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1. Introduction

Minimax theory for estimating linear functionals in nonparametric function estimation is

now well developed, particularly in Gaussian settings:

dY (t) ¼ f (t)dt þ n�1=2 dW (t), �1
2
< t < 1

2
, (1)

where W (t) is standard Brownian motion and

Y (i) ¼ f (i) þ n�1=2zi, i 2 M, (2)

zi being independent and identically distributed standard normal random variables and M a

finite or countably infinite index set.

In particular, for these models minimax theory for mean squared error, confidence

intervals and probabilistic error can all be precisely characterized by a modulus of

continuity introduced by Donoho and Liu (1991). More specifically, for any linear

functional T and convex parameter space F the minimax mean squared error is of order

ø2(1=
ffiffiffi
n

p
, F ) where the modulus ø(E, F ) is defined by

ø(E, F ) ¼ sup fjTg � Tf j : kg � f k2 < E; f , g 2 Fg, (3)

k � k2 being the L2(�1
2
, 1

2
) function norm in the white noise model (1) and the ‘2 sequence

norm over the index set M in the Gaussian model (2). Moreover, linear procedures can be

constructed which have maximum risk within a small constant factor of the minimax risk.

See Ibragimov and Hasminskii (1984), Donoho and Liu (1991) and Donoho (1994) for

precise versions of these results.

Optimal rates of convergence have also been given in terms of the probability that the
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estimator is close to the unknown value of the functional; see, for example, Weiss and

Wolfowitz (1967) and Farrell (1972). From this point of view ø(1=
ffiffiffi
n

p
, F ) is the optimal

rate for estimating the linear functional Tf over a convex parameter space F . More

precisely, results in Donoho (1994) and Cai and Low (2003) show that, for any Æ . 0, there

exists a linear estimator T̂T such that

sup
f 2F

Pf jT̂T � Tf j . 3

2
ø

zÆ=2ffiffiffi
n

p , F
� �� �

< Æ (4)

and also that, for any procedure T̂T and any Æ , 1
2
,

sup
f 2F

Pf jT̂T � Tf j . 1

2
ø

zÆffiffiffi
n

p , F
� �� �

. Æ: (5)

Note that these bounds on probabilistic error have direct consequences for the

construction of fixed length confidence intervals and, in particular, show that for any given

coverage probability the shortest fixed length interval has length of order ø(1=
ffiffiffi
n

p
, F ). See

Donoho (1994) for further analysis of fixed length intervals.

An important goal in nonparametric function estimation is the construction of estimators

which perform well according to a number of different criteria. Typically, a loss function is

first fixed and the goal is to construct adaptive procedures which perform well over a

collection of parameter spaces. In this paper attention is focused on criteria which connect

the problem of adaptive estimation under mean squared error with that of the construction

of confidence intervals. In nonparametric function estimation it is common to construct

confidence intervals centred on adaptive estimators. We examine whether such practice can

yield good confidence intervals.

To address such questions we first focus on the multiple goal of finding estimators which

have both good mean squared error performance and also optimal probabilistic error

performance. In Section 2 we quantify the penalty that must be paid for probabilistic error

over one parameter space given that the estimator performs well under mean squared

error over another parameter space. In another direction, if an estimator performs well

under probabilistic error we quantify the penalty that must be paid on mean squared error.

In Section 3 we turn to the analysis of confidence intervals centred on adaptive mean

squared error estimators. We show that one consequence of the results given in Section 2 is

that centring confidence intervals on adaptive mean squared error estimators in general

yields suboptimal confidence procedures. Either the resulting interval has poor coverage

probability or it is unnecessarily long. The results are illustrated by examples. The proofs of

the main results are postponed to Section 4.

2. Constrained error bounds

In nonparametric function estimation it is often of interest to find an estimator that is near

optimal from a number of different points of view. In this section known results about

adaptive estimation are first reviewed. Then the problem of constructing estimators which
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have both good mean squared error performance and optimal probabilistic performance is

considered. It is shown that sometimes these goals compete with each other in such a way

that both cannot be simultaneously realized. More specifically, a probabilistic lower bound

on the actual error subject to an upper bound on the mean squared error is given.

Implications for the expected length of confidence intervals centred at adaptive estimators

are given in Section 3.

2.1. Adaptive estimation

Much attention in the nonparametric function estimation literature has focused on the

construction of adaptive estimators, those which are within a small factor of the minimax

performance simultaneously over a collection of convex parameter spaces. In this subsection

some known results are recalled which will place into context the main results given later

in the paper.

It is well known that adaptive estimators often exist for problems of estimating the whole

function under integrated squared error; see, for example, Efromovich and Pinsker (1984).

In contrast, for estimating a function at a point, Lepski (1990) showed that any estimator

must have maximum mean squared error over one Lipschitz class inflated by a logarithmic

factor whenever it is minimax rate-optimal over another Lipschitz class.

