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ABSTRACT
Linearmixed-effectsmodels are widely used in analyzing clustered or repeatedmeasures data. We propose
a quasi-likelihood approach for estimation and inference of the unknown parameters in linear mixed-
effects models with high-dimensional fixed effects. The proposed method is applicable to general settings
where the dimension of the random effects and the cluster sizes are possibly large. Regarding the fixed
effects, we provide rate optimal estimators and valid inference procedures that do not rely on the structural
information of the variance components. We also study the estimation of variance components with high-
dimensional fixed effects in general settings. The algorithms are easy to implement and computationally
fast. The proposed methods are assessed in various simulation settings and are applied to a real study
regarding the associations between bodymass index and genetic polymorphicmarkers in a heterogeneous
stock mice population.
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1. Introduction

The results of scientific experiments are often subject to
environmental effects as experimental units can be grouped
and settled in diverse environments, where the observations
within the same group can be dependent as a cluster. Clus-
tered data commonly arise in many fields, such as biology,
genetics, and economics. Linear mixed-effects models pro-
vide a flexible tool for analyzing such clustered data, which
include repeated measures data, longitudinal data, and multi-
level data (Pinheiro and Bates 2000; Goldstein 2011). The linear
mixed-effects models incorporate both the fixed and random
effects, where the random effects induce correlations among
the observations within each cluster and accommodate the
cluster structure. In many genomic and economic studies, the
dimension of the covariates can be large and possibly much
larger than the sample size. A variety of statistical models and
approaches have been proposed and studied for analyzing high-
dimensional data. However, most of them are restricted to
dealing with independent observations, such as linear models
and generalized linear models. Statistical inference for high-
dimensional linear mixed-effects models remains to be a chal-
lenging problem. In this work, we consider estimation and
inference of unknown parameters in high-dimensional mixed-
effects models.

For ease of presentation, we use the setting for clustered data
to present a linear mixed-effects model. For repeated measure-
ment data, the repeatedmeasures form a cluster. Let i = 1, . . . , n
be the cluster indices. For the ith cluster, we have a response
vector yi ∈ R

mi , a designmatrix for the fixed effectsXi ∈ R
mi×p,
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and a design matrix for the random effects Zi ∈ R
mi×q, where

mi is the size of the ith cluster. A linear mixed-effects model
(Laird and Ware 1982) can be written as

yi = Xiβ∗ + Ziγi + εi, i = 1, . . . , n, (1)

where β∗ ∈ R
p is the vector of the fixed effects, γi ∈ R

q is the
vector of the random effects of the ith cluster, and εi ∈ R

mi is the
noise vector of the ith cluster. For i = 1, . . . , n, we assume γi and
εi are independently distributed with mean zero and variance
� ∈ R

q×q and σ 2
e Imi , respectively. Detailed assumptions are

given in Sections 2 and 3.
Much existing literature on linear mixed-effects models

assumes that the number of random effects q and cluster sizesmi
are fixed. Without special emphasis, we say a fixed-dimensional
setting if p, q, and {mi}ni=1 are all fixed numbers, and a high-
dimensional setting if p is large and possibly much larger than
N, where N = ∑n

i=1mi is the total sample size. We refer to γi
and εi as the random components.

1.1. Related Literature

In the fixed-dimensional setting, many methods have been
proposed to jointly estimate the fixed effects and variance
parameters. We refer to Gumedze and Dunne (2011) for
a comprehensive review. Among them, the maximum
likelihood estimators (MLEs) and restricted MLEs are
most popular for estimation and inference in linear mixed-
effects models. Restricted MLEs can produce unbiased
estimators of the variance components in the low-dimensional
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setting but it is not applicable in the high-dimensional setting.
Furthermore, these likelihood-based estimators rely heavily on
the normality assumptions of the random components. Com-
putationally, maximizing the likelihood can generally lead to
a nonconvex optimization problem that typically has multi-
ple local maxima. Hence, the performance of likelihood-based
methods lacks of guarantees in real applications.

As an alternative, Sun, Zhang, and Tong (2007) proposed
moment estimators of the fixed effects and variance param-
eters for a random effect varying-coefficient model. Peng
and Lu (2012) considered such moment estimators for fixed-
dimensional linear mixed-effects models. Their proposed esti-
mators have closed-form solutions and are computationally
efficient. The consistency and asymptotic normality of these
estimators are justified under certain conditions in the fixed-
dimensional setting. Ahmn, Zhang, and Lu (2012) proposed
anothermoment-basedmethod for the estimation and selection
of the variance components of the random effects in the fixed-
dimensional setting. This method works especially well when
the number of the random effects is as large as the cluster sizes,
that is,m1 = · · · = mn = q.

For inference of variance components in the fixed-
dimensional setting, the likelihood ratio, score, and Wald
tests (Stram and Lee 1994; Lin 1997; Verbeke and Molenberghs
2003; Demidenko 2004) are broadly used. However, when
testing the existence of the random effects, the asymptotic
distribution of the likelihood ratio is usually a mixture of
chi-square distributions (Miller 1977; Self and Liang 1987).
Since these methods are based on the MLEs or restricted MLEs
as initial estimators, they also suffer from the drawbacks of
likelihood-based methods discussed above.

In the high-dimensional setting, the problems are much
more challenging. Assuming fixed cluster sizes, Schelldorfer,
Bühlmann, and van De Geer (2011) analyzed the rate of conver-
gence for the global maximizer of the �1-penalized likelihood
with fixed designs. As mentioned before, the analysis for the
global optimum may not apply to the realizations due to the
existence of local maxima. Fan and Li (2012) studied the fixed
effects and randomeffects selection in a high-dimensional linear
mixed-effects model when the cluster sizes are balanced, that is,
(maxi mi)/(mini mi) < ∞. The selection consistency requires
minimum signal strength conditions regarding the fixed effects
and the randomeffects. Bradic, Claeskens, andGueuning (2020)
considered testing a single coefficient of the fixed effects in
the high-dimensional linear mixed-effects models with fixed
cluster sizes, fixed number of random effects, and sub-Gaussian
designs. The theoretical analyses in all three aforementioned
articles require the positive definiteness of the covariancematrix
of the random effects. This condition takes prior knowledge on
the existence of the random effects and can be hard to fulfill in
applications. Moreover, the optimal convergence rate of param-
eter estimation remains unknown. In fact, estimators of fixed
effects in Schelldorfer, Bühlmann, and van De Geer (2011) and
Bradic, Claeskens, andGueuning (2020)maynot be rate optimal
for estimation according to our analysis. Finally, estimation and
inference of the variance components in the high-dimensional
setting remain largely unknown.

The problems of estimation and inference of the fixed effects
in linear mixed-effects models are related to high-dimensional

linear models. Many penalized methods have been proposed
for prediction, estimation, and variable selection in high-
dimensional linear models (see, e.g., Tibshirani 1996; Fan and
Li 2001; Zou 2006; Candes and Tao 2007; Meinshausen and
Bühlmann 2010; Zhang 2010). Statistical inference on a low-
dimensional component of a high-dimensional regression vec-
tor has been considered and studied in linear models and gen-
eralized linear models with “debiased” estimators (Javanmard
and Montanari 2014; van de Geer et al. 2014; Zhang and Zhang
2014), and the minimaxity and adaptivity of confidence inter-
vals have been studied in Cai and Guo (2017) and Cai, Guo,
and Ma (2020). The idea of debiasing has also been studied and
extended to solve other statistical problems, such as statistical
inference in Cox models (Fang, Ning, and Liu 2017), simulta-
neous inference (Dezeure, Bühlmann, and Zhang 2017; Zhang
and Cheng 2017), and semisupervised inference (Cai and Guo
2020).

