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Abstract

Motivated by the analysis of gene expression data measured in different tissues or disease

states, we consider joint estimation of multiple precision matrices to effectively utilize the par-

tially shared graphical structures of the corresponding graphs. The procedure is based on a

weighted constrained `∞/`1 minimization approach, which can be effectively implemented by

a second-order cone programming. Both theoretical and numerical properties of the procedure

are investigated. It is shown that the proposed joint estimation procedure leads to a faster

convergence rate than estimating the precision matrices individually under various losses. The

supports of the precision matrices can also be recovered after an additional thresholding step.

Under regularity conditions, the proposed procedure leads to an exact graph structure recovery

with probability tending to 1. The method is illustrated through an analysis of an ovarian cancer

gene expression data. The results indicate that the patients of the poor prognostic subtype lack

some important links between the genes of the apoptosis pathway.
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1. INTRODUCTION

Gaussian graphical models provide a natural tool for modeling the conditional independence

relationships among a set of random variables (Lauritzen, 1996; Whittaker, 1990). Such models

have been applied to infer the relationships between genes at transcriptional level (Schäfer and

Strimmer, 2005; Li and Gui, 2006; Li et al., 2013b), where the precision matrix, which is defined to

be the inverse of the covariance matrix, of a multivariate normal distribution has an interpretation of

conditional dependence. Compared with marginal dependence, conditional dependence can capture

the direct “link” between two variables when other variables are conditioned on. Based on a

precision matrix Ω = (ωij)p×p of a p-dimensional random vector, we define its corresponding

graphical structure by connecting variable i and variable j if and only if ωij 6= 0. We define the

support of Ω by the set of nonzero entries, S = {(i, j) : ωij 6= 0}. If the maximum degree of Ω,

maxi
∑p

j=1 I(ωij 6= 0), is relaltively small, we call Ω sparse. Since the expression variation of a gene

can usually be explained by a small subset of other genes, the precision matrix for gene expression

data is expected to be sparse.

Many methods for estimating the Gaussian graphical models in high-dimensional settings have

been developed in recent years. Meinshausen and Bühlmann (2006) introduced a neighborhood

selection approach to this problem by fitting an `1 penalized regression to each variable using the

other variables as predictors. It was shown that this neighborhood selection procedure estimates

consistently the set of non-zero elements of the precision matrix. Algorithms for exact maximization

of the l1-penalized log-likelihood have also been proposed. Yuan and Lin (2007), Banerjee et al.

(2008) and Dahl et al. (2008) adapted an interior point optimization method to solve this problem.

Based on the work of Banerjee et al. (2008) and a block-wise coordinate descent algorithm, Fried-

man et al. (2008) developed the graphical Lasso (glasso) for sparse precision matrix estimation,

which is computationally efficient even when the dimension is greater than the sample size. Yuan

(2010) developed a linear programming procedure for high dimensional precision matrix estimation

and obtained oracle inequalities for the estimation error in terms of several matrix norms. Cai

et al. (2011) developed a constrained `1 minimization approach (clime) to sparse precision matrix

estimation.

These methods have focused on estimating a single precision matrix or a single Gaussian graph-
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ical model. However, in many applications it is advantageous to jointly estimate multiple precision

matrices and their corresponding graphical strucutures, especially when the graphical structures

share some common edges. A good motivating example is that gene expression data are often

measured over different tissues or in different populations, and it is expected that the underlying

Gaussian graphs share many common links, which may reflect the common regulatory relationships

among a set of genes across different tissues or in different populations. However, we also expect

certain tissue-specific or population-specific links among the genes. This raises an important statis-

tical problem of jointly estimating multiple precision matrices. Guo et al. (2011) proposed a method

that jointly estimates several graphical models (jemgm) corresponding to the different groups. The

method aims to preserve the common structure, while allowing for differences between the groups.

This is achieved through a hierarchical penalty that targets the removal of common zeros in the

precision matrices across groups. Danaher et al. (2013) proposed the joint graphical Lasso (fgl

and ggl), which borrows strength across the groups in order to estimate multiple graphical models

that share certain characteristics, such as the locations or weights of nonzero edges. Their approach

is based upon maximizing a penalized log likelihood, where generalized fused Lasso or group Lasso

penalty is used. In both papers, the authors show that their joint estimators achieve the same

asymptotic convergence rate as the individual estimators.

In this paper, we propose a weighted constrained `∞/`1 minimization estimation method to

jointly estimate K sparse precision matrices (mpe). We aim to minimize the maximum of the

K matrix `1 norms under a constraint that encourages group-wise sparsity. We show that the

joint estimation procedure leads to a faster convergence rate than estimating the precision matrices

individually under the entry-wise `∞ norm loss. An additional thresholding step on the estimators

with a careful chosen threshold leads to a more accurate recovery of the graphical structure of the

precision matrices. After thresholding, the resulting estimator has a faster rate of convergence than

estimators obtained from individual samples under the matrix `1 norm. We also show that when

the multiple precision matrices have common graphical structures, our procedure leads to the exact

recovery of the graph structure with probability tending to 1.