A more general theory for adaptive estimation of linear functionals under mean squared

error has recently been given in Cai and Low (2002). Geometric quantities, the ordered and

between-class moduli of continuity, were introduced. For a linear functional T and

parameter spaces F and G, the between-class modulus øþ(E, F , G) is defined by

øþ(E, F , G) ¼ sup fjTg � Tf j : kg � f k2 < E; f 2 F , g 2 Gg, (6)

where once again k � k2 is the L2(�1
2
, 1

2
) function norm in the white noise model (1) and the ‘2

sequence norm over the index set M in the Gaussian model (2). When G ¼ F , øþ(E, F , F )

is the modulus of continuity over F given in (3). The between-class modulus of continuity is

used in Cai and Low (2002) to quantify precisely the degree of adaptability for estimating a

linear functional under mean squared error.

Consider two function classes F1 and F2 with F1 \ F2 6¼ ˘. Let T be a linear

functional and suppose that

sup
f 2F1

E f (T̂T � T f )2 < ª�2
n ø2

þ
1ffiffiffi
n

p , F1, F2

� �
, (7)

for some ªn . e. Then Cai and Low (2002) show that

sup
f 2F2

E f (T̂T � T f )2 > øþ

ffiffiffiffiffiffiffiffiffiffi
ln ª2

n

n

r
, F1, F2

 !
� øþ

1ffiffiffi
n

p , F1, F2

� � !2

: (8)

This bound can easily be applied under the following commonly occurring mild

regularity conditions on the moduli which, for example, hold when estimating the value of a

function at a point over Lipschitz classes, Sobolev spaces or Besov spaces.
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Condition A.

lim
E!0

øþ(E, F1, F2)

ø(E, F1)
¼ 1, (9)

lim
E!0

ø(E, F2)

øþ(E, F1, F2)
, 1, (10)

lim
E!0

øþ(E, F1, F2)

øþ(DE, F1, F2)
, 1, for some D . 1: (11)

Under Condition A if an estimator is rate-optimal in mean squared error over F1 it must

satisfy (7) with

ª�2
n ¼ C

ø2(1=
ffiffiffi
n

p
, F1),

ø2
þ(1=

ffiffiffi
n

p
, F1, F2)

for some C . 0, and hence, by (9), ª2
n ! 1. It then follows that a penalty in mean squared

error must be paid over F2 since by (8), (10) and (11),

sup
f 2F2

E f (T̂T � T f )2 > ø2
þ

ffiffiffiffiffiffiffiffiffiffi
ln ª2

n

n

r
, F1, F2

 !
(1 þ o(1)) � ø2 1ffiffiffi

n
p , F2

� �
: (12)

Moreover, adaptive estimators are constructed in Cai and Low (2002) which are minimax

rate-optimal over F1 and which also have maximum risk over F2 within a constant factor of

the lower bound given in (12).

The theory of adaptation under probabilistic error is quite different from this mean

squared error theory. In fact fully rate-optimal adaptive estimation is possible under

probabilistic error. Let F1 � F2 be two nested convex parameter spaces. Then Cai and Low

(2003) show that for any linear functional T there is a procedure T̂T and a constant C . 0

such that

sup
f 2F1

Pf jT̂T � Tf j . Cø
zÆ=2ffiffiffi
n

p , F1

� �� �
< Æ (13)

and

sup
f 2F2

Pf jT̂T � Tf j . Cø
zÆ=2ffiffiffi
n

p , F2

� �� �
< Æ: (14)

Hence, for probabilistic error the minimax rate can always be achieved simultaneously over

both F1 and F2.

2.2. Bounds on probabilistic error under a mean squared error

constraint

In this section attention is focused on providing a general lower bound on the probabilistic

error under a constraint on the mean squared error in terms of the between-class modulus
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øþ(E, F1, F2) defined in (6). This bound is given in Theorem 1. The corollaries that follow

provide more specific results under stronger, but commonly occurring, assumptions on the

moduli of continuity. Examples illustrating the results are given in Section 2.3.

Theorem 1. Consider two parameter spaces F1 and F2 with F1 \ F2 6¼ ˘. Let T be a

linear functional and suppose that

sup
f 2F1

E f (T̂T � T f )2 < ª�2
n ø2

þ
1ffiffiffi
n

p , F1, F2

� �
, (15)

for some ªn . 1. Then, for any 0 , r < 1 and 0 , º , 1,

sup
f 2F2

Pf jT̂T � T f j > ºøþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r ln ª2

n

n

r
, F1, F2

 ! !
> 1 � øþ 1=

ffiffiffi
n

p
, F1, F2ð Þ

(1 � º)ª1�r
n øþ(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(ln ª2

n)=n
p

, F1, F2)
:

(16)

An interesting consequence of Theorem 1 is given in the following corollary for

estimators which are mean squared error rate-optimal over F1.