1.2. Our Contributions

In this article, we develop a simple but powerful method for
inference of the unknown parameters in high-dimensional lin-
ear mixed-effects models. Our method is applicable to the set-
tings where the number of random effects can possibly be large
and the cluster sizes can be either fixed or growing, balanced or
unbalanced. The proposedmethod is easy to implement and the
optimization in each step is either analytic or convex.

Based on a proxy of the true covariance matrix, we develop
a penalized quasi-likelihood approach for fixed effects estima-
tion. The proposed estimator is minimax rate optimal under
general conditions. We further develop a debiased estimator for
hypothesis testing and construction of confidence intervals for
the fixed effects. The proposed estimator does not require nor-
mality assumptions or the structural assumptions on the vari-
ance components. We further apply the idea of quasi-likelihood
to estimate the variance components and prove its optimality
under certain conditions.

Our analysis provides a novel insight for understanding and
simplifying the linear mixed-effects models by approximating
the true unknown covariancematrix of the randomcomponents
with some simple proxy matrices. In this way, one separates the
tasks of estimating the fixed effects and variance components
and avoids the nuisance parameters in each optimization step.
This improves the computational efficiency and simplifies the
theoretical analysis.

1.3. Notation

Throughout the article, we use i to index the ith cluster and k
to index the kth observation in each cluster. Let y, γ , ε, and
X be obtained by stacking vectors yi, γi, εi, and matrices Xi

underneath each other, respectively. Let Z ∈ R
N×(nq) be a

block diagonal matrix with the ith block being Zi. Let �i
θ =

Zi�Zi + σ 2
e Imi and �θ ∈ R

N×N be a block diagonal matrix
with the ith block being �i

θ . Let �i
z = (Zi)�Zi/mi and �i

z,x =
(Zi)�Xi/mi, i = 1, . . . , n. For a random variable u ∈ R, define
its sub-Gaussian norm as ‖u‖ψ2 = supl≥1 l−1/2

E
1/l[|u|l]. We

refer to ‖u‖ψ2,Z = supl≥1 l−1/2
E
1/l[|u|l|Z] as the conditional
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sub-Gaussian norm of u. For a random vector U ∈ R
n0 , define

its sub-Gaussian norm as ‖U‖ψ2 = sup‖v‖2=1,v∈Rn0 ‖〈U, v〉‖ψ2 .
Define it conditional sub-Gaussian norm as ‖U‖ψ2,Z =
sup‖v‖2=1,v∈Rn0 ‖〈U, v〉‖ψ2,Z.

Let A ∈ R
n0×n0 be a symmetric matrix. A 
 0 means

that A is semipositive definite and A � 0 means that A is
positive definite. Let �max(A) and �min(A) denote the largest
and smallest eigenvalues of A, respectively. Let ‖A‖2 denote
�max(A). Let ‖A‖2F = Tr(A�A), where Tr(A) is the trace of
matrix A. Let c, c0, c1, . . . ,C,C0,C1, . . . denote some generic
positive constants that can vary in different statements.

1.4. Organization of the Article

The rest of the article is organized as follows. Section 2 intro-
duces the idea of quasi-likelihood and a procedure for the
fixed effects inference. Section 3 provides a theoretical analysis
for the inference procedures proposed in Section 2. Section 4
introduces estimators for the variance components and provides
upper and lower bounds. Numerical performance of the pro-
posedmethods is investigated in Section 5 in various simulation
settings. The proposed methods are applied in Section 6 to
analyze a real study on the associations between the body mass
index (BMI) and genetic variants in a stock mice population
where the cage effect ismodeled as a randomeffect. A discussion
is given in Section 7. Proofs and more numerical results are
provided in the supplementary materials.

2. Inference for Fixed Effects: TheMethod

In many applications of the linear mixed-effects models, infer-
ence of the fixed effects is of main interest. In this section, we
present our method for fixed effects inference and describe its
motivations. We assume that the vector of fixed effects β∗ is
sparse such that ‖β∗‖0 ≤ swith s unknown.We consider model
(1) where p, s, and q can grow and p can be much larger thanN.
The cluster sizes {mi}ni=1 can be either fixed or grow with n.

2.1. Motivations of the ProposedMethod

For fixed effects estimation in model (1), the main challenges
are posed by the high-dimensionality of the fixed effects and the
clustered structure of the observations. Before developing a new
method, it is helpful to understand the new challenges posed
by the cluster structures in model (1) in terms of estimation
and inference. For this purpose, we study the consequences of
misspecifying a linear mixed-effects model as a standard linear
model.

Applying Lasso (Tibshirani 1996) directly to the observations
generated from (1), we analyze

β̂(lm) = argmin
b∈Rp

{
1
2N

‖y − Xb‖22 + λ(lm)‖b‖1
}

(2)

for some tuning parameter λ(lm) > 0. In a typical analysis
of the Lasso, the convergence rate of β̂(lm) depends on the
restricted isometries of the sample covariance matrix, X�X/N,
the sparsity of the true coefficients, and the so-called “empirical
process” part of the problem, ‖X�(y−Xβ∗)/N‖∞. It is known

that for linear models with row-wise independent sub-Gaussian
(X, y), the “empirical process” part is of order

√
log p/N, which

gives the optimal convergence rate in �2-norm. In the following
proposition, we study the size of “empirical process” part when
the true model is (1).

Proposition 2.1 (The rate of Lasso for linearmixed-effectsmodels).
Suppose that the responses yi are generated with respect to
model (1) and each row of X is independently generated with
covariance matrix �x|z conditioning on Z. Then for any fixed
j ∈ {1, . . . , p},
E

[∣∣∣∣ 1NX�
.,j(Zγ + ε)

∣∣∣∣2 ∣∣Z]
= (�x|z)j,jσ 2

e
N

+ (�x|z)j,j
∑n

i=1 miTr(��i
z)

N2

+
∑n

i=1 m2
i ‖�1/2

E[�i
z,x|Z]‖22

N2 . (3)

If � is positive definite and {�i
z}ni=1 have bounded diagonal

elements, then the second term on the right-hand side of (3) is
 q/N. If it further holds that E[�i

z,x|Z] �= 0, that is, X and
Z are correlated, then the third term can be � min1≤i≤n mi/N.
That is, the Lasso may not be rate optimal for clustered data if
either q grows, or, {mi}ni=1 grow and X and Z are correlated. On
the other hand, if the q andmi’s are all constant, it is not hard to
prove that the original Lasso is still rate optimal for model (1).

Therefore, proper methods need to be developed for high-
dimensional linear mixed-effects models under general condi-
tions on q and {mi}ni=1. The main challenge comes from the
correlation among observations induced by the random effects.
For the ith block, the covariance of the random components is
�i

θ∗ = Zi�(Zi)�+σ 2
e Imi , which involves unknown parameters.

We consider a proxy of �i
θ∗ as

�i
a = aZi(Zi)� + Imi

with some predetermined constant a > 0. The following propo-
sition shows that this approximation is valid up to some scaling
constant. Let�a ∈ R

N×N be the block diagonal matrix with the
ith block being �i

a.

