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SUMMARY. In standard wavelet methods, the empirical wavelet coefficients are thresh-
olded term by term, on the basis of their individual magnitudes. Information on other
coefficients has no influence on the treatment of particular coefficients. We propose and
investigate a wavelet shrinkage method that incorporates information on neighbouring co-
efficients into the decision making. The coefficients are considered in overlapping blocks;
the treatment of coefficients in the middle of each block depends on the data in the whole
block. Both the asymptotic and numerical performances of two particular versions of the
estimator are considered. In numerical comparisons with various methods, both versions of
the estimator perform excellently; on the theoretical side, we show that one of the versions

achieves the exact optimal rates of convergence over a range of Besov classes.

1. Introduction

Consider the nonparametric regression model

Y; = f(tz) + o Z; (1)

where t; = i/n for i = 1,2,...n, o is the noise level, and the z; are i.i.d.
N(0,1). The function f(-) is an unknown function of interest.
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Wavelet methods are attractive for nonparametric function estimation
because of their spatial adaptivity, computational efficiency and asymptotic
optimality properties. Standard wavelet methods achieve adaptivity through
term-by-term thresholding of the empirical wavelet coefficients. Typically,
to obtain the wavelet coefficients of the function estimate, each individual
empirical wavelet coefficient y is compared with a predetermined threshold
7, and is processed taking account solely of its own magnitude. Other co-
efficients have no influence on the estimate. Examples of shrinkage func-
tions applied to individual coefficients include the hard thresholding func-
tion n(y) = y - I(ly] > 7) and the soft thresholding function n’(y) =
sgn(y) - (ly| — 7). For example, Donoho and Johnstone’s (1994) VisuShrink
estimates the true wavelet coefficients by soft thresholding with the universal
threshold T = o(2logn)/2.

Hall et al. (1999) and Cai (1996, 1999a and 1999b) studied local block
thresholding rules for wavelet function estimation. These threshold the em-
pirical wavelet coefficients in groups rather than individually, making si-
multaneous decisions to retain or to discard all the coefficients within a
block. The aim is to increase estimation accuracy by utilizing information
about neighbouring wavelet coefficients. These methods group coefficients
in nonoverlapping blocks. The multiwavelet threshold estimators considered
by Downie and Silverman (1998) also utilize block thresholding ideas.

In the present paper, we investigate wavelet shrinkage methods that in-
corporate information about neighbouring coefficients in a different way. The
coefficients are considered in overlapping blocks. The basic motivation of
block thresholding remains: if neighbouring coefficients contain some signal,
then it is likely that the coeflicients of current direct interest also do, and so a
lower threshold should be used, essentially yielding a different local tradeoff
between signal and noise. Two particular approaches are considered. One
method, which we call NeighCoeff, chooses a threshold for each coefficient by
reference not only to that coefficient but also to its neighbors. In the other
approach, called NeighBlock, we aim to incorporate the advantages of the
block thresholding method by estimating wavelet coefficients simultaneously
in groups, but again use neighbouring coefficients outside the block of cur-
rent interest in fixing the threshold. Both methods are specified completely,
with explicit definition of both the block size and the threshold level.

After Section 2 in which basic notation and definitions are reviewed, the
two estimators are defined in Section 3. We then investigate the two esti-
mators both practically and theoretically. In Section 4, the estimators are
applied both to simulated and real data, with good performance relative to
other wavelet methods, with the NeighCoeff method performing particularly
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well. Some theoretical results are derived in Section 5, where we show that
a sequence space versions of the estimators enjoy a high degree of adap-
tivity. Specifically, we prove that the NeighBlock estimator simultaneously
attains the exact optimal rate of convergence over a wide interval of the
Besov classes with p > 2 without prior knowledge of the smoothness of the
underlying functions. Over the Besov classes with p < 2, the estimator
simultaneously achieves the optimal convergence rate within a logarithmic
factor. We also prove that the NeighCoeff estimator is within a logarithmic
factor of being minimax over a range of Besov classes. As shown in Cai
(2000), this extra logarithmic factor is unavoidable for any estimator which
uses a fixed number (independent of n) of empirical coefficients to estimate
each wavelet coefficient.

The estimators are appealing visually as well as quantitatively. The
reconstructions jump where the target function jump; the reconstruction
is smooth where the target function is smooth. They do not contain the
spurious fine-scale structure contained in some wavelet estimators, but adapt
well to subtle changes in the underlying functions. The web site Cai and
Silverman (1999) contains SPlus scripts implementing both our estimators.
It also describes additional simulation results not included in this paper.

