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A NOTE ON NONPARAMETRIC ESTIMATION
OF LINEAR FUNCTIONALS

BY T. TONY CAI AND MARK G. LOW

University of Pennsylvania

Precise asymptotic descriptions of the minimax affine risks and bias-
variance tradeoffs for estimating linear functionals are given for a broad class
of moduli. The results are complemented by illustrative examples including
one where it is possible to construct an estimator which is fully adaptive over
a range of parameter spaces.

1. Introduction. We observe data Y of the form

Y (t) =
∫ t

−1/2
f (s) ds + σW(t), −1/2 ≤ t ≤ 1/2,(1)

where W(t) is a standard Brownian motion, and f ∈ F a convex class of functions.
For estimating a linear functional Ibragimov and Hasminskii (1984) described the
linear estimator which has smallest maximum mean squared error assuming that
F is convex and symmetric. Donoho and Liu (1991) and Donoho (1994) extended
this theory to the case where F is assumed convex but need not be symmetric.
This later theory was described in terms of a modulus of continuity,

ω(ε) = sup
{|L(f1) − L(f−1)| :‖f1 − f−1‖2 ≤ ε, fi ∈ F

}
,(2)

where ‖·‖2 is the usual L2 norm, that is, ‖f ‖2 = (
∫ 1/2

−1/2 f 2(t) dt)1/2. One of the key
features of the modulus ω corresponding to a given linear functional and convex
parameter space is that it is concave. See Donoho (1994).

For any linear functional L, convex class of functions F and noise level σ , write
R�

A(σ ) for the minimum (over all affine procedures) maximum mean squared error,

R�
A(σ ) = inf

L̂affine
sup
f ∈F

E(L̂ − Lf )2,

and without restriction to affine procedures write R�
N(σ ) for the minimax mean

squared error,

R�
N(σ ) = inf

L̂

sup
f ∈F

E(L̂ − Lf )2.

Ibragimov and Hasminskii (1984), Donoho and Liu (1991) and Donoho (1994)
have shown

R�
A(σ ) = sup

ε>0
ω2(ε)

σ 2/4

σ 2 + ε2/4
(3)
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LINEAR FUNCTIONALS 1141

and the concavity of ω mentioned above can be used to show that

1
8ω2(2σ) ≤ R�

A(σ ) ≤ 1
4ω2(2σ).(4)

See Donoho (1994). Although Sacks and Strawderman (1982) have given
examples where the ratio of the minimax affine risk to the minimax risk is greater
than 1,

lim
σ→0

R�
A(σ )

R�
N(σ )

> 1,(5)

Donoho and Liu (1991) have also shown that

R�
A(σ )

R�
N(σ )

≤ 1.25.(6)

In many examples, as in the case of estimating a function at a point when
the function is known to lie in a given Lipschitz or Sobolev space, the modulus
of continuity ω(ε) is Hölderian, that is, ω(ε) = Cεr(1 + o(1)) as ε → 0 where
0 < r ≤ 1. In such cases it is possible to evaluate (3) asymptotically.

We shall show that precise asymptotic statements for minimax affine risk can
be extended to a broader class of moduli which we shall call “regular moduli.” In
contrast to the theory for a Hölderian modulus, the minimax rate of convergence
associated with a regular modulus need not be a given power of σ . The minimax
rate contains an algebraic part together with another part which can go to zero
slowly or to infinity slowly.

The asymptotic minimax theory for estimating a linear functional Lf is
presented in Section 2 together with a brief summary of the basic definition and
properties of a regular modulus. We first give the asymptotic minimax affine
risks and show that in the two special cases of near-parametric rates and super
slow convergence rates, the minimax risks are equal to the minimax affine risks
asymptotically. We also show that the magnitude of the maximum squared bias
and maximum variance can be traded in a precise way. In particular, an exact
description for the ratio of the maximum squared bias to variance of the minimax
affine estimators is obtained. It shows that as the rate of the algebraic part of the
minimax risk increases from 0 to 1, this ratio decreases from infinity to zero. For
example, when the minimax convergence rate is slower than any algebraic rate, the
optimal linear estimator must have maximum squared bias completely dominating
the variance; and in the case of a near-parametric rate, the variance of the optimal
linear estimator must totally dominate the maximum squared bias.

