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Abstract

Due to rapid technological advances, researchers are now able to col-

lect and analyze ever large data sets. Statistical inference for big data

often requires solving thousands and even millions of parallel infer-

ence problems simultaneously. This poses significant challenges and

calls for new principles, theories and methodologies. The present paper

gives a selective survey of some recently developed methods and results

for large-scale statistical inference, including detection, estimation, and

multiple testing. We begin with the global testing problem where the

goal is to detect the existence of sparse signals in a data set, and then

move to the problem of estimating the proportion of non-null effects.

Finally, we focus on multiple testing with false discovery rate (FDR)

control. The FDR provides a powerful and practical approach to large-

scale multiple testing and has been successfully used in a wide range of

applications. We discuss several effective data-driven procedures and

also present efficient strategies to handle various grouping, hierarchical,

and dependency structures in the data.
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1. LARGE-SCALE INFERENCE

In current business and economic research, massive and complex data sets are collected

routinely by governments, organizations, small businesses and large enterprises, with thou-

sands and even millions of variables. The expansive data collection calls for new techniques

for making large-scale statistical inference, which involves performing inferences on many

study units simultaneously. One phenomenon that arises particularly frequently is sparsity:

out of a large number of observations most of them are pure noise and only a small fraction

contain signal, or information of interest. The identification of these sparse signals is chal-

lenging, similar to finding needles in a haystack. These new challenges have motivated the

development of a plethora of novel concepts and powerful approaches to the important and

rapidly growing field of large-scale inference. This article reviews significant progresses that

have been made recently in this field, with a focus on multiple testing with false discovery

rate control.

1.1. Examples

Large-scale inference techniques have been successfully applied in a wide range of fields,

including financial economics, marketing analytics, social science, signal processing, and

biological sciences such as genomics and neuroimaging. We start with several examples

in business and social science research where large data sets are routinely collected from

empirical studies.

• Detection of anomalous events. Anomaly is a pattern in the data that does

not conform to the normal state or behavior. Important applications include the

detection of credit card frauds, cyber intrusion, financial market anomalies, and covert

communication. For example, techniques for reliably detecting and precisely locating

credit card frauds are important for credit card companies to improve their service and

reduce possible financial losses. To predict/detect frauds, it is necessary to monitor
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an enormous amount of transactions from many customers at the same time. This

large-scale inference problem involves either producing massive amount of real-time

estimates or testing thousands and even millions of hypotheses with high frequencies.

• Selection of skilled fund managers. In financial markets, monthly returns from

a large number of mutual funds are routinely collected. As a guide to evaluate past

and future performances, investors are interested in knowing the proportion of fund

managers who possess true stock-picking skills (Barras et al. 2010). Furthermore, it

is desirable to accurately identify skilled fund managers so that investors can build

a portfolio that achieves outstanding performance. However, it is possible that some

outperforming funds are due to luck and not special skills, whereas some skilled fund

managers may underperform from time to time. The issue is further aggravated when

thousands of mutual funds exist in the financial markets. The selection of skilled fund

managers requires some formal principles to control false discoveries.

• Evaluation of trading rules. An important goal in financial economics is to test

a large number of factors to explain the cross-sectional patterns and use these to de-

velop/evaluate new trading strategies. However, the simultaneous investigation of a

large number of factors gives rise to the issue of data snooping bias (Lo and MacKinlay

1990; Harvey and Liu 2015). That is, one may find seemingly significant but in fact

spurious correlations in the data. Moreover, small or moderate effects, promoted by

expansive data mining, may be overestimated and hence appear outstanding. To re-

duce data-snooping bias, investors are required to carry out an appropriate “haircut”

for the reported effect size. However, most existing rules are ad hoc. For example, a

common practice in evaluating trading rules is to discount the reported Sharpe ratio

by 50%. It is desirable to develop more rigorous backtesting rules to account for the

data mining effects with theoretical guarantees.

• Comparison of academic performances. The adequate yearly progress (AYP)

study of California high schools (Rogosa 2003) aimed to compare academic perfor-

mances of socio-economically advantaged (SEA) versus socio-economically disadvan-

taged (SED) students. In the AYP study, standard tests in mathematics were ad-

ministered to 7867 schools and a z-score for comparing SEA and SED students was

obtained for each school. The identification of “interesting” schools is an important

step for making proper allocations of available funds. The policy-makers need to come

up with an effective and fair ranking and selection procedure to analyze the yearly

survey data. This involves carrying out thousands of significance tests simultaneously,

and making decisions by taking into account other important factors such as school

sizes and previous allocations of funds.

In the above examples, researchers or policy makers need to either estimate thousands of

parameters or test thousands of hypotheses at the same time. This requires new theories

and methodologies to overcome the limitations of classical methods that were developed for

small studies. As a first step, we need a realistic and effective model to describe the data

structure in large-scale inference problems; this is discussed in the next section.

1.2. A Two-Group Model

Suppose we are interested in making inference on n units, each represented by a sum-

mary statistic X. The cases are either null or non-null, with non-null cases referring to
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units exhibiting interesting patterns or abnormal behaviors, such as fraudulent credit card

transactions, financial market anomalies, or fund managers with superior performance. In

practice, we do not know the true states of nature but only observe a mixture of null and

non-null cases. There are many ways to model sparse data but one of the most natural is

to posit a mixture model

X1, . . . , Xn
i.i.d.∼ (1− εn)F0 + εnF1, (1)

where the mixing proportion εn is small, F0 is the null distribution and F1 is the non-null

or “alternative” distribution. Equivalently, for each 1 ≤ i ≤ n, one assumes that Xi has

probability 1 − εn of being a null case and probability εn of being a non-null case. Let

f0 and f1 denote the densities corresponding to null and non-null cases respectively. The

marginal density is given by f(x) = (1−εn)f0(x)+εnf1(x). The mixture model (1) provides

a powerful and convenient framework for large-scale inference and has been widely used in

the literature (Efron et al. 2001; Storey 2002; Newton et al. 2004; Sun and Cai 2007).

1.3. Global and Simultaneous Inference

The tasks in large-scale inference are often complex: it is desirable to investigate a massive

data set from different perspectives and possibly through multiple stages. One often starts

with a few general questions regarding the global features of a large data set. A natural

question is: are there any signals in the data set? For example, a credit card company

wants to know if any fraudulent transactions have occurred in the previous period, and an

internet security agency needs to decide whether there is cyber intrusion at a given time.

These applications give rise to the anomaly or signal detection problem, which can be stated

as a global testing problem

Hn
0 : εn = 0 vs. Hn

1 : εn 6= 0. (2)

The proportion εn of non-null effects is an important quantity. For instance, the magnitude

of εn can help make informative decisions in large-scale studies. For example, investors are

interested in knowing how many fund managers possess true stock-picking skills, and policy

makers need to decide how many schools should receive assistance/funds to reduce the

large gaps between test scores. An interesting and technically challenging global inference

problem is to obtain a good estimate of the non-null proportion εn.

However, global inference is often inadequate in many decision-making scenarios. For

instance, investors might be interested in further identifying which fund managers are truly

skilled, and credit card companies need to locate fraudulent transactions precisely to take

further actions. In these situations, one needs to look at every individual case and decide

whether it is null or non-null. This gives rise to a multiple testing problem, which involves

making simultaneous inference on n hypotheses:

Hi0: case i is null vs. Hi1: case i is non-null, i = 1, · · · , n. (3)

Unlike global inference problems, the goal in simultaneous inference is to make precise

decisions at individual levels, which is more challenging due to the increased precision

required and new complications such as data snooping bias and multiple comparisons; these

issues will be discussed next.
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1.4. New Challenges

While searching for interesting features in the vast amount of data, researchers routinely

investigate a large number of parallel problems at the same time, and many analyses may be

conducted using the same data set. Common practices include multiple testing of thousands

of hypotheses, simultaneous estimation of a large number of parameters, or frequent predic-

tions on numerous outcomes. Making multiple inferences simultaneously without properly

accounting for multiplicity can lead to misleading conclusions. For example, one may find

seemingly significant but in fact spurious patterns in the data, or overestimate the strength

of the selected associations.

The multiplicity effect in large-scale inference can be illustrated by the following spam

email example (White 2000). Suppose a person wishes to demonstrate that he is a stock-

picking genius. In Day 1, he sends emails to 102,400 individuals and makes predictions on

the stock market in the next day: half are told that the market will go up and the other

half down. In Day 2, those who received the wrong predictions will be discarded from the

email list, and the remaining will get emails with new predictions: again, half up and half

down. After ten trading days, the one hundred people who are still on the email list would

have received ten correct predictions in a row. Without knowing the scheme or accounting

for the multiplicity, these one hundred people must have been very impressed.