2. Wavelet Methods for Function Estimation

2.1 Further background, notation and conventions. We shall assume that
we are working within an orthonormal wavelet basis generated by dilation
and translation of a compactly supported scaling function ¢ and a mother
wavelet 1.

For simplicity in exposition, we work with periodized wavelet bases on
[0, 1], letting

D@ = D0 ikt =0, ¢ = D bkt 1), forte0,1]

[=— [=—

where ‘ ‘ ‘ _
bik(t) = 22§27t — k), 1h;p(t) = 27/ 2p(27t — k).
The collection {¢ ., k =1,...,27% 47, j > jo > 0,k =1,...,27} is
then an orthonormal basis of L2[0,1], provided the primary resolution level
jo is large enough to ensure that the support of the scaling functions and

wavelets at level jj is not the whole of [0,1]. The superscript “p” will be
suppressed from the notation for convenience.
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An orthonormal wavelet basis has an associated exact orthogonal Dis-
crete Wavelet Transform (DWT) that is norm-preserving and transforms
sampled data into the wavelet coefficient domain in O(n) steps. We use the
standard device of transforming the problem in the function domain into a
problem, in the sequence domain, of estimating the wavelet coefficients. See
Daubechies (1992) and Strang (1992) for further details about the wavelets
and the discrete wavelet transform.

Wavelets are known for their excellent compression and localization prop-
erties. In very many cases of interest, information about a function is essen-
tially contained in relatively small number of large coefficients. Figure 1 dis-
plays the wavelet coefficients of the well-known test function Bumps (Donoho
and Johnstone, 1994). Tt shows that large detail coefficients come as groups;
they cluster around the areas where the function changes significantly.

(a) Bumps
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Figure 1. WAVELET COEFFICIENTS OF THE BUMPS FUNCTION

This example illustrates the motivation for our methods—a coefficient
is more likely to contain signal if neighbouring coefficients do also. There-



NEIGHBOURING COEFFICIENT INFORMATION IN WAVELET ESTIMATION 131

fore when the observations are contaminated with noise, estimation accu-
racy might be improved by incorporating information on neighbouring coef-
ficients. Indeed, as we shall see, our estimators show significant numerical
improvement over the conventional term-by-term thresholding estimators.

Suppose we observe the data Y = {y;} as in (1). We shall assume that
the noise level o is known. Let © = W -Y be the discrete wavelet transform
of Y. Then © is an n-vector with elements 5j0,k (k =1,---,2%), which are
the gross structure scaling function terms at the lowest resolution level, and
éj,k (=730, --,J—1,k=1,---,27), which are fine structure wavelet terms.
Since the DWT is an orthogonal transform, the coefficients are independently
normally distributed with variance o2.

For any particular estimation procedure based on the wavelet coefficients,
we use the notation © for the estimate of the DWT © of the values of f at
the sample points. Up to the error involved in approximating f at the finest
level by a wavelet series, the mean integrated square error of the estimation
satisfies

E|f - fI3 =n""E|6 - 6|

We therefore measure quality of recovery in terms of the mean square error
in wavelet coefficient space.

3. The NeighBlock and NeighCoeff Procedures

We now define the estimates studied in this paper. We give a definition
of the NeighBlock estimator first, because the NeighCoeff estimator can then
be defined by reducing the basic block length to 1.

3.1 The NeighBlock method. The NeighBlock method has the following
steps, aiming to build on the advantages previously found for block thresh-
olding by incorporating information about neighbouring coefficients. The
procedure is simple and easy to implement, and has a computational cost of
O(n).

STEP 1. Transform the data into the wavelet domain via the discrete
wavelet transform: © = W - Y.

STEP 2. At each resolution level j, group the empirical wavelet coeffi-
cients into disjoint blocks b! of length Ly = [(logn)/2]. (If necessary, shorten
one or both of the b{ at the boundary to ensure that the blocks are nonover-
lapping.)
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STEP 3. Extend each block bf by an amount L; = max(1,[Lg/2]) in each
direction to form overlapping larger blocks Blj of length L = Lo + 2L;. (If
periodic boundary conditions are not being used, then the b{ at the boundary
are only extended in one direction to form Bg , again of length L.)

STEP 4. Within each block b{ estimate the coefficients simultaneously
via a shrinkage rule
Ojk = B0k, for all (j,k) € b].

The shrinkage factor ﬁg is chosen with reference to the coefficients in the
larger block B:

Bl =(1-N\Lo?/S3)4 2)

where

S= Y ®)

(4,k)eB]

and A, = 4.50524... is the solution of the equation A —logA = 3. We can
envision B! as a sliding window which moves Ly positions each time and,
for each given window, only the half of the coefficients in the center of the
window are estimated.