Different from Guo et al. (2011) and Danaher et al. (2013), our method does not require inde-

pendence assumptions among the random variables across different groups. In genetic applications,
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the expression levels of the same subject across difference tissues are often correlated. Therefore,

the independence assumption sometimes fails to hold in real applications. Furthermore, we demon-

strate from the theoretical perspective the importance of joint estimation when multiple precision

matrices share common graphical structures, since the joint estimators achieve faster convergence

rates compared to the individual estimators.

The rest of the paper is organized as follows. Section 2 presents the estimation method and

the optimization algorithm. Theoretical properties of the estimation procedure and accuracy of the

graph structure recovery are studied in Section 3. Section 4 investigates the numerical performance

of the method through a simulation study. The proposed procedure is compared with other alter-

native approaches. The method is also illustrated via an analysis of human heart gene expression

data in Section 5. A brief discussion is given in Section 6 and technical proofs are presented in the

Appendix.

2. METHODOLOGY

We begin by introducing the basic notation and definitions used in this paper. For a vector

a = (a1, . . . , ap)
T ∈ Rp, define |a|1 =

∑p
j=1 |aj | and |a|2 = (

∑p
j=1 a

2
j )

1/2. For a matrix A = (aij) ∈

Rp×q, the elementwise `r norm is given by |A|r = (
∑

i,j |aij |r)1/r and the matrix 1-norm by the

maximum absolute column sum, ‖A‖l1 = max1≤j≤q
∑p

i=1 |aij |. The spectral norm of A is denoted

as ‖A‖2. Let λmax(A) and λmin(A) be the largest and smallest eigenvalues of A respectively. For

two sequences of real numbers {an} and {bn}, write an = O(bn) if there exists a constant C such

that |an| ≤ C|bn| holds for all sufficiently large n, write an = o(bn) if limn→∞ an/bn = 0.

2.1 The Joint Estimation Method

We introduce a joint estimation method for simultaneously estimating K precision matrices

that compeletely or partially share common support. The method is related to the constrained

`1 minimization approach for high dimensional regression and high dimensional precision matrix

estimation which has been demonstrated to be effective for recovering sparse vector (Donoho et al.,

2006; Candés and Tao, 2007) and a single sparse precision matrix (Cai et al., 2011).

For 1 ≤ k ≤ K, let X(k) ∼ N(µ(k),Σ(k)) be a p-dimensional random vector for the kth group.

The precision matrix of X(k), denoted by Ω(k) = (ω
(k)
ij ), is the inverse of the covariance matrix
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Σk. Assume that X(k)’s are independent of each other. Suppose there are nk identically and

independently distributed random samples from X(k): {X(k)
j , 1 ≤ j ≤ nk}. The sample covariance

matrix for the kth group is

Σ̂
(k)

=
1

nk − 1

nk∑
j=1

(X
(k)
j − X̄

(k)
)(X

(k)
j − X̄

(k)
)T,

where X̄
(k)

=
∑nk

j=1X
(k)
j /nk. We shall denote n = n1 + · · ·+ nK .

Our goal is to simultaneously estimate the precision matrices Ω(k) for 1 ≤ k ≤ K based on

the observed samples from each of the K groups. We propose a weighted constrained `∞/`1

minimization method which utilizes the potential shared support among the K groups. However,

the graphical structures of the K matrices do not need to be identical. Specifically, we estimate

Ω(k) = (ω
(k)
ij ) for k = 1, · · · ,K by the following constrained optimization,

min
Ω

(k)
1 ∈Rp×p, 1≤k≤K

(
max

1≤k≤K
|Ω(k)

1 |1
)
,

subject to max
i,j

{ K∑
k=1

wk|(Σ̂
(k)

Ω
(k)
1 − I)ij |2

}1/2
≤ λn, (1)

where wk = nk/n is the weight for the kth group, and λn = C(log p/n)1/2 is a tuning parameter.

The `∞/`1 objective function is used to encourage the sparsity of all K precision matrices. The

constraint is imposed on the maximum of the element-wise group `2 norm to encourage the groups

to share a common sparsity pattern.

Denote by Ω̂
(k)
1 (1 ≤ k ≤ K) the solution to (1). Then Ω̂

(k)
1 are not necessarily symmetric

in general. Our final estimator Ω̂
(k)

= (ω̂
(k)
ij ) of Ω(k) is obtained by symmetrizing Ω̂

(k)
1 . This is

done by comparing the pair of the non-diagonal entries at symmetric positions ω̂
(k)
1ij and ω̂

(k)
1ji and

by assigning the one with a smaller magnitude at both entries. That is,

ω̂
(k)
ij = ω̂

(k)
ji := ω̂

(k)
1ij I(|ω̂(k)

1ij | ≤ |ω̂
(k)
1ji |) + ω̂

(k)
1jiI(|ω̂(k)

1ij | > |ω̂
(k)
1ji |).