Proposition 2.2. If � is positive definite, then for any constant
a > 0,

min
{

1
σ 2
e
,

a
�max(�)

}
�−1

a � �−1
θ∗ � max

{
1
σ 2
e
,

a
�min(�)

}
�−1

a .

Therefore, if � has positive and bounded eigenvalues, �−1
θ∗

and �−1
a are of the same rate and only differ by constants. This

property of �−1
a is crucial to achieve the general results in this

work. A broader class of proxymatrices have been considered in
Fan andLi (2012) for variable selection and inBradic, Claeskens,
and Gueuning (2020) for hypothesis testing, which include�−1

a
as a special case. As reviewed in Section 1.1, afore-mentioned
two articles considered relatively restrictive scenarios in terms
of group sizes and the dimension of the random effects. It is
not clear whether the desired property proved in Proposition 2.2
holds for the general class of proxy matrices.

2.2. The Quasi-Likelihood Approach

We consider a quasi-likelihood approach which replaces �i
θ∗

with �i
a for some constant a > 0 in the likelihood function
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for Gaussian mixed-effects models. Specifically, let Xa and ya
denote the transformed observations such that (Xa, ya) =
(�

−1/2
a X,�−1/2

a y).
First, we estimate the fixed effects via the Lasso based on the

transformed data. For some fixed a > 0, define

β̂ = argmin
β∈Rp

{
1

2Tr(�−1
a )

‖ya − Xaβ‖22 + λ‖β‖1
}

(4)

for some tuning parameter λ > 0. The quantity Tr(�−1
a ) can be

viewed as the effective sample size in the current problem and
its magnitude is studied in Remark 3.1. The choice of a will be
studied theoretically in Section 3 and numerically in Section 5.

Given the task of making inference for β∗
j , we propose the

following debiased estimator. For β̂ defined in (4),

β̂
(db)
j = β̂j +

ŵ�
j (ya − Xaβ̂)

ŵ�
j (Xa).,j

, (5)

where ŵj ∈ R
N can be viewed as a correction score. It can

be computed via another Lasso regression (van de Geer et al.
2014; Zhang and Zhang 2014) or via a quadratic optimization
(Javanmard and Montanari 2014; Zhang and Zhang 2014). For
computational convenience, we consider the Lasso approach
based on the transformed data. Define the correction score ŵj =
(Xa).,j − (Xa).,−jκ̂j, where

κ̂j = argmin
κj∈Rp−1

{
1

2Tr(�−1
a )

∥∥(Xa).,j − (Xa).,−jκj
∥∥2
2 + λj‖κj‖1

}
,

(6)

for some tuning parameter λj > 0. A two-sided 100× (1−α)%
confidence interval for β∗

j can be constructed as

β̂
(db)
j ± zα/2

√
V̂j, (7)

where zτ is the τ th quantile of a standard normal distribution
and V̂j is an estimator of the variance of β̂

(db)
j . We propose to

use the following empirical variance estimate

V̂j =
∑n

i=1

[
(ŵi

j)
�(yia − Xi

aβ̂)
]2

(ŵ�
j (Xa).,j)2

, (8)

where β̂ is the initial Lasso estimator (4), ŵi
j ∈ R

mi is the ith sub-
vector of ŵj such that ŵj = ((ŵ1

j )
�, . . . , (ŵn

j )
�)�, and yia is the

ith sub-vector of ya. The idea of empirical variance estimator
has been considered in Bühlmann and van de Geer (2015) to
deal with the misspecified linear models. The format of (8) is
however different from the one for linearmodels because it is an
average over n groups rather than N observations. In this work,
V̂j serves as a convenient alternative to the limiting distribution-
based variance estimators. In fact, the limiting distribution of
β̂

(db)
j involves nuisance parameters coming from the compli-

cated variance components. By using the empirical residuals of
the transformed data, we bypass the estimation of the nuisance
parameters.

3. Inference for Fixed Effects: Theoretical Guarantees

In this section, we provide theoretical guarantees for the estima-
tors described in Section 2.2. We first detail our assumptions.

Condition 3.1 (Sub-Gaussian random components). The random
noises εi,k, i = 1, . . . , n, k = 1, . . . ,mi, are independent with
mean zero and variance 0 < σ 2

e < K0 < ∞. The sub-
Gaussian norms of εi,k are upper bounded by K0. The random
effects γi ∈ R

q, i = 1, . . . , n, are independent with mean
zero and covariance � � K1Iq for some positive constant
K1. For i = 1, . . . , n, εi and γi are independent of each other
and are independent of (Xi,Zi). The sub-Gaussian norms of
�

−1/2
θ∗ (Zγ + ε) are upper bounded by K0.

Condition 3.1 assumes sub-Gaussian random components
while that classical linear mixed-effects models always assume
Gaussian random components (Pinheiro and Bates 2000).
Hence, Condition 3.1 is less restrictive and is more robust
to model misspecifications than the classical assumptions. In
addition, we do not require � to be strictly positive definite. A
scenario of singular � is that some components of the random
effects do not exists such that some diagonal elements of � are
zero.

Regarding the conditions on the designs, the estimation and
inference in the linear mixed-effects models are usually con-
ditioning on Z to maintain the cluster structure. Schelldorfer,
Bühlmann, and van De Geer (2011) and Fan and Li (2012)
assume both X and Z are fixed. Jiang et al. (2016) considered
estimation and inference in a misspecified linear model when
both X and Z are random. Bradic, Claeskens, and Gueuning
(2020) assumed X is sub-Gaussian with mean zero and Z is
fixed, which implies that X and Z are independent. In the cur-
rent work, we consider random designs satisfying the following
condition.

Condition 3.2 (Sub-Gaussian X conditioning on Z). Condition-
ing on Z, each row of X is independent with mean zero and
covariance matrix �x|z such that 0 < K∗ ≤ �min(�x|z) ≤
�max(�x|z) ≤ K∗ < ∞. Conditioning on Z, the conditional
sub-Gaussian norms of Xi

k,. are upper bounded by K0.

In Condition 3.2, we assume sub-Gaussian X and Z have
mean independence, that is, E[X|Z] = 0 for simplicity. This
is slightly weaker than assumingX and Z are mutually indepen-
dent and it holds when Z is deterministic including the random
interceptmodel. In Section 3.4, we study the performance of our
proposal when E[X|Z] �= 0.

3.1. Fixed Effects Estimation

In this subsection, we analyze the theoretical performance of (4)
under Conditions 3.1 and 3.2. Define

λ∗
a =

√
Tr(�−1

a �θ∗�−1
a ) log p

Tr(�−1
a )

.

Lemma 3.1 (Fixed effects estimation with quasi-likelihood based
Lasso). Assume that Conditions 3.1 and 3.2 hold true. There
exists a constant c1 such that for λ ≥ c1λ∗

a and Tr(�−1
a ) �
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s log p, we have with probability at least 1 − 2 exp(− log p),∥∥∥β̂ − β∗
∥∥∥
1

≤ C1sλ,
∥∥∥β̂ − β∗

∥∥∥
2

≤ C2
√
sλ, and

1
Tr(�−1

a )

∥∥∥Xa(β̂ − β∗)
∥∥∥2
2

≤ C3sλ2 (9)

for some positive constants C1, C2, and C3. Moreover, for any
a > 0,

λ∗
a ≤

√
(�max(�)/a + σ 2

e ) log p
Tr(�−1

a )
.