STEP 5. Obtain the estimate of the function via the inverse discrete
wavelet transform of the denoised wavelet coefficients.

The value of the thresholding coefficient A, is derived from an oracle in-
equality introduced in Cai (1999a). Reasons for this choice will be discussed
further when we consider the theoretical properties of the estimator. Note,
in contrast to some other block thresholding methods, the various param-
eters are fully specified: the block length Ly = [(logn)/2] depends on the
sample size n only and the thresholding constant A, is an absolute constant.

The estimator can be modified by averaging over every possible posi-
tion of the block centers. The resulting estimator sometimes has numerical
advantages, at the cost of higher computational complexity.

3.2 The NeighCoeff method. The NeighCoeff procedure follows the same
steps as the NeighBlock estimator, but with Ly = L; = 1, L = 3, and
A= %10g n. The effect is that each individual coefficient is shrunk by an
amount that depends on the coefficient and on its immediate neighbors.

NeighCoeff uses a lower threshold level than the VisuShrink method of
Donoho and Johnstone (1994). In NeighCoeff, a coefficient is estimated
by zero only when the sum of squares of the empirical coefficient and its
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immediate neighbors is less than 202 logn, or the average of the squares is

less than %0’2 logn.

3.3 Discussion. In this paper, our main concern is with the nonparamet-
ric regression estimation of a function observed at regular intervals with inde-
pendent homoscedastic noise. Nevertheless, the idea of the NeighBlock and
NeighCoeff procedures can be generalized to treat other statistical function
estimation problems. For instance, Johnstone and Silverman (1997) consid-
ered the case of data observed with stationary correlated noise. Such data
lead to a wavelet transform that has level-dependent variance, but within
each level the variance is constant, and their paper showed that thresholding
such data as if they were independent would give good results. It is there-
fore straightforward to apply a block thresholding procedure in a case of this
kind. Even though theoretical work remains to be done on the precise prop-
erties of such a procedure, the results of Johnstone and Silverman (1997) are
encouraging.

Data with more general structure were considered by Kovac and Silver-
man (2000). Their work covers both the case of data observed at irregularly
spaced design points and of data with more general covariance structure,
and their paper provides efficient methods for finding the variances of all the
empirical wavelet coefficients. A natural approach is then to rescale each co-
efficient by its own standard deviation, apply one of the block thresholding
methods set out above, and then refer back to the original scale.

Thresholding of coefficients with unequal variances also arises in wavelet
approaches to density estimation. For a discussion of the use of wavelets
in density estimation, and for further references, see Herrick et al. (2001).
Suppose we observe a random sample X;, Xs,..., X, from a density f with
wavelet expansion

FO =" Eordiorn () + DD jktbji(t)
%

Jj=jo k

with the wavelet coefficients
Ejok = /¢jok($)f($) dz = Ef¢jor(X)
and 0y, = / Dik(2)f (z) dz = Epipyp(X).

Denote the empirical wavelet coefficients by

~ 1 ~ 1
Ejok = > hiok(Xi) and Oy = - > hin(X).
i—1 i=1
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At each level, the empirical wavelet coefficients will only be nonzero for
a finite range of indices k. Herrick et al. consider ways of estimating the
variances of the coefficients, and these estimates can then be used within a
block thresholding procedure. A particular issue that requires some careful
thought is the treatment of the non-normal distributions that arise at finer
levels of the transform.

Detailed study of all these extensions of the NeighBlock and NeighCoeff
estimators is an interesting topic for future work.

4. Numerical Comparisons

We first explore the performance of the estimators beginning with two
illustrative examples, and then considering a more detailed simulation study.
We implement the NeighBlock and NeighCoeff estimators in the software
package S+Wavelets. The programs are available from the web site Cai and
Silverman (1999).

The comparison methods include Donoho and Johnstone’s Visu Shrink
and SureShrink as well as Coifman and Donoho’s Translation-Invariant (TI)
denoising method. SureShrink selects the threshold at each resolution level
by minimizing Stein’s (1981) unbiased estimate of risk. In the simulation,
we use the hybrid method proposed in Donoho and Johnstone (1995). The
TI-denoising method was introduced by Coifman and Donoho (1995), and is
equivalent to averaging over estimators based on all the shifts of the original
data. This method has various advantages over the universal thresholding
methods. For further details see the original papers. In the systematic
simulation study in Section 4.3, we also consider the BlockJS estimator in-
troduced in Cai (1999a). The BlockJS estimator has been shown to perform
well both numerically and theoretically; see Cai (1999a) for further details.