It is worthwhile to point out that the symmetrizing procedure is not ad-hoc. The procedure assures

the final estimator Ω̂
(k)

to obtain the same entry-wise `∞ estimation error as Ω̂
(k)
1 . The details are

discussed in Section 3.
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2.2 Computational algorithm

The convex optimization problem (1) involves estimating K p × p precision matrices. To re-

duce the computation complexity, it can be further decomposed into p sub-problems that involve

estimating K p× 1 sparse vectors:

min
β
(k)
j ∈Rp, 1≤k≤K

(
max

1≤k≤K
|β(k)j |1

)
,

subject to max
i

{ K∑
k=1

wk|(Σ̂
(k)
β
(k)
j − ej)i|

2
}1/2

≤ λn (2)

for 1 ≤ j ≤ p, where ej ∈ Rp is the unit vector with the j-th element being 1 and other elements

being 0. The following lemma shows that solving (2) is equivalent to solving (1).

Lemma 1 Suppose Ω̂
(k)
1 is the solution to (1) and B̂(k) := (β̂

(k)
1 , . . . , β̂

(k)
p ), where β̂

(k)
j is the solution

to (2). Then Ω̂
(k)
1 = B̂(k) for 1 ≤ k ≤ K.

Problem (2) can be solve by a second-order cone programming. There are existing packages that

can be used to solve (2), such as the SDTP3 and the SeDuMi package in Matlab, and the CLSOCP

package in R. CLSOCP uses a one-step smoothing Newton method of Liang et al. (2009). This

algorithm has good precision but works relatively slowly for high dimensional problem. SeDuMi and

SDTP3 adopted the primal-dual infeasible-interior point algorithm (Newsterov and Todd, 1998).

The most time-consuming part of the algorithm is to solve the Schur complement equation, which

involves Cholesky factorization. The sparsity and the size of the Schur complement matrix are two

factors that affect the efficiency. SDTP3 is able to divide a high dimensional optimization problem

into sparse blocks and uses the sparse solver for Cholesky factorizations. It is therefore faster than

SeDuMi in solving (2). In this paper, we used the SDTP3 package. For a problem with p = 200,

nk = 150 and K = 3, it takes a dual-core 2.7 GHz Intel Core i7 laptop approximately 11 minutes

to solve (1).

2.3 Tuning Parameter Selection

The tuning parameter λn in (1) and (2) determines the sparsity of the estimators, where a

larger λn leads to sparser solutions. But such solutions are often biased. To prevent the over-fitting

and reduce the bias, we calculate a BIC score using a re-estimated precision matrix based on the

selected coefficients. The procedure can be summarized as the following:
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1. For a given λ, calculate the estimator Ω̂
(k)

. Based on the support of Ω̂
(k)

, we use least squares

and neighborhood selection to re-fit the precision matrix estimator Ω̂
(k)
2 .

2. Define S(k)j = {i : ω̂
(k)
ij 6= 0, i 6= j}, which is the set of non-zero none-diagonal elements of the

jth column of Ω̂
(k)

.

3. If Card(S(k)j ) ≥ nk, let the jth column of Ω̂
(k)

equal to the jth column of Ω̂
(k)
·j , i.e. Ω̂

(k)
2,·j =

Ω̂
(k)
·j . If Card(S(k)j ) < nk, fit the regression model

X
(k)
j =

∑
i∈S(k)j

β
(k)
ij X

(k)
i + ε

(k)
j . (3)

It is easy to show that if S(k)j equal to the true support S(k)0,j = {l : ω
(k)
0,ij 6= 0, i 6= j}, β(k)lj =

−ω(k)
0,ij/ω

(k)
0,jj and Var(ε

(k)
j ) = 1/ω

(k)
0,jj . Thus, after fitting Model (3), we let ω̂

(k)
2,jj = 1/Var(ε̂

(k)
j ),

and ω̂
(k)
2,ij = −β̂(k)ij ω̂

(k)
2,jj .

4. Repeat Step 3 for j = 1, . . . , p and k = 1, . . . ,K. The resulting matrices Ω̂
(k)
2 , k = 1, . . . ,K

are not symmetric. We symmetrize Ω̂
(k)
2 by the same procedure as we do to Ω̂

(k)
1 :

ω̂
(k)
3,ji = ω̂

(k)
3,ij := ω̂

(k)
2,ijI(|ω̂(k)

2,ij | ≤ |ω̂
(k)
2,ji|) + ω̂

(k)
2,jiI(|ω̂(k)

2,ij | > |ω̂
(k)
2,ji|).

We use Ω̂
(k)
3 = (ω̂

(k)
3,ij), k = 1, . . . ,K as the estimators corresponding to the tuning parameter λ.

Compared with the original estimator Ω̂
(k)

, the re-fitted estimator improved the tuning parameter

selection in the simulations.

The optimal tuning parameter can be selected by Bayesian information criterion (bic),

bic(λ) =

K∑
k=1

{
nktr

(
Σ̂

(k)
Ω̂

(k)
3

)
− nk log(det Ω̂

(k)
3 ) + log(nk)sk

}
, (4)

where sk = Card{(i, j) : ω̂i,j 6= 0, 1 ≤ i < j ≤ p}. We obtain the solution to our method over a

wide range of tuning parameters and choose λ̂n that minimizes bic(λ).

3. THEORETICAL PROPERTIES

3.1 Estimation Error Bound

We investigate the properties of the proposed estimator by considering the convergence rates

of Ω̂
(k) − Ω(k), including estimation error bounds and graph structure recovery. We assume the

following conditions:

7



(C1). Suppose there exists some constant a > 0, such that

log p = o

(
n

K2a(log n)2

)
, and max(K,K4−a logK) = o(log p).