The results are complemented by illustrative examples given in Section 3
covering a range of cases. In these examples the modulus and the minimax affine
risk are calculated explicitly. A particularly interesting case is where the minimax
convergence rate is slower than any algebraic rate. Our example shows that in this
case it is possible to adaptively achieve the exact minimax risks across a range
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of function classes. Therefore in this case adaptation can be achieved completely
for free. Examples of such a phenomenon in the context of density estimation
with supersmooth measurement error have been given in Efromovich (1997a).
Also see Efromovich (1997b) and Efromovich and Koltchinskii (2001) for further
examples in the context of other inverse problems. This is significantly different
from the more conventional case in which the minimax rate contains an algebraic
component. For example, it was shown in Lepski (1990) and Brown and Low
(1996) that it is impossible to adaptively attain the minimax rate for estimating a
linear functional over different Lipschitz classes.

2. Minimax theory. Fix a linear functional L, convex parameter space F and
observe the Gaussian process given in (1). In this setup Ibragimov and Hasminskii
(1984), Donoho and Liu (1991) and Donoho (1994) give a detailed study of the
minimax affine risk R�

A. In particular, asymptotic descriptions of the minimax risk
are given when the modulus is Hölderian. In this section we extend this asymptotic
description to regular moduli which we define below. In addition we extend the
asymptotic descriptions of possible bias-variance tradeoffs decribed in Low (1995)
to the case where the modulus is assumed to be regular.

2.1. Regular modulus and minimax affine risk. Following the terminology of
the theory of functions with regular variation introduced by Karamata in 1930 [see
Feller (1971)], we now define a regular modulus.

DEFINITION 1. Call a modulus regular if, for all C > 0,

lim inf
ε→0

ω(Cε)

ω(ε)
= lim sup

ε→0

ω(Cε)

ω(ε)
.(7)

When the modulus is regular we shall write φ(C) for limε→0
ω(Cε)
ω(ε)

.
It follows from general properties of regularly varying functions [see Feller

(1971)] and from the property that ω is concave [see Donoho (1994)] that if the
modulus is regular then φ(x) = xr for all x > 0, where 0 ≤ r ≤ 1. We shall then
say that the modulus is regular with exponent r .

It is also clear that if a modulus is Hölderian, ω(ε) = Cεr(1 + o(1)) as ε → 0,
then it is regular with exponent r . In general, a regular modulus ω(ε) with
exponent r contains εr as the algebraic part together with another part which may
go to zero slowly or to infinity slowly; the modulus cannot be algebraically faster
or slower than εr .

We present in Theorem 1 below an asymptotic description of the minimax affine
risk R�

A when the modulus is assumed to be regular. The special cases of r = 0 and
r = 1 are particularly interesting. The case of r = 0 is where slower than algebraic
rates occur and the case of r = 1 is where near parametric rates occur.

In the following theorem and throughout the paper we shall write o(1) for terms
tending to zero when either σ → 0 or ε → 0.
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THEOREM 1. Let F be a closed, convex parameter space. Suppose that the
modulus of a linear functional L over F is regular with exponent r . Then

R�
A(σ ) =

{ 1
4rr(1 − r)1−rω2(2σ)

(
1 + o(1)

)
, if 0 < r < 1,

1
4ω2(2σ)

(
1 + o(1)

)
, if r = 0 or r = 1,

(8)

and if r = 0 or r = 1,

R�
A(σ ) = R�

N(σ )
(
1 + o(1)

)
.(9)

PROOF. Write ψσ (C) = ω(Cσ)/ω(σ ) and note that we may then rewrite (3)
as

R�
A(σ ) = sup

ε>0
ω2(ε)

σ 2/4

σ 2 + ε2/4
= ω2(2σ)

4
sup
C>0

ψ2
2σ (C)

1 + C2
.