4.1 A simulated signal of varying frequency. Figure 2 displays a noisy
Doppler signal as well as reconstructions obtained using various methods.
All the methods except SureShrink recover the smooth low frequency part
reasonably well. Both NeighBlock and NeighCoeff automatically adapt to
the changing frequency of the underlying signal. Both estimate the smooth
and low frequency part accurately; at the same time, they also capture the
more rapidly oscillating area between ¢ = 0.1 and ¢ = 0.4. In contrast,
both VisuShrink and TI de-noising significantly over-smooth in this region.
SureShrink does better than VisuShrink and TI de-noising in recovering the
high frequency part, but it contains noticeable spurious local fluctuation and
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is visually unpleasant. None of the estimators does a particularly good job
in the region ¢ < 0.1 of very high frequency oscillation, partly because of the

Doppler + Noise NeighBlock

20

-10

-20

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
VisuShrink NeighCoeff

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Tl de-noising SureShrink

Figure 2. THE NOISY DOPPLER SIGNAL (TOP LEFT PANEL) AND THE
RECONSTRUCTIONS (METHODS AS LABELLED). THE DOTTED LINE IS THE
TRUE SIGNAL.

low sampling rate relative to the rate of oscillation; however, in contrast to
any of the other estimators, both NeighBlock and NeighCoeff do recover a
little of the signal even in this region.

Quantitatively, NeighBlock and NeighCoeff are almost identical and both
are significantly better than the other methods. In this particular example,
the ratios of the mean squared error of NeighBlock and NeighCoeff to those
of VisuShrink, SureShrink, and TT de-noising are 0.35, 0.72, and 0.45 respec-
tively.

Inspection of wavelet coefficients shows that NeighBlock NeighCoeff, Vi-
suShrink, and SureShrink use 33, 28, 15, and 61 detail coefficients in the re-
construction, respectively. SureShrink retains many detail coefficients in the
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low frequency area and as a result, the reconstruction contains spurious oscil-
lations. VisuShrink keeps only 15 detail coefficients and the reconstruction
is over-smoothed. The additional smoothing inherent in the TI-denoising
method has also led to over-smoothing.

4.2 An anesthesiology example. Figure 3 shows a typical segment of the
result of the same methods applied to the inductance plethysmography data
analyzed, for example, by Abramovich et al. (1998). Because this is real
data there is no ‘right’ answer, but both the VisuShrink and TI denoising
estimates smooth out the broad features of the curve, while the SureShrink
estimator contains high frequency effects near times 300 and 335, both of
which are almost certainly spurious.

0.50

0.45

0.40

. . . — NeighBlock A — NeighBlock
. e -~ VisuShrink % = NeighCoeff
. -—- Tl denoising . - -~ SureShrink
n n
« . « .
=] o
250 300 350 400 250 300 350 400

Figure 3. A SEGMENT OF THE DATA AND CURVE ESTIMATES FOR THE
INDUCTANCE PLETHYSMOGRAPHY DATA. LEFT FIGURE: NEIGHBLOCK
(soLD), VISUSHRINK (DOTTED), TI DENOISING (DASHED). RIGHT
FIGURE: NEIGHBLOCK (SOLID), NEIGHCOEFF (DOTTED), SURESHRINK
(DASHED).
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Figure 4. TEST FUNCTIONS. DoOPPLER, HEAVISINE, BUMPS AND
BLOCKS ARE FROM DONOHO AND JOHNSTONE (1994). BLIP AND WAVE
ARE FROM MARRON et al. (1998). THE TEST FUNCTIONS ARE NORMAL-
IZED SO THAT EVERY FUNCTION HAS STANDARD DEVIATION 10. FOrRMU-
LAE FOR SPIKES AND CORNER ARE GIVEN IN CAI (1999a).

4.3 A simulation study. To provide a more systematic comparison, we
compared the numerical performance of the methods using eight test func-
tions representing different level of spatial variability. The test functions are
plotted in Figure 4. Sample sizes ranging from n = 512 to n = 8192 and
root-signal-to-noise ratios (RSNR) from 3 to 7 were considered. The RSNR
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is the ratio of the standard deviation of the function values to the standard
deviation of the noise. Several different wavelets were used.

For reasons of space, we only report in detail the results for one partic-
ular case, using Daubechies’ compactly supported wavelet Symmlet 8 and
RSNR equal to 3. Table 1 reports the average squared errors over 60 repli-
cations with sample sizes ranging from n = 512 to n = 8192. A graphical
presentation is given in Figure 5. Different combinations of wavelets and
signal-to-noise ratios yield basically the same results; for details see the web
site Cai and Silverman (1999).