(C2). Let max1≤k≤K{λmax(Ω(k))/λmin(Ω(k))} ≤M0 for some bounded constant M0 > 0.

(C3). Suppose that n1 � n2 � · · · � nK , where n =
∑K

k=1 nk and wk = nk/n.

Let Mn = max1≤k≤K maxj
∑p

i=1 |ω
(k)
ij | = max1≤k≤K ‖Ω(k)‖`1 be the maximum matrix `1 norms

of the K matrices. The following theorem establishes the convergence rate of the precision matrix

estimates under the element-wise `∞ norm.

Theorem 1 Let λn = C0(log p/n)1/2 for some constant C0 >
√

2M0 + 2. Suppose that (C1)-(C3)

hold. We have

max
i,j

{ K∑
k=1

wk|(Ω̂
(k) −Ω(k))i,j |2

}1/2
≤ C1Mn

(
logK · log p

n

)1/2

(5)

with a high probability converging to 1 and C1 = 2C0.

Remark 1: The value of C0 depends on M0. In practice, M0 is often unknown. However, we

can can use tuning parameter selection method, such as BIC in (4), to choose λn. The details are

discussed in Section 2.3.

Remark 2: Theorem 1 (and Theorem 2 and 3) does not require the true precision matrices Ω(k)

to have identical graphical structures. Both the values and locations of non-zero entries can differ

across Ω(k), k = 1, . . . ,K.

Remark 3: It is not necessary to assume the independence between the groups X(k). Let

Y
(k)
ij = (X(k)X(k)′Ω(k))ij − eij and Yij = (Y

(1)
ij , . . . , Y

(K)
ij ). Let λmax,ij be the largest eigenvalue of

Cov(Yij). If we replace the condition (C2) by maxij λmax,ij ≤ M , then Theorem 1 still hold; so as

Theorem 2 and Theorem 3.

By Theorem 1, the average rate under the element-wise `∞ norm of the K estimators is of

the order of (logK/K)1/2Mn(log p/n1)
1/2. Here the number of groups K can grow with n and p.

Suppose the matrix `1 norm of the K-matrices are of the same order. Cai et al. (2012) showed

that the minimax rate for estimating the precision matrices separately is CMn(log p/n1)
1/2, which

leads to the following proposition.
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Proposition 1 Let Û be the set of estimators (Ω̃
(1)
, . . . , Ω̃

(K)
), where Ω̃

(k)
only depends on the

k-th sample {X(k)
j ; 1 ≤ j ≤ nk}. Then

min
(Ω̃

(1)
,...,Ω̃

(K)
)∈Û

max
(Ω(1),...,Ω(K))∈U

pr

[
max
i,j

{ K∑
k=1

|(Ω̃(k) −Ω(k))i,j |2
}1/2

≥ CMn

(
K · log p

n

)1/2
]
≥ α > 0,

for some α > 0 and sufficiently large n1, . . . , nK .

Clearly, joint estimation of precision matrices leads to a faster convergence rate under the

entry-wise `∞ norm than estimating the precision matrices individually, especially when K is large.

An additional thresholding step on the estimators with a careful chosen threshold leads to more

accurate recovery of the precision matrices. Define the thresholded estimator Ω̆
(k)

= (ω̆
(k)
ij ) as

follows:

ω̆
(k)
ij = ω̂

(k)
ij I


(

K∑
k=1

wk(ω̂
(k)
ij )2

)1/2

> C1Mn

(
logK · log p

n

)1/2
 .

Here, C1 is the same constant as in (5).

Joint estimation can also lead to a faster rate under the matrix `1 norm under certain sparsity

assumption on the precision matrices. Let S(k)j = {(i, j) : ω
(k)
ij 6= 0, i < j} and Sj = ∪kk=1S

(k)
j . Let

s0(p) = max1≤j≤p Card(Sj) is the union sparcity. The next theorem shows the convergence rate

under the matrix `1 norm.

Theorem 2 Suppose that (C1)-(C3) hold. Then

max
j

p∑
i=1

{ K∑
k=1

wk(Ω̆
(k) −Ω(k))2ij

}1/2
≤ C1Mns0(p)

(
logK · log p

n

)1/2

(6)

with a high probability converging to 1 and C1 is as same as in (5).

The convergence rates of Ω̆
(k)

depend on the union sparsity level s0(p). When the precision

matrices share the same graphical structure, s0(p) = max1≤j≤p Card(S(k)j ), for all k = 1, . . . ,K. If

there are more shared elements in the supports of the precision matrices, the union sparsity s0(p)

becomes smaller, which leads to smaller estimation error.

Let âij =

√∑K
k=1wk(Ω̆

(k) −Ω(k))2ij . Then the matrix Â = (âij)p×p measures the overall errors

between the entries of Ω̆
(k)

and Ω(k) for k = 1, ...,K. Theorem 2 leads to the following corollary.
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Corollary 1 With a high probability converging to 1, for some constant ε > 0,

‖Â‖2 ≤ ‖Â‖1 ≤ C1Mns0(p)

(
logK · log p

n

)1/2

,

where C1 is as same as in (5).