Corollary 1. Let F1 and F2 be two convex parameter spaces with F1 \ F2 6¼ ˘ and let T

be a linear functional. Suppose that T̂T is minimax rate-optimal over F1, that is,

sup
f 2F1

E f (T̂T � T f )2 < Cø2 1ffiffiffi
n

p , F1

� �
, (17)

and suppose that

�n ¼
øþ(1=

ffiffiffi
n

p
, F1, F2)

ø(1=
ffiffiffi
n

p
, F1)

! 1:

Then

lim
n!1

sup
f 2F2

Pf jT̂T � T f j > 1

2
øþ

ffiffiffiffiffiffiffiffiffiffi
ln �2

n

n

s
, F1, F2

0
@

1
A

0
@

1
A ¼ 1: (18)

Remark. The conditions in Corollary 1 are commonly satisfied. For example, suppose that F1

and F2 are symmetric, namely that � f 2 F i whenever f 2 F i, that they are nested F1 � F2

and that minimax rates of convergence differ on F1 and F2, that is,

ø(1=
ffiffiffi
n

p
, F2)

ø(1=
ffiffiffi
n

p
, F1)

! 1:

Then the condition �n ! 1 always holds. If the algebraic part of the rates over F1 and F2

also differ then Condition A holds and there is a constant d . 0 such that
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lim
n!1

sup
f 2F2

Pf jT̂T � T f j > dø

ffiffiffiffiffiffiffiffiffiffi
ln �n

n

r
, F2

 ! !
¼ 1: (19)

This result should also be contrasted with adaptation results under probabilistic error

given in (13) and (14) where the minimax rate can always be achieved simultaneously over

both F1 and F2, whereas under Condition A if an estimator is mean squared error rate-

optimal over F1 it must pay a penalty for probabilistic error over F2.

Theorem 1 also yields a lower bound on the mean squared error for estimators with good

probabilistic performance, as given in the following corollary.

Corollary 2. Let F1 and F2 be convex parameter spaces with F1 \ F2 6¼ ˘ and let T be a

linear functional. Suppose that Condition A holds and that T̂T satisfies

sup
f 2F2

Pf jT̂T � Tf j . ºø
zÆ=2ffiffiffi
n

p , F2

� �� �
< Æ, (20)

for some constant º . 0. Then the maximum mean squared error of T̂T over F1 satisfies

sup
f 2F1

E f (T̂T � Tf )2 > cø2 1ffiffiffi
n

p , F2

� �
(21)

for some constant c . 0 and hence is far from minimax rate-optimal over F1.

Further clarifications can be made in the common case when the parameter spaces are

convex and the moduli are Hölderian, that is,

øþ(E, F i, F j) ¼ CEq(1 þ o(1)),

for some constants 0 , q < 1 and C . 0. In such cases write q(F i, F j) for the exponent q

in this formula.

Corollary 3. Let F1 and F2 be convex parameter spaces with F1 \ F2 6¼ ˘. Suppose that

the moduli øþ(E, F i, F j) are Hölderian with exponent qi, j ¼ q(F i, F j), for 1 < i, j < 2. If

q1,2 ¼ q2,2 , q1,1 or q1,2 , q2,2 < q1,1 , then, for any estimator T̂T that is minimax rate-

optimal under mean squared error over F1, there exists a constant d . 0 such that

lim
n!1

sup
f 2F2

Pf jT̂T � T f j > d
ln n

n

� �q1,2=2
 !

¼ 1, (22)

and hence T̂T is not minimax rate-optimal under probabilistic error over F2.

Remark. The conditions in Corollary 3 are satisfied in many common estimation problems

such as estimating the function at a point over Hölder spaces or Besov spaces.
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2.3. Example

We illustrate the above adaptation results by contrasting them with adaptation under

probabilistic error and adaptation under mean squared error as discussed in Section 2.1. For

example, consider the white noise model (1) and the special case of estimating a function at

a point, say f (0), over two Lipschitz classes F1 ¼ F(�1, M) and F2 ¼ F(�2, M), with

0 , �2 , �1 < 1, where the Lipschitz function classes F(�i, M) are defined as

F(�i, M) ¼ f f : [�1
2
, 1

2
] ! R, j f (x) � f (y)j < M jx� yj�ig: (23)

Standard calculations as in Donoho and Liu (1987) and Cai and Low (2002) yield

ø(E, F1) � E2�1=(1þ2�1) and øþ(E, F1, F2) � ø(E, F2) � E2�2=(1þ2�2): (24)

In this case it follows from (7) and (8) that if f̂f (0) is a rate-optimal estimator over F1

under mean squared error, that is,

sup
f 2F1

E f ( f̂f (0) � f (0))2 < C1n
�2�1=(1þ2�1) (25)

for some constant C1 . 0, then

sup
f 2F2

E f ( f̂f (0) � f (0))2 > C2

ln n

n

� �2�2=(1þ2�2)

(26)

for another constant C2 . 0, recovering the result of Lepski (1990). See also Brown and Low

(1996), Efromovich and Low (1994) and Lepski and Spokoiny (1997) for further

developments.

