approximate sparse settings
are largely consistent with those for the exact sparse setting. We observe that the proposed CIs
achieve the 95% coverage while CIs constructed based on the Deb estimators do not have desired
coverage level and the Lasso estimators have a dominant bias component. Additionally, we note
that, 1) for the case that the coe�cients decay slowly (the upper part of Table 4 with �1 = 0.5), the
HITS CI over-covers since the variance of the point estimator is over-estimated due to the relatively
dense regression vectors; once �1 becomes larger, say �1 � 1, the coverage is achieved at the desired
level; 2) the HITS CIs are longer than those based on the Deb estimator; however, the Deb CIs do
not have the correct coverage.

In addition, HITS is computationally more e�cient. The average of the ratio of the computa-
tional time of Deb over that for HITS is reported under the column indexed with “TRatio ”. The
computational time of the Deb estimator can be as large as fifteen times that of our proposed HITS
estimator. The numerical results demonstrate that, for both the exact sparse and approximate
sparse settings, HITS not only has the desired coverage property for arbitrary loading xnew, but also
is computationally e�cient.

7. Real Data Analysis

Tumor Necrosis Factor (TNF) is an inflammatory cytokine important for immunity and inflam-
mation. TNF blockade therapy has found its success in treating RA (Taylor and Feldmann,
2009). However, the e↵ect of anti-TNF varies greatly among patients and multiple genetic markers
have been identified as predictors of anti-TNF response (Padyukov et al., 2003; Liu et al., 2008;
Chatzikyriakidou et al., 2007). We seek to estimate ITE of anti-TNF in reducing inflammation
for treating RA using EHR data from PHS as described in Section 1. Here, the inflammation is
measured by the inflammation marker, C-reactive Protein (CRP). Since a higher value of CRP is
more indicative of a worse treatment response, we define Y = � log CRP.

The analyses include n = 183 RA patients who are free of coronary artery disease, out of
which n1 = 92 were on the combination therapy of anti-TNF and methotraxate and n2 = 91 on
methotraxate alone. To su�ciently control for potential confounders, we extracted a wide range
of predictors from the EHR and included both potential confounders and predictors of CRP in
X, resulting a total of p = 171 predictors. Examples of predictors include diagnostic codes of
RA and comorbidities such as systemic lupus erythematosus (SLE) and diabetes, past history of
lab results including CRP, rheumatoid factor (RF), and anticyclic citrullinated peptide (CCP),
prescriptions of other RA medications including Gold and Plaquenil, as well as counts of NLP
mentions for a range of clinical terms including disease conditions and medications. Since counts
of diagnosis or medication codes, referred to as codified (COD) mentions, are highly correlated
with the corresponding NLP mentions in the narrative notes, we combine the counts of COD and
NLP mentions of the same clinical concept to represent its frequency. The predictors also include
a number of single-nucleotide polymorphism (SNP) markers and genetic risk scores identified as
associated with RA risk or progression. All count variables were transformed via x 7! log(1 + x)
and lab results were transformed by x 7! log(x) since their distributions are highly skewed. Missing
indicator variables were created for past history of lab measurements since the availability of lab
results can be indicative of disease severity. We assume that conditional on X, the counterfactual
outcomes are independent of the treatment actually received.

We applied the proposed HITS procedures to infer about the benefit of anti-TNF for individual
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Approximate sparse with decaying coe�cients
ERR Coverage Len HITS Lasso Deb

�1 n HITS Deb HITS Deb HITS Deb RMSE Bias SE RMSE Bias SE RMSE Bias SE TRatio

0.5

100 0.01 0.50 1.00 0.76 9.99 2.77 1.06 0.19 1.04 1.28 0.95 0.87 1.16 0.06 1.16 13.58
200 0.05 0.67 1.00 0.81 5.84 2.15 0.67 0.03 0.67 0.82 0.60 0.57 0.79 0.04 0.78 10.08
400 0.47 0.90 1.00 0.90 3.21 1.56 0.44 0.05 0.43 0.53 0.35 0.40 0.50 0.02 0.50 4.93
600 0.82 0.96 0.99 0.89 2.35 1.31 0.36 0.05 0.36 0.40 0.25 0.32 0.40 0.01 0.40 4.24

1

100 0.53 0.77 0.94 0.79 2.44 1.72 0.62 0.07 0.62 0.74 0.58 0.46 0.69 0.05 0.69 14.97
200 0.77 0.88 0.97 0.85 1.91 1.44 0.46 0.04 0.46 0.47 0.38 0.28 0.50 0.07 0.50 11.98
400 0.96 0.96 0.96 0.85 1.33 1.13 0.34 0.02 0.33 0.34 0.27 0.21 0.40 0.01 0.40 5.70
600 0.99 0.98 0.96 0.84 1.14 0.97 0.28 0.03 0.28 0.26 0.20 0.17 0.33 0.02 0.33 4.76