3.2 Graphical Structure Recovery

For graphical structure recovery the analysis becomes very complicated when the corresponding

graphical structures of the precision matrices are different across the K groups. We shall focus on

the case that the K precision matrices have a common support. Let Sk = {(i, j) : ω
(k)
ij 6= 0} be the

support for the kth precision matrix. Assuming a common support, S = S1 = · · · = SK , then by

Theorem 1, we estimate S by

Ŝ =

(i, j) :

{
K∑
k=1

wk

(
ω̂
(k)
ij

)2}1/2

> C1Mn

(
logK · log p

n

)1/2
 ,

where C1 is a constant given in Theorem 1. Let

θn = min
(i,j)∈S

{
K∑
k=1

wk

(
ω
(k)
ij

)2}1/2

.

We have the following theorem on the support recovery.

Theorem 3 Suppose that the conditions in Theorem 1 hold. Assume that

θn > 2C1Mn

(
logK · log p

n

)1/2

. (7)

We have Ŝ = S with a high probability converging to 1 and some constant ε > 0.

The lower bound condition (7) is necessary for graphical structure recovery. When the precision

matrices are the same across all K groups, condition (7) is weaker than the necessary condition (8)

for single graphical structure recovery using only the data for the kth group X
(k)
j (1 ≤ j ≤ nk):

min
(i,j)∈S(1)

|ω(k)
ij | ≥ 2CMn

(
log p

nk

)1/2

. (8)
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4. SIMULATION STUDIES

4.1 Data generation

We present in this section simulation results to evaluate the numerical performance of the pro-

posed method and other methods, including single precision matrix estimation procedures proposed

by Friedman et al. (2008) and Cai et al. (2011) and joint estimation method proposed by Guo et al.

(2011) and Danaher et al. (2013). The single precision matrix estimation methods are applied

to each group, and therefore ignore the common structures between the groups. In all numerical

studies, we set p = 200, K = 3 and nk = 80, 120, 150, respectively for k = 1, 2, 3. The simulated

observations in each group have identically and independently distributed multivariate normal dis-

tribution N{0, (Ω(k))−1}, where Ω(k) is the precision matrix for the kth group. For each model,

100 replications are performed.

We consider four different types of graph structures, Barabási and Albert graph (Barabási

and Albert, 1999), Erdös and Rényi graph (Erdös and Rényi, 1960) , random geometric graph

(Penrose, 2003), and the undirected graph corresponding to the Watts-Strogatz network (Watts

and Strogatz, 1998). For each graph structure, we consider three different ratios of the numbers of

individual-specific edges to the number of common edges, ρ = 0, 1/4, 1.

We first generate the common graph structure. For Barabási and Albert Model, a new vertex

is added to the existing graph each time and the new vertex is connected to an existing old vertex

with a probability proportional to the degree of the existing vertices plus one. For Erdös and

Rényi graph, the common structure contains p vertices and each pair of vertices are connected

with probability 0.05. For geometric random graph, p points are dropped on a unit square. Two

vertex will be connected with an undirected edge if and only if their corresponding points are closer

to each other than a radius of 0.05. For Watt-Strogatz network, first a ring lattice of p vertex

is created. One vertice is connected with its neighbors within order distance of 15. Then the

edges of the lattice are rewired uniformly randomly with probability 0.01. The resulting network

has “small-world” property, which is shared by many protein networks (Vendrascolo et al., 2002;

Greene and Higman, 2003). It is possible that the network contains loops or multiple edges, which

are removed afterwards to create an undirected graph.

After we generate the common graph structure, we add individual edges with the individual to

11



common edges ratio of ρ = 0, 1/4 and 1. The first case (ρ = 0) represents the scenario where the

precision matrices in different groups share exactly same support, but the values of the entries could

be different. The second and the third cases (ρ = 1/4, 1) imply that among all the edges within each

group, 1/(1 + ρ) of the edges are shared by all groups, the remaining edges are group-specific. Let

M be the number of the shared edges. For each individual graph, we randomly choose bρMc pairs

of new edges. After the support of the matrices are determined, the values of the non-zero entries

are generated independently from the uniform distribution in [−1,−0.5] ∪ [0.5, 1]. The diagonal

values are assigned with a constant so that each matrix has the condition number equal to p.

4.2 Simulation results

Each method is evaluated for a range of tuning parameters under each model. The optimal

tuning parameter is chosen by Bayesian information criterion (4). Several measures are used to

compare the performance of these estimators. The estimation error is evaluated in terms of average

matrix L1 norm, L2 norm (spectral norm) and Frobenius norm, which are defined as follows:

L1 =
1

K

K∑
k=1

‖Ω̂(k) −Ω
(k)
0 ‖1,

L2 =
1

K

K∑
k=1

‖Ω̂(k) −Ω
(k)
0 ‖2,

LF =
1

K

K∑
k=1

‖Ω̂(k) −Ω
(k)
0 ‖F.

The graph structure recovery results are evaluated by average sensitivity (sen), specificity (spe)

and Matthews correlation coefficient (mcc). Suppose a true precision matrix Ω0 = (ω0,ij) has the

support set S0 = {(i, j) : ω0,ij 6= 0 and i 6= j} and its estimator Ω̂ has the support set Ŝ. Then the

measures with respect to Ω0 and Ω̂ are defined as follows:

spe =
tn

tn + fp
, sen =

tp

tp + fn
,

mcc =
tp× tn− fp× fn

{(tp + fp)(tp + fn)(tn + fp)(fp + fn)}1/2
.