In addition to multiple predictions, the multiplicity effect is also a serious issue in large-

scale estimation and testing problems, where repeated application of classical methods

tends to yield severely biased estimates and inflation of false discoveries. For example, the

identification of skilled fund managers requires looking through the past performances of a

large number of funds and choosing a significance threshold to characterize the benchmark

performance. However, not all fund managers who outperform the benchmark are skilled:

some are truly skilled but some are just “lucky.” Moreover, even if the selected managers

do have some skills, their true performances may be overestimated substantially.

This paper gives a selective survey of some significant recent developments in large-

scale inference, including detection, estimation, and multiple testing. Section 2 considers

global inference; important topics include sparse signal detection and estimation of the

proportion of the non-null effects. Section 3 focuses on multiple testing with false discovery

rate (FDR) control. Several effective simultaneous testing procedures under various settings

are presented. Open problems and other issues are discussed in Section 4.

2. GLOBAL INFERENCE PROBLEMS

We study a class of global inference problems that involve either testing or estimation of

the global parameters under the mixture model (1): (i) testing the global hypothesis (2),

(ii) estimating the non-null proportion εn and (iii) estimating the null distribution F0.

2.1. Detection of Sparse Signals

The signal detection concerns testing against the global null hypothesis that there is no

signal of interest in a data set. The problem arises in many applications, where a large

number of variables are measured and only a small proportion of them possibly carry signal

information. For example, in financial markets it is crucial to detect anomalies in early

stage when only a small fraction of firms or markets are adversely affected. Other examples

include the detection of disease outbreaks, credit card frauds and covert communication. In
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this section, we begin with the theory and methodology of a simple model and then move

to more complicated settings.

2.1.1. Detection boundary in homoscedastic Gaussian mixtures. Suppose one observes

X1, · · · , Xn and wishes to test global hypotheses

Hn
0 : X1, . . . , Xn

i.i.d.∼ N(0, 1), (4)

v.s. Hn
1 : X1, . . . , Xn

i.i.d.∼ (1− εn)N(0, 1) + εnN(µn, 1).

Interesting cases correspond to choices of (εn, µn) that are calibrated with a pair of param-

eters (β, r):

εn = n−β , µn =
√

2r logn, 1/2 < β < 1, 0 < r < 1.

There are two main goals in the analysis.

1. Determine the detection boundary, which gives the smallest possible signal strength

r as a function of the sparsity parameter β such that reliable detection is possible.

2. Construct adaptive optimal tests, which simultaneously achieve vanishing probability

of error for all values of (r, β) inside the detectable region.

Under model (4), Ingster (1998) and Donoho and Jin (2004) showed that there exists a

detection boundary

r∗(β) =

{
β − 1

2
, 1/2 < β ≤ 3/4,

(1−
√

1− β)2, 3/4 < β < 1,
(5)

which separates the testing problem into two regions: the detectable region and the unde-

tectable region (Figure 1). When (β, r) belongs to the interior of the undetectable region,

the sum of Type I and Type II errors for testing the global null must tend to 1 and no

test can asymptotically distinguish the two hypotheses (4). However when (β, r) belongs

to the interior of the detectable region, there are tests for which both Type I and Type II

errors tend to zero. In applications such as the identification of skilled fund managers, it is

desirable to precisely select the fund managers who have true stock-picking skills. The goal

is more ambitious and can only be achieved in a subset of the detection region when r > β

(classifiable region, Cai and Sun 2016). Inside the classifiable region, observations can be

separately into null cases and non-null cases with negligible classification errors.

2.1.2. Methodologies for sparse detection. In the very sparse situation, most tests based

on empirical moments have no power in detection. To construct adaptive optimal proce-

dures, Ingster (1999) considered generalized likelihood ratio (GLR) tests over a growing

discretized set of (β, r)-pairs and established its asymptotic adaptive optimality. A more

elegant solution is provided by Donoho and Jin (2004), who proposed a testing procedure

based on Tukey’s Higher Criticism statistic and showed that it attains the optimal detection

boundary (5).

The Higher Criticism test consists of three simple steps. First, for each 1 ≤ i ≤ n,

obtain a p-value by pi = Φ̄(Yi) ≡ P{N(0, 1) ≥ Yi}, where Φ̄ = 1−Φ is the survival function

of N(0, 1). Second, sort the p-values in the ascending order p(1) < p(2) < . . . < p(n). Last,
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Figure 1

The detection boundary (dashed line) divides the β-r plane into the undetectable and detectable
regions. It provides an optimality benchmark for the global testing problem (4). The higher

criticism procedure attains the boundary and is hence fully efficient. Cai et al. (2007) showed that

εn can be estimated consistently in the entire detectable region. The classification boundary (solid
line; Cai et al. 2007; Cai and Sun 2016) gives the precise condition under which the observations

can be separated into signals and noises with negligible misclassification rate.

define the Higher Criticism statistic as

HC∗n = max
{1≤i≤n}

HCn,i, where HCn,i =
√
n

[
i/n− p(i)√
p(i)(1− p(i))

]
, (6)

and reject the null hypothesis H0 when HC∗n is large. The key ideas can be illustrated

as follows. When Y ∼ N(0, In), pi
iid∼ U(0, 1) and so HCn,i ≈ N(0, 1). Therefore, by

the well-known results from empirical processes (e.g. Shorack and Wellner 2009), HC∗n ≈√
2 log logn, which grows to ∞ very slowly. In contrast, if Y ∼ N(µ, In) where some of

the coordinates of µ is nonzero, then HCn,i has an elevated mean for some i, and HC∗n
could grow to ∞ algebraically fast. Consequently, Higher Criticism is able to separate

two hypotheses even in the very sparse case. Unlike the GLR test, the HC test is optimally

adaptive in the sense that it attains the detection boundary without requiring the knowledge

of the unknown parameters (β, r).

The above results have been generalized along various directions. Jager and Wellner

(2007) proposed a family of goodness-of-fit tests based on the Rényi divergences, including

the higher criticism test as a special case. The detection boundary with correlated noise

and known variance was established in Hall and Jin (2010), where a modified version of the

higher criticism was shown to achieve the corresponding optimal boundary.
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2.1.3. Signal Detection under General Mixture Models. The homoscedastic Gaussian mix-

ture (4) is highly restrictive and idealized. In many applications, the signal strength varies

among the non-null cases, violating the assumption of constant µn under the alternative. A

natural question is the following: What is the detection boundary if µn varies with a distri-

bution Pn? Cai et al. (2011) considered a heteroscedastic Gaussian mixture model, which

can be viewed as taking the signal strength under the alternative to be Pn = N(An, τ
2).

Writing σ2 for 1 + τ2, under such a model, the detection problem aims to test

Hn
0 : Yi

i.i.d.∼ N(0, 1) (7)

v.s. Hn
1 : Yi

i.i.d.∼ (1− εn)N(0, 1) + εnN(An, σ
2).

Cai et al. (2011) discovered that the detection problem behaves very differently in two

regimes: the sparse regime where 1/2 < β < 1 and the dense regime where 0 < β ≤ 1/2.

Furthermore, a double-sided version of the higher criticism test was shown to be optimally

adaptive in the whole detectable region in both the sparse and dense regimes, in spite of the

very different detection boundaries and heteroscedasticity effects in the two cases. Classical

methods have treated the detections of sparse and dense signals separately. In real practice,

however, the information of the signal sparsity is usually unknown, the adaptivity of the

modified higher criticism test is thus a practically useful property.

Cai and Wu (2014) considered the problem of sparse mixture detection in a more general

model (1) where the distributions are not necessarily Gaussian and the non-null effects are

not necessarily a binary vector. They obtained an explicit formula for the fundamental limit

of the general testing problem under mild conditions on the mixture, which are in particular

satisfied by the Gaussian and generalized Gaussian null distributions. These general results

recover and extend all previously mentioned detection boundary results in a unified manner.

The optimal adaptivity of the higher criticism procedure is also generalized far beyond the

setup in Ingster (1999), Donoho and Jin (2004) and Cai et al. (2011). In the most general

case, it turns out that detection boundary is determined by the asymptotic behavior of the

log-likelihood ratio log dF0
dF1

evaluated at an appropriate quantile of the null distribution.