NeighCoeff vs VisuShrink NeighCoeff vs Tl
2+ 2+
14 14
1 1
Doppler Bumps Block#ieaviSineSpikes Blip Corner Wave & Doppler Bumps Block#ieaviSineSpikes Blip Corner Wave
NeighCoeff vs SureShrink NeighCoeff vs NeighBlock
2+ 2+
14 14
1 1
Doppler Bumps Block#ieaviSineSpikes Blip Corner Wave & Doppler Bumps Block#ieaviSineSpikes Blip Corner Wave
NeighCoeff vs BlockJS NeighBlock vs BlockJS

mll . e Moo dl ofl

-
N

8-
Doppler Bumps BlocksieaviSineSpikes Blip Corner Wave Doppler Bumps BlocksieaviSineSpikes Blip Corner Wave

Figure 5. RSNR=3. THE VERTICAL BARS REPRESENT THE RATIOS
OF THE MSES OF VARIOUS ESTIMATORS TO THE CORRESPONDING MSE
OF THE NEIGHCOEFF ESTIMATOR. THE HIGHER THE BAR THE BETTER
THE RELATIVE PERFORMANCE OF THE NEIGHCOEFF ESTIMATOR, AND
A VALUE OF ONE MEANS THAT THE ESTIMATORS HAVE EQUAL PERFOR-
MANCE. THE PLOTTED RATIOS ARE TRUNCATED AT A VALUE OF 2. FORr
EACH SIGNAL THE BARS ARE ORDERED FROM LEFT TO RIGHT BY THE
SAMPLE SIZES (n = 512,1024, 2048, 4096, 8192).



NEIGHBOURING COEFFICIENT INFORMATION IN WAVELET ESTIMATION 139

Table 1. MEAN SQUARED ERROR FROM 60 REPLICATIONS (RSNR=3)

n NeighCoeff ~ NeighBlock  SureShrink TI-denoising  VisuShrink
Doppler

512 2.22 2.36 2.91 5.13 6.76
1024 1.34 1.35 1.98 3.36 4.49
2048 0.83 0.82 1.23 2.24 2.96
4096 0.51 0.50 0.68 1.25 1.61
8192 0.30 0.26 0.43 0.77 1.05
HeaviSine

512 0.82 0.82 0.81 0.81 0.83
1024 0.59 0.63 0.56 0.62 0.63
2048 0.46 0.47 0.41 0.48 0.51
4096 0.28 0.36 0.30 0.29 0.36
8192 0.16 0.23 0.18 0.20 0.26
Bumps

512 6.73 8.38 717 15.90 20.98
1024 3.66 4.24 4.04 10.08 13.63
2048 2.11 2.28 2.50 6.34 8.99
4096 1.08 1.75 1.54 3.42 5.09
8192 0.57 0.90 0.73 2.05 3.14
Blocks

512 5.49 6.30 5.68 10.45 11.84
1024 3.78 4.09 3.65 7.37 8.29
2048 2.28 2.42 2.16 4.99 5.55
4096 1.39 1.96 1.42 2.92 3.38
8192 0.83 1.23 0.95 1.94 2.32
Spikes

512 1.92 2.19 2.00 4.88 6.13
1024 1.18 1.31 1.35 3.11 4.00
2048 0.67 0.70 0.76 1.80 2.48
4096 0.38 0.49 0.42 0.71 1.19
8192 0.22 0.25 0.25 0.41 0.78
Blip

512 1.06 1.33 1.50 1.80 1.94
1024 0.70 0.83 0.98 1.20 1.36
2048 0.39 0.43 0.55 0.77 0.93
4096 0.24 0.39 0.37 0.43 0.52
8192 0.13 0.19 0.21 0.28 0.34
Corner

512 0.67 0.74 0.76 0.61 1.06
1024 0.36 0.41 0.40 0.40 0.69
2048 0.19 0.21 0.22 0.26 0.43
4096 0.11 0.15 0.13 0.12 0.16
8192 0.06 0.07 0.06 0.07 0.10
Wave

512 2.65 2.84 3.15 5.75 7.14
1024 1.36 1.43 2.90 3.67 5.08
2048 0.55 0.54 3.18 2.22 3.27
4096 0.25 0.23 0.20 0.27 1.27

8192 0.14 0.13 0.12 0.16 0.70
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The NeighBlock and NeighCoeff methods both uniformly outperform
VisuShrink. For five of the eight test functions, Doppler, Bumps, Blocks,
Spikes and Blip, our methods have better precision with sample size n than
VisuShrink with sample size 2n for all sample sizes where the comparison
is possible. The NeighCoeff method is slightly better than NeighBlock in
almost all cases, and outperforms the other methods as well. The NeighCoeff
method is also better than TI-denoising in most cases, especially when the
underlying function is of significant spatial variability. In terms of the mean
square error criterion, conceivable competitors among the other methods are
BlockJS and SureShrink. Both NeighCoeff and NeighBlock nearly always
outperform BlockJS. Apart from being somewhat superior to SureShrink
in mean square error, our methods yield noticeably better results visually;
our estimates do not contain the spurious fine-scale effects that are often
contained in the SureShrink estimator.