The general results of Cai and Low (2003) as given in (13) and (14) show that there is

an estimator ~ff (0), not depending on Æ, satisfying

lim
n!1

sup
f 2F i

Pf j ~ff (0) � f (0)j < C(Æ)n��i=(1þ2�i)
� �

> 1 � Æ, (27)

for both i ¼ 1 and i ¼ 2, where the constant C(Æ) . 0 depends only on Æ. Hence, from (5)

under probabilistic error it is possible to attain the exact minimax rate simultaneously over

F1 and F2.

On the other hand, if f̂f (0) is a rate-optimal estimator over F1 under mean squared error

satisfying (25), then it follows from (22) that

lim
n!1

sup
f 2F2

Pf j f̂f (0) � f (0)j > d
ln n

n

� ��2=(1þ2�2)
 !

¼ 1, (28)

for some constant d . 0. Comparing (28) with (27), it is clear that f̂f (0) is not optimal

probabilistically.

Note that equation (28) also directly yields the previously known bound on mean squared

error given in (26). Finally, if f̂f (0) is a rate-optimal estimator under probabilistic error over

F2, then it follows from Corollary 2 that the mean squared error of f̂f (0) over F1 must

satisfy
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sup
f 2F1

E f ( f̂f (0) � f (0))2 > Cn�2�2=(1þ2�2) � Cn�2�1=(1þ2�1):

The above results show that questions of adaptability can depend strongly on how such

procedures are evaluated. In particular, probabilistic adaptation can be achieved whereas

fully mean squared error adaptation is typically unattainable. In the next section we shall

connect the problem of adaptive estimation with that of the construction of confidence

intervals.

3. Nonparametric confidence intervals

The construction of honest confidence intervals in nonparametric function estimation is an

important but challenging problem. The theory is straightforward for a given convex

parameter space F and linear functional T . In such a case optimal fixed length intervals can

be centred on minimax rate-optimal mean squared error estimators, in which case the

(1 � Æ)-level confidence intervals for Tf over F have length of order ø(zÆ=2=
ffiffiffi
n

p
, F ). In

fact these confidence intervals can be centred on linear estimators with have standard

deviation and maximum bias of this same order.

An adaptation theory for the construction of confidence intervals has been developed in

Cai and Low (2004). For two nested convex parameter spaces F1 and F2 with F1 � F2,

the theory can be summarized as follows. Denote by L(CI) the length of a confidence

interval CI and let I (Æ) be the collection of confidence intervals with coverage probability

of at least 1 � Æ over F2. Cai and Low (2004) shows that there is a constant C . 0 such

that, for any confidence interval CI 2 I (Æ),

sup
f 2F i

E f L(CI) > Cøþ
zÆ=2ffiffiffi
n

p , F i, F2

� �
: (29)

Moreover, a confidence interval interval CI 2 I (Æ) is constructed which satisfies

sup
f 2F i

E f L(CI) < Døþ
zÆ=2ffiffiffi
n

p , F i, F2

� �
(30)

for some constant D . 0, for both i ¼ 1 and i ¼ 2. In particular, such a confidence interval

has a rate-optimal expected length over both F1 and F2 given that it has guaranteed coverage

probability of at least 1 � Æ over F2. In this sense the confidence interval can be called

adaptively rate-optimal. It should be stressed that the maximum expected length over F1 also

depends on the parameter space F2 through the between-class modulus.

3.1. Confidence intervals centred on adaptive estimators

As mentioned in the Introduction, it is a common practice in nonparametric function

estimation to centre confidence intervals on adaptive estimators. In this section the

consequences of such an approach are examined. In particular, the lower bounds on
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probabilistic error given in Section 2 have immediate implications for the expected length

of confidence intervals which have guaranteed coverage probability.

Theorem 2. Let F1 and F2 be convex parameter spaces with F1 \ F2 6¼ ˘ and let T be a

linear functional. Let T̂T be an estimator which satisfies

sup
f 2F1

E f (T̂T � T f )2 < ª�2
n ø2

þ
1ffiffiffi
n

p , F1, F2

� �
, (31)

where ªn ! 1. Let CI be any confidence interval for Tf centred at T̂T with coverage

probability of at least 1 � Æ over F2. Then

lim
n!1

sup
f 2F2

Pf L(CI) > øþ

ffiffiffiffiffiffiffiffiffiffi
ln ª2

n

n

r
, F1, F2

 ! !
> 1 � Æ (32)

and consequently, for some constant C . 0,

sup
f2F2

E f L(CI) > Cøþ

ffiffiffiffiffiffiffiffiffiffi
ln ª2

n

n

r
, F1, F2

 !
: (33)

Remark. Note that under Condition A,

øþ

ffiffiffiffiffiffiffiffiffiffi
ln ª2

n

n

r
, F1, F2

 !
� ø

1ffiffiffi
n

p , F2

� �
:

Hence, it follows from Theorem 2 that any confidence interval centred at an estimator which

has maximum mean squared error over F1 converging at a rate faster than the minimax mean

squared error over F2 must either have maximum expected length over F2 larger than

necessary or have poor coverage probability.