2.2. Estimation of the Proportion of Non-null Effects

The proportion of non-null effects is an important quantity that is of significant interest

in its own right. For example, in financial markets investors are interested in knowing the

proportion of fund managers who possess true stock-picking skills. It is also one of the

key quantities in the implementation of many large-scale multiple testing procedures. See,

for example, Efron et al. (2001); Sun and Cai (2007); Storey (2007). The development of

useful estimates of εn along with the corresponding statistical analysis is a challenging task.

Recent work includes that of Langaas et al. (2005); Meinshausen and Rice (2006); Cai et al.

(2007); Jin and Cai (2007) and Cai and Jin (2010).

2.2.1. Tail-based approach. Schweder and Spjøtvoll (1982) proposed an intuitive method

for estimating the proportion of null hypotheses using p-value plots. The methodology is

developed for the general mixture model (1). To illustrate how it works, we simulated

n = 1000 observations from a simple two-point normal mixture F (x) = (1 − εn)N(0, 1) +

εnN(2, 1). The proportion of non-null hypotheses is εn = 0.2. The histogram of the p-values

is shown in panel (a) of Figure 2. Under the sparsity assumption, the majority of large p-

values should come from the null distribution. Let λ be a sufficiently large threshold, say
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λ = 0.5. Denote W (λ) = #{i : pi > λ}. Since the p-values to the right of the threshold

roughly follow a uniform distribution, the expected counts covered by light grey bars can

be approximated as E{W (λ)} ≈ n(1− εn)(1− λ). Setting the expected and actual counts

equal, we obtain an estimate

ε̂n(λ) = 1− W (λ)

n(1− λ)
. (8)

The p-value plotting method proposed in Schweder and Spjøtvoll (1982) is described in

Panel (b) of Figure 2. The grey curve plots 1 − pi against their rank. Then a straight

line is fitted through the left portion of the grey curve and extended all the way to the

right. The interception point gives the estimated proportion of null cases. In Benjamini

and Hochberg (2000), this graphical method was formalized as an asymptotically equivalent

step-wise least-slope estimator. See also Benjamini et al. (2006).
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Figure 2

Tail-based methods for estimating εεεn. Data are simulated from a two-point normal mixture

model 0.8 ·N(0, 1) + 0.2 ·N(2, 1). Panel (a) illustrates equation (8) with λ = 0.5. The p-values
from right part of the histogram, represented by light grey bars, follow a uniform distribution

approximately. Panel (b) illustrates the graphical solution in Schweder and Spjøtvoll (1982). The
straight line was fitted through the p-values in the left via an “eyeball” method. The intersection

point (#) shows that the estimated proportion of null cases is 0.8.

Langaas et al. (2005) showed that the estimate given by (8) always has a downward

bias, i.e. E{ε̂n(λ)} ≤ εn(λ) for all λ. There is a tradeoff in the choice of λ: a larger λ would

reduce the bias but increase the variance. To choose a proper λ, Storey (2002) and Storey

and Tibshirani (2003) proposed a bootstrapping method and a spline-smoothing method,

respectively. In Langaas et al. (2005), the choice of λ is investigated systematically, and a

class of estimators based on nonparametric MLEs were developed.

However, tail-based methods are in general biased; they are only consistent in a lim-

ited class of models satisfying the so-called “purity” condition (i.e. the non-null density

has thinner tails than that of a standard normal). Moreover, the data tail is not scale

invariant and consequently the accuracy of tail based methods depends on the degree of

heteroscedasticity of the data.
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2.2.2. Frequency-domain approach. Jin and Cai (2007) demonstrated that information on

the null distribution and non-null proportion is well-preserved in the frequency domain

instead of the spatial domain. They further proposed a frequency-domain approach to

estimating the proportion. The estimator is robust against heteroscedasticity and is shown

to be consistent for a wide class of parameter spaces. Numerical results demonstrate that

it outperforms competing tail-based methods.

Consider the Gaussian mixture model

Xi
iid∼ (1− εn)N(µ0, σ

2
0) + εnQn, 1 ≤ i ≤ n, (9)

where N(µ0, σ
2
0) is the null distribution with possibly unknown parameters µ0 and

σ2
0 , and Qn is a general Gaussian location-scale mixture with the density q(x) =∫
1
σ
φ(x−µ

σ
)dHn(µ, σ) for some mixing distribution Hn. We only discuss the case with

known null parameters. See Jin and Cai (2007) for a modified procedure for the case

with unknown null parameters. Then we can re-normalize Xj and assume, without loss of

generality, µ0 = 0 and σ0 = 1. The marginal density f of Xj becomes

f(x) = (1− ε)φ(x) + ε

∫
φ(
x− µ
σ

)dHn(µ, σ). (10)

Jin and Cai’s method can be described as follows. Introduce the empirical charac-

teristic function ϕn(t) = 1
n

∑n
j=1 e

itXj , and its expectation, the characteristic function

ϕ(t) = 1
n

∑n
j=1 e

itµj−
σ2j t

2

2 , where i =
√
−1. Let ω(ξ) be a bounded, continuous and

symmetric density function supported in (−1, 1). Define the phase function ψn(t;ω) =∫
ω(ξ)e

t2ξ2

2 ϕn(tξ)dξ. Fix γ ∈ (0, 1/2) and let tn(γ) = inf{t : t > 0, |ϕ(t)| ≤ n−γ}, the

estimator is defined as

ε̂n(γ;ω) = 1− Re {ψn(tn(γ);ω)} , (11)

where Re(z) stands for the real part of z. In Jin and Cai (2007) and Jin (2008), three

different choices of ω(ξ) are recommended, namely the uniform density, the triangle density,

and the smooth density that is proportional to exp(− 1
1−|ξ|2 ) · 1{|ξ|<1}.

2.2.3. Optimality theory. The detection theory developed in Ingster (1999) and Donoho

and Jin (2004) provides a benchmark for a theory of consistent estimation. However, the

theoretical analysis for estimation of the proportion contains further challenges that are

not present in the detection problem. For example, the procedure in Meinshausen and Rice

(2006) is only capable of estimating εn consistently on a subset of the detectable region,

failing to achieve the optimality benchmark of the detection boundary. Cai et al. (2007)

developed an effective data-driven method for a two-point homoscedastic Gaussian mixture

model Xi
iid∼ (1− εn)N(0, 1) + εnN(µn, 1), 1 ≤ i ≤ n and showed that the estimator is rate-

optimal within a logarithmic factor. In contrast to the results in Meinshausen and Rice

(2006), the results in Cai et al. (2007) imply that it is possible to estimate εn consistently

over the entire detectable region.

The optimality theory for estimating πn was further developed in Cai and Jin (2010)

for the general Gaussian mixture model (9). Cai and Jin (2010) introduced a modified

estimator,

ε̂n(γ) =

(
1− 1

n

n∑
j=1

e
t2

2 cos(tXj)

)∣∣∣∣
t=
√

2γ logn

= 1− n−(1−γ)
n∑
j=1

cos(
√

2γ lognXj). (12)
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The estimator ε̂n(γ) given in (12) can be viewed as a special case of ε̂n(γ;ω), where instead

of being a density function as in (11), ω is a point mass concentrated at 1. Cai and Jin

(2010) obtained the convergence rate of the proposed estimator ε̂n(γ) and established a

matching lower bound for the minimax rate. The results show that the estimator ε̂n(γ)

given in (12) adaptively attains the optimal rate of convergence for a large collection of

parameter spaces.

2.3. Estimation of the Null Distribution

Conventionally F0 is assumed to be known and referred to as the theoretical null. It was

argued by Efron (2004) that in large-scale inference problems, the use of theoretical null

is incorrect and the choice of the null distribution has a huge impact on subsequent anal-

ysis. Efron further proposed the concept of empirical null and argued that the empirical

evidence in the data determines the normal state and the null distribution should be esti-

mated from the data. For the AYP example in Section 1.1, the empirical null is estimated

to be N(1.89, 1.812), which is substantially different from the theoretical null N(0, 1). This

deviation can be attributed to unobserved covariates, unknown correlations or a large pro-

portion of uninterestingly small effects.

Efron (2004) proposed a simple method to estimate the null parameters utilizing the

central peak of the histogram. Jin and Cai (2007) proposed a class of more powerful

estimators based on the empirical characteristic function and Fourier analysis. They further

show that the proposed estimators are uniformly consistent over a wide class of parameters.

Optimality theory was developed in Cai and Jin (2010). The empirical null approach in

Efron (2004) and the estimation methods in Jin and Cai (2007) assume that all null cases

follow a common distribution N(µ0, σ
2
0). However, in applications such as the AYP study,

a common null distribution does not exist. This issue was considered in Sun and McLain

(2012), where Jin and Cai’s method is extended to estimate the composite null distribution

with an external covariate.