The curious behavior of some of the methods with the Waves signal
calls for some explanation. Throughout, the primary resolution level j, =
[logy logn] + 1 was used for all methods. Thus, jo = 3 for n < 2048, and
jo = 4 for n = 4096 and 8192. This change in the value of jy affects whether
or not the high frequency effect in the Waves signal is felt in the lowest
level of wavelet coefficients. For j, = 3, the standard methods all smooth
out the high frequency effect to some extent, because of applying a soft
threshold with fixed threshold. An attractive feature of the NeighCoeff and
NeighBlock methods is that they are not sensitive to the choice of primary
resolution level in this way, because the threshold adapts to the presence of
signal in all the coefficients.

4.4 Summary of results. Overall the two methods introduced in this pa-
per have performed very well in comparison to other standard methods. If
anything, the simple NeighCoeff procedure is the best of the estimators we
have considered. Of course, there are many other approaches to the pro-
cessing of wavelet coefficients now in the literature, but the simple message
that could be applied more generally is that borrowing information from
immediately neighbouring coefficients can make a substantial improvement.

One method we have not used in our comparisons is the block threshold-
ing estimator of Hall et al. (1999). Their method requires the selection of
smoothing parameters—block length and threshold level—neither of which
is completely specified and no criterion is given for choosing the parameters
objectively in finite sample cases. However, simulation results by Hall et al.
(1997) show that even the translation-averaged version of the estimator has
little advantage over VisuShrink when the signal to noise ratio is high. Our
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simulation shows that NeighBlock uniformly outperforms VisuShrink in all
examples, and indeed the relative performance of VisuShrink is even worse
for values of RSNR higher than the one presented in detail. Therefore we ex-
pect our estimator to perform favourably over the estimator of Hall et al. in
terms of mean squared error, at least in the case of high signal-to-noise-ratio.

5. Theoretical Properties

In the remainder of the paper, we consider the theoretical properties of
our proposed estimators. In the Besov sequence space formulation that is
by now classical for the analysis of wavelet regression methods, we find that
both methods have excellent asymptotic properties. It should be noted that
the Besov norms are invariant under permutation of the order of wavelet
coefficients within each level of the transform, and it therefore may be the
case that they do not completely capture the subtleties of inhomogeneous
variability of functions actually arising in practice. This is an interesting
topic for future work.

5.1 Background. Besov spaces are a very rich class of function spaces.
They contain many traditional smoothness spaces such as Holder and Sobolev
Spaces. Full details of Besov spaces are given, for example, in DeVore and
Popov (1988).

For a given square-integrable function f on [0, 1], define the scaling func-
tion and wavelet coefficients of the wavelet expansion of f by

Eik = (f, D)k Oik = (f,%jk)-

Let £ be the vector of the scaling function coefficients, and for each j let 6,
be the vector of the wavelet coefficients at level j.

Suppose @ > 0, 0 < p < 00 and 0 < ¢ < 0o. Then, roughly speaking, the
Besov function norm of index («,p,q) quantifies the size in an L, sense of
the derivative of f of order «, with ¢ giving a finer gradation; for a precise
definition see DeVore and Popov (1988).

Define s = a+1/2—1/p. We call a wavelet v r-regular if 1 has r vanishing
moments and r continuous derivatives. For a given r-regular mother wavelet
¥ with r > «, the Besov sequence norm of the wavelet coefficients of a
function f is then defined by

1/q

lelly + | D 2Nosll ) - (4)

J=jo
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It is an important fact (Meyer 1992) that the Besov function norm of index
(a, p, q) of a function f is equivalent to the sequence norm (4) of the wavelet
coeflicients of the function.

5.2 Estimation in sequence space by NeighBlock and NeighCoeff . In the
present paper we shall confine our detailed theoretical discussion to a se-
quence space version of the NeighBlock and NeighCoeff estimators. Suppose
n = 27 for some integer J and that we observe sequence data

yik =0 + n—1/2gzj7k, j>0,k=1,2.-,2 (5)

where z;, are i.i.d. N(0,1). The mean array 6 is the object that we wish
to estimate, and the accuracy of estimation is measured by the expected
squared error

R(0,0)=EY (0, —0;%)"
Gk

We assume that 0 is in some Besov Body ©, (M) = {0 : 352 2j5q||9j||g <
M7}, Make the usual calibration s = a+1/2—1/p. Donoho and Johnstone
(1998) show that the minimax rate of convergence for estimating 6 over the
Besov body 03 (M) is n=2/(1420) a5 — co.