We first consider the case of 0 < r < 1 where limσ→0 ψσ (C) = Cr . Note that
for fixed σ > 0, ψ2σ (C) is concave so ψ2σ (C)/C is nonincreasing in C. Hence
for a fixed D > 0,

lim
σ→0

sup
C≥D

ψ2
2σ (C)

1 + C2 ≤ lim
σ→0

sup
C≥D

ψ2
2σ (C)

C2 ≤ lim
σ→0

ψ2
2σ (D)

D2 = D−2(1−r).(10)

On the other hand for all sufficiently large D,

lim
σ→0

sup
C∈[0,D]

ψ2
2σ (C)

1 + C2

= sup
C∈[0,D]

lim
σ→0

ψ2
2σ (C)

1 + C2

= sup
C∈[0,D]

C2r

1 + C2
= rr (1 − r)1−r

(11)

since the convergence of ψ2σ (C) → Cr as σ → 0 is uniform on compact intervals
due to the monotonicity of the functions. Hence by choosing sufficiently large D,
(8) for the case 0 < r < 1 follows from (10) and (11).

The proofs of (8) for the cases r = 0 and r = 1 and the proof of (9) immediately
follow from (4) and (15) of Theorem 2. �

REMARK 1. The minimax affine risk given in (8) can also be expressed in
terms of ω(σ). It follows from the basic properties of regular modulus that if the
modulus is regular with exponent r , then for 0 ≤ r ≤ 1, with the convention 00 = 1,

R�
A(σ ) = 2−2(1−r)rr(1 − r)1−rω2(σ )

(
1 + o(1)

)
.(12)
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2.2. Bias variance trade-offs. We now consider the question of precisely how
bias and variance can be traded when estimating linear functionals based on
observing the Gaussian process (1). Such problems have been considered in Low
(1995) for the case when the modulus is Hölderian.

For any linear functional L, estimator L̂, noise level σ and parameter f ∈ F ,
write

B2
σ (L̂) = sup

F
(EL̂ − Lf )2 and Vσ (L̂) = sup

F
E(L̂ − EL̂)2

for the maximum squared bias and maximum variance of L̂ over F , respectively.

THEOREM 2. Let F be a closed, convex parameter space. Suppose that the
modulus ω of a linear functional L over F is regular with exponent r . Let L̂σ be
any estimator such that

lim sup
σ→0

Vσ (L̂)

ω2(2σ)
≤ λ.(13)

Then

lim inf
σ→0

B2
σ (L̂)

ω2(2σ)




≥ 2−2/(1−r)λ−r/(1−r)r2r/(1−r)(1 − r)2,

if 0 < r < 1,

≥ 1
4 , if r = 0,

= ∞, if r = 1 and λ < 1
4 .

(14)

Hence if r = 0 or r = 1 it follows that

R�
N(σ ) ≥ 1

4ω2(2σ)
(
1 + o(1)

)
.(15)

Likewise suppose that

lim sup
σ→0

B2
σ (L̂)

ω2(2σ)
≤ λ.(16)

Then

lim inf
σ→0

Vσ (L̂)

ω2(2σ)




≥ 2−2/rλ−(1−r)/rr2(1 − r)2(1−r)/r,

if 0 < r < 1,

= ∞, if r = 0 and λ < 1
4 ,

≥ 1
4 , if r = 1.

(17)

Hence for any sequence of minimax affine estimators L̂σ ,

lim
σ→0

sup
f ∈F

(EL̂σ − Lf )2

E(L̂σ − EL̂σ )2
= 1 − r

r
.(18)
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REMARK 2. Equation (18) states that for a regular modulus with exponent r

the minimax affine estimator must asymptotically have a ratio of maximum
squared bias to variance equal to (1 − r)/r . As the exponent r of the regular
modulus varies from 0 to 1, the ratio given in (18) varies from infinity to 0 and
so the contribution of the variance to the mean squared error increases from a
negligible to a dominant amount.