3. MULTIPLE TESTING PROBLEMS

Multiple testing is a useful approach to extract valuable insights from massive data. Its

recent developments, epitomized by false discovery rate methodologies, have greatly in-

fluenced a wide range of scientific and business disciplines. This section reviews some

important concepts and recent progresses of this field.

3.1. Multiplicity, Error Rate and Power Concepts

When performing a hypothesis test, two types of errors may be committed: rejecting a

hypothesis when it is null (type I error), or failing to reject a hypothesis when it is non-null

(type II error). A Type I error means finding a pattern that does not exist in the data

(false discovery), whereas a Type II error indicates missing out an interesting pattern that

actually exists (missed discovery). In practice, one cannot entirely eliminate the chance

of committing decision errors. However, the consequences of the two types of errors are

usually different, with a type I error being regarded as a more serious mistake. Define

Type I and II error rates as the probability of making the respective type of error. The

classical formulation in single hypothesis testing aims to control the type I error rate at a

prespecfified level α while minimizing the Type II error rate.
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When n hypotheses are tested simultaneously, the outcomes of all tests can be sum-

marized in Table 1. In the multiple testing setting, it is desirable to assess the overall

performance of a testing procedure by combining all decisions together. The multiplicity,

which leads to inflation of Type I errors, becomes a serious issue. Next we discuss some

widely used concepts for measuring the overall error rate in multiple testing.

Table 1 Classification of tested hypotheses

Claimed non-significant Claimed significant Total

Null N00 N10 n0

Non-null N01 N11 n1

Total S R n

3.1.1. Family-Wise Error Rate (FWER). The FWER is defined as the probability of making

at least one Type I error in the family, e.g. FWER = P(N10 ≥ 1), where N10 is the number

of false positive findings. It has been widely used as an overall error measure when multiple

hypotheses are tested at the same time. A per-comparison error rate (PCER) procedure,

which repeatedly tests each hypothesis at level α, fails to control the FWER. The most

well-known FWER procedure is the Bonferroni correction, which conducts individual tests

at level α/m instead of α. Bonferroni method can be further improved by step-wise methods

such as Holm’s procedure and Hommel’s procedure (Holm 1979; Hommel 1988; Hochberg

1988), or resampling based methods (Westfall and Young 1993). We refer interested readers

to Shaffer (1995) and Hochberg and Tamhane (2009) for an extensive review of FWER

methodologies. A useful extension of the FWER is the k-FWER, which is defined as the

probability of making k or more Type I errors in the family. The k-FWER controlling

procedures are more powerful than FWER methods; recent works include Lehmann and

Romano (2005a), Romano and Shaikh (2006) and Sarkar (2007).

3.1.2. False Discovery Rate (FDR) . The FWER is a very strict criterion. When thousands

and even millions of hypotheses are tested simultaneously, the FWER procedures often

become excessively conservative and fail to identify most useful signals. This often results

in the waste of expensive studies and possible financial losses. In large-scale settings, a more

powerful and practical error rate concept is the false discovery rate (FDR, Benjamini and

Hochberg 1995). Under the FDR paradigm, one is willing to tolerate some Type I errors,

provided that the number is small relative to the total number of rejections. Define the

false discovery proportion

FDP =

{
N10/R, if R > 0

0, if R = 0
. (13)

Then the FDR is the expectation of the FDP

FDR = E(FDP) = E
(
N10

R

∣∣∣∣R > 0

)
P(R > 0). (14)

The FDR concept reflects the tradeoff between false discoveries and true discoveries in

practice, and is connected to minimax estimation theory (Abramovich et al. 2006) and

compound decision theory (Sun and Cai 2007). Other closely related measures include the

positive false discovery rate (pFDR, Storey 2003) and the marginal false discovery rate
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(mFDR, Genovese and Wasserman 2002). The difference among various FDR measures

seem to be non-essential in large-scale testing problems. For example, the pFDR and

mFDR are equivalent when test statistics come from a random mixture model (Storey

2003). Genovese and Wasserman (2002) showed that, under mild conditions, mFDR =

FDR + O(m−1/2).

The FDR is fundamentally different from the FWER by providing a powerful and cost-

effective framework to handle large-scale testing problems. Although the subject of FDR

is still relatively new, it has already exhibited enormous impacts on many scientific and

business fields. This article reviews its important recent developments.

3.1.3. Power and Optimality. In single hypothesis testing, the power is defined as the proba-

bility of correctly rejecting a non-null hypothesis. The fundamental Neyman-Pearson lemma

shows that the likelihood ratio test is the most powerful test in the sense that it maximizes

the power at a pre-specified test level α.

The power concept can be generalized in different ways as we move to multiple testing.

We shall use the expected number of true positives

ETP = E(N11) (15)

in this article. Other related measures include the average power (Spjøtvoll 1972; Storey

2007; Efron 2007b), the false negative/non-discovery rate (FNR, Genovese and Wasserman

2002; Sarkar 2004):

FNR = E
(
N01

S

∣∣∣∣S > 0

)
P(S > 0),

the missed discovery rate (MDR, Taylor et al. 2005) and the non-discovery rate (NDR,

Haupt et al. 2011). Under mild conditions (Cao et al. 2013), maximizing the ETP is

asymptotically equivalent to minimizing the FNR or MDR. An FDR procedure is said to

be valid if it controls the FDR at the nominal level α, and optimal if it has the largest ETP

among all valid FDR procedures at level α.

3.2. P -Value Based Methodologies for FDR Control

In single hypothesis testing, p-value is a fundamental statistic: we decide whether a hypothe-

sis should be rejected by comparing the p-value with the test level α. A widely used strategy

in multiple testing is to first rank the hypotheses according to individual p-values and then

choose a cutoff along the ranking. This section reviews p-value based FDR methodologies;

their limitations and optimal FDR control will be discussed in Section 3.3.

3.2.1. Benjamini-Hochberg’s (BH) procedure. Let {pi : 1 ≤ i ≤ n} be the p-values from

individual tests. Denote p(1) ≤ p(2) ≤ · · · ≤ p(n) the ordered p-values and H(1), · · · , H(n)

the corresponding hypotheses. The BH procedure first uses a step-up comparison to decide

a p-value threshold:

Let k = max{i : p(i) ≤ iα/n}, (16)

then rejects all hypotheses H(j), j = 1, · · · , k. This method can be intuitively explained

as follows. Suppose the cutoff is p(i) and i hypotheses are rejected. Because the null p-

values follow a uniform distribution, one expects to have n0p(i) significant p-values from

the null and the FDP can be estimated by Q̂j = n0p(i)/i. In practice, n0 is not known but
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can be approximated by n. The corresponding estimated FDP is then Q̃j = np(i)/i. To

maximize the power, we choose the largest i such that Q̃i ≤ α, which leads directly to the

BH procedure (16).

The BH procedure is easy to implement and has a simple graphical representation. To

illustrate, we simulate n = 60 observations from a random mixture model (1− εn)N(0, 1) +

εnN(2.5, 1) with εn = 0.25. In Figure 3, the discrete points are ranked p-values plotted

against their indices. The straight lines correspond to the right hand side of equation (16),

where the slope is the prespecified FDR level α. The p-value threshold is given by the last

crossing point between the p-value curve and the straight line.

Figure 3

An graphical illustration of the BH procedure:  and # stand for non-null and null cases,

respectively. The FDR thresholds are computed as the largest intersection point of the p-value

curve and straight line, whose slope corresponds to the test level. At α = 0.1, 9 hypotheses are
rejected with no false positive. At α = 0.2, 16 hypotheses are rejected with 3 false positives.

Benjamini and Hochberg (1995) showed that Procedure (16) controls the FDR at the

nominal level when the p-values are independent. The BH procedure remains valid for

FDR control under positive regression dependency and weak dependency (Benjamini and

Yekutieli 2001; Storey et al. 2004). The BH threshold is usually larger than the FWER

threshold, leading to a more powerful procedure with more rejections. The power gain over

FWER methods becomes more pronounced as the number of tests increases. This makes

the method more suitable for large-scale simultaneous inference.

3.2.2. Adaptive p-value procedure. The BH procedure is conservative because it controls

the FDR at level (1− εn)α instead of α, where εn is the proportion of non-null cases. Ben-

jamini and Hochberg (2000), Genovese and Wasserman (2002), and Storey (2002) proposed

to estimate εn from data and further utilize it to construct more powerful procedures.