Here, tp, tn, fp, fn are the numbers of true positives, true negatives, false positives and false

12



enegatives, which are defined as

tp = #{(i, j) : (i, j) ∈ S0 ∩ Ŝ}, tn = #{(i, j) : (i, j) ∈ SC0 ∩ ŜC}

fp = #{(i, j) : (i, j) ∈ SC0 ∩ Ŝ}, fn = #{(i, j) : (i, j) ∈ S0 ∩ ŜC}.

We compare Ω̂
(k)

and Ω
(k)
0 and report the average sensitivities (sen), specificities (spe) and

Matthews correlation coefficient (mcc) among K groups.

The comparisons of the results for the four graphical models are shown in Tables 1, 2, 3 and 4.

It shows that when ρ = 0, i.e., the true graph structures are the same across all three groups, joint

estimation methods perform much better than the separate estimation methods. As ρ increases, the

structures across different groups become more different, the joint estimation methods gradually

lose advantages. Our method has the best performance in terms of graph structure recovery among

all the methods. Even when ρ = 1, it still performs significantly better than the separate estimation

methods. Our method also has the smallest L1 error norms. Its L2 error norms are comparable to

other joint estimation methods. In general, it has comparable Frobenius error norms to separate

estimating procedures but has slightly larger Frobenius error norms than other joint estimation

methods.

Since the tuning parameter selection may affect the performance of the methods, we plot in

Figure 1 the receiver operating characteristic (ROC) curves averaged over 100 repetitions with

false positive rate controlled under 10%. The methods proposed by Danaher et al. (2013) have

two tuning parameters. For each sparsity tuning parameter, we first choose an optimal similarity

tuning parameters from a grid of candidates by bic criterion (4), and then plot the ROC curves

based on the a sequence of sparsity tuning parameters and their corresponding optimal similarity

tuning parameters. In practice, these methods are slower to implement than our method since it

involves choosing two tuning parameters. Figure 1 shows that our method consistently outperforms

the other methods in support recovery.

5. EPITHELIAL OVARIAN CANCER DATA ANALYSIS

Epithelial ovarian cancer is a molecularly diverse disease lack of effective personalized therapy.

Tothill et al. (2008) identified six molecular subtypes of ovarian cancer, labeled as C1–C6, where C1

subtype was characterized by a significant differential expression of genes associated with stromal

13
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Figure 1: Receiver operator characteristic curves for graph structure recovery for the simulated

Barabási and Albert graphs (first row), the Erdős and Rényi graphs (second row), the geometric

random graphs (the third row), and the Watts-Strogatz graphs (the fourth row). The x-axis and

y-axis of each panel are average false positive rate and average sensitivity across K = 3 groups.

Red solid line: clime; red dot-dashed line: glasso; red long-dashed line: jemgm; blue solid line:

fgl; blue dot-dashed line: ggl; blue long-dashed line: mpe.

18



and immune cell types. The patients in the C1 subtype group has shown to have a lower survival

rate compared to the patients from other subtypes. The data they used contain RNA expression

data collected from n = 78 patients of C1 subtype and n = 113 patients from the other subtypes.

We are interested to see how the wiring (conditional dependency) of the genes at the transcription

levels differs among molecular subgroups of ovarian cancer. We focused on the apoptosis pathway

from the KEGG database (Orgata et al., 1999; Kanehisa et al., 2012) to see whether the genes

related to this pathway (p = 87) are differentially wired (conditionally dependent) between the C1

and other subtypes.

To stabilize the graph structure selection, we bootstrapped the samples 100 times within each

of the two groups. At each time, Iik is sampled uniformly taking values in i = {1, . . . , nk}, with

k = 1, 2. Let x̃
(k)
i = x

(k)
Iik

, where x
(k)
Iik

is the p-dimensional gene expression data for the Iik-th

patient in the kth subtype group. The bootstrap sample is X̃(k) = (x̃
(k)
1 , . . . , x̃

(k)
nk ), with k = 1, 2.

We then apply our proposed method and its competitors to each of the bootstrapped samples to

obtain the estimators of the precision matrix Ω̂
(k)

. The support of the estimators are recorded

so that Ω̃
(k)

= (I(ω̂
(k)
ij 6= 0)). We then add Ω̃

(k)
up for all bootstrap samples and get the total

frequency of each edge being selected. Those edges that were selected in more than 50 times out of

100 bootstrap samples were finally selected as important edges. This type of bootstrap aggregation

methods has been studied by Meinshausen and Bühlmann (2010) and Li et al. (2013a). They found

that thresholding the selection frequency can lead to better selection stability for precision matrix.