It is also interesting to consider the special case of Hölderian moduli as is summarized in

the following corollary.

Corollary 4. Let F1 and F2 be convex parameter spaces with F1 \ F2 6¼ ˘. Suppose that

the moduli øþ(E, F i, F j) are Hölderian with exponent qi, j ¼ q(F i, F j), for 1 < i, j < 2. If

q1,2 ¼ q2,2 , q1,1 or q1,2 , q2,2 < q1,1, then any confidence interval CI centred at a mean

squared error adaptive estimator T̂T with coverage probability of at least 1 � Æ over F1 [ F2

satisfies, for some constant d . 0,

lim
n!1

sup
f 2F2

Pf L(CI) > d
ln n

n

� �q1,2=2
 !

> 1 � Æ (34)

and consequently, for some C . 0,

sup
f 2F2

E f L(CI) > C
ln n

n

� �q1,2=2

: (35)
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3.2. Examples

Now again consider the white noise model (1) and the problem of estimating a function at a

point, say f (0), over the two Lipschitz classes F1 ¼ F(�1, M) and F2 ¼ F(�2, M) with

0 , �2 , �1 < 1, discussed in Section 2. Note that F1 � F2. In this example confidence

interval results differ dramatically from those of mean squared error.

From the moduli given in (24) and the lower bound in (29), any confidence interval with

coverage probability of at least 1 � Æ over F2 must have expected length satisfying

sup
f 2F i

E f L(CI) > Cn��2=(1þ2�2)

for both i ¼ 1 and i ¼ 2. Hence, over F1 the expected length must be much longer than

would be the case if an optimal confidence interval was constructed with the knowledge that

f 2 F1. It is easy to see that this bound can easily be attained by using optimal fixed length

confidence intervals over F2.

Now suppose f̂f (0) is an estimator which has maximum mean squared error over F1

which converges at a rate n�r, where r . 2�2=(1 þ 2�2). Then for any confidence interval

CI centred at f̂f (0) with coverage probability of at least 1 � Æ over F2, there exists some

constant d . 0 such that

lim
n!1

sup
f 2F2

Pf L(CI) > d
ln n

n

� ��2=(1þ2�2)
 !

> 1 � Æ (36)

and consequently,

sup
f 2F2

E f L(CI) > d(1 � Æ)
ln n

n

� ��2=(1þ2�2)

: (37)

Hence confidence intervals centred on a mean squared error rate adaptive estimator must

have a longer maximum expected length over F2.

It should be noted that the penalty in the expected length of the confidence interval need

only be paid on F2. More precisely, we construct below a confidence interval which has a

given coverage probability over F2 and which satisfies

sup
f2F1

E f L(CI) < Cn��2=(1þ2�2) (38)

and

sup
f 2F2

E f L(CI) < C
ln n

n

� �
�2=(1þ2�2), (39)

for some constant C . 0.

For i ¼ 1, 2, let hn,i ¼ n�1=(2�iþ1) and let hn,3 ¼ (n�1 ln n)1=(2�2þ1). Let

T̂Tn,i ¼
1

2hn,i

(Y (hn,i) � Y (�hn,i)), i ¼ 1, 2, 3:

350 T.T. Cai and M.G. Low



It is then easy to check that, for i ¼ 1, 2,

sup
f 2F i

E f (T̂Tn,i � f (0))2 < (M2 þ 1)n�2�i=(2�iþ1) (40)

and

sup
f2F2

E f (T̂Tn,3 � f (0))2 < M2 þ 1

2 ln n

� �
ln n

n

� �2�2=(2�2þ1)

: (41)

Finally, note that

var(T̂Tn,3) ¼ 1

2ln n

ln n

n

� �2�2=(2�2þ1)

:

Let

ªn ¼ (2M þ 4)
ln n

n

� ��2=(2�2þ1)

:

Then as a centre of the confidence interval take

T̂Tn ¼ T̂Tn,11(jT̂Tn,1 � T̂Tn,3j < ªn) þ T̂Tn,21(jT̂Tn,1 � T̂Tn,3j . ªn): (42)

First, note that

E f (T̂Tn � f (0))2 < E f (T̂Tn,1 � f (0))2 þ E f (T̂Tn,2 � f (0))21(jT̂Tn,1 � T̂Tn,3j . ªn): (43)