Let ε̂n be an estimate of εn. Then the adaptive p-value procedure (Benjamini and
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Hochberg 2000) operates as follows.

Let k = max{i : P(i) ≤ iα/[(1− ε̂n)n]}, then rejects all H(i), i ≤ k. (17)

We can see that in (17), the BH procedure is carried out at an adjusted FDR level α/(1−
ε̂n). Therefore by incorporating the estimated proportion, the procedure is adaptive to the

sparsity information in the data. Numerical results show that the power of BH method can

be improved, and the efficiency gain increases with εn.

3.2.3. Oracle and plug-in p-value procedures. Let G1(t) be the cumulative distribution

function (CDF) of the p-value of a non-null case and G(t) is the mixture CDF. Consider a

random mixture model for p-values:

G(t) = (1− εn)t+ εnG1(t). (18)

The marginal FDR (mFDR) for a given cutoff t (e.g. we reject Hi if pi < t) is defined as

Q(t) =
E(N10)

E(R)
=

(1− εn)t

G(t)
.

If G1 is concave, then the solution to Q(t) = α, denoted by u∗, is unique. The oracle p-value

procedure reject Hi if pi < u∗. It is optimal in the sense that it has the smallest FNR among

all p-value based procedures at mFDR level α (Genovese and Wasserman 2002). However,

this optimality result only holds within the class of p-value based methods.

When G and εn are unknown, we use their estimates Ĝ and ε̂n to obtain the estimated

FDR level Q̂(t) = (1− ε̂n)t/Ĝ(t). The estimation of ε̂n has been discussed in Section 2.2. G

is commonly estimated by the empirical CDF Ĝ(t) = m−1∑m
i=1 I{pi < t}, where I(·) is an

indicator function. Hence a class of plug-in FDR procedures can be constructed (Genovese

and Wasserman 2002, 2004) as follows.

Let t(p̂, Ĝ) = sup{t : Q̂(t) ≤ α}. Reject Hi if pi < t(p̂, Ĝ). (19)

Equation (19) reveals the connection between a multiple testing problem and an FDR es-

timation problem. The BH procedure and adaptive p-value procedure can be identified as

special cases in the class. For example, if we choose ε̂n = 0 and Ĝ(t) as the empirical CDF,

then (19) reduces to the well-known BH procedure. Genovese and Wasserman (2004) devel-

oped a stochastic process framework for multiple testing and showed that, when consistent

estimates of G and p are chosen, the class of plug-in procedures (19) are asymptotically

valid and exhaustive. That is, the FDR is controlled at level α+ o(1).

3.2.4. The q-value procedure. The p-value has a nice interpretation and provides a conve-

nient framework for testing a single hypothesis, e.g. we reject the null if the p-value is less

than α. The q-value (Storey 2003) can be viewed as an analogue of the p-value in the FDR

paradigm in the sense that if we want to carry out an FDR analysis at level α, then we can

obtain the q-value for each test and reject Hi if its q-value is less than α. The q-value has

gained great popularity in large-scale “omics” research such as genomics and proteomics

(Tusher et al. 2001) due to its convenience and nice interpretation.

Roughly speaking, the q-value of a test measures the fraction of false discoveries when

that test is just rejected. Consider the random mixture model (18), the positive FDR

www.annualreviews.org • Large-Scale Inference 15



(pFDR) is defined as pFDR(t) = E
(
N10
R

∣∣R > 0
)

= (1− εn)t/G(t), where t is the p-value

cutoff. The q-value of Hi is the smallest FDR level such that Hi can be rejected:

q(pi) = inf
t≥pi
{pFDR(t)} = inf

t≥pi

{
(1− εn)t

G(t)

}
. (20)

In practice, we estimate εn and G as ε̂n and Ĝ. Suppose all hypotheses are arranged in

ascending order of p-values p(1), · · · , p(m). Then the q-value procedure works as follows.

Let q̂
(
p(i)

)
=

(1− ε̂n)p(i)

Ĝ
(
p(i)

) . Reject H(i) if q̂
(
p(i)

)
≤ α. (21)

The q-value is computed for an individual case but has a global interpretation: it reflects

the relative significance of a single test by taking into account of the p-values from all other

tests. By comparing (21) with (19), we can see that the q-value procedure belongs to the

class of plug-in methods.

3.2.5. Other error rate concepts and methodologies. In situations where the FDP is highly

variable, the false discovery exceedance (FDX, Genovese and Wasserman 2004) provides a

useful alternative to the FDR. Let 0 ≤ τ ≤ 1 be a pre-specified tolerance level, the FDX at

level τ is FDXτ = P(FDP > τ), the tail probability that the FDP exceeds a given bound.

The goal is to construct a testing procedure satisfying FDX ≤ α. The FDX control takes into

account the variability of the FDP, and is desirable with correlated tests where variability

of FDP is very high. See Lehmann and Romano (2005b), Genovese and Wasserman (2006),

and Roquain and Villers (2011) for recent development in FDX theories and methodologies.

Other important p-value based FDR procedures include the augmentation procedure

(van der Laan et al. 2004), two-stage linear procedure (Benjamini et al. 2006), and re-

sampling procedures (Tusher et al. 2001), among others. The resampling methods are

attractive in many applications because the p-values and adjusted p-values can be esti-

mated without making any parametric assumptions on the joint distribution of the test

statistics. Moreover, the correlation structure and distributional characteristics of the data

can be preserved. Algorithms for computing adjusted p-values are introduced, for example,

in Westfall and Young (1993) and Dudoit et al. (2003).

There are a range of other error measures in the multiple testing literature, including

the FWER, k-FWER, FDR, generalized FDR, marginal FDR, positive FDR, FDX, false

cluster rate, weighted FDR, overall FDR, outer-node FDR, and focus-level FDR. These

concepts are useful but may cause confusion. Benjamini (2010) provided a good summary

of error measures and discussed how to match proper error rates with inference needs.

3.3. Optimal FDR Control: A Decision-Theoretic Approach

In multiple testing, we aim to separate the non-null cases from null cases. A testing pro-

cedure can be represented by a binary rule δδδ = (δ1, · · · , δn) ∈ {0, 1}n, where δi = 0/1

indicates that we claim that case i is null/non-null. Multiple testing is a compound decision

problem (Robbins 1951) since all tests are combined and evaluated together.

The development of a multiple testing procedure involves two steps: (i) deriving a test

statistic Ti that ranks hypotheses from the most significant to the least significant, and (ii)

setting a cutoff t for Ti to control the FDR at α. This leads to a thresholding rule:

δi = I(Ti < t), i = 1, · · · , n. (22)
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We can see that Ti, which determines the ranking of hypotheses, plays a central role in

multiple testing. In conventional FDR procedures, the default choice for Ti has been the p-

value. Sun and Cai (2007) developed a compound decision theoretic framework and showed

that the p-value is not a fundamental building block in large-scale testing problems. The

next sections survey results on optimal and asymptotically optimal FDR procedures and

show that all p-value methods can be uniformly improved.

3.3.1. Oracle FDR procedure. Consider an ideal setup where an oracle knows p, f0 and f1.

To develop the oracle rule, we consider two problems in turn: (i) what is oracle statistic

that gives the optimal ranking of all tests? (ii) What is the oracle cutoff that controls the

FDR and maximizes the ETP?

Consider model (1). Suppose we obtain a z-value from each test. Sun and Cai (2007)

showed that the optimal test statistic in the oracle setting is the local false discovery rate

Lfdr(zi) =
(1− εn)f0(zi)

f(zi)
. (23)

Now consider a class of FDR procedures of the form δi(t) = I{Lfdr(zi) < t}, for 1 ≤ i ≤ n,
where 0 ≤ t ≤ 1 is a cutoff. The next step is to find the oracle cutoff that controls the FDR

at level α with the largest ETP (15). To this end, denote QOR(t) the FDR level when the

cutoff for Lfdr is t. Define the oracle cutoff as the largest cutoff allowed under the FDR

constraint tOR = sup{t : QOR(t) ≤ α}. Finally, we introduce the oracle FDR procedure as

a thresholding rule based on Lfdr and tOR: δδδOR = (δiOR : 1 ≤ i ≤ n), where

δiOR = I{Lfdr(zi) < tOR}. (24)

Sun and Cai (2007) showed that the oracle rule (24) is optimal for FDR control in the sense

that it has the largest ETP among all FDR procedures at level α.

The Lfdr statistic has a Bayesian interpretation: Lfdr(zi) = P(case i is null | zi) (Efron

et al. 2001). It captures all important distributional information in the mixture model (1).