Remark 3.1. For any a ≥ 0,
n∑

i=1
max{mi − q, 0} ≤ Tr(�−1

a ) ≤ N.

Lemma 3.1 provides upper bounds for the prediction error
and the estimation errors in �1-norm and �2-norm. By set-
ting a to be a positive constant, the �2-error of β̂ is of order√
s log p/Tr(�−1

a ). Remark 3.1 studies the magnitude of the
effective sample size Tr(�−1

a ). As pointed out by a reviewer, in
the case of equal group sizes and q/m ≤ c0 < 1, Tr(�−1

a )  N,
that is, the convergence rates are the same as the rates in linear
models. Revoking Proposition 2.1, it shows that β̂ has a faster
convergence rate than β̂(lm) in the regime that q grows but
remains relatively small tom.

The results of Lemma 3.1 hold for any positive constant a.
Different choices of a can affect the constants in the upper bound
and the empirical performance of the method. To understand
the optimal choice of a, we prove the following remark.

Remark 3.2 (Effect of a). Suppose � = η∗Iq. For any given
n, p, q, {mi}ni=1, a = η∗/σ 2

e minimizes λ∗
a for a ∈ (0,∞). If it

further holds that η∗ �= 0 and q < maxi≤n mi, then λ∗
0 > λ∗

a for
any a ∈ (0, λ∗

a].
Remark 3.2 gives the optimal choice of a for � = η∗Iq.

In this case, setting a = η∗/σ 2
e minimizes λ∗

a and hence
minimizes the upper bound on the estimation errorswhen other
parameters and constants are fixed. The optimal choice of a is
intuitive as it mimics the MLE procedure. Furthermore, when
the random effects exist and q < maxi≤n mi, then setting a = 0
is strictly worse than the proposed quasi-likelihood approach
with a ∈ (0, λ∗

a]. We mention that the condition q < maxi≤n mi
is sufficient but not necessary. This remark sheds lights on the
choice of a in general settings as any semipositive definite �

can be upper and lower bounded by diagonal matrices. From
the optimization perspective, we treat a as a tuning parameter
in the optimization (4). In Section 5, we carefully examine the
effect of a on estimation accuracy in numerical experiments.

3.2. Rate Optimality of the Proposed Estimator

In this subsection, we study theminimax optimality of proposed
estimator for the fixed effects. We consider

Xi
k,.|Z ∼iid N (0,�x) , γi ∼iid N(0,�) and εi,k ∼iid N(0, σ 2

e ),
(10)

k = 1, . . . ,mi, i = 1, . . . , n. Consider the following parameter
space

�(s,Z) =
{
ν = (β∗,� , σ 2

e ,�x,Z) : ‖β∗‖0 ≤ s,

0 < σ 2
e ≤ K0, 0 � � � K1,

1/K∗ ≤ �min(�x) ≤ �max(�x) ≤ K∗ < ∞
}
,

(11)

where K∗ ≥ 1. We see that (10) and (11) define a special case of
Conditions 3.1 and 3.2. We prove the minimax optimal rate of
convergence in �2-norm with respect to �(s).

Theorem 3.1 (Minimax lower bounds for estimating the
fixed effects). Suppose that (1) and (10) are true. If
s ≤ cmin{Tr(�−1

a )/ log p, pν} for 0 < ν < 1/2 and c > 0, then
there exists some constant c1 > 0 such that for any fixed a > 0,

inf
β̂

sup
ν∈�(s,Z)

Pν

(
‖β̂ − β∗‖22 ≥ c1

s log(p/s2)
Tr(�−1

a )
|Z

)
≥ 1

4
.

Together with (9), this shows that β̂ is minimax rate optimal
in �2-error in the parameter space �(s,Z). In the proof, we
use the minimax optimality of �1-penalized MLE, which has
�−1

θ∗ as the weighting matrix and use Proposition 2.2 to show
the equivalence of MLE and proposed estimator in term of
convergence rate.

3.3. Statistical Inference of the Fixed Effects

Debiased estimators can be used for statistical inference of lin-
ear combinations of regression coefficients in high-dimensional
linear models (Javanmard and Montanari 2014; van de Geer et
al. 2014; Zhang and Zhang 2014). Under certain conditions, the
debiased estimators are asymptotically normal and can be used
to construct confidence interval with optimal lengths (Cai and
Guo 2017). To make inference of β∗

j , we consider the debiased
estimator proposed in (5). Let Hj be the support of (�−1

x|z ).,j.

Theorem 3.2 (Asymptotic normality of the debiased estimator).
Assume Conditions 3.1 and 3.2. Let λ∧λj ≥ c1

√
log p/Tr(�−1

a )

with a large enough constant c1. For β̂
(db)
j defined in (5), if

(s log p)2 ∨ log nmaxi mi � Tr(�−1
a )�min(�

−1/2
a �θ∗�−1/2

a )

and |Hj| log p � Tr(�−1
a ), then it holds that

V−1/2
j (β̂

(db)
j − β∗

j ) = Rj + oP(1),

where Rj
D−→ N (0, 1) for

Vj = ŵ�
j �

−1/2
a �θ∗�−1/2

a ŵj

{ŵ�
j (Xa).,j}2

.

The magnitude of Vj satisfies

Vj = (�−1
x|z )j,jTr(�−1

a �θ∗�−1
a )

Tr2(�−1
a )

(1 + oP(1)). (12)
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Theorem3.2 shows the asymptotic normality of the proposed
debiased estimator under the given conditions. The conver-
gence rate of β̂

(db)
j is V1/2

j with magnitude provided in (12).
Remark 3.2 helps to understand the effect of a on the inference
results. As�x|z is positive definite,Vj is proportional to (λ∗

a)
2 for

any given p. Hence, using the debiased Lasso for linear models,
that is, setting a = 0, can lead to large Vj and low power in
statistical inference. We verify these arguments numerically in
Section 5. The sparsity of (�−1

x|z ).,j guarantees that κ̂j converges
to its probabilistic limit so that the central limit theorem can
be justified. When � is positive definite, the sample size con-
dition for asymptotic normality is (s log p)2 ∨ log nmaxi mi ∨
|Hj| log p � Tr(�−1

a ). When � is singular, it is sufficient
to require (s log p)2 maxi mi ∨ log nmaxi m2

i ∨ |Hj| log p �
Tr(�−1

a ).
Theorem 3.2 is related to the results in some other works.

When there is no random effect components, that is, Z = 0,
the conditions and conclusions of Theorem 3.2 recover the con-
ditions and conclusions for the debiased Lasso in linear models,
say, inTheorem2.4 of van deGeer et al. (2014). In comparison to
BCG19 of Bradic, Claeskens, and Gueuning (2020), the limiting
distribution of their test statistic under the null hypothesis does
not require sparse regression coefficients but requires |Hj| =
o(

√
n/ log p/ log n), using our notations. The power analysis for

their test statistic requires max{s, |Hj|} = o(
√
n/ log p/ log n).

In comparison, the sample size condition in our work (in the
fixed q and m scenario) is s = o(

√
n/ log p) and |Hj| =

o(n/ log p), which is weaker. More importantly, the realization
of β̂

(db)
j does not rely on the null hypothesis and hence can

be directly used to construct confidence intervals. We examine
the empirical performance of these two different approaches in
Section 5.