2

100 0.49 0.71 0.93 0.80 2.31 1.70 0.61 0.12 0.60 0.77 0.63 0.45 0.67 0.00 0.67 14.97
200 0.74 0.85 0.95 0.86 1.83 1.42 0.47 0.01 0.47 0.49 0.40 0.28 0.51 0.04 0.51 12.18
400 0.96 0.96 0.94 0.87 1.29 1.12 0.32 0.03 0.32 0.33 0.27 0.19 0.39 0.04 0.39 5.78
600 0.99 0.98 0.95 0.87 1.10 0.96 0.27 0.03 0.27 0.27 0.22 0.16 0.32 0.02 0.32 4.80

3

100 0.50 0.72 0.91 0.78 2.29 1.68 0.62 0.11 0.62 0.77 0.63 0.44 0.67 0.01 0.67 14.97
200 0.77 0.87 0.95 0.82 1.82 1.42 0.48 0.01 0.48 0.49 0.40 0.29 0.53 0.06 0.53 12.11
400 0.96 0.94 0.97 0.85 1.30 1.11 0.32 0.01 0.32 0.33 0.27 0.19 0.38 0.01 0.38 5.73
600 0.99 0.99 0.95 0.86 1.10 0.96 0.27 0.03 0.27 0.27 0.22 0.16 0.33 0.02 0.33 4.83

Capped-`1 sparse
ERR Coverage Len HITS Lasso Deb

�2 n HITS Deb HITS Deb HITS Deb RMSE Bias SE RMSE Bias SE RMSE Bias SE TRatio

0.5

100 0.28 0.66 0.98 0.76 3.84 1.97 0.76 0.14 0.75 0.92 0.70 0.60 0.79 0.02 0.79 13.78
200 0.70 0.87 0.98 0.87 2.18 1.51 0.47 0.01 0.47 0.55 0.43 0.34 0.53 0.04 0.53 10.80
400 0.97 0.96 0.97 0.87 1.39 1.16 0.33 0.05 0.32 0.33 0.26 0.21 0.40 0.04 0.40 5.27
600 0.99 0.99 0.97 0.85 1.15 0.98 0.27 0.02 0.27 0.27 0.21 0.17 0.32 0.01 0.32 4.43

0.2

100 0.46 0.73 0.96 0.79 2.60 1.75 0.62 0.11 0.61 0.78 0.62 0.47 0.69 0.00 0.69 14.40
200 0.76 0.87 0.96 0.85 1.91 1.44 0.47 0.03 0.47 0.51 0.41 0.31 0.52 0.06 0.52 11.49
400 0.95 0.94 0.94 0.83 1.32 1.12 0.34 0.05 0.34 0.34 0.27 0.21 0.41 0.05 0.41 5.43
600 0.99 0.99 0.95 0.87 1.11 0.96 0.28 0.02 0.28 0.27 0.21 0.17 0.33 0.01 0.33 4.54

0.1

100 0.50 0.71 0.95 0.79 2.41 1.70 0.61 0.12 0.59 0.78 0.64 0.44 0.65 0.02 0.65 14.50
200 0.81 0.88 0.95 0.83 1.85 1.42 0.47 0.04 0.47 0.49 0.39 0.30 0.53 0.09 0.52 11.62
400 0.97 0.96 0.95 0.83 1.29 1.12 0.33 0.04 0.32 0.33 0.27 0.20 0.38 0.03 0.38 5.50
600 0.98 0.98 0.97 0.88 1.10 0.96 0.27 0.00 0.27 0.28 0.23 0.16 0.32 0.00 0.32 4.59

0.05

100 0.53 0.70 0.94 0.79 2.33 1.70 0.60 0.10 0.60 0.75 0.61 0.44 0.66 0.03 0.66 14.45
200 0.78 0.87 0.96 0.86 1.82 1.42 0.45 0.03 0.45 0.49 0.39 0.29 0.50 0.06 0.50 11.59
400 0.94 0.94 0.93 0.84 1.29 1.12 0.33 0.00 0.33 0.34 0.28 0.20 0.39 0.00 0.39 5.47
600 0.99 0.98 0.96 0.87 1.10 0.96 0.27 0.01 0.27 0.28 0.22 0.16 0.33 0.01 0.33 4.63