The expression (23) implies that we actually rank the hypotheses according to the ratio f0/f ,

and the ranking is more efficient than that based on p-values. An interesting consequence of

using the Lfdr statistic is that we may accept a more “extreme” observation while rejecting

a less extreme observation, which implies that the rejection region is asymmetric. This

point will be illustrated in Section 3.3.3 using the mutual funds data.

3.3.2. A data-driven procedure. The oracle procedure cannot be implemented in practice

since both the Lfdr and tOR are unknown. We discuss how to estimate the unknown

quantities. Let ε̂n, f̂0 and f̂ be estimates of εn, f0 and f , respectively. The estimation of εn
is discussed in Section 2. The null density f0 is either taken as a known theoretical null, i.e.

the standard normal density, or is estimated as an empirical null using methods in Efron

(2004) and Jin and Cai (2007). The mixture density f can be obtained as a standard kernel

density estimator with bandwidth chosen by cross validation (Silverman 1986). Then the

Lfdr statistic can be estimated as

L̂fdri =
(1− ε̂n)f̂0(zi)

f̂(zi)
.

Next, we derive a data-driven procedure that mimics the oracle procedure. We use the

“ranking followed by thresholding” idea to motivate a step-wise method. Denote L̂fdr(1) ≤
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. . . ≤ L̂fdr(n) the ordered Lfdr statistics. Suppose j hypotheses are rejected along the

ranking, then the actual FDR level can be estimated as Q̂OR(j) = 1
j

∑j
i=1 L̂fdr(i), the

moving average of the top j ordered statistics [cf. Sun and Cai (2007)]. To fulfill the FDR

constraint and maximize the power, we propose the following step-wise procedure:

Let k = max

{
j :

1

j

j∑
i=1

L̂fdr(i) ≤ α

}
, then reject all H(i), i = 1, · · · , k. (25)

The goals of global FDR control and individual case interpretation are naturally unified

in the data-driven procedure (25). Moreover, with the consistent estimators proposed in Jin

and Cai (2007), Sun and Cai (2007) showed that the data-driven procedure is asymptotically

valid and optimal in the sense that the data-driven procedure controls the FDR at level

α + o(1), and has an FNR level of FNROR + o(1), where FNROR is the FNR level of the

oracle procedure.

3.3.3. Analysis of mutual funds data: a comparison of p-value and Lfdr. Consider a normal

mixture model with three components:

(1− ε−n − ε+n )N(0, 1) + ε−nN(µ−, 1) + ε−nN(µ+, 1),

where ε−n and ε+n are the proportions of negative and positive non-null cases, respectively.

The model was considered in Barras et al. (2010) for analysis of mutual funds data, where

N(0, 1), N(µ−, 1), N(µ+, 1) are used to describe the distributions of zero alpha funds,

unskilled funds and skilled funds, respectively. We choose a setting so that the main findings

in Barras et al. (2010) can be roughly matched. Specifically, n = 5000 z-values are simulated

from the mixture model with µ− = −2.5, µ+ = 3, ε−n = 0.15 and ε+n = 0.05. Hence

many funds have underperformance but few have outperformance. The histograms of zero,

positive and negative components are plotted in different colors in Figure 4, with a mixture

density curve fitted to the observed bars.

In practice we do not know the true states of nature but only observe a mixture of the

three types of funds. It is desirable to identify both skilled and unskilled funds. We apply

the BH procedure (Benjamini and Hochberg 1995), adaptive p-value (AP, Benjamini and

Hochberg 2000) procedure and the data-driven Lfdr procedure (Sun and Cai 2007) to the

data set at α = 0.1. The results are summarized in Table 2.

Table 2 Analysis summary for simulated mutual funds data.

Methods # Rejections # True Rejections FDP Lower cutoff Upper cutoff

BH 572 532 0.07 −2.53 2.53

AP 633 579 0.085 −2.41 2.41

Lfdr 694 626 0.098 −2.18 2.73

We can see that the Lfdr procedure controls the false discovery proportion (FDP) more

precisely compared to the p-value based methods. Moreover, it correctly identifies more non-

zero alpha funds compared to the p-value based methods. The efficiency gain is due to the

adaptivity of the Lfdr procedure. Concretely, the mixture is an asymmetric distribution with

ε−n being higher than ε+n , hence we are more likely to find signals in the negative component.

Therefore it makes sense to adopt an asymmetric rejection region when selecting nonzero
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Figure 4

Mutual funds example: symmetric vs. asymmetric rejection regions. The normal
mixture model is 0.8 ·N(0, 1) + 0.15 ·N(−2.5, 1) + 0.05 ·N(3, 1) with a higher proportion of

negative alpha funds. It makes sense to adopt an asymmetric rejection region as we are more likely

to find signals in the negative part. The Lfdr procedure allows to accept an observation located
further away from 0 while rejecting an observation closer to 0. In contrast, p-value based methods

are not adaptive to the asymmetry of the distribution. The rejection region of the Lfdr method is
given by z < −2.18 or z > 2.73. In contrast, the rejection region of the AP method is |z| > 2.41.

alpha funds. The Lfdr procedure is adaptive in the sense that it produces asymmetric

regions automatically (without having to estimate ε−n and ε+n !). We can see from Figure

4 that the rejection region of the AP method is |zi| > 2.41, whereas the rejection region

of the Lfdr procedure is zi < −2.18 and zi > 2.73. It is interesting to note that the Lfdr

procedure rejects observation z = −2.2 but does not reject observation z = 2.6. This will

never be encountered by a p-value method which always has symmetric rejection regions.

3.4. Multiple Testing with External and Structural Information

Conventional multiple testing procedures implicitly assume that data are collected from re-

peated or identical experimental conditions, and hence hypotheses are exchangeable. How-

ever, in many applications, data are known to be collected from heterogeneous sources and

form into groups. Moreover, relevant domain knowledge, such as external covariates, scien-

tific insights, prior data and hierarchical structure, is often available alongside the primary

data set in many studies. Exploiting such information in an efficient manner promises to

enhance both the interpretability of research results and precision of statistical inference.

3.4.1. Heterogeneity and grouping. The problem of multiple testing with groups and re-

lated problems are studied in Efron (2008); Ferkingstad et al. (2008); Cai and Sun (2009);

Hu et al. (2012), among others. For example, in the AYP study discussed in Section 1.1,

the estimated null densities of the z-values for large schools is much wider than those in

medium and small schools. In the brain imaging study considered by Schwartzman et al.

(2008), the null cases for the front and back halves of the brain centered on different means,

and the density of the back half is narrower. The differences in the null distributions have

significant impacts on the outcomes of multiple testing procedures.
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Efron (2008) introduced the multi-group mixture model to handle the heterogeneity in

the data. Suppose X1, · · · , Xn can be divided into K groups:

Xki ∼ fk = (1− π1k)fk0 + π1kfk1, i = 1, · · · , nk, k = 1, · · · ,K. (26)

The group memberships are assumed to be known. Three strategies for testing grouped

hypotheses have been considered in the literature. First, the pooled analysis simply ignores

the information of group labels and conducts a global analysis on the combined sample

at a given FDR level α. It is argued by Efron (2008) that a pooled FDR analysis is

problematic because highly significant cases from one group may be hidden among the

nulls from another group, while insignificant cases may be possibly enhanced. Efron (2008)

suggested the second approach, namely the separate analysis, which first conducts an FDR

analysis at level α within each group, and then combines the testing results from all groups.

It was shown by Efron (2008) that the separate analysis controls the FDR. However, the

choice of identical FDR levels across all groups can be suboptimal. Cai and Sun (2009)

showed that both the separate and pooled analyses can be uniformly improved by a third

approach, the conditional Lfdr (CLfdr) method, which enjoys features from both pooled

and separate analyses. Let p̂k, f̂k0 and f̂k be estimates of the unknown quantities in (26).

Then the CLfdr procedure operates as follows:

1. Calculate the plug-in CLfdr statistic ĈLfdrki = (1− p̂k)f̂k0(xki)/f̂k(xki).

2. Combine and rank the plug-in CLfdr values from all groups. Denote by ĈLfdr(1), · · · ,
ĈLfdr(n) the ranked values and H(1), · · · , H(n) the corresponding hypotheses.

3. Reject all H(i), i = 1, · · · , l, where l = max
{
i : (1/i)

∑i
j=1 ĈLfdr(j) ≤ α

}
.