If one has a consistent estimator of Vj, the confidence
intervals of the fixed effects can be constructed based on
the limiting distribution of β̂

(db)
j . However, a plug-in esti-

mate of Vj would require the knowledge of the structures
of variance components and extra efforts on estimation. In
the following, we show that an empirical estimator of Vj, V̂j
defined in (8), is consistent under mild conditions. Let cn =
log nmaxi mi/�min(�

−1/2
a �θ∗�−1/2

a ).

Lemma 3.2 (Convergence rate of the variance estimator). Under
the conditions of Theorem 3.2, for V̂j defined in (8),

|V̂j/Vj − 1| = OP

(
c1/2n Tr−1/2(�−1

a ) + cn
s log p

Tr(�−1
a )

)
.

Lemma 3.2 implies that the proposed variance estimator
is consistent if cn = o(Tr1/2(�−1

a )) and the conditions of
Theorem 3.2 hold true. The quantity cn is to account for the
correlations within clusters. The proposed V̂j is robust in the
sense that it does not rely on the specific structure of the
variance components and is consistent under mild conditions.
Based on Theorem 3.2 and Lemma 3.2, hypothesis testing
and constructing confidence intervals are both achievable. The
asymptotic validness of the proposed confidence interval (7) is
guaranteed.

We conclude this section with a further comment on the
benefits of using the quasi-likelihood. In fact, even if we have

consistent estimators of the variance parameters, say θ̂ , using
proxy matrix �a to compute the debiased estimator is still
favorable over using �

θ̂
. First, using θ̂ can bring the complex

dependence structure to Rj as the correction score would also
depend on the random components. This makes it difficult
to justify the asymptotic normality of Rj. Second, �−1

θ̂
may

not approximate �−1
θ∗ well enough in the sense that the mag-

nitude of the error in θ̂ can be larger than the magnitude
of the bias of the debiased Lasso estimator. As a result, the
sample size condition for the asymptotic normality may be
impaired.

3.4. Results for Possibly Correlated X and Z

In this subsection, we consider a relaxed version of Condi-
tion 3.2 that allows for correlation between X and Z.

Condition 3.3. Conditioning on Z, each row of X is indepen-
dently distributed with covariance matrix �x|z such that 0 <

K∗ ≤ �min(�x|z) ≤ �max(�x|z) ≤ K∗ < ∞. Conditioning
on Z, the conditional sub-Gaussian norms of Xi

k,. are upper
bounded byK0. Moreover, max1≤j≤p ‖E[X.,j|Z]‖22 ≤ c1Tr(�−1

a )

for some large enough c1.

Revoking that ‖X.,j‖22 ≤ CN and Remark 3.1, a sufficient
condition for the last statement to hold is q/(mini mi) ≤ c0 < 1.

Lemma 3.3 (Fixed effects estimation with Lasso). Assume
that Conditions 3.1 and 3.3 hold true. There exist
large enough constants c1 and c2 such that for λ ≥
c1

√
(σ 2

e + K1/a) log p/Tr(�−1
a ) and Tr(�−1

a ) � s log p,
we have with probability at least 1 − 2 exp(−c2 log p),∥∥∥β̂ − β∗

∥∥∥
1

≤ C1sλ,
∥∥∥β̂ − β∗

∥∥∥
2

≤ C2
√
sλ, and

1
Tr(�−1

a )

∥∥∥Xa(β̂ − β∗)
∥∥∥2
2

≤ C3sλ2 (13)

for some large enough constants C1, C2, and C3.

Under Condition 3.3, for any constant a > 0, the effective
sample size for the proposed approach is still of order Tr(�−1

a ).
However, we may not have a clear understanding of the optimal
choice of a under current conditions but a can still be chosen by
cross-validation in applications.

For inference of the fixed effects, one issue caused by the
correlation between X and Z is that the limit of κ̂j in (6) can
depend on a and its sparsity is hard to guarantee. If its limit
is sparse indeed, then the central limit theory of Theorem 3.2
still holds. If its limit is not sparse, then one may consider the
debiasing scheme for linear models with the initial estimator
computed by the quasi-likelihood approach. We show in the
supplementary materials (Theorem A) that our proposed debi-
ased estimator with a = 0 in (5) and (6) is robust to the
correlation betweenX andZ. However, its asymptotic normality
requires stronger sample size conditions when � is positive
definite and it can have significantly wider confidence intervals
and hence lower statistical power. We examine this method in
Section 5 numerically.
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4. Variance Components Estimation

In this section, we consider estimating the unknown parameters
of variance components. While fixed effects inference can be of
main interest in many problems, estimation of variance compo-
nents can provide insights into the structure of the data. As far as
we know, this problemhas not been studied in existence of high-
dimensional fixed effects. We will demonstrate that the idea
of quasi-likelihood approach can be applied to estimating the
variance components in high-dimensional linear mixed-effects
models.

We parameterize � as follows. Let η∗ ∈ R
d be the true

parameter such that

� = �η∗ =
d∑

j=1
η∗
j Gj ∈ R

q×q, (14)

where G1, . . . ,Gd are symmetric basis matrices that are linearly
independent in the sense that

d∑
j=1

cjGj = 0 iff c1 = · · · = cd = 0. (15)

The dimension d is allowed to grow to infinity. The structure of
�η∗ (14) incorporates most commonly used models in applica-
tions, such as the random intercept model and the models used
in twin or family studies (Wang, Guo, andHe 2011). One should
note that any symmetric � can be represented via (14) with η∗
being the vector of its upper diagonal elements. Without loss of
generality, we assume the basis matrices have a constant scale,
that is, max1≤j≤d ‖Gj‖2 ≤ C < ∞.

4.1. Estimating the Variance Components

A widely used approach for estimating the variance compo-
nents is the Gaussian maximum likelihood method. However,
this approach is highly restricted to the Gaussian assumptions.
We consider a different approach that deals with sub-Gaussian
random components. We first split the data into two folds: Let
I1 ∪ I2 = [n], I1 ∩ I2 = ∅, and |I1| ≈ |I2| ≈ n/2. Let β̂(2)

be an initial estimate of β∗ with the second half of the data
{Xi,Zi, yi}i∈I2 . We compute the residuals r̂i = yi − Xiβ̂(2) for
i ∈ I1 and estimate σ 2

e via

σ̂ 2
e = 1∑

i∈I1 Tr(P
⊥
Zi)

∑
i∈I1

‖P⊥
Zi r̂i‖22. (16)

Next, we estimate η∗ via

η̂ = argmin
η∈Rd

∑
i∈I1

∥∥∥(�i
a)

−1/2(r̂i r̂�i − Zi�η(Zi)� − σ̂ 2
e Ini )(�i

a)
−1/2

∥∥∥2
F
,

(17)

where constant K ≥ K2 and σ̂ 2
e is obtained via (16).

The rationale of (16) is that the observations P⊥
Zi(yi −

Xiβ∗) have covariance matrix σ 2
e P⊥

Zi which only involves the
target parameter σ 2

e . Replacing β∗ with its quasi-likelihood
estimate gives (16). This estimator is meaningful only when∑

i∈I1 Tr(P
⊥
Zi) > 0, that is,

∑
i∈I1 mimax{0, 1 − q/mi} > 0.