Table 4: Performance of HITS, in comparison with the Deb Estimator, with respect to ERR as well as
the empirical coverage (Coverage) and length (Len) of the CIs under approximate sparse regression settings.
Reported also are the RMSE, bias and the standard error (SE) of the HITS estimator compared to the Lasso
and Deb estimators; the ratio of computational time of Deb to HITS (“TRatio”).
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patients. Out of the p = 171 predictors, 8 of which were assigned with non-zero coe�cients in either
treatment groups. The leading predictors, as measured by the magnitude of di↵erence between two
Lasso estimators {b�1,j �

b�2,j , j = 1, ..., p}, include counts of SLE COD or NLP mentions, indicator
of no past history of CRP measurements, and SNPs including rs12506688, rs8043085 and rs2843401.
Confidence intervals for �1,�2 and �1 � �2 based on debiased estimators are also reported. These
predictors are generally consistent with results previously reported in clinical studies. The anti-
TNF has been shown as e↵ective among patients with presentations of both RA and SLE (Danion
et al., 2017). The rs8043085 SNP located in the RASGRP1 gene is associated with an increased risk
of sero-positive RA (Eyre et al., 2012) and the combination therapy has been previously reported
as being more beneficial for sero-postive RA than for sero-negative RA (Seegobin et al., 2014). The
rs2843401 SNP in the MMLE1 gene has been reported as protective of RA risk (Eyre et al., 2012),
which appears to be associated with lower benefit of anti-TNF. The rs12506688 is in the RB-J gene
which is a key upstream negative regulator of TNF-induced osteoclastogenesis.

b�1 CI�1
b�2 CI�2

b�1 �
b�2 CI�1��2

Echo 0.02 [0.02, 0.18] -0.03 [-0.19, -0.03] 0.04 [0.08, 0.33]
rs2843401 -0.03 [-0.07, -0.02] 0 [-0.02, 0.03] -0.03 [-0.10, -0.01]
rs12506688 -0.08 [-0.18, -0.07] 0 [-0.03, 0.08] -0.08 [-0.23, -0.07]
rs8043085 0 [-0.03, 0.15] -0.05 [-0.21, -0.03] 0.05 [0.06, 0.29]
race black 0 [-0.30, 0.62] -0.02 [-0.70, 0.22] 0.02 [-0.10, 0.90]
prior CRP missing -0.17 [-0.7, -0.16] 0 [-0.23, 0.31] -0.17 [-1.24, 0.30]
Gold -0.01 [-0.13, -0.01] 0 [-0.11, 0.02] -0.01 [-0.12, 0.06]
SLE 0 [-0.07, 0.08] -0.16 [-0.34, -0.18] 0.16 [0.14, 0.40]

Table 5: Lasso Estimates of �1, �2 and �1 � �2 for the predictors of CRP along with their 95% CIs. All
predictors not included the table received zero Lasso estimates for both �1 and �2.
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Fig. 2: (a) Histogram of the estimated ITE for the observed set of xnew where the vertical line
represents the median value; (b) point estimate and 95% CIs for 5 choices of xnew where the x-axis

indexes x|
new
(b�1 �

b�2).

We obtained estimates of �new for the observed set of xnew. As shown in Figure 2(a), the predicted
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ITE ranges from -1.3 to 0.6 with median -0.14. About 72% of the patients in this population appear
to benefit from combination therapy. We also obtained CIs for a few examples of xnew, including (A)
those with rs12506688 = 0, rs2843401 = 0, prior CRP not missing, rs8043085 > 0, and � 1 SLE
mention; and (B) those with rs12506688 > 0, rs2843401 > 0, prior CRP missing, rs8043085 = 0,
and no SLE mention. There are three such patients in (A) (indexed by A1, A2, A3) and two in (B),
(indexed by B1, B2). The point estimates and their corresponding 95% CIs are shown in Figure
2(b). The estimated ITEs were around -0.4 for A1-A3 with 95% CIs all below �0.2, suggesting
that adding anti-TNF is beneficial for these patients. On the contrary, anti-TNF may even be
detrimental for B1 and B2 whose estimated ITEs are 0.23 (95% CI: [0.058, 0.39]) and 0.30 (95%
CI: [0.19, 0.41]), respectively. These results support prior findings that the benefit of combination
therapy is heterogeneous across patients.

8. Discussions

We introduced the HITS procedure for inference on ITE with high-dimensional covariates. Both
the theoretical and numerical properties of HITS are established. Unlike the debiasing methods
proposed in the literature, HITS has the major advantage of not requiring the covariate vector xnew

to be sparse or of other specific structures. A key innovation lies in the novel construction of the
projection direction with an additional constraint (9). We elaborate the importance of this step
to further illustrate the challenges of statistical inference for dense loading. The following result
shows that the algorithm without (9) fails to correct the bias of x|

new
�1 for a certain class of xnew.