Note also that, for f 2 F1, Pf (jT̂Tn,1 � T̂Tn,3j . ªn) < n�2. Hence, if f 2 F1,

E f (T̂Tn,2 � f (0))21(jT̂Tn,1 � T̂Tn,3j . ªn) < (E f (T̂Tn,2 � f (0))4)1=2(Pf (jT̂Tn,1 � T̂Tn,3j . ªn))
1=2

< Dn�1,

for some constant D . 0. Hence, for some constant C . 0,

sup
f 2F1

E f (T̂Tn � f (0))2 < Cn�2�1=(2�1þ1) (44)

and it follows that T̂Tn is minimax mean squared error rate-optimal over F1. Similar

calculations show that

sup
f 2F2

E f (T̂Tn � f (0))2 < C
ln n

n

� �2�2=(2�2þ1)

: (45)

Let C(Æ) ¼ M þ
ffiffiffi
2

p
zÆ=2. Then it is easy to see that the interval T̂Tn,2  C(Æ)n��2=(2�2þ1)

has coverage probability of at least 1 � Æ over F2. Set the confidence interval

CI n 	 T̂Tn  (jT̂Tn,2 � T̂Tn,1j1(jT̂Tn,1 � T̂Tn,3j < ªn) þ C(Æ)n��2=(2�2þ1)): (46)

Since CI n always contains the interval T̂Tn,2  C(Æ)n��2=(2�2þ1) it follows that it also has at

least 1 � Æ coverage probability over F2.
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Note that the expected length of the confidence interval CI n depends only on

E f (jT̂Tn,2 � T̂Tn,1j1(jT̂Tn,1 �T̂Tn,3j < ªn)). For f 2 F1, a simple calculation yields

E f L(CI n) < 2C(Æ)n��2=(2�2þ1) þ 2E f jT̂Tn,2 � T̂Tn,1j (47)

and, hence,

E f L(CI n) < 2C(Æ)n��2=(2�2þ1) þ 2(E f (T̂Tn,2 � f (0))2)1=2 þ 2(E f (T̂Tn,1 � f (0))2)1=2, (48)

and it follows that

sup
f 2F1

E f L(CI n) < 2C(Æ)n��2=(2�2þ1) þ Dn��2=(2�2þ1), (49)

for some D . 0. Now suppose that f 2 F2. Then

E f L(CI n) < 2C(Æ)n��2=(2�2þ1) þ 2E f (jT̂Tn,2 � T̂Tn,1j1(jT̂Tn,1 � T̂Tn,3j < ªn)): (50)

Since

E f (jT̂Tn,2 � T̂Tn,1j1(jT̂Tn,1 � T̂Tn,3j< ªn)) < E f jT̂Tn,2 � T̂Tn,3j þ E f (jT̂Tn,3 � T̂Tn,1j1(jT̂Tn,1 � T̂Tn,3j< ªn)),

it follows that

sup
f 2F2

E f L(CI n) < 2C(Æ)n��2=(2�2þ1) þ 2ªn þ 2E f jT̂Tn,2 � T̂Tn,3j < (2C(Æ) þ D)
ln n

n

� ��2=(2�2þ1)

,

(51)

for another constant D . 0.

Equations (44) and (45) show that the centre of the confidence interval CI n is a mean

squared error rate adaptive estimator which attains the minimax mean squared error rate of

convergence on F1 and only pays the minimal necessary logarithmic penalty over F2.

Moreover, (49) and (51) show that the confidence interval CI n has rate-optimal maximum

expected length over F1 for all confidence intervals which have coverage probability of at

least 1 � Æ over F2, and, subject to the mean squared error constraint on the centre, it also

minimizes the expected length over F2.

3.3. Mean squared error for the center of confidence intervals

Theorem 2 also yields an interesting result on the performance, in terms of mean squared

error, of the centre of any (1 � Æ)-level confidence interval with rate-optimal expected

length. The result below shows the interplay between the mean squared error property of

the centre and the maximum expected length of the confidence interval.

Corollary 5. Let F1 and F2 be convex parameter spaces with F1 \ F2 6¼ ˘ and let T be a

linear functional. Suppose that Condition A holds. Let CI ¼ [T̂T � hn, T̂T þ hn] be a (1 � Æ)-

level confidence interval over F2 which has rate-optimal expected length over F2, that is,
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sup
f 2F2

E f L(CI) < Cø
1ffiffiffi
n

p , F2

� �
, (52)

for some constant C . 0. Then the mean squared error of the centre of the confidence

interval, T̂T , must satisfy

sup
f 2F1

E f (T̂T � T f )2 > ºø2
þ

1ffiffiffi
n

p , F1, F2

� �
, (53)

for some constant º . 0.