Table 5 lists the number of edges selected by the bootstrap aggregation of our proposed method

and its competitors. The separate estimation methods (clime and glasso) resulted in graphs that

share fewer edges in the precision matrices of the two cancer subtype groups. jemgm resulted in

most shared edges, followed by ggl and our method (mpe). Overall, fgl and ggl selected a lot

more linked genes than other methods. Figure 2 displays the Gaussian graphical model estimated

by these six different methods. fgl, ggl and mpe selected more unique edges among the gene

expression levels for the C2-C6 subtype cancer than those of the C1 subtype. This suggests that

the patients of the poor prognostic subtype (C1) lack some important edges among these Apoptosis

genes.

We further define those nodes with degrees equal or larger than five based on the union of
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the estimated graphs of two subtypes as the central nodes. fgl and ggl yielded estimators with

most of the central nodes completely unlinked in the estimated graph for C1 cancer subtype. The

estimators by mpe had several edges between the central nodes shared by both subtype groups,

while also displayed some edges unique to each group. The central nodes identified by mpe are:

FASLG, CASP10, CSF2RB, IL1B, MYD88, NFKB1, NFKBIA, PIK3CA, IKBKG and PIK3R5.

Among these, CASP10, PIK3CA, IL1B and NFKb1 have been implicated in ovarian cancer risk or

progression. In particular, PIK3CA has been implicated as an oncogene in ovarian cancer(Shayesteh

et al., 1999), indicating the importance of these central genes in ovarian cancer progression.

Table 5: Number of edges selected by the proposed method and its competitors. “C1 unique”

counts the number of edges that only appear in the precision matrix of the gene expression levels in

C1 cancer subtype; “Other unique” counts the number of edges that only appear in C2-C6 cancer

subtypes; and “Common” counts the number of edges shared by both precision matrices.

Method C1 unique Other unique Common

clime 40 43 20

glasso 11 11 7

jemgm 23 22 77

fgl 8 112 23

ggl 14 148 44

mpe 13 38 42

6. CONCLUDING REMARKS

We have developed a weighted constrained `∞/`1 minimization for jointly estimating multiple

precision matrices. It was shown that when the precision matrices share a common support, the

proposed method leads to more accurate estimation of the precision matrices and better recovery

of the corresponding graph structures. Different from the penalized likelihood approaches proposed

in literature (Guo et al., 2011), our approach is based on the constrained `∞/`1 minimization of

the precision matrices. It can be regarded as an extension of the constrained `1 minimization

procedure for single precision matrix (Cai et al., 2011). For support recovery, we showed that the
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proposed method can recover the graph structure exactly whenever the minimum signal level is

2CMn(logK log p/n)1/2, in contrast to the method of (Guo et al., 2011) and the method of Danaher,

Wang and Witten, both of which require that the minimum signal level to be at least a constant.

In addition, our method allows the observations of different groups to be dependent, while existing

literature focuses on the case that all the observations are independent from each other.

APPENDIX: PROOFS OF THEOREMS

We first state a lemma which follows from Theorem 1 in Zäıtsev (1987).

Lemma 2 Let | · |K denotes the Euclidean norm of K dimensional vector. Suppose X1, . . . , Xn be

independent K-dimensional random vectors satisfying EXi = 0 and |Xi|K ≤M for 1 ≤ i ≤ n. We

have for any δ > 0 and x > δ

P
(∣∣∣ n∑

k=1

Xk

∣∣∣
K
≥ x

)
≤ P

{
|N |K ≥ (x− δ)/λ1/2max

}
+ c1K

5/2 exp(−c2K−5/2δ/M),

where λmax is the largest eigenvalue of Cov(
∑n

k=1Xk), N is a d-dimensional standard normal

random vector and c1, c2 are absolute positive constants.

Proof of Theorem 1. Suppose that the true Ω(k) belong to the above feasible set, that is

max
ij

{ K∑
k=1

wk|(Σ̂(k)Ω(k) − I)ij |2
}1/2

≤ λn. (A.1)

We have

max
i,j

{ K∑
k=1

wk|(Ω̂
(k)
1 −Ω(k))ij |2

}1/2

= max
i,j

[ K∑
k=1

wk|{(Ω(k)Σ̂(k) − I)Ω̂
(k)
1 −Ω(k)(Σ̂(k)Ω̂

(k)
1 − I)}ij |2

]1/2
≤ max

i,j

[ K∑
k=1

wk|{(Ω(k)Σ̂(k) − I)Ω̂
(k)
1 }ij |2

]1/2
+ max

i,j

[ K∑
k=1

wk|{Ω(k)(Σ̂(k)Ω̂
(k)
1 − I)}ij |2

]1/2
=: I1 + I2.

Note that

{(Ω(k)Σ̂(k) − I)Ω̂
(k)
1 }ij = δ

(k)
i· ω̂

(k)
1·j ,

22



where δ
(k)
i· =: (δ

(k)
i1 , . . . , δ

(k)
ip ) is the i-th row of Ω(k)Σ̂(k) − I and ω̂

(k)
1·j = (ω̂

(k)
11j , . . . , ω̂

(k)
1pj)

T is the j-th

column of Ω̂
(k)
1 . We have

I1 ≤ max
i,j

( K∑
k=1

wk
∑

1≤l,m≤p
δ
(k)
il δ

(k)
im ω̂

(k)
1lj ω̂

(k)
1mj

)1/2
≤ max

i,j

( ∑
1≤l,m≤p

K∑
k=1

wk|δ
(k)
il δ

(k)
im ||ω̂

(k)
1lj ω̂

(k)
1mj |

)1/2
.