Proposition 3. The minimizer eu1 in (6) is zero if either of the following conditions on xnew is

satisfied: (F1) kxnewk2/kxnewk1 � 1/�1; (F2) The non-zero coordinates of xnew are of the same order

of magnitude and kxnewk0 � C

p
n1/log p for some positive constant C > 0.

Since kxnewk2/kxnewk1 can be viewed as a measure of sparsity of xnew, both Conditions (F1) and
(F2) state that the optimization algorithm (6) fails to produce a non-zero projection direction if
the loading xnew is dense to certain degree. That is, without the additional constraint (9), the
projection direction eu1 does not correct the bias of estimating x|

new
�1.

We shall provide some geometric insights about Proposition 3. The feasible set for constructing
eu in (6) depends on both xnew and kxnewk2. If p is large and xnew 2 R

p is dense, this feasible set is
significantly enlarged in comparison to the feasible set corresponding to the simpler case xnew = ei.
As illustrated in Figure 3, the larger and smaller dashed squares represent the feasible sets for
a dense xnew and xnew = ei, respectively. Since zero vector is contained in the feasible set for a
dense xnew, the optimizer in (6) is zero and the bias correction is not e↵ective. With the additional
constraint (9), even in the presence of dense xnew, the feasible set is largely shrunk to be the solid
parallelogram, as the intersection of the larger dashed square and the parallel lines introduced by
the constraint (9). Interestingly, the additional constraint (9) simply restricts the feasible set from
one additional direction determined by xnew and automatically enables a unified inference procedure
for an arbitrary xnew.

The high dimensional outcome modeling adopted in HITS allows us to extensively adjust for
confounders to overcome treatment by indication bias frequently encountered in observational stud-
ies. The present paper focused on the supervised setting. For EHR applications, in addition to the
labeled data with outcome variables observed, there are often also a large amount of unlabeled data
available where only the covariates are observed. It is known that for certain inference problems,
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(0, 0)
Additional constraint

xnew = ei

Complex xnew

Fig. 3: Geometric illustration of Proposition 3: the solid parallelogram corresponds to the feasible
set of (8) and (9) for a dense xnew while the large dashed triangle corresponds to that of (6); the
small dashed square corresponds to the feasible set of (6) for xnew = ei.

the unlabeled data can be used to significantly improve the inference accuracy (Cai and Guo, 2020;
Chakrabortty and Cai, 2018). Inference for ITE in the semi-supervised setting warrants future
research.

9. Proofs

We present in this section the proof for the optimality results, Theorem 3 and Corollary 3 and
also the proof of Lemma 1 for non-vanishing variance. For reasons of space, the proofs of all other
results are deferred to Section C in the supplement (Cai et al., 2020).

9.1. Proof of Theorem 3 and Corollary 3
In the following theorem, we first introduce a general machinery for establishing the detection
boundary ⌧adap(su, s,xnew) for the hypothesis testing problem (2).

Theorem 4 (Detection Boundary Lower Bound ). Suppose s  su . min{p, n
log p}. Re-

order xnew such that |xnew,1| � |xnew,2| � · · · � |xnew,p|. For any (q, L) satisfying q  su and L  kxnewk0,

the adaptation detection boundary ⌧adap(su, s,xnew) in (30) satisfies ⌧adap(su, s,xnew) � ⌧
⇤
with

⌧
⇤ = C

1
p
n
·max

8
<

:

vuut
sX

j=1

x
2
new,j ,

LX

j=max{L�q+2,1}

|xnew,j |
p

max{log (cL/q2), 0}

9
=

; . (43)

To establish the lower bounds in Theorem 3 and Corollary 3, we simply apply the general lower
bound in (43) to the case of exact loadings. Specifically, ⌧⇤ is reduced to the following expression
by taking L = kxnewk0 and q ⇣ min{su,

p
kxnewk0},

⌧
⇤ =

kxnewk1
p
n

·max

8
<

:min{
p
s,

p
kxnewk0},min{su,

p
kxnewk0}

vuutmax

(
log

 
ckxnewk0

min{su,
p

kxnewk0}
2

!
, 0

)9=

; .