The rationale of (17) comes from the MLE. One can check

that the derivative of the target function in (17) would be the
score function with respect to η if we replace �a with the MLE
estimate of�θ∗ . Different from theMLE, we estimate σ 2

e and η∗
separately. This is because a joint estimation of η∗ and σ 2

e may
have poor performance. The reason is that, loosely speaking, the
observed data involves N independent observations of the ran-
dom noise and n independent observations of random effects.
When N � n, the convergence rate for estimating σ 2

e and η∗
can have different magnitudes and a joint estimation can lead to
ill-positioned Hessian matrix and nonsharp convergence rate.
The sample splitting is for technical reasons and it is for proving
that the estimation error of η̂ is independent of the error of the
fixed-effects estimation.

Computationally, σ̂ 2
e in (16) is a one-step estimator and (17)

involves a convex optimization, which can be easily imple-
mented. On the other hand, sample splitting can lead to subop-
timal finite sample performance and it is worthwhile to perform
a cross-fitting step. That is, one can run another round of (16)
and (17) with samples in the two folds switched and report the
average of two estimates as the final estimate.

4.2. Upper Bound Analysis

In this subsection, we analyze the proposed estimator of the
variance components. Let DG ∈ R

d×d be such that

{DG}j,k = Tr
(
GjGk

)
. (18)

The matrix DG only depends on the prespecified basis and
�min(DG) > 0 as Gj, j = 1, . . . , d, are linearly independent.

Theorem 4.1 (Convergence rate of variance components esti-
mates). Assume that Conditions 3.1 and 3.2 hold and∑

i∈I2 Tr((�
i
a)

−1) � s log p. Then

|σ̂ 2
e − σ 2

e | = OP

( ⎛⎝∑
i∈I1

maxmi{0, 1 − q/mi}
⎞⎠−1/2

+ s log p∑
i∈I2 Tr((�i

a)
−1)

)
.

If further n ≥ c1 log d for some large enough c1,
min1≤i≤n �min(�

i
z) ≥ c0/mi > 0, and 0 < c1 ≤ �min(DG) ≤

�max(DG) ≤ c2 < ∞, then

‖η̂ − η∗‖2 = OP

(√
d log d

n

)
.

The convergence rate of σ̂ 2
e depends on the effective sample

size in I1 as well as the estimation error of β̂(2). In comparison to
the rate of variance estimation in linear models (Verzelen 2012),
the current result replaces the total sample size with the effective
sample size. On the other hand, η̂ has the typical parametric
rate when there are d unknown parameters and n independent
observations of random effects. The estimation error of η̂ is
independent of the error of the fixed effects estimation.

In terms of conditions, DG depends on prespecified basis
matrices and it eigenvalues are positive and bounded in many
cases. Consider the class of basis matrices where Gj,k ∈ R

q×q

such that (Gj,k)l,q = (Gj,k)q,l = 1 if l = j, q = k and
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(Gj,k)l,q = 0 otherwise. For any 1 ≤ d ≤ q(q + 1)/2, it is easy
to check that in this case �min(DG) = �max(DG) = 1. For
independent sub-Gaussian Zi

k,., min1≤i≤n �min(�
i
z) ≥ c0 with

high probability if q log n � min1≤i≤m mi. To summarize, the
estimators proposed in Section 4.1 are mainly for the scenario
where q ≤ c0 min1≤i≤n mi for sufficiently small c0.

4.3. Rate Optimality of Estimating Variance Components

Now we turn to study the minimax lower bound for estimating
the variance parameters. We consider the random components
satisfying (10) and parameter space �(s,Z) (11).

Theorem 4.2 (Minimax lower bounds for estimation of vari-
ance components). Suppose that (1) and (10) are true. If s ≤
cmin{Tr(�−1

a )/ log p, pν} for 0 < ν < 1/2 and c > 0 for some
c0 > 0, then there exists some constants c1 − c3 > 0 such that

inf
σ̂ 2
e

sup
ν∈�(s,Z)

Pν

(
|σ̂ 2

e −σ 2
e |≥c1Tr−1/2(�−1

a )+c2
s log(p/s2)
Tr(�−1

a )
|Z

)
≥ 1

4
.

If further �max(DG) ≤ C < ∞,

inf
η̂

sup
ν∈�(s,Z)

Pν

(‖η̂ − η∗‖2 ≥ c3n−1/2|Z) ≥ 1
4
.

Theorems 4.2 and 4.1 together imply that σ̂ 2
e is rate optimal in

�(s,Z)under the conditions of Theorem4.2 if whenTr(�−1
a ) ∑n

i=1mimax{0, 1 − q/mi}. As explained after Lemma 3.1, in
the case where group sizes are equal and q/m ≤ c0 < 1,∑n

i=1 max{0,mi − q}  Tr(�−1
a )  N. Moreover, η̂ is rate

optimal when d is finite. When d grows, regularized estimators
of η∗ can have smaller estimation error than η̂, similar to the
famous Stein’s phenomenon.

5. Simulation Results

In this section, we present simulation results to evaluate the
empirical performance of the proposed methods and compare
it with some related methods. We examine the effect of a on
estimation and inference of the fixed effects.

We generate data as follows. We set N = 144 and p = 300.
Each row of (X,Z) is iid generated from a normal distribution
with mean zero and covariance such that �x = Ip, �z = Iq,
and (�x,z)k,j = ρj for 1 ≤ j, k ≤ q and (�x,z)k,. = 0 for k >

q. That is, the correlation between Xj and Z is nonzero if j ≤
p and is 0 if j > q. The random noises are iid generated via
εi ∼ N(0, 0.25Imi) and the random effects are iid generated via
γi ∼ N(0,�). We consider q ∈ {2, 8, 14}. The matrix � will be
specified later. The responses y are generated via model (1) with
s = 5 and β1:5 = (1, 0.5, 0.2, 0.1, 0.05)� and equal cluster sizes,
that is,m1 = · · · = mn = m. Each setting is replicated with 300
independent Monte Carlo simulations.

5.1. Statistical Inference for Fixed Effects

We first examine the empirical performance of the proposed
confidence intervals (7) and hypothesis testing based on β̂

(db)
j .

We consider two covariance matrices of random effects, a “pos-
itive definite �” where �j,k = 0.56|j−k| for 1 ≤ j, k ≤ q,
and a “singular �” with a diagonal � where �j,j = 0.56 for
1 ≤ j ≤ q/2 and �j,j = 0 otherwise. For the proposed
method, we first choose a by cross-validation using the error
criteria ‖y − Xβ̂(a)‖22, where β̂(a) the proposed estimate asso-
ciated with a specific a. The tuning parameter λ is chosen as
σ̂ (init)√2 log p/N, where σ̂ (init) is computed via the scaled-Lasso
(Sun and Zhang 2012) with observations {Xa, ya}. For comput-
ing β̂

(db)
j , the tuning parameters λj are set to be σ̂x

√
2 log p/N,

where σ̂x is computed via the scaled-Lasso with observations
{(Xa).,−j, (Xa).,j}. The tuning parameters for BCG19 are chosen
as in Section 5 of Bradic, Claeskens, and Gueuning (2020).