Without loss of generality, we can assume that wK |δ(K)
il δ

(K)
im | ≤ · · · ≤ w1|δ(1)il δ

(1)
im |. Since by (A.1),

K∑
k=1

wk|δ
(k)
il δ

(k)
im | ≤ 2−1

K∑
k=1

wk(|δ
(k)
il |

2 + |δ(k)im |
2) ≤ max

i,j

( K∑
k=1

wk|δ
(k)
ij |

2
)
≤ λ2n,

we have

max
i,l,m

wk|δ
(k)
il δ

(k)
im | ≤ k

−1 max
i,l,m

k∑
j=1

wj |δ(j)il δ
(j)
im | ≤ λ

2
n/k.

Therefore

I1 ≤ max
i,j

( ∑
1≤l,m≤p

K∑
k=1

k−1|ω̂(k)
1lj ω̂

(k)
1mj |

)1/2
λn

≤
( K∑
k=1

k−1M̂2
n

)1/2
λn ≤ (logK)1/2M̂nλn, (A.2)

where M̂n = max1≤k≤K ‖Ω̂
(k)
1 ‖l1 . Similarly, we can show that

I2 ≤ (logK)1/2Mnλn. (A.3)

By the definition of Ω̂
(k)
1 , we have M̂n ≤Mn.

So it suffices to prove (A.1) holds with probability greater than 1 − O(p−ε). Without loss of

generality, we assume that X
(k)
l ∼ N(0,Σ(k)). Let Y

(k)
lij = w

1/2
k {(nk−1)−1[(X

(k)
l X

(k)′

l Ω(k))ij − eij ]}

and Ylij = (Y
(1)
lij , . . . , Y

(K)
lij ). When l ≥ nk, we set Y

(k)
lij = 0. Let | · |K denotes the Euclidean norm

of K dimensional vector. Then we have{ K∑
k=1

wk|(Σ̂(k)β(k) − ej)i|2
}1/2

=d
∣∣∣ n∑
l=1

Ylij

∣∣∣
K
.

For 1 ≤ l ≤ n,1 ≤ k ≤ K and 1 ≤ i, j ≤ p, let

Ŷ
(k)
lij = Y

(k)
lij I

{
|Y (k)
lij | ≤ (n log p)−1/2K1/2−a

}
− EY

(k)
lij I

{
|Y (k)
lij |(n log p)−1/2K1/2−a

}
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and Ŷlij = (Ŷ
(1)
lij , . . . , Ŷ

(K)
lij ). Note that nmaxi,j

∣∣∣E(Ylij − Ŷlij)
∣∣∣
K

= o(1)λn. We have for any δ > 0,

P
(∣∣∣ n∑

l=1

Ylij

∣∣∣
K
≥ λn

)
≤ P

(∣∣∣ n∑
l=1

Ŷlij

∣∣∣
K
≥ (1− δ)λn

)
+ (max

k
nk)K max

1≤k≤K
P
{
|Y (k)
lij | ≥

(
K1−2a

n log p

)1/2 }
. (A.4)

Let Z
(k)
lij = (X

(k)
l X

(k)′

l Ω(k))ij − eij . We have for some constant η > 0,

(max
k

nk)K max
1≤k≤K

P
{
|Y (k)
lij | ≥

(
K1−2a

n log p

)1/2 }
≤Cn max

1≤k≤K
P

{
|Z(k)
lij | ≥

(
n

K2a log p

)1/2
}

≤C exp

{
log n− η

(
n

K2a log p

)1/2
}

= o(1)

It is easy to show that

λmax

{
n∑
l=1

Cov(Ŷlij)

}
≤ {1 + o(1)}(M0 + 1)/n

uniformly for 1 ≤ i, j ≤ p. Therefore it follows from (C1), Lemma 2, the tail probability of

Chi-squared distribution and some tedious calculations that

P
{∣∣∣ n∑

l=1

Ŷlij

∣∣∣
K
≥ (1− δ)λn

}
≤ C exp {−C(log p−K)}+ C exp

{
5

2
logK − C2K

a−4(log p)

}
= o(1). (A.5)

Combining (A.4)-(A.5), we prove that (A.1) holds.

Proof of Theorem 3. Suppose that

max
i,j

{ K∑
k=1

wk|(Ω̂
(k) −Ω(k))ij |2

}1/2
≤ CMn

(
logK · log p

n

)1/2

.

For i ∈ Scj , maxi,j

{∑K
k=1wk|(Ω̂

(k)
)ij |2

}1/2
≤ CMn (logK log p/n)1/2. Thus (Ω̆

(k)
)ij = 0 for i ∈ Scj .

It yields that

p∑
i=1

{ K∑
k=1

wk(Ω̆
(k) −Ω(k))2ij

}1/2
≤

∑
i∈Sj

{ K∑
k=1

wk(Ω̆
(k) −Ω(k))2ij

}1/2
+
∑
i∈Sc

j

{ K∑
k=1

wk(Ω̆
(k)

)2ij

}1/2

≤ CMns0(p)

(
logK · log p

n

)1/2

.

Theorem 2 then follows from Theorem 1.
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