It is important to note that in step 1, the external information of group labels is utilized

to calculate the CLfdr; this is the feature from a separate analysis. However, in steps 2

and 3, the group labels are dropped and the rankings of all hypotheses are determined

globally; this is the feature from a pooled analysis. Cai and Sun (2009) showed that the

CLfdr procedure is asymptotically valid and optimal. Unlike for the separate analysis, the

group-wise FDR levels of the CLfdr procedure, which are in general different from α, are

adaptively weighted among groups.

3.4.2. External weights. In multiple testing, the hypotheses being investigated often become

“unequal” in light of external information, which may be reflected by differential attitudes

towards the relative importance of testing units or the severity of decision errors. The use of

weights provides an effective strategy to incorporate informative domain knowledge in large-

scale testing problems. In the literature, various weighting methods have been advocated

for a range of multiple comparison problems (Genovese et al. 2006; Roeder and Wasserman

2009; Roquain and Van De Wiel 2009). A popular scheme, referred to as the decision

weights approach, involves modifying the error criteria or power functions (Benjamini and

Hochberg 1997). The idea is to employ two sets of positive constants aaa = {ai : i = 1, · · · , n}
and bbb = {bi : i = 1, · · · , n} to take into account the costs and gains of multiple decisions.

Let δi be the decision for Hi. The weighted false discovery rate (wFDR) is defined as

wFDR = E

{
n∑
i=1

ai(1− θi)δi

}
/E

(
n∑
i=1

aiδi

)
,

where ai is the weight indicating the severity of a false positive decision. For example, ai is

taken as the cluster size in the spatial cluster analyses conducted in Benjamini and Heller
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(2007) and Sun et al. (2015). As a result, rejecting a larger cluster erroneously corresponds

to a more severe decision error. To compare the effectiveness of different weighted multiple

testing procedures, we define the expected number of true positives ETP = E
(∑n

i=1 biθiδi
)
,

where bi is the weight indicating the power gain when Hi is rejected correctly. The use of

bi provides a useful scheme to incorporate informative domain knowledge. In spatial data

analysis, correctly identifying a larger cluster that contains signal may correspond to a

larger bi, indicating a greater decision gain. By combining the concerns on both the error

criterion and power function, the goal in weighted multiple testing is to

maximize the ETP subject to the constraint wFDR ≤ α. (27)

Basu et al. (2015) developed an asymptotically optimal solution to (27). The key step

involves a conceptualization of the constrained optimization problem (27) as an expand-

ing knapsack problem, followed by an application of the classical ideas in Neyman-Pearson

Lemma. This leads to a fast greedy algorithm that substantially speeds up conventional

knapsack algorithms with optimality guarantees. Moreover, the optimality theory reveals

that the optimal ranking depends on the pre-specified wFDR level, an interesting phe-

nomenon unknown in previous works.

3.4.3. Hierarchical structure and logical correlation. In many applications, the data are

aggregated to different resolution levels and it is desirable to test hypotheses in a hierarchi-

cal fashion. Hierarchical analysis is also useful in large-scale pattern recognition problems.

When the signals are sparse, it is desirable to first separate signals from massive and noisy

data (testing) and then determine the patterns of the selected signals (classification). The

task can be described as finding needles of various shapes in a haystack. Important appli-

cations include hierarchical testing in oncological genetics, fault detection and classification

in control engineering, and satellite surveillance for coarse to fine interpretation of visual

images. The pattern discovery process can be described by a decision tree with multiple

levels, where decisions are made at finer and finer resolution levels going from the top to

bottom of the tree. At each node of a given level, we have three possible actions: (i) testing:

deciding whether a unit contains one of the patterns of interest; (ii) classification: assigning

the selected subjects to a specific pattern categories (classification); and (iii) indecision:

selecting a subject as a signal but does not specify its pattern.

In hierarchical testing, important error measures for summarizing the whole decision

process include full-tree and outer-node FDR’s (Yekutieli 2008), the focus level FDR (Goe-

man and Mansmann 2008), the mixed directional FDR (Guo et al. 2010), and the overall

false discovery rate (Sun and Wei 2015). Moreover, a hierarchical decision rule needs to

fulfill a genuine logical relationship, that is, a case is rejected only if its parent node is re-

jected. Various methods have been developed for the adjustment of statistical significance

according to the hierarchical structure, as well as the logical and error rate constraints;

see Blanchard and Geman (2005), Goeman and Mansmann (2008), Yekutieli (2008), Mein-

shausen (2008), Goeman and Solari (2010) and Sun and Wei (2015). Recent works on

multiple comparison issue in multi-stage and sequential testing problems include Benjamini

et al. (2006), Lin (2006), Dmitrienko et al. (2007), Benjamini and Heller (2007), Posch et al.

(2009), Liang and Nettleton (2010), Sarkar et al. (2013), Benjamini and Bogomolov (2014),

and Cai and Sun (2016). Hierarchical testing is also related to the control of directional er-

rors in multiple testing; see Guo et al. (2010), and Goeman et al. (2010) for related theories

and methodologies.
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3.5. Multiple Testing Under Dependency

Observations arising from large scale testing problems are often dependent. However, con-

ventional FDR procedures rely heavily on the independence assumption, and the correlation

among hypotheses is typically ignored. There are two important questions regarding the

dependence issue: (i) what is the impact of dependence on the conventional FDR analysis?

(ii) How to construct new FDR procedures for dependent tests?

3.5.1. Impact of dependence in multiple testing. The impact of dependence has been ex-

tensively studied in the multiple testing literature. The results can be roughly divided into

two types. First, it has been shown that the classical BH procedure is valid for control-

ling the FDR under different dependency assumptions, indicating that it is safe to apply

conventional methods as if the tests were independent (see Benjamini and Yekutieli 2001;

Sarkar 2002; Storey et al. 2004; Wu 2008; Clarke and Hall 2009, among others). On the

other hand, Efron (2007a) and Schwartzman and Lin (2011) showed that correlation usu-

ally degrades statistical accuracy, affecting both estimation and testing. High correlation

also results in high variability of testing results and hence the irreproducibility of scien-

tific findings; see Owen (2005); Finner et al. (2007) for related discussions. These results

suggest that dependency has negative impact and must be adjusted for multiple testing,

especially when the correlations are very high. Leek and Storey (2008) and Friguet et al.

(2009) studied multiple testing under the factor models and showed that by subtracting the

common factors out, the dependence structure can be greatly weakened. Efron (2007a) and

Fan et al. (2012) discussed how to take into account the dependence structure and obtain

more accurate FDR estimates for a given p-value threshold. However, these p-value based

methods still suffer from efficiency loss when the dependence structure is highly informative.

3.5.2. Exploiting dependence for multiple testing. Some empirical studies Some empirical

studies have demonstrated that dependence can be utilized to improve the precision of

inference. The idea is to aggregate weak signals from individuals and pool information from

nearby observations by exploiting high correlations. Genovese et al. (2006) and Benjamini

and Heller (2007), Sun and Cai (2009), and Sun and Wei (2011) showed that incorporating

functional, spatial and temporal correlations into a multiple testing procedure may greatly

improve the power and accuracy of conventional methods.

To see why the dependence structure can be helpful, consider the following example.

Suppose one observes a mixture of null and non-null hypotheses and expects that the non-

null cases appear in clusters. Suppose the observed sequence is

· · · ,−2.8,−3.4, x1,−3.2,−2.9, · · · , 0.2,−0.3, x2, 0.01, 1, · · · ,

where x1 = x2 = 2. Heuristically we can argue that x1 is likely to come from the non-null

distribution because there is evidence in the sample that it is in a cluster with negative

effects. In contrast, x2 is likely to be a random large observation that comes from a cluster

of null effects. Therefore it is natural to assign different significance levels to x1 and x2 even

if the observed values are the same. However, x1 and x2 have the same p-values if inspected

alone. Next we discuss how to systematically incorporate the structural information among

the hypotheses in multiple testing. We first consider a simple and widely used model and

then move to more complicated settings.
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3.5.3. Hidden Markov models. Hidden Markov model (HMM) is a widely used and effective

tool for modeling the dependency structure (Rabiner 1989). Suppose we observe a mixture

of null and non-null hypotheses and expect that the non-nulls appear in clusters. In an

HMM, the sequence of the unknown (hidden) null and non-null states is assumed to form

a Markov chain (θi)
n
1 = (θ1, · · · , θn) ∈ {0, 1}n. The observed data values xxx = (x1, · · · , xn)

are independent conditional on the hidden states (θi)
n
1 . Let ϑ denote the collection of all

HMM parameters.