We apply the NeighBlock procedure of Section 3.1 to the array of sample
coefficients éj,k for j < J, to obtain estimated coefficients é]k For j > J we
set éj,k = 0. Similarly we denote by 9;7’ i the result of applying the NeighCoeff
procedure of Section 3.2, setting the estimate to zero for j > J.

We prove that both estimators attain the minimax rate up to logarithmic
terms over all Besov Bodies ©; (M) with ap > 1. For the NeighBlock
estimator, our proofs yield the exact minimax rate for p > 2. The detailed
results are as follows:

THEOREM 1 Define 6 to be the NeighBlock estimator of the array 0, as
defined above. Then, as n — oo,

On—?a/(l-}—?a) forp>2
sup  E||0—0|2 < { Cn20/(1+20)(1og )2 P)/{pA+20)}  forp <2 (6)
0€03 (M) and ap > 1.
THEOREM 2 Define 0* to be the NeighCoeff estimator of the array 0.
Then, for ap > 1, as n — oo,

sup  E||6* — 0|2 < C(logn/n)?/(1+2),
0€0e; (M)
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Before proving these theorems, we remark that Donoho and Johnstone
(1998) show a strong equivalence result between the nonparametric regres-
sion and the white noise models over Besov function classes of index («, p, q).
When the wavelet 1 is r-regular with r > o and p,q > 1, then a simultane-
ously near-optimal estimator in the sequence estimation problem can be ap-
plied to the empirical wavelet coefficients in the function estimation problem
in (1), and will be a simultaneously near-optimal estimator in the function
estimation problem. For further details about the equivalence and approxi-
mation arguments, the readers are referred to Donoho and Johnstone (1995,
1998 and 1999) and Brown and Low (1996a). For approximation results, see
also Chambolle et al. (1998).

5.3 The choice of the thresholding constant A, in NeighBlock. In the
NeighBlock procedure, the thresholding constant A, is set to A, = 4.505...,
which is the solution of the equation A —log A = 3. The reasons for choosing
this value is analogous to those for the choice of (2logn)"/? in term by term
thresholding. Donoho and Johnstone (1994) use (21logn)'/? as thresholding
constant in their VisuShrink estimator based on an oracle inequality and the
following fact which makes the VisuShrink estimator almost “noise free”. For

Zi,...,Z, " N(0, 1)

P{max|Zi| > (2logn)1/2} — 0, as n — oo.

In NeighBlock, the choice of A, is also based an oracle inequality ( See
Theorem 1 in Cai (1999a)) and the following smoothness property. Let
VA TN/ u N(0, 1) and L = logn. Divide Z; into blocks of size L, then
the sums of squares Sg = Zi-’ib(Lfl)H Z?2 of the blocks satisfies

P {mgxx S > A*L} — 0, asn — oo. (7)

The value of A\, = 4.50524... is the smallest constant satisfying (7). With
this choice of ., the NeighBlock estimator, with high probability, removes
pure noise completely. This smoothness property offers high visual quality of
the reconstruction. The choice of A, can also be motivated by a hypothesis
testing formulation. See Cai (1999b) for further details.

Finally, we note that the theoretical results in Theorem 1 remain valid
for any constant A > \,. (Similarly, term by term thresholding estimators
attain the same convergence rate of (logn/n)?*/(112%) with the threshold
(alogn)'/? for any a > 2.)
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5.4 Proofs. Our proofs depend on three lemmas. The first contains two
key oracle inequalities for the estimators we are considering.

~

LEMMA 1 Assume that y;, 051 and O;f’k are as defined in Section 5.2.
Then, defining Ay > 1 by Ay —log A, =3, for each i and jo < j < J

S B —0ix)? < A(@nT'lognA > 07)+2m7 % (8)
(3:k) €] (3:k)€B]
i+1
E@0;;—0;,)° < (20°n7'logn) A Y. 0%, +20°n"*(logn)"/19)
k=i—1
At the boundary, the sum in (9) is taken over the block of length 3
containing (j,7). The proof of this lemma is an extension of the proof of

Theorem 1 of Cai (1999a), but with certain essential modifications. First
consider (8). For j,k in B} define