We see from Table 1 that the coverage probabilities of the
proposed confidence intervals are close to the nominal level in
most scenarios. It shows that the proposed method is robust
to large m and q and singular � . We see that the confidence
intervals have shorter lengths whenm increases. This is because
when q is fixed and m grows, the effective sample size Tr(�−1

a )

increases and the proposed estimators have smaller estimation
errors. See Table 1 in the supplementary materials for details.
When q grows andm is fixed, the effective sample size Tr(�−1

a )

is smaller and the proposed estimators have larger estimation
errors. The results for ρ = 0.2 are reported in the Table 2 of the
supplementary materials.

In Table 2, we report the Type I error and power of our
proposedmethod and those of BCG19. The computational time
for our proposal is around 8 sec per experiment and that for
BCG19 is around 20 sec per experiment. Ideally, the rejection
rate for the true null should be close to 5% and the rejection

Table 1. 95%-confidence intervals given by the proposed approach with positive definite� and singular� when ρ = 0.

Positive definite� Singular�

q m cov(0.5) cov(0) SD(0.5) SD(0) cov(0.5) cov(0) SD(0.5) SD(0)

2
4 0.940 0.957 0.068 0.062 0.953 0.943 0.062 0.056
8 0.943 0.967 0.063 0.053 0.938 0.981 0.058 0.049
12 0.943 0.967 0.061 0.049 0.967 0.948 0.059 0.047

8
4 0.943 0.960 0.195 0.177 0.957 0.943 0.128 0.111
8 0.960 0.940 0.148 0.123 0.933 0.919 0.105 0.088
12 0.943 0.973 0.106 0.083 0.957 0.976 0.085 0.066

14
4 0.937 0.953 0.276 0.264 0.976 0.948 0.173 0.153
8 0.937 0.947 0.243 0.217 0.924 0.929 0.158 0.132
12 0.933 0.950 0.202 0.166 0.981 0.924 0.148 0.112

NOTE: “cov(0.5)” and “cov(0)” denote the coverage probabilities for βj = 0.5 and βj = 0, respectively. “SD(0.5)” and “SD(0)” denote the standard deviations for βj = 0.5
and βj = 0, respectively.
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Table 2. The rejection rate for testing H0 : β∗
j = 0 at 95% level for β∗

j ∈ {1, 0.5, 0.2, 0}with positive definite� (p.d.) and singular� when ρ = 0.

Proposed BCG19

� q m 1 0.5 0.2 0 1 0.5 0.2 0

p.d.

2
4 1 1 0.793 0.043 1 1 0.627 0.043
8 1 1 0.880 0.033 1 1 0.850 0.040
12 1 1 0.940 0.033 1 1 0.936 0.040

8
4 0.997 0.713 0.163 0.040 0.987 0.593 0.150 0.067
8 1 0.923 0.243 0.060 0.987 0.747 0.173 0.060
12 1 1 0.423 0.027 1 0.840 0.207 0.030

14
4 0.943 0.437 0.117 0.047 0.867 0.327 0.123 0.037
8 0.967 0.487 0.113 0.053 0.927 0.397 0.107 0.057
12 0.993 0.610 0.157 0.050 0.930 0.477 0.150 0.060

Singular

2
4 1 1 0.895 0.057 1 1 0.900 0.029
8 1 1 0.952 0.020 1 1 0.943 0.024
12 1 1 0.914 0.052 1 1 0.927 0.057

8
4 1 0.995 0.362 0.057 1 0.976 0.371 0.052
8 1 0.986 0.438 0.071 1 0.986 0.438 0.062
12 1 1 0.638 0.024 1 1 0.567 0.047

14
4 1 1 0.638 0.024 1 1 0.567 0.048
8 1 0.895 0.228 0.043 1 0.890 0.233 0.052
12 1 0.895 0.229 0.067 1 0.890 0.233 0.052

rates for β∗
j ∈ {1, 0.5, 0.2} should be larger than 5%. We see

that both our proposal and BCG19 are effective at controlling
the Type I error. However, BCG19 is less powerful than our
proposal when q is large and � is positive definite. When � is
singular, two methods have comparable performance in most
scenarios.

Table 3 demonstrates the effect of a on estimation and
inference of the fixed effects. The results for singular � are
reported in the supplementary materials. We see that choosing
a = 0 can lead to large estimation errors and significantly
wider confidence intervals. This implies that the Lasso for linear
models is less accurate than our proposed methods with a > 0.
In all the scenarios of (q,m), we see that the estimation error
first decreases as a increases and then increases as a increases.

Table 3. Effect of different a on sum of squared error (SSE) for estimating β∗ and
on the accuracy of confidence intervals with positive definite� and ρ = 0.

(q,m) a SSE Tr(�−1
a ) cov(0.5) cov(0) SD(0.5) SD(0)

(2, 4)

0 0.321 144.0 0.948 0.967 0.138 0.122
2 0.134 87.3 0.962 0.962 0.074 0.065
4 0.113 81.4 0.933 0.952 0.070 0.062
8 0.111 77.7 0.933 0.957 0.068 0.062
16 0.103 75.2 0.900 0.967 0.065 0.060
32 0.105 73.8 0.890 0.933 0.065 0.060

(8, 8)

0 0.753 144.0 0.943 0.943 0.261 0.235
2 0.338 34.5 0.952 0.962 0.150 0.122
4 0.342 26.2 0.948 0.933 0.148 0.121
8 0.349 19.6 0.943 0.967 0.144 0.119
16 0.350 14.8 0.910 0.962 0.143 0.116
32 0.402 10.9 0.895 0.967 0.142 0.119

(14, 12)

0 0.961 144.0 0.948 0.967 0.344 0.316
2 0.531 19.9 0.981 0.948 0.211 0.167
4 0.501 12.9 0.938 0.967 0.199 0.162
8 0.515 8.1 0.938 0.971 0.200 0.167
16 0.504 5.0 0.948 0.957 0.200 0.161
32 0.551 2.9 0.905 0.967 0.190 0.155

NOTE: “cov(0.5)” and “cov(0)” denote the coverage probabilities for βj = 0.5 and
βj = 0, respectively. “SD(0.5)” and “SD(0)” denote the standard deviations for
βj = 0.5 and βj = 0, respectively.

This phenomenon agrees with Remark 3.2. For the inference
results, the proposed confidence interval has the desired cov-
erage probabilities as long as a is not too large. We see that
setting a = 0 has coverage probabilities close to the nominal
level but the confidence intervals are significantly wider than
setting a > 0. This implies that using the linear debiased Lasso
can lead to low power in hypothesis testing for mixed-effects
models.

5.2. Estimating Variance Components

In this subsection, we consider estimating variance components
with the proposed method. The true fixed effects and data
generation steps are the same as in Section 5.1.We use the whole
data to estimate σ 2

e and η∗. We set σ 2
e = 0.25. We first consider

diagonal � with d = 2. The basis matrices are set to be

G1 =
(
Iq/2 0
0 0

)
and G2 =

(
0 0
0 Iq/2

)
.

For diagonal � , η∗ = (0.56, 0.56)�. For singular � , η∗ =
(0.56, 0)�. Table 4 shows the mean absolute errors of σ 2

e
(mae.σ 2

e ), η∗
1 (mae.η1), and η∗

2 (mae.η2). A scenario with rel-
atively large d is reported in the supplementary materials
(Table 4).

Table 4. Estimation of the variance components with the proposed method for
positive definite and singular� when ρ = 0.