Sun and Cai (2009) showed that under the HMM dependency, the optimal test statistic

is the local index of significance LISi = Pϑ(θi = 0|xxx), which can be computed using a fast

forward-backward algorithm. The LIS is superior than the p-value as it utilizes the HMM

dependence to pool information from nearly observations. The information from the whole

sequence is integrated to calculate the LIS statistic. By using LIS, the signal to noise ratio

is increased and the procedure is more robust against local disturbance.

In practice, we estimate the HMM parameters by ϑ̂ and use a plug-in statistic

L̂ISi = Pϑ̂(θi = 0|xxx). The maximum likelihood estimate is commonly used and is strongly

consistent and asymptotically normal (Leroux 1992; Bickel et al. 1998). The MLE can be

computed using the EM algorithm or other standard optimization schemes. Denote by

L̂IS(1), · · · , L̂IS(n) the ranked plug-in test statistics and H(1), · · · , H(n) the corresponding

hypotheses. The following data-driven procedure can be used for FDR control:

Let k = max

{
i :

1

i

i∑
j=1

L̂IS(j) ≤ α

}
, then reject all H(i), i = 1, · · · , k. (28)

Sun and Cai (2009) showed that the data-driven procedure controls the FDR at level α +

o(1), and is asymptotically optimal. Numerical results from both simulated and real data

show that conventional p-value based methods can be greatly improved. At the same FDR

level, the number of false positives is greatly reduced and the statistical power to reject a

non-null is substantially increased. This indicates that dependence can make the testing

problem easier and can be a blessing if incorporated properly.

3.5.4. Random field model: Point-wise inference. The multiple comparison issue has been

raised in a wide range of spatial analyses such as brain imaging (Genovese et al. 2002;

Heller et al. 2006; Schwartzman et al. 2008), disease mapping and surveillance (Green and

Richardson 2002), and network analysis (Wei and Li 2007). When the intensities of signals

have a spatial pattern, it is expected that incorporating the underlying dependence structure

can significantly improve the power and accuracy of conventional methods. We discuss how

to extend the methodology in an HMM to spatial settings.

Let S be a spatial domain. Consider the random field model (RFM)XXX = {X(s) : s ∈ S}
in Pacifico et al. (2004) for spatial multiple testing: X(s) = µ(s) + ε(s), where µ(s) is the

unobserved random process and ε(s) is the noise process. Assume that there is an underlying

state θ(s) associated with each location s with one state being dominant (“background”).

In applications, an important goal is to identify locations that exhibit significant deviations

from background. This can be formulated as a multiple testing problem. Let θ(s) ∈ {0, 1}
be an indicator such that θ(s) = 1 if location s contains signal and θ(s) = 0 otherwise. For

each location we make a decision δ(s) = 1 if the null is rejected and δ(s) = 0 otherwise.

The decision process for the whole spatial domain S is denoted by δδδ = {δ(s) : s ∈ S}. Let

ν(·) denote the Lebesgue/counting measure for a continuous/discrete domain. The spatial
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FDR can be defined as

FDR = E
(
ν(SFP )

ν(R)

∣∣∣∣ ν(R) > 0

)
P(ν(R) > 0)

where R = {s ∈ S : δ(s) = 1} is the rejection area, and SFP = {s ∈ S : θ(s) = 0, δ(s) = 1}
is the false positive area.

Let xxxN = (x1, · · · , xN ) denote the observed values. Suppose an oracle knows all

RFM parameters, denoted by Ψ. The oracle statistic for point-wise inference is TOR(s) =

PΨ{θ(s) = 0|xxxN}. However, this requires testing an uncountable number of hypotheses for

all s ∈ S, which is impossible in practice. Sun et al. (2015) showed that a continuous decision

process can be described, within a small margin of error, by a finite number of decisions on

a grid of pixels. Concretely, the strategy is to divide a continuous S into n “pixels,” pick one

point in each pixel, and use the decision at that point to represent all decisions in the pixel.

Let ∪ni=1Si be a partition of S. Pick a point si from each Si. Let T
(1)
OR ≤ T

(2)
OR ≤ · · · ≤ T

(n)
OR

denote the ordered oracle statistics and S(i) the corresponding regions. In a point-wise

inference, define Rj = ∪ji=1S(i) and r = max
{
j : ν(Rj)

−1∑j
i=1 T

(i)
ORν(S(i)) ≤ α

}
. The re-

jection area is given by R = ∪ri=1S(i). This procedure can be implemented efficiently under

a Bayesian computational framework, which involves hierarchical modeling and MCMC

computing. See Sun et al. (2015) for detailed algorithms.

3.5.5. Cluster-wise/set-wise inference. When the interest is on the behavior of a process

over sub-regions, the testing units become spatial clusters instead of individual locations.

Combining simultaneous tests in sets or clusters can improve statistical power and provide

new research insights (Benjamini and Heller 2008; Sun and Wei 2011).

Let C = {C1, · · · , CK} denote the set of (known) clusters of interest. In many appli-

cations it is desirable to incorporate the cluster size or other spatial variables in the error

measure. Let ϑk be a binary variable which equals 0/1 if cluster k is null/non-null and 0

otherwise. The decision for cluster k is denoted a binary indicator ∆k, where ∆k = 1 if

cluster k is claimed to be significant and ∆k = 0 otherwise. We use the false cluster rate

(FCR) to measure the overall error rate of a cluster-wise procedure:

FCR = E
{∑

k wk(1− ϑk)∆k

(
∑
k wk∆k) ∨ 1

}
, (29)

where wk are cluster specific weights which are often pre-specified in practice. For example,

one can take wk = ν(Ck), the size of a cluster, to indicate that a false positive cluster with

larger size would account for a larger error.

Let C1, · · · , CK be the clusters andH1, · · · ,HK the corresponding hypotheses. The ora-

cle statistic for cluster-wise inference is TOR(Ck) = PΨ(ϑk = 0|xxxN ). Let T c(1) ≤ · · · ≤ T c(K) be

the ordered TOR(Ck) values, and H(1), · · · , H(K) and w(1), · · · , w(K) the corresponding hy-

potheses and weights, respectively. Let r = max
{
j : {

∑j
k=1 w(k)}−1∑j

k=1 w(k)T
c
(k) ≤ α

}
.

Then reject H(1), · · · ,H(r). This procedure controls the FCR at level α, and can be imple-

mented by MCMC algorithms. See Sun et al. (2015) for details.

3.5.6. Arbitrary dependence. Our discussions have focused on situations where dependency

structures can be well estimated from data. The problem of FDR control under arbitrary

and unknown dependence still requires further research. Benjamini and Yekutieli (2001)
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showed that performing the BH procedure at level α/(
∑n
i=1 1/i) always control the FDR at

level α under arbitrary dependence. However, such an adjustment is too conservative and

often unnecessary in practice. It remains an open issue on how to estimate the unknown

dependence and utilize the information to construct more powerful tests.

4. DISCUSSION AND OTHER TOPICS

Statistical inference for high-dimensional covariance structures is an active and important

area of research. Driven by a wide range of applications, there have been significant recent

developments on the methods and theory for testing of the global covariance structures and

simultaneous testing of a large number of hypotheses on the local covariance structures with

FDP and FDR control. High dimensionality and dependency impose significant challenges

in the construction and analysis of the testing procedures. The present paper does not

cover this important topic. We refer interested readers to Cai (2016) for a comprehensive

review on global testing for the covariance, correlation, and precision matrices, and multiple

testing for the correlations, Gaussian graphical models, and differential networks.

Another topic that is not discussed in this paper is simultaneous inference for high-

dimensional regression models, which has received much recent attention. See, for example,

Lockhart et al. (2014), Zhang and Zhang (2014), Javanmard and Montanari (2014), Van de

Geer et al. (2014), Liu and Luo (2014), Barber et al. (2015), Xia et al. (2015), and Cai and

Guo (2016).

Multiple testing is often used as a selection or screening step in the overall analysis.

Selective inference, which involves making further inference on the selected variables, is

an important area that requires much research on formal theoretical principles and prac-

tical methodologies. Making valid inference after multiple testing or model selection is a

challenging task because the estimates of the post-selection variables would be biased if

the selection effects are not taken into account. Post-selection inference techniques are

useful in classical statistical problems such as the estimation of many normal means and

simultaneous confidence intervals (Benjamini and Yekutieli 2005; Brown and Greenshtein

2009; Efron 2011), as well as rapidly growing areas such as high-dimensional regression and

sparse principal components analysis; see Yekutieli (2012), Hwang and Zhao (2013), Berk

et al. (2013), Benjamini and Bogomolov (2014), Taylor and Tibshirani (2015) and Lee et al.

(2016) for recent developments in this direction.
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