(44)
For the case (E1), we have kxnewk0  s

2
 s

2
u and ⌧

⇤
⇣ kxnewk1

p
kxnewk0/n; hence the lower bound

(35) follows. For the case (E2), if �new > 2�u, we have ⌧
⇤
⇣

kxnewk1
p
n

su
p
log p; if �new  2�u, we have

⌧
⇤
⇣

kxnewk1
p
n

p
kxnewk0. Hence, the lower bounds in (36) follow.
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By applying Corollary 1, we establish that the detection boundaries ⌧adap(su, s,xnew) in (37) and
(39) are achieved by the hypothesis testing procedure �↵ defined in (15). All the other detection
boundaries will be achieved by the procedure �(q, su) defined in (69) in the supplement (Cai et al.,
2020).

9.2. Proof of Lemma 1
Part of (20),

p
V  C1kxnewk2

�
1/

p
n1 + 1/

p
n2
�
, is a consequence of the high probability concen-

tration, mink2{1,2}P
⇣
kb⌃kbuk � xnewk1  Ckxnewk2

p
log p/nk

⌘
� 1 � p

�c which is the second high

probability inequality of Lemma 4 established in Cai and Guo (2017). Hence, ⌃�1
1 xnew satisfies

the constraints (8) and (9) and V 
�2
1

n1
x|

new
⌃�1

1
b⌃1⌃

�1
1 xnew +

�2
2

n2
x|

new
⌃�1

2
b⌃2⌃

�1
2 xnew. By Lemma 10

(specifically, the last high probability inequality) of Cai and Guo (2020), with probability larger
than 1� p

�c, we have
�����
x|

new
⌃�1

1
b⌃1⌃

�1
1 xnew

x|
new
⌃�1

1 xnew

� 1

����� .
r

log p

n1
and

�����
x|

new
⌃�1

2
b⌃2⌃

�1
2 xnew

x|
new
⌃�1

2 xnew

� 1

����� .
r

log p

n2
(45)

Then we establish P

⇣p
V  C1kxnewk2

�
1/
p
n1 + 1/

p
n2
�⌘

� 1� p
�c
.

The proof of the lower bound
p
V � c1kxnewk2 is similar to that of Lemma 3.1 of Javanmard

and Montanari (2014) through constructing another optimization algorithm. The main di↵erence
is that the proof in Javanmard and Montanari (2014) is for an individual regression coe�cient
and the following proof for a general linear contrast mainly relies on the additional constraint (9),
instead of (8). To be specific, we define a proof-facilitating optimization problem,

ū1 = min
u2Rp

u| b⌃1u subject to
���x|

new
b⌃1u� kxnewk

2
2

���  kxnewk
2
2�1. (46)

Note that bu1 satisfies the feasible set of (46) and hence

bu|
1
b⌃1bu1 � ū|

1
b⌃1ū1 � ū|

1
b⌃1ū1 + t((1� �1)kxnewk

2
2 � x|

new
b⌃1ū1) for any t � 0, (47)

where the last inequality follows from the constraint of (46). For any given t � 0,

ū|
1
b⌃1ū1 + t((1� �1)kxnewk

2
2 � x|

new
b⌃1ū1) � min

u2Rp
u| b⌃1u+ t((1� �1)kxnewk

2
2 � x|

new
b⌃1u). (48)

By solving the minimization problem of the right hand side of (48), we have the minimizer u
⇤

satisfies b⌃1u
⇤ = t

2
b⌃1xnew and hence the minimum of the right hand side of (48) is � t2

4 x
|
new
b⌃1xnew +

t(1� �1)kxnewk
2
2. Combined with (47) and (48), we have

bu|
1
b⌃1bu1 � max

t�0


�
t
2

4
x|

new
b⌃1xnew + t(1� �1)kxnewk

2
2

�

and the minimum is achieved at t
⇤ = 2 (1��1)kxnewk

2
2

x|
new

b⌃1xnew
> 0 and hence bu|

1
b⌃1bu1 �

(1��1)2kxnewk
4
2

x|
new

b⌃1xnew
. By

Lemma 10 of Cai and Guo (2020), with probability larger than 1� p
�c, we have

���x
|
new

b⌃1xnew

x|
new⌃1xnew

� 1
��� .

p
log p/n1 and hence bu|

1
b⌃1bu1 � ckxnewk

2
2. Similarly, we establish bu|

2
b⌃2bu2 � ckxnewk

2
2 and hence

P(
p
V � c1kxnewk2

�
1/

p
n1 + 1/

p
n2
�
) � 1� p

�c
.
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Additional discussions, simulations and the remaining proofs are presented in the supplementary
materials. We also provide in the supplementary materials a privacy preserving perturbed EHR
data along with results from analyzing this dataset. The code for implementing our proposed
method is available on the website https://github.com/zijguo/ITE.
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