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WAVELET SHRINKAGE FOR NONEQUISPACED SAMPLES

By T. Tony Cai and Lawrence D. Brown

Purdue University and University of Pennsylvania

Standard wavelet shrinkage procedures for nonparametric regression
are restricted to equispaced samples. There, data are transformed into
empirical wavelet coefficients and threshold rules are applied to the co-
efficients. The estimators are obtained via the inverse transform of the
denoised wavelet coefficients. In many applications, however, the samples
are nonequispaced. It can be shown that these procedures would produce
suboptimal estimators if they were applied directly to nonequispaced sam-
ples.

We propose a wavelet shrinkage procedure for nonequispaced samples.
We show that the estimate is adaptive and near optimal. For global estima-
tion, the estimate is within a logarithmic factor of the minimax risk over a
wide range of piecewise Hölder classes, indeed with a number of disconti-
nuities that grows polynomially fast with the sample size. For estimating
a target function at a point, the estimate is optimally adaptive to unknown
degree of smoothness within a constant. In addition, the estimate enjoys a
smoothness property: if the target function is the zero function, then with
probability tending to 1 the estimate is also the zero function.

1. Introduction. Suppose we are given data:

yi = f�ti� + εzi�(1.1)

i = 1�2� � � � � n, 0 < t1 < t2 < · · · < tn = 1, and zi are independently and
identically distributed as N�0�1�.

The function f is an unknown function of interest. We wish to estimate the
function f globally or to estimate f at a point. In the case of recovering the
entire function f on �0�1�, one can measure the performance of an estimate
f̂, for example, by the global squared L2 norm risk:

R�f̂� f� = E
∫ 1

0

(
f̂�t� − f�t�)2

dt�

The goal is to construct estimates that have “small” risk. In order to have
some meaningful estimate according to this criterion, one must assume certain
regularity conditions on the unknown function f, such as f belongs to some
Hölder classes, Sobolev classes, Besov classes and so forth.

The more traditional approaches to nonparametric regression include
fixed-bandwidth kernel methods, orthogonal series methods and linear spline
smoothers. These methods are not adaptive. That is, the estimators based on
these methods may achieve substantially slower rate of convergence if the
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smoothness of the underlying regression functions is misspecified. In recent
years, more efforts have been made to develop adaptive procedures. A variety
of adaptive methods have been proposed, such as variable-bandwidth kernel
methods and variable-knot spline smoothers.

The recent development of wavelet bases based on multiresolution analy-
ses suggests new techniques for nonparametric function estimation. Wavelets
offer a degree of localization both in space and in frequency. This gives great
advantage over the traditional Fourier basis. In the recent few years, wavelet
theory has been widely applied to the fields of signal and image processing,
as well as statistical estimation.

The application of wavelet theory to the field of statistical function estima-
tion was pioneered by Donoho and Johnstone. In a series of important papers
(see, e.g., [6], [7] and [9]), Donoho and Johnstone and coauthors present a co-
herent set of procedures that are spatially adaptive and near optimal over a
range of function spaces of inhomogeneous smoothness. Wavelet procedures
achieve adaptivity through thresholding of the empirical wavelet coefficients.
They enjoy excellent mean squared error properties when used to estimate
functions that are only piecewise smooth and have near optimal convergence
rates over large function classes. In contrast, traditional linear estimators
typically achieve good performance only for relatively smooth functions.

Despite their considerable advantages, however, standard wavelet proce-
dures have limitations. One serious limitation is the requirement of equi-
spaced samples. Standard wavelet procedures are restricted to equispaced
samples; that is, ti in (1.1) are equally spaced on �0�1�. In practice, how-
ever, there are many interesting applications in statistics where the samples
are not equispaced. In some wavelet software packages, nonequispaced sam-
ples are currently treated the same as equispaced ones. As we shall explain
later, nonequispaced samples should not in general be treated as equispaced.
Otherwise the convergence rate could be far below the optimal rate. Differ-
ent treatments are needed. So how to apply the wavelet shrinkage method to
nonequispaced samples is of practical interest.