PROOF OF THEOREM 2. It follows from Theorem 2 of Low (1995) that

if Vσ (L̂)

ω2(2σ)
≤ γ then

B2
σ (L̂)

ω2(2σ)
≥ 1

4
sup
ε>0

([
ω(ε)

ω(2σ)
− ε

σ
γ 1/2

]
+

)2

= 1

4
sup
C>0

([
ω(2Cσ)

ω(2σ)
− 2Cγ 1/2

]
+

)2

.

(19)

First consider the case when r = 1. Then if (13) holds, it follows from (19) that for
any fixed C > 0 and any γ > λ,

lim inf
σ→0

B2
σ (L̂)

ω2(2σ)
≥ 1

4
lim
σ→0

([
ω(2Cσ)

ω(2σ)
− 2Cγ 1/2

]
+

)2

= 1

4
([1 − 2γ 1/2]+)2C2.

Hence if λ < 1
4 and r = 1, (14) follows since γ can be chosen such that λ < γ < 1

4
and C can be chosen arbitrarily large.

Similarly, if r = 0 and (13) holds and γ > λ it follows from (19) that

lim inf
σ→0

B2
σ (L̂)

ω2(2σ)
≥ 1

4
lim
σ→0

([
ω(2Cσ)

ω(2σ)
− 2Cγ 1/2

]
+

)2

= 1

4
([1 − 2Cγ 1/2]+)2

and (14) follows since C > 0 can be chosen arbitrarily small.
Now suppose 0 < r < 1. Denote by Cγ = arg maxC≥0([Cr − 2Cγ 1/2]+)2 for

any fixed γ ≥ 0. Then straightforward calculations show that

([Cr
γ − 2Cγ γ 1/2]+)2 = sup

C>0
([Cr − 2Cγ 1/2]+)2

= 2−2r/(1−r)γ −r/(1−r)r2r/(1−r)(1 − r)2.
(20)

Now (14) follows from (19) once we note that for any γ > λ,

lim inf
σ→0

B2
σ (L̂)

ω2(2σ)
≥ 1

4
lim
σ→0

([
ω(2Cγ σ)

ω(2σ)
− 2Cγ γ 1/2

]
+

)2

= 1

4
([Cr

γ − 2Cγ γ 1/2]+)2

= 2−2/(1−r)γ −r/(1−r)r2r/(1−r)(1 − r)2.
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We now turn to the proof of (17). Suppose B2
σ (L̂)/ω2(2σ) ≤ γ . Then it follows

from Theorem 2 of Low (1995) that

Vσ (L̂)

ω2(2σ)
≥ sup

ε>0

(
σ

ε

)2([
ω(ε)

ω(2σ)
− 2γ 1/2

]
+

)2

= sup
C>0

1

4C2

([
ω(2Cσ)

ω(2σ)
− 2γ 1/2

]
+

)2

.

Similar arguments then yield

lim inf
σ→0

Vσ (L̂)

ω2(2σ)
≥ sup

C>0

1

4C2 ([Cr − 2γ 1/2]+)2.

Direct calculations yield

sup
C>0

1

4C2 ([Cr − 2γ 1/2]+)2 =




2−2/rγ −(1−r)/rr2(1 − r)2(1−r)/r,

if 0 < r < 1,

∞, if r = 0 and γ < 1
4 ,

1
4 , if r = 1,

(21)

and (17) follows since γ > λ can be chosen arbitrarily close to λ.
We now turn to the proof of (18). First note that for r = 0 and r = 1, (18) follows

immediately from (14) and (8) in Theorem 1. On the other hand if 0 < r < 1, it
follows from (14) that for any affine estimator with variance λω2(2σ)(1 + o(1)),
the maximum bias over F is bounded below by 2−2/(1−r)λ−r/(1−r)r2r/(1−r) ×
(1 − r)2ω2(2σ)(1 + o(1)) and so the maximum risk of the affine estimator is
bounded below by{