Corollary 5 has an interesting interpretation. Let F2 be a convex parameter space and let

CI ¼ [T̂T � hn, T̂T þ hn] be a confidence interval which has coverage probability of at least

1 � Æ over F2 and which has minimax rate-optimal expected length over F2, namely that it

satisfies (52). Let F1 be any convex subset of F2 for which Condition A holds. Then the

mean squared error of T̂T must satisfy

sup
f 2F1

E f (T̂T � T f )2 > ºø2 1ffiffiffi
n

p , F2

� �
:

In particular, if Condition A holds for F1 ¼ f f g, where f 2 F2, then

E f (T̂T � T f )2 > ºø2 1ffiffiffi
n

p , F2

� �
:

Example. Once again consider the white noise model (1) and the problem of estimating f (0),

and let F2 ¼ F(�, M) with 0 , � , 1. For any f 2 F(�9, M9) where either � , �9 < 1 or

M9 , M , Condition A always holds for F1 ¼ f f g. In this case if CI ¼ [T̂T � hn, T̂T þ hn] is

a confidence interval with coverage probability of at least 1 � Æ and minimax rate-optimal

expected length over F2, then

E f (T̂T � T f )2 > ºø2 1ffiffiffi
n

p , F2

� �
> Cn�2�=(1þ2�),

for some C . 0. Hence T̂T must have the same rate of convergence n�2�=(1þ2�) under mean

squared error at every point in the interior of F(�, M).

4. Proofs

The proof of Theorem 1 makes use of the following general constrained error bound. Let X

be a random variable having distribution PŁ with density fŁ with respect to a measure º.

The parameter Ł 2 R takes on two possible values, Ł1 or Ł2. We wish to estimate Ł based

on X . Denote by r(x) ¼ fŁ2
(x)= fŁ1

(x) the ratio of the two density functions. (r(x) ¼ 1 for

some x is possible, with the obvious interpretation r(x) fŁ1
(x) ¼ fŁ2

(x).) Set

˜ ¼ jŁ2 � Ł1j (54)
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and, as in Brown and Low (1996), let

I ¼ I(Ł1, Ł2) ¼ (EŁ1
(r2(X )))1=2: (55)

The following lemma gives a lower bound on the probabilistic error of any estimator � under

Ł2 subject to an upper bound on the mean squared error at Ł1.

Lemma 1. If EŁ1
(�� Ł1)2 < E2, then for any 0 , º , 1,

PŁ2
(�� Ł2 < �º˜) > 1 � EI

(1 � º)˜
, if Ł2 . Ł1, (56)

PŁ2
(�� Ł2 > º˜) > 1 � EI

(1 � º)˜
, if Ł2 , Ł1 (57)

and, consequently,

PŁ2
(j�� Ł2j > º˜) > 1 � EI

(1 � º)˜
:

Proof. Without loss of generality, assume that Ł2 . Ł1 and that the estimator � satisfies

�(X ) 2 [Ł1, Ł2]. If this condition is not satisfied, replace � by

�9 ¼
Ł1, if � , Ł1,

� if Ł1 < � < Ł2,

Ł2, if � . Ł2,

8<
:

where �9 satisfies EŁ1
(�9� Ł1)2 < EŁ1

(�� Ł1)2 < E2 and PŁ2
(�9� Ł2 < �º˜) ¼

PŁ2
(�� Ł2 < �º˜).

The Cauchy–Schwarz inequality now yields

EŁ2
�� Ł1 ¼ EŁ1

[(�(X ) � Ł1)r(X )] < EI :

On the other hand, since �(X ) 2 [Ł1, Ł2],

EŁ2
�� Ł1 ¼ EŁ2

�1(�� Ł2 . �º˜) þ EŁ2
�1(�� Ł2 < �º˜) � Ł1

> (Ł2 � º˜)PŁ2
(�� Ł2 . �º˜) þ Ł1PŁ2

(�� Ł2 < º˜) � Ł1

¼ (1 � º)˜PŁ2
(�� Ł2 . �º˜):

Therefore,

PŁ2
(�� Ł2 . �º˜) <

EI
(1 � º)˜

,

and so

PŁ2
(�� Ł2 < �º˜) > 1 � EI

(1 � º)˜
: h

354 T.T. Cai and M.G. Low



Proof of Theorem 1. We shall only consider the case where F1 and F2 are closed and norm

bounded. The general case is proved by taking limits of this case.

For 0 , r < 1, choose f 1,n 2 F1 and f2,n 2 F2 such that

k f 1,n � f2,nk2 <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r ln ª2

n

n

r
and such that the modulus is attained at f f1,n, f 2,ng:

jT f 2,n � T f 1,nj ¼ øþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r ln ª2

n

n

r
, F1, F2

 !
:

Let Ł1 ¼ T f 1,n, Ł2 ¼ T f 2,n, and let �n ¼ nk f 1,n � f 2,nk2
2. Then �n < r ln ª2

n.