05, = (L —n""\Lo/S3 )4 vk

Then 9},k = éj,k for (j,k) in bg, so extending the sum from bf to Blj, and
replacing 6 by 67, can only increase the left hand side of (8). The argument
of Theorem 1 and Lemma 2 of Cai (1999a) shows that the inequality holds
with these changes, completing the proof of (8). The proof of (9) follows
from Theorem 1 in Cai (1999a) and the following upper bound for the tail

probability of the x2, for integers m:
P2, > am) <7 2= 1)t 12 e T OT108A) for A > 1, (10)

To prove (10), denote by f,,(y) the pdf of a x2, variable, and let Fy,(z) be
the tail probability [ fim(y)dy. Then, by exercise 16.7 of Stuart and Ord
(1994) and elementary calculations for the x? distribution,

~ [(m=1)/2]
Fn(m) <2 Y fu-ak(dm). (11)
k=0
It is easy to see that, for £ < m,
L
fo(Am) = mféw()\m) < A7 fopo(Am). (12)

Combining (11) and (12), one has

[(m_l)/Q] 2)\ 1

~ m —k m .
F(dm) <2 kz% AT (A )S)\_l 2m/2T (m,/2)

()\m)m/Q—le—)\m/Q.

(13)
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Now by Stirling’s formula, T'(z + 1) > v2m 2%+1/2¢=% for all z > 0, and so
Fo(m) < 7w Y2() — 1)L 123 (- log A1)

as required, completing the proof of Lemma, 1.
We now recall two elementary inequalities between two different L, norms,
and a bound for a certain sum.

LEMMA 2 Let x € R™, and 0 < p1 < p2 < o0o. Then the following
mnequalities hold:

11
[2llps < Nl2llpy < mpr P2 lz]p, . (14)

LEMMA 3 Let0<a <1 and S = {z € RF: Z 128 < B, z; >0, i =
-, k}. Then for T >0,

We can now proceed to the proofs of the theorems themselves. We have

J—1 00
BI0—613 = Y3 Bk -0+ Y Y Bk — 0107+ . Y63,
i<jo k Jj=jo k j=J k
= 51+ 5+ Ss, (15)

say. We bound the term Sy by using Lemma 1. Let

>

(k)€ B!

the sum of squared coefficients within the block Bg . We then split up the
sum defining S5 into sums over the individual blocks bf , and apply the oracle
inequality (8). Since L = logn and the number of blocks is definitely less
than n, this yields

ZZE ik — 0ik) <CZZA]/\an L)+2n ' (16)

Jj=jo k =jo 1@

Note also that, since § € ©5 (M), we have 275]|6;]|, < M for each j. We
now complete the proof for the two cases separately.
Case p > 2: For 0 € ©, (M), Lemma 2 implies that

10,13 < (29)2G 790,12 < M22%(57575) = p2p=20d, (17)
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It follows that

SI +S3 2]0n 10,2 + ZM22 2a] . 0( 720&/(1‘}'20&)) (18)
j=J

so that S7 4+ S3 can be neglected.

We divide the sum in (16) into two parts. Choose J; such that 27t <
nl/(1420)  Then,

Ji1—1 Ji1—1

S S A ne’nT' L) < Y Yo% L < 02t < o2/ 0429 (19)

j=jo i i=io i

and, making use of the bound (17),

J—1 J—1 J—1
SN A Aetn L) < S S A <23 (105]13 < O 2020 (20)

j=J1 1t j=J1 ¢ j=J1

Combining (19) and (20) demonstrates that Sy < Cn—2%/(1429)  completing
the proof for this case.

Case p < 2 with ap > 1: For § € O (M), Lemma 2 now yields
105113 < 116515 < M?2-%%. The assumption ap > 1 implies that s > 1, so
that

o
S3<Cy 27 <Con* <Cn”!
j=J
Thus S; + S3 = o(n=2¢/(1420)) a5 hefore.

Now let Jo be an integer satisfying 272 =< n!/(14+2%) (log n)=(2=p)/p(1+20)

Then, by an argument analogous to that leading to (19),

Jo—1 Jo—1
Z Z A]/\a n~'L) < Z ZUQn_lL < COn~20/(1420) (1og ) (2=P)/p(1420)
Jj=jo @ J=Jjo 1t

(21)
Turning to the other part of Sy, it follows from Lemma 2 that, for each 7,

Z(A] p/2<z Z 92 p/2<22 92 p/2<2Mp2 Jjsp.

[ i G, k)eBJ

Applying Lemma 3 with a = p/2, we have, after some algebra,

J—1
ST S (A AoPnT L) < O/ (1420) (g 1) 27P)/P(HH20) - (92)
j=Jo i
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We complete the proof of Theorem 1 by combining the bounds (21) and (22),
as in the case p > 2.

The proof of Theorem 2 is similar, using the oracle inequality (9) instead
of (8).
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