λ + 2−2/(1−r)λ−r/(1−r)r2r/(1−r)(1 − r)2} · ω2(2σ)
(
1 + o(1)

)
.(22)

The quantity inside the bracket in (22) is uniquely minimized by λ∗ = 1
4r1+r ×

(1 − r)1−r and in this case it is easy to check that the maximum mean squared
error is asymptotically equal to the minimax affine risk as given in (8),

λ∗ω2(2σ) + 2−2/(1−r)λ−r/(1−r)∗ r2r/(1−r)(1 − r)2ω2(2σ)
(
1 + o(1)

)
= R�

A(σ )
(
1 + o(1)

)
.

This shows that any minimax affine estimator must have the variance λ∗ω2(2σ)×
(1 + o(1)) and the maximum squared bias 2−2/(1−r)λ

−r/(1−r)∗ r2r/(1−r)(1 − r)2 ×
ω2(2σ)(1 + o(1)). Equation (18) now follows on calculating the ratio of the
maximum squared bias and variance for this choice of λ∗,

lim
σ→0

sup
f ∈F

(EL̂σ − Lf )2

E(L̂σ − EL̂σ )2

= 2−2/(1−r)λ
−r/(1−r)∗ r2r/(1−r)(1 − r)2ω2(2σ)

λ∗ω2(2σ)
= 1 − r

r
. �
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Theorem 2 reveals interesting contrasts in the bias-variance tradeoffs between
the cases of r = 0 and r = 1. It shows that if the modulus is regular with r = 0
then any affine procedure which attains the asymptotic minimax risk must have
a ratio of maximum variance to maximum squared bias tending to 0. So in
this case the squared bias of a minimax affine estimator completely dominates
the variance. On the other hand, if the modulus is regular with r = 1 then any
minimax affine procedure must have a ratio of maximum variance to maximum
squared bias tending to infinity. In this case the variance totally dominates
the squared bias. These two cases are significantly different from the more standard
case of 0 < r < 1. If the modulus is regular with exponent 0 < r < 1 then all rate
optimal procedures must balance the maximum variance and maximum squared
bias so that the ratio of these two is bounded away from 0 and infinity.

REMARK 3. If the modulus ω(ε) = Aεr for 0 ≤ ε ≤ ε0 as is the case for
the renormalizable problems found in Donoho and Low (1992), then (18) holds
nonasymptotically. More precisely, if L̂σ is a minimax affine estimator, then for
all sufficiently small σ ,

sup
f ∈F

(EL̂σ − Lf )2

E(L̂σ − EL̂σ )2
= 1 − r

r
.(23)

This follows since (22) holds nonasymptotically without the o(1) term and the
minimax affine risk is equal to the right-hand side of (8) also without the o(1) term
at least for sufficiently small σ . A special case of this nonasymptotic result for
estimating a function at a point over a Hölder class can be found in Leonov (1999).

3. Examples. We now present examples where minimax rates of convergence
are not algebraic. The examples are divided into three cases: standard nonparamet-
ric rates with 0 < r < 1, near-parametric rates with r = 1, and super slow conver-
gence rates with r = 0. Our main focus is on the case r = 0 but we shall first
consider the cases 0 < r ≤ 1 where the modulus and the minimax convergence
rate contain an algebraic component together with another part which goes to zero
slowly or to infinity slowly. Let Lf = f (0) and

F (α, γ,M) =
{
f : |f (x) − f (0)| ≤ M|x|α

(
ln

1

|x|
)γ }

(24)

with α > 0, M > 0 and any real γ . Straightforward calculations show that the
modulus is given by

ω(ε) = C(α,γ )M1/(2α+1)ε2α/(2α+1)

(
ln

1

ε

)γ /(2α+1)(
1 + o(1)

)
(25)

with C(α,γ ) = 2(1+γ−2α)/(2α+1)α−2α/(2α+1)(α + 1)α/(2α+1)(2α + 1)(α−γ )/(2α+1)

and it is easy to check that the modulus is regular with exponent r = 2α/(2α + 1).
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It is also clear that the modulus is not Hölderian unless γ = 0. Equation (8) shows
that the minimax affine risk satisfies

R�
A(σ ) = D(α,γ )M2/(2α+1)σ 4α/(2α+1)

(
ln

1

σ

)2γ /(2α+1)(
1 + o(1)

)
,(26)

where

D(α,γ ) = 2(2γ−2α)/(2α+1)α−2α/(2α+1)(α + 1)2α/(2α+1)(2α + 1)−(2γ+1)/(2α+1).

We now consider an example where r = 1 in which case the minimax risk is
equal to the parametric rate σ 2 together with another part which goes to infinity
slowly. Theorem 1 shows that in this case there are linear estimators which are
asymptotically minimax.

For α > 0, M1 > 0 and M2 > 0, let

F (α,M1,M2) = {
f : |f (x) − f (0)| ≤ M1e

−(M2/|x|α)}.(27)

It can be checked that the modulus of the linear functional Lf = f (0) over
F (α,M1,M2) is given by

ω(ε) = 2−1/2M
−1/(2α)
2 ε

(
ln

1

ε

)1/(2α)(
1 + o(1)

)
.(28)

Hence it follows from (8) and (9) that

R�
N(σ ) = R�

A(σ )
(
1 + o(1)

) = 2−1M
−1/α
2 σ 2

(
ln

1

σ

)1/α(
1 + o(1)

)
.(29)

In fact, simple calculations show that a local average estimator with the center 0
and the bandwidth aσ = M

1/α
2 (ln 1

σ
)−1/α , δσ = 1

2aσ

∫ aσ−aσ
dY (t), attains the

asymptotic minimax risk (29) and has variance dominating the squared bias. It
is easy to verify directly that balancing the squared bias with the variance is not
optimal in this case.

An early example of r = 1 can be found in Ibragimov and Hasminskii (1987).
For a detailed treatment of estimating analytic functions at a point see Golubev and
Levit (1996) for density estimation and Golubev, Levit and Tsybakov (1996) for
nonparametric regression where particular linear estimators are constructed which
are asymptotically efficient.

We now turn to the case of primary interest, r = 0, where the minimax
convergence rate is slower than any algebraic rate. This case is particularly
interesting. We show that the minimax risks can be attained adaptively across a
range of function classes. So adaptation can be achieved completely for free. This
is significantly different from the more conventional case in which the minimax
rate contains an algebraic component. For example, it was shown in Lepski (1990)
and Brown and Low (1996) that it is impossible to adaptively attain the minimax
rate for estimating a linear functional over the Lipschitz classes and the minimum
cost for adaptation is a logarithmic factor.
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3.1. The case of r = 0: modulus and minimax risk. Let γ > 0 and M > 0.
Consider the following function classes:

F (γ,M) =
{
f : |f (x) − f (y)| ≤ M

(
ln

1

|x − y|
)−γ }

.(30)

The class F (γ, M) is a large function class. For example, it contains all the
traditional Lipschitz classes. Because of the size of the parameter space, the
minimax convergence rate is super slow—slower than any algebraic rate.