Positive definite� Singular�

m q mae.σ 2
e mae.η1 mae.η2 mae.σ 2

e mae.η1 mae.η2

4 2 0.115 0.206 0.207 0.076 0.150 0.050

8 2 0.091 0.212 0.249 0.070 0.171 0.020

4 0.122 0.164 0.166 0.071 0.136 0.027

12 2 0.087 0.268 0.245 0.076 0.197 0.015

6 0.126 0.163 0.160 0.078 0.116 0.019
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6. Application to A Genome-Wide Association Study
in aMouse Population

We apply the proposed method to estimate the effects of genetic
variants on the BMI in a heterogenous stock mice population
generated by the Welcome Trust Centre for Human Genetics
http://gscan.well.ox.ac.uk. The data is available in R package
“BGLR” (Perez and de los Campos 2014). The dataset consists
of 1814mice, each genotyped over 10,346 polymorphicmarkers
(SNPs) and has been used for genome-wide genetic association
studies of multiple traits (Shifman, Bell, and Copley 2006; Val-
dar et al. 2006). This mice population consists of 8 liters and
were housed in 523 different cages, each including a different
number of mice. The distribution of cage density is in Figure 1.
We are interested in identifying the genetic variants that are
associated with the BMI phenotype. The measurements of BMI
are transformed as described in Valdar et al. (2006) so that the
data distribution is close to normal. In many mice experiments,
cages often contribute significant environmental effects to the
phenotypes such as BMI and mice in the same cage tend to
be correlated in their phenotype measurements. It is therefore
important to account for such cage effect in genetic association
studies and the linear mixed-effects model can be employed.

In the current analysis, we incorporate the effect of cages as
a single random effect and consider the following model

Yi,k = β0 +
10346∑
j=1

βjXi
j,k + τ1agei,k + τ2genderi,k + γi + εi,k,

where Yi,k is the BMI of the kth mouse in the ith cage, Xi
j,k is the

numerical genotype at the genetic variant j for the ith mouse in

Figure 1. Cage density of the stock mice population. The average density of cages
with at least two individuals is 3.70.

cage k, β0 and βj are the regression coefficients corresponding to
the intercept and genetic variants, τ1 and τ2 are the regression
coefficients for age and gender, γi is the cage-specific random
effect for the ith cage. For cages with only one individual, we
only fit the fixed effects.

The fixed effects are estimated via a weighted Lasso. To
mitigate the relatively high correlation among the design, we
first compute ridge regression estimates of the fixed effects, say
β̂(rr), with tuning parameter chosen by cross-validation and use
normalized {1/|β̂(rr)

j |}pj=1 (sum up equal to p) as the weights for
the Lasso estimates. The regression coefficient β̂ is obtained by
fitting (4)with tuning parameterλ = 0.655×√

2 log p/N, where
0.655 is the noise level estimated by the scaled Lasso. In terms of
statistical inference, we compute the debiased Lasso estimates
of the fixed effect via (5) and their variances according to (8).
According to cross-validation, we set a = 2.

6.1. Identification of BMI Associated Genetic Variants

We control the false discovery rate (FDR) at 5% using the pro-
cedure proposed in Xia, Cai, and Cai (2018). Our method iden-
tifies 14 covariates with p-value threshold 6.7 × 10−5. The QQ
plot of the z-scores of all the covariates is given in the left panel of
Figure 2. It shows some deviation from standard normal density
at both tails, indicating that some variants can be associatedwith
BMI (Table 5). Some of the genetic variants identified are in or
near the genes known to be associated with body growth, body
size, metabolism or obesity. For example, SNP rs13478535
is a variant in Auts2 gene, which has been shown to be related
to with either low birth weight or small stature mice (Gao, Lee,
and Stafford 2014). SNP rs13481413 is one of the genetic
variants in gene Immp2l, which is associated with food intake
and body weight (Han, Zhao, and Lu 2013). cAMP response
element binding protein (Crebbp) has been postulated to play an
important role downstream of the melanocortin-4 receptor and
may affect other pathways that are implicated in the regulation
of body weight (Chiappini et al. 2011).

We also consider applying the proposed procedure with a =
0. This is equivalent to applying the Lasso to fit the linear model
to without considering the random cage effects. The tuning

Figure 2. The normal QQ-plots of the z-scores of the debiased Lasso estimators with proposed approach (left) and the debiased Lasso estimates with a = 0 (right) for
10348 fixed effects. The straight reference line passes the first and third quantiles of the z-scores.

http://gscan.well.ox.ac.uk
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Table 5. Selected covariates at FDR level 0.05.

SNP Gene z-score SNP Gene z-score

rs13476390 −5.11 rs13482464 −4.01
rs13478535 Auts2 −4.42 rs4152477 Crebbp 4.17
rs3023058 Srrm3 4.22 rs6251709 Csnka2ip 4.49
rs13480072 −4.52 rs6185805 Mtcl1 −4.22
rs13481413 Immp2l −4.22 gnf18.028.738 −4.34
rs13481961 6.27 gnfX.070.167 −4.24
rs4139535 4.51 gender 19.63

NOTE: 13 SNPs and gender are selected at FDR ≤ 0.05 and their z-scores are reported. The genes where the SNPs are located are presented when they are available.

parameters are chosen in the same way as above. Only gender
is selected as nonzero at FDR level 0.05. This is possibly due to
the model misspecification and larger variances of the debiased
Lasso estimators. The QQ-plot of the z-scores based on the de-
biased Lasso estimation of the linear model (right panel of Fig-
ure 2) shows that the z-scores clearly deviate from the standard
normal distribution. These results indicate that the proposed
estimation and inference methods for the linear mixed-effects
model indeed provide an effective way of identifying important
genetic variants associated with BMI in mice.

6.2. Evaluation of Cage Effect

For estimating the variance components, we only use the clus-
ters with at least two observations. The estimated variance of the
random effects is 0.202 and the estimated variance of the noise is
0.209. We compute the standard error of the estimated variance
of the randomeffects assuming that the randomcomponents are
normally distributed. The estimated standard deviation is 0.018,
which indicates a strong cage effect.

7. Discussion

The present article considers estimation and inference of
unknown parameters in a high-dimensional linear mixed-
effects model. Optimal rate of convergence for estimation
was established and rate-optimal estimators were developed.
The proposed methods have general applicability in modeling
repeated measures and longitudinal data, especially when the
cluster sizes are large or heterogeneous. The desirable proper-
ties of the proposed estimators are mainly due to the proper
approximations of the unknown oracle weighting matrix �θ∗ .
Our proposed estimation procedure is computationally efficient
and does not require strong distributional assumptions on the
random effects and error distributions.

The proposedmethods have important applications in large-
scale genetic association studies in humans, including both
family-based studies where the kinship coefficients can be used
to specify the random effects and population cohort studies
where the random effects can be used to adjust for population
stratification (Yang et al. 2014). Instead of considering one
genetic variant at a time as in typical mixed-effects models
in genetic association studies (Yang et al. 2014), our model
considers all the variants jointly. We expect gain in power in
detecting phenotype-associated genetic variants by allowing for
flexible random effects and by considering all genetic variants
jointly using high-dimensional mixed-effects models studied in
this article.

SupplementaryMaterials

In the online supplementary materials, we provide proofs of all the theo-
rems and lemmas and more numerical studies.
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