Denote by Pi,n the probability measure associated with the white noise process

dY (t) ¼ f i,n(t)dt þ
1ffiffiffi
n

p dW (t), � 1

2
< t <

1

2
, i ¼ 1, 2:

Then a sufficient statistic for the family of measures fPi,n : i ¼ 1, 2g is given by

Sn ¼ ln (dP2,n=dP1,n) with

Sn �
N � �n

2
, �n

� �
under P1,n,

N
�n

2
, �n

� �
under P2,n:

8>>><
>>>:

Denote by Ł1 ¼ T f 1,n, Ł2 ¼ T f 2,n, and sŁi the density of Sn under Pi,n (i ¼ 1, 2). Then

I(Ł1, Ł2) ¼
ð
s2
Ł2

(x)

sŁ1
(x)

dx

 !1=2

¼ e � n=2 < ªrn:

Applying Lemma 1 with ˜ ¼ jŁ1 � Ł2j ¼ øþ(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(ln ª2

n)=n
p

, F1, F2), I(Ł1, Ł2) < ªrn, and

E < ª�1
n øþ(1=

ffiffiffi
n

p
, F1, F2), we have

Pf2,n
jT̂T � T f 2,nj > ºøþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rln ª2

n

n

r
, F1, F2

 ! !
> 1 � øþ(1=

ffiffiffi
n

p
, F1, F2)

(1 � º)ª1�r
n øþ(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r(ln ª2

n=n
p

, F1, F2)
:

h

Proof of Corollary 1. In this case set

ªn ¼
øþ(1=

ffiffiffi
n

p
, F1, F2)

C1=2ø(1=
ffiffiffi
n

p
, F1)

¼ C�1=2�n

and choose º ¼ r ¼ 1
2
. Since �n ! 1, for sufficiently large n, ªn > �1=2

n . It follows from

Theorem 1 that
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lim
n!1

sup
f 2F2

Pf jT̂T � T f j > 1

2
øþ

ffiffiffiffiffiffiffiffiffiffi
ln �2

n

n

s
, F1, F2

0
@

1
A

0
@

1
A

> lim
n!1

sup
f 2F2

Pf jT̂T � T f j > 1
2
øþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ln ª2

n

n

s
, F1, F2

0
@

1
A

0
@

1
A

> lim
n!1

1 � øþ(1=
ffiffiffi
n

p
, F1, F2)

1
2
ª1=2
n øþ(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
(ln ª2

n)=n
q

, F1, F2)

0
B@

1
CA

¼ 1: h

Proof of Corollary 2. Suppose that (21) does not hold. Then

sup
f 2F1

E f (T̂T � Tf )2 < B2
n

with B2
n=ø

2(1=
ffiffiffi
n

p
, F2) ! 0 (at least along a subsequence). It then follows from Condition A

that

ªn ¼
øþ(1=

ffiffiffi
n

p
, F1, F2)

Bn

! 1:

An argument similar to that in the proof of Corollary 1 now yields that

lim
n!1

sup
f 2F2

Pf jT̂T � T f j > 1

2
øþ

ffiffiffiffiffiffiffiffiffiffi
ln ª2

n

n

r
, F1, F2

 ! !
¼ 1,

which contradicts the assumption given in (20) since

øþ
ffiffiffiffiffiffiffiffiffiffi
lnª2

n

n

r
, F1, F2

 !
� ø

zÆ=2ffiffiffi
n

p , F2

� �
h

Proof of Theorem 2. It follows from Theorem 1 that

lim
n!1

sup
f 2F2

Pf jT̂T � Tf j > 1

2
øþ

ffiffiffiffiffiffiffiffiffiffi
ln ª2

n

n

r
, F1, F2

 ! !
¼ 1,

which implies that, for any E . 0, there exists an N . 0 such that, for all n > N ,

sup
f 2F2

Pf jT̂T � Tf j > 1

2
øþ

ffiffiffiffiffiffiffiffiffiffi
ln ª2

n

n

r
, F1, F2

 ! !
> 1 � E

2
:

Hence there exists a sequence f n 2 F2 such that, for n > N,
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Pf n jT̂T � Tf nj >
1

2
øþ

ffiffiffiffiffiffiffiffiffiffi
lnª2

n

n

r
, F1, F2

 ! !
> 1 � E: (58)

Now suppose CI is a confidence interval centred at T̂T with coverage probability of at least

1 � Æ over F2. Let CI ¼ [T̂T � hn, T̂T þ hn]. Then, for n > N,

1 � Æ < Pf n(Tf n 2 CI) ¼ Pf n(jT̂T � Tf nj < hn) (59)

Equations (58) and (59) together yield

Pf n L(CI) > øþ

ffiffiffiffiffiffiffiffiffiffi
ln ª2

n

n

r
, F1, F2

 ! !
¼ Pf n hn >

1

2
øþ

ffiffiffiffiffiffiffiffiffiffi
lnª2

n

n

r
, F1, F2

 ! !
> 1 � Æ� E:

Since the constant E . 0 can be chosen arbitrarily small, this implies (36). h
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