THEOREM 3. The modulus of Lf = f (0) over F (γ,M) is

ω(ε) = 21−γ M

(
ln

1

ε

)−γ (
1 + o(1)

)
(31)

and thus the minimax risk and the minimax affine risk are

R�
N(σ ) = R�

A(σ )
(
1 + o(1)

) = M2(ln(σ−2)
)−2γ (

1 + o(1)
)
.(32)

PROOF. We calculate the modulus ω(ε) by first computing the inverse
modulus

ω̃(a) = inf
{‖g − f ‖2 : |Lg − Lf | = a, f, g ∈ F (γ,M)

}
.(33)

Note that F (γ,M) is convex and symmetric. Hence if f and g are in F (γ,M)

then both g−f
2 and f −g

2 are in F (γ,M). Also note that if Lg −Lf = a then, since

L is linear, L(
g−f

2 ) − L(
f −g

2 ) = a. It then follows that

ω̃(2a) = 2 inf
{‖f ‖2 :Lf = a, f ∈ F (γ,M)

}
.(34)

Note that for small a > 0 extremal functions for this second problem are given by

f (x) =



a − M

(− ln |x|)γ , when |x| ≤ e−(M/a)1/γ

,

0, when |x| ≥ e−(M/a)1/γ

.

(35)

It is thus clear that for small a > 0,

ω̃2(2a) ≤ 8a2e−(M/a)1/γ ≤ e−(M/a)1/γ

.

Now fix an integer k > 1 and note that for xk = e−{kM/((k−1)a)}1/γ
, f (xk) = a/k.

Then it is clear that for small a > 0,

ω̃2(2a) ≥ 8
(

a

k

)2

e−(kM/(k−1)a)1/γ

.

In particular, it is easy to check that ω̃2(2a) ≥ 8a4e−(M/a+2)1/γ
for M/(k + 1) ≤

a ≤ M/k and k > 3. It then follows that

1
2a4e−(2M/a+2)1/γ ≤ ω̃2(a) ≤ e−(2M/a)1/γ

.(36)
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Note that the second inequality in (36) yields ω(ε) ≤ 21−γ M(− ln ε)−γ whereas
the first inequality implies that for any δ > 0, ω(ε) ≥ 21−γ M(− lnε)−γ (1 − δ) for
all sufficiently small ε. Hence

ω(ε) = 21−γ M(− ln ε)−γ (
1 + o(1)

)
.

Note that limε→0
ω(Cε)
ω(ε)

= 1 and so the modulus is regular with exponent 0. It then
follows from Theorem 1 that

R�
N(σ ) = R�

A(σ )
(
1 + o(1)

) = 1
4 22−2γ M2(− ln(2σ)

)−2γ (
1 + o(1)

)
= M2(

ln(σ−2)
)−2γ (

1 + o(1)
)
. �

3.2. The case of r = 0: adaptation. We now consider adaptive estimation
of Lf = f (0) over F (γ, M) for all γ > 0. In the case of estimating Lf over
the conventional Lipschitz classes, it is well known that adaptation for free is
impossible even over two known classes. The minimum cost of adaptation is a
logarithmic factor. See Lepski (1990), Brown and Low (1996) and Efromovich
and Low (1994).

We will show in this section that across the function classes F (γ, M) over
which the minimax convergence rates are super slow it is possible to achieve
adaptation for free over the whole range of parameter values. That is, there
exist estimators which adaptively attain the minimax rate as well as the minimax
constant across the whole collection:{

F (γ,M) : 0 < γ < ∞ and 0 < M < ∞}
.

The modulus ω(ε) is, as we calculated above,

ω(ε) = 21−γ M
(
ln(ε−1)

)−γ (
1 + o(1)

)
(37)

and so the minimax mean squared error is equal to M2(ln(σ−2))−2γ (1 + o(1))

which is slower than any algebraic rate. Now, let aσ → 0 and define the local
average estimator with center 0 and bandwidth aσ by

δσ = 1

2aσ

∫ aσ

−aσ

dY (t).(38)

The following theorem shows that the minimax risk can be adaptively attained for
all 0 < γ < ∞ and 0 < M < ∞ by the linear estimator δσ with aσ = exp(ln σ 2 +
lnα(σ−2)) for any 0 < α < 1.

THEOREM 4. Denote by δ∗
σ the estimator defined in (38) with aσ = exp(ln σ 2+

lnα(σ−2)) for any 0 < α < 1. Then δ∗
σ attains the asymptotic minimax risk

adaptively over F (γ,M) for all γ > 0 and all M > 0.
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PROOF. The estimator δσ given in (38) can be written as

δσ = 1

2aσ

∫ aσ

−aσ

dY (t) = 1

2aσ

∫ aσ

−aσ

f (t) dt + 1

2aσ

σ

∫ aσ

−aσ

dW(t) ≡ f̄ + z,

where z is a Gaussian random variable with mean 0 and variance (2aσ )−1σ 2, and
f̄ is the mean value of f over the interval [−aσ , aσ ]. The risk of δσ as an estimator
of f (0) is

E
(
δσ − f (0)

)2 = (
f̄ − f (0)

)2 + (2aσ )−1σ 2.

The maximum bias can be bounded as follows:

|f̄ − f (0)| ≤ 1

2aσ

∫ aσ

−aσ

|f (t) − f (0)|dt

≤ M

aσ

∫ aσ

0
(− ln t)−γ dt = M

aσ

∫ ∞
− lnaσ

y−γ e−y dy.

(39)

Using integration by parts, we have for any A → ∞,

A−γ e−A(1 − A−1) ≤
∫ ∞
A

y−γ e−y dy ≤ A−γ e−A.

So the last expression in (39) is bounded by

M(− ln aσ )−γ (
1 + (ln aσ )−1) ≤ M

aσ

∫ ∞
− lnaσ

y−γ e−y dy ≤ M(− ln aσ )−γ .

Hence, the maximum risk of δσ is bounded by

sup
f ∈F (γ,M)

E
(
δσ − f (0)

)2 ≤ M2(− lnaσ )−2γ + (2aσ )−1σ 2.(40)

Now choose aσ = exp(ln σ 2 + lnα(σ−2)) for some 0 < α < 1. Then the variance
converges at a rate of exp(− lnα(σ−2)) which although slower than any algebraic
rate is faster than any logarithmic rate. On the other hand the maximum squared
bias is bounded by M2(ln(σ−2))−2γ (1 + o(1)) and so

sup
f ∈F (γ,M)

E
(
δ∗
σ − f (0)

)2 ≤ M2(
ln(σ−2)

)−2γ (
1 + o(1)

)
.(41)

The theorem now follows from (41) and the representation of the minimax risk
given by (32). �

REMARK 4. For different choices of the bandwidth aσ , the estimator (38)
leads to a number of interesting trade-offs between bias and variance.

1. If we choose aσ = (ln(σ−2))2γ σ 2/(2M2) in (40), then the squared bias and
variance are exactly balanced, and the resulting risk is

sup
f ∈F (γ,M)

E
(
δσ − f (0)

)2 ≤ 2M2(
ln(σ−2)

)−2γ (
1 + o(1)

)
.(42)
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It is easy to show that the upper bound in (42) is in fact attained. That is,

sup
f ∈F (γ,M)

E
(
δσ − f (0)

)2 = 2M2(ln(σ−2)
)−2γ (

1 + o(1)
)
.(43)

By comparing (43) with the minimax risk, it shows that balancing squared bias
with variance is not optimal in this case.

2. If we increase aσ to aσ = σ 2α for some 0 < α < 1, then the variance converges
at an algebraic rate, and the maximum squared bias is α−2γ M2(ln(σ−2))−2γ ×
(1 + o(1)), so

sup
f ∈F (γ,M)

E
(
δσ − f (0)

)2 = α−2γ M2(
ln(σ−2)

)−2γ (
1 + o(1)

)
.(44)

This shows that if the variance is too small (i.e., converging at some algebraic
rate) then one needs to pay in bias which results in increasing the maximum
asymptotic risk by a constant factor.

It is easy to verify directly using (40) that any choice of aσ which makes the
estimator attain the exact minimax risk adaptively will make the squared bias
dominate the variance. That is, the variance must converge faster than the squared
bias.
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