We formulate the nonequispaced regression model as follows:

yi = f�ti� + εzi�(1.2)

with i = 1�2� � � � � n, n = 2J, zi
iid∼ N�0�1� and ti = H−1�i/n� for some cumula-

tive density function H on �0�1�. Note that the design points ti are assumed
to be fixed, not randomly drawn from H.

We develop an adaptive wavelet threshold procedure for the nonequispaced
model based on multiresolution analysis and projection as well as nonlinear
thresholding. The algorithm for implementing the procedure has the following
ingredients:

1. Precondition the data by a sparse matrix.
2. Transform the preconditioned data by the discrete wavelet transform.
3. Denoise the noisy wavelet coefficients via thresholding.
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The function with the denoised wavelet coefficients θ̂jk is our estimate of the
function f that we intend to recover. If one is interested in estimating the
function at the sample points, two more steps are added:

4. Apply the inverse transform to the denoised coefficients.
5. Postcondition the data by a matrix to get the estimate at the sample points.

Both the preconditioning and postconditioning matrices, defined in (5.3) and
(5.4), respectively, are sparse matrices containing O�n� nonzero entries. The
preconditioning matrix operation is equivalent to a projection in multiresolu-
tion analysis to account for the irregular spacing of the sample points. The
postconditioning matrix operation is a step to evaluate the estimated function
at the given nonequispaced sample points. Compared to Donoho and John-
stone’s VisuShrink, this procedure has two additional steps, preconditioning
and postconditioning. The procedure agrees with the VisuShrink when the
sample is, in fact, equispaced.

The procedure is near optimal and is adaptive up to the smoothness of the
wavelets used. We investigate the adaptivity of the estimators over a wide
range of piecewise Hölder classes, indeed with a number of discontinuities
that increases polynomially fast with the sample size. We show in Section
4 that the rate of convergence for estimating regression function f globally
over the function classes is a logarithmic factor away from the minimax risk.
Furthermore, for estimating a target function at a point, the estimate is op-
timally adaptive to unknown degree of smoothness within a constant factor.
The estimate also enjoys a smoothness property. If the target function is the
zero function, then the estimate will also be the zero function with probability
tending to 1. Therefore, the procedure removes pure noise completely with
high probability.

The rest of the paper is organized as follows. Section 2 describes the wavelet
basis, multiresolution analysis and wavelet approximation. Section 3 intro-
duces the nonequispaced procedure. Optimality of the estimators will be pre-
sented in Section 4. Further discussion about the procedure and related topics
are given in Section 5. Section 6 contains proofs of the main results.

2. Wavelets and wavelet approximation. We summarize in this sec-
tion the basics on wavelets and multiresolution analysis that will be needed in
later sections. Further details on wavelet theory can be found in Daubechies
[5] and Meyer [14].

An orthonormal wavelet basis is generated from dilation and translation
of two basic functions, a “father” wavelet φ and a “mother” wavelet ψ. The
functions φ and ψ are assumed to be compactly supported. Assume that
supp�φ� = supp�ψ� = �0�N�. Also assume that φ satisfies

∫
φ = 1. We call a

wavelet ψ r-regular if ψ has r vanishing moments and r continuous deriva-
tives.

Let

φjk�t� = 2j/2φ�2jt− k�� ψjk�t� = 2j/2ψ�2jt− k�
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and denote the periodized wavelets

φ
p
jk�t� = ∑

l∈�
φjk�t− l�� ψ

p
jk�t� = ∑

l∈�
ψjk�t− l� for t ∈ �0�1��

For simplicity in exposition, we use the periodized wavelet bases on �0�1� in the
present paper. The collection �φpj0k

� k = 1� � � � �2j0  ψpjk� j ≥ j0� k = 1� � � � �2j�
constitutes such an orthonormal basis ofL2�0�1�. Note that the basis functions
are periodized at the boundary. The superscript “p” will be suppressed from
the notation for convenience.

A wavelet basis has an associated multiresolution analysis on �0�1�. Let Vj

and Wj be the closed linear subspaces generated by �φjk� k = 1� � � � �2j� and
�ψjk� k = 1� � � � �2j�, respectively. Then:

1. Vj0
⊂ Vj0+1 ⊂ · · · ⊂ Vj ⊂ · · · 

2.
⋃∞
j=j0

Vj = L2��0�1��
3. Vj+1 = Vj ⊕Wj.

The nested sequence of closed subspaces Vj0
⊂ Vj0+1 ⊂ · · · is called a mul-

tiresolution analysis on �0�1�.
An orthonormal wavelet basis has an associated exact orthogonal discrete

wavelet transform (DWT) that transforms sampled data into the wavelet co-
efficient domain. A crucial point is that the transform is not implemented by
matrix multiplication but by a sequence of finite-length filtering that produces
an order O�n� orthogonal transform. See [5] and [15] for further details about
the discrete wavelet transform.

For a given square-integrable function f on �0�1�, denote

ξjk = �f�φjk�� θjk = �f�ψjk��
So the function f can be expanded into a wavelet series:

f�x� =
2j0∑
k=1

ξj0k
φj0k

�x� +
∞∑
j=j0

2j∑
k=1

θjkψjk�x��(2.1)

The wavelet transform decomposes a function into different resolution com-
ponents. In (2.1), ξj0k

are the coefficients at the coarsest level. They represent
the gross structure of the function f. And θjk are the wavelet coefficients. They
represent finer and finer structures of the function f as the resolution level j
increases.

We note that the DWT is an orthogonal transform, so it transforms i.i.d.
Gaussian noise to i.i.d. Gaussian noise and it is norm preserving. This im-
portant property of DWT allows us to transform the problem in the function
domain into a problem in the sequence domain of the wavelet coefficients with
isometry of risks.

Wavelets provide smoothness characterization of function spaces. Many tra-
ditional smoothness spaces, for example, Hölder spaces, Sobolev spaces and
Besov spaces, can be completely characterized by wavelet coefficients. See
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Meyer [14]. In the present paper, we consider the estimation problem over
a range of piecewise Hölder classes. A function in a piecewise Hölder class
can be regarded as the superposition of a regular smooth function in a Hölder
class and an irregular perturbation consisting of jump discontinuities. In our
main results, the maximum number of jump discontinuities is allowed to grow
polynomially fast with the sample size. This enables the function classes to
effectively model functions of significant spatial inhomogeneity.

Definition 1. A piecewise Hölder class  α�M�B�m� on �0�1� with at most
m discontinuous jumps consists of functions f satisfying the following condi-
tions:

1. The function f is bounded by B, that is, �f� ≤ B.
2. There exist l ≤ m points 0 ≤ a1 < · · · < al ≤ 1 such that, for all ai ≤ x,
y < ai+1, i = 0�1� � � � � l (with a0 = 0 and al+1 = 1),

(i) �f�x� − f�y�� ≤ M �x− y�α if α ≤ 1;
(ii) �f��α���x� − f��α���y�� ≤ M �x− y�α′

and �f′�x�� ≤ B if α > 1

where �α� is the largest integer less than α and α′ = α− �α�.

In words, the function class  α�M�B�m� consists of functions that are
piecewise Hölder with the number of discontinuities bounded by m. The fol-
lowing are the upper bounds of wavelet coefficients of functions in a piecewise
Hölder class  α�M�B�m�. Throughout, C denotes a generic constant not de-
pending on function f and sample size n, and the standard notation � � �
denotes inner product in L2 space.

Lemma 1. Let f ∈  α�M�B�m�. Suppose that the wavelet function ψ is
r-regular with r ≥ α. Then:

(i) If supp�ψjk� does not contain any jump points of f, then

θjk ≡ ��f�ψjk�� ≤ C2−j�1/2+α��(2.2)

(ii) If supp�ψjk� contains at least one jump point of f, then

θjk ≡ ��f�ψjk�� ≤ C2−j/2�(2.3)

Now suppose we have a dyadically sampled function �f�k/n��nk=1 with n =
2J. We can utilize a wavelet basis and the associated multiresolution analysis
to get a good approximation of the entire function f. Let us begin with the
following result. The proof is straightforward.

Lemma 2. Suppose f ∈  α�M�B�m�. Let ξJk ≡ �f�φJk� and s�α� =
min�α�1�. Then:

(i) If supp�φJk� does not contain any jump points of f, then

�n−1/2 f�k/n� − ξJk� ≤ Cn−�1/2+s�α���(2.4)
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(ii) If supp�φJk� contains jump points of the function f, then

�n−1/2 f�k/n� − ξJk� ≤ Cn−1/2�(2.5)

According to this result, we may use n−1/2 f�k/n� as an approximation of
ξJk = �f�φJk�. This means that if a dyadically sampled function is given, we
may use a multiresolution analysis to get an approximation of the projection
of the function f onto subspace VJ because ξJk are the coefficients of the pro-
jection. This in turn provides a good approximation of the entire function f.
More specifically, we may use fn�t� = ∑n

k=1 n
−1/2 f�k/n�φJk�t� as an approx-

imation of f. Based on Lemmas 1 and 2, simple calculation shows that the
approximation error �fn − f�2

2 is on the order of n−2s�α� for functions in the
piecewise Hölder class  α�M�B�m� with fixed α, M, B and m.

3. The nonequispaced procedure.

3.1. The estimator. Suppose now that we observe the data �yi� as in (1.2)
and we wish to recover the regression function f. Our estimation method is
based on multiresolution analysis and the projection method. The motivation
of the method will be given in Section 3.2 from the approximation point of
view.

Let g̃�t� = n−1/2 ∑n
i=1 yiφJi�t� and let

f̃J�t� = ProjVJ
g̃�H�t�� = n−1/2

2j0∑
k=1

ξ̃j0k
φj0k

�t� +
J−1∑
j=j0

2j∑
k=1

θ̃jkψjk�t��

where

ξ̃jk = n−1/2
n∑
i=1

yi �φJi ◦H�φjk�� θ̃jk = n−1/2
n∑
i=1

yi �φJi ◦H�ψjk��(3.1)

We can regard ξ̃j0k
and θ̃jk as noisy observations of the true wavelet coeffi-

cients ξj0k
and θjk. Indeed, we estimate θjk by thresholding θ̃jk. Let

ξ̂j0k
= ξ̃j0k

� θ̂jk = sgn�θ̃jk���θ̃jk� − λjk�+(3.2)

be the estimate of the wavelet coefficients of f where the threshold λjk is
derived in Section 3.3. Then a soft-thresholded wavelet estimator of f is given
as follows:

f̂∗
n�t� =

2j0∑
k=1

ξ̂j0k
φj0k

�t� +
J−1∑
j=j0

2j∑
k=1

θ̂jkψjk�t��(3.3)

Similarly, a hard-thresholded estimator can be obtained by setting the co-
efficients in (3.3) as

ξ̂j0k
= ξ̃j0k

� θ̂jk = θ̃jkI��θ̃jk� > λjk��(3.4)

with the same threshold λjk as in (3.2).
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The coefficients ξ̂j0k
contain the gross structure of the function f and we

do not threshold these coefficients. The risk of the estimate (3.3) can be de-
composed as approximation error and estimation error. From Theorem 1, it is
easy to see that the dominant term is the estimation error. We will show in
Section 4 that the estimation error is comparable to the equispaced samples
and the estimate enjoys the same convergence rate as the Donoho–Johnstone
VisuShrink estimate in the equispaced case.

Remark. We consider here the case of fixed design variables ti. The
method can be extended to random designs. The case of random designs has
also been studied by Hall and Turlach (1996). Their method is based on linear
interpolation.

3.2. Approximation. Let us see why the estimation method makes sense.
We first consider the problem of approximating a whole function based on a
noiseless nonequispaced sample. Denote by  1�h� the collection of Lipschitz
functions f satisfying

�f�x� − f�y�� ≤ h �x− y� for x�y ∈ �0�1��
Suppose we are given a sampled function �f�ti�� i = 1�2� � � � � n�= 2J�� with
ti = H−1�i/n�, where H is a strictly increasing cumulative density function
on [0, 1] and H−1 ∈  1�h� for some constant h. How do we approximate the
function f via multiresolution analysis?

If ti are equispaced, it follows from Lemmas 1 and 2 that fn�t� =∑n
k=1 n

−1/2f�tk�φJk�t� is a good approximation. When ti are nonequispaced,
an approximation using multiresolution analysis can be derived by the
following consideration. One can first approximate f�H−1�t�� by gn�t� =∑n
k=1 n

−1/2f�tk�φJk�t�, then use the projection of gn�H�t�� onto the multires-
olution space VJ as the approximation of f. To be more specific, let

ξ′
Ji = n−1/2

2J∑
k=1

f�tk� �φJk ◦H�φJi�(3.5)

and let

fn�t� =
2J∑
i=1

ξ′
JiφJi�t�(3.6)

be an approximation of the function f. Note that fn is in the multiresolution
approximation spaceVJ. An upper bound for the approximation error is shown
in the following result.

Theorem 1. Suppose that a sampled function �f�ti�� i = 1�2� � � � � n�= 2J��
is given with ti = H−1�i/n�, whereH is a strictly increasing cumulative density
function on �0�1� with H−1 ∈  1�h�. Let the wavelet function ψ be r-regular
with r > α. Let ξ′

Ji and fn be given as in (3.5) and (3.6), respectively. Then the
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approximation error �fn − f�2
2 satisfies

sup
f∈ α�M�B�m�

�fn − f�2
2 = o�n−2α/�1+2α���(3.7)

where the maximum number of jump discontinuities m = Cnγ with constants
C > 0 and 0 < γ < 1/�1 + 2α�.

Theorem 1 shows that the approximation error over function class  α�M�B�
m� is of higher order than n−2α/�1+2α� even when the number of jump points
increases polynomially with the sample size. Because the optimal convergence
rate for estimating f over uniform Hölder class  α�M�B�0� under the model
(1.2) is n−2α/�1+2α�, the approximation error is smaller in order than the mini-
max risk for statistical estimation.

3.3. The threshold. The approximation result (3.7) implies that ξ̃jk and
θ̃jk in (3.1) have the “correct” means. In order to make thresholding work, we
need to know the noise level of each coefficient θ̃jk.

The function H−1 is strictly increasing, so H−1 is differentiable almost ev-
erywhere. Denote by h̃�t� the derivative of H−1�t�. Then

0 < h̃�t� ≤ h for almost all t ∈ �0�1��
It is easy to see from (3.1) that

σ2
jk ≡ var�θ̃jk� = n−1ε2

n∑
i=1

(�φJi ◦H�ψjk�)2

≤ n−1ε2
∫
ψ2
jk�t�h̃�H�t��dt ≡ u2

jk�

(3.8)

Note that the inequality in (3.8) is asymptotically sharp, σjk → ujk, as
n → ∞. We set the threshold

λjk = ujk �2 log n�1/2�(3.9)

Remark. This procedure generalizes Donoho and Johnstone’s VisuShrink
for equispaced samples. When the samples are, in fact, equispaced, that is,
when H is the identity function and thus h = 1, then ξ̃j0k

and θ̃jk are dis-
crete wavelet transforms of �n−1/2yi� and λjk = ε�2n−1 log n�1/2. Therefore,
the procedure agrees with the VisuShrink when the sample is equispaced.

4. Optimality results. In this section, we discuss the properties of the
wavelet estimate (3.3) given in Section 3.1. We begin by showing that the esti-
mate enjoys a smoothness property. If the target function is the zero function,
then the estimate f̂∗

n given in (3.3) and (3.9) is also the zero function with
high probability. Specifically, we have:
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Theorem 2. If the regression function is the zero function f ≡ 0, then there
exists a sequence of constants Pn such that

P�f̂∗
n ≡ 0� ≥ Pn → 1 as n → ∞�(4.1)

Therefore, with high probability, the estimate removes pure noise com-
pletely. We then prove that the estimate enjoys near minimaxity for global
estimation and the estimate optimally adapts to unknown degree of local
smoothness within a constant factor when used for estimating a function at a
point.

4.1. Global estimation. We investigate the adaptivity of the wavelet es-
timate constructed in Section 3.1 over a range of piecewise Hölder classes
 α�M�B�m�, where the maximum number of jump discontinuities is allowed
to increase polynomially with the sample size. This enhances the power of
the function classes  α�M�B�m� for modeling spatially inhomogeneous func-
tions. We show that the estimate (3.3) is near optimal. The convergence rate
is within a logarithmic factor of the minimax rate over a range of function
classes  α�M�B�m�.

Theorem 3. Suppose we observe ��ti� yi�� i = 1�2� � � � n�= 2J�� as in (1.2)
with ti = H−1�i/n�, where H is a strictly increasing cumulative density func-

tion on �0�1� with H−1 ∈  1�h�. Let f̂∗
n be either the soft-thresholded or hard-

thresholded wavelet estimator of f given in (3.3) and (3.9). Suppose that the
wavelet function ψ is r-regular. Then the estimator f̂∗

n is near optimal:

sup
f∈ α�M�B�m�

E �f̂∗
n − f�2

2 ≤ C�log n/n�2α/�1+2α��1 + o�1��(4.2)

for all 0 < α < r and allm ≤ Cnγ with constants C > 0 and 0 < γ < 1/�1+2α�.

4.2. Estimation at a point. Theorem 3 gives the convergence rate of global
estimation. Now we turn our attention to local estimation. The adaptive esti-
mation in this case is similar to global estimation, but with a very interesting
distinction. The adaptive minimax rate for estimation at a point is different
from that for estimation of a whole function.

By the results of Brown and Low [2] and Lepski [13], an estimator adaptive
to unknown smoothness without loss of efficiency is impossible for pointwise
estimation, even when the function is known to belong to one of two Hölder
classes. Therefore, local adaptation cannot be achieved “for free.” The mini-
mum loss of efficiency is a �log n�2α/�1+2α� factor for estimating a function of
unknown degree of local Hölder smoothness at a point. See [2] and [13]. We
call �log n/n�2α/�1+2α� the adaptive minimax rate. Donoho and Johnstone [8]
discuss pointwise performance of the wavelet estimate for equispaced sam-
ples. They show that the VisuShrink estimate attains the adaptive minimax
rate for estimating functions at a point. See [8] for details.
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We will show that the estimator given in Theorem 3 attains the exact adap-
tive minimax rate for estimating a function in a Hölder class at a fixed point.
Therefore, the estimator is optimally adaptive to unknown degree of smooth-
ness within a constant factor. To be more precise, we have the following:

Theorem 4. For any fixed t0 ∈ �0�1�, let f̂∗
n�t� be given as in (3.3) and (3.9).

Under the conditions given in Theorem 3, we have

sup
f∈ α�M�B�0�

E
(
f̂∗
n�t0� − f�t0�)2 ≤ C�log n/n�2α/�1+2α��1 + o�1��(4.3)

for all 0 < α < r.

We have stated here the result in the case of uniform smoothness without
jumps for the sake of simplicity. The wavelet procedure is locally adaptive;
the result also holds for general piecewise Hölder classes so long as the jump
points are away from a fixed neighborhood of t0.

5. Discussion.

5.1. Choice of threshold. In (3.9), we set the threshold λjk = ujk�2 log n�1/2,
where ujk = �n−1ε2

∫
ψ2
jk�t�h̃�H�t��dt�1/2� It is clear that

u2
jk ≤ n−1ε2hjk�(5.1)

where hjk = ess � sup�h̃�t� t ∈ �H−1�2−jk��H−1�2−j�k+N����.
We may replace the threshold λjk by

λ′
jk = ε�2hjkn−1 log n�1/2�(5.2)

The optimality results hold with λ′
jk as the threshold. The threshold λ′

jk has
computational advantage over the threshold λjk.

5.2. The function H. We have modeled the design points as ti = H−1�i/n�,
where H is a strictly increasing c.d.f. with H−1 ∈  1�h�. In practice, H is usu-
ally unknown. In this case, one can use the piecewise linear empirical Ĥn

in place of the “true” H. Here Ĥn is the piecewise linear function satisfying
Ĥ�ti� = i/n. All of the theoretical results remain valid if we replace H by Ĥn

in the construction of the estimator. This modification is useful for implement-
ing the estimator.

5.3. Implementation. In this section, we address the issue of numerical
implementation of the procedure we propose in Section 3.1.

Let PH be a matrix with entries

PH�k� i� = �φJi ◦H�φJk��(5.3)

The cascade algorithm (see [5]), which converges exponentially, can be used
to compute φ. Then PH�k� i� can be computed numerically. Also, based on
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Lemma 2, we may use n−1/2φJi�H�k/n�� = φ�nH�k/n�− i� as an approxima-
tion of PH�k� i�.

Let W be the discrete wavelet transform and let

2̃ = (
ξ̃j01� � � � � ξ̃j02j0 � θ̃j01� � � � � θ̃j02j0 � � � � � θ̃J−1�1� � � � � θ̃J−1�2J−1

)′
�

where ξ̃j0k
and θ̃jk are given as in (3.1). We can view PH as a preconditioning

matrix because

2̃ = W�PHn−1/2Y��
Our algorithm for implementing the procedure has the following steps:

Step 1. Use the cascade algorithm to compute PH; then precondition the
data n−1/2Y by PH, say Yp = PHn

−1/2Y.
Step 2. Apply the discrete wavelet transform to the preconditioned data to

get the noisy wavelet coefficients; let 2̃ = WYp.
Step 3. Threshold the noisy wavelet coefficients; denote θ̂jk = ηλjk�θ̃jk�,

where ηλjk is either the hard- or the soft-thresholding function.

Then

f̂n�t� =
2j∑
k=1

ξ̂j0k
φj0k

�t� +
J−1∑
j=j0

2j∑
k=1

θ̂jk ψjk�t�

is our estimate of the target function f.
If one is also interested in estimating the function at sample points, then

two more steps are needed to get there:

Step 4. Apply the inverse wavelet transform to the denoised wavelet coeffi-
cients to get W−1 · 2̂.

Step 5. Compute PH by using the cascade algorithm, where

PH�k� i� = φJi�tk�(5.4)

then apply this postconditioning transform to W−12̂ to get the estimate of
f�ti�:

f̂n = PH�W−12̂��(5.5)

Combining the five steps together, the estimator is given by

f̂n = PHW−1TWPHY�

where T denotes the thresholding operation.
Note that both the preconditioning matrix PH and the postconditioning

matrix PH are sparse matrices with only O�n� nonzero entries.

5.4. Why not treat nonequispaced samples the same as equispaced samples?
The nonequispaced model (1.2) is reduced to the equispaced model when H
is the identity function. For general H, however, one can still “pretend” the
sample is equispaced. Let g = f◦H−1. Then the sample is equispaced in terms
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Fig. 1. Comparison.

of the function g. One can use the standard wavelet shrinkage procedure to
estimate g by ĝ and then use ĝ ◦H as an estimator of f. This is what we
mean by treating nonequispaced samples as equispaced. Here the estimator
does not depend on the distribution of ti.

The estimator is simple and very easy to implement. However, the estima-
tor often does not perform well, especially when the underlying true function f
is smoother than the function H. This can be shown by a formal calculation of
asymptotic risk. One can show that, in many situations, the convergence rate
of the estimator is suboptimal if nonequispaced samples are simply treated
as equispaced. See [3] for more details. Another disadvantage is that the esti-
mator is often visually unpleasant. Here is an example. The true function is
sin�2πx�, which is much smoother than the function H. The new estimator
implemented by the previous algorithm is smooth and close to the true func-
tion, whereas the estimator treating the nonequispaced sample the same as
the equispaced sample looks very rough. See Figure 1.

6. Proofs. This section contains proofs of the main results. We begin with
a brief proof of Theorem 1 by using Lemmas 1 and 2.

Proof of Theorem 1. Let g�t� = f�H−1�t��. Denote s�α� = min�α�1� and
M ∨B = max�M�B�. Then it is easy to see that g ∈  s�α��hs�α�M ∨B�B�m�.
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Now fn = ProjVJ
gn ◦H. It follows from Lemmas 1 and 2 that

�fn − f�2
2 ≤ � ProjVJ

�gn ◦H− g ◦H��2
2 + � ProjVJ

f− f�2
2

≤ Cn−2s�α� +Cmn−1 = o�n−2α/�1+2α��� ✷

The proof of Theorem 2 is straightforward. For brevity, we omit the proof of
the theorem. Before we prove Theorems 3 and 4, let us consider the problem
of estimating a univariate normal mean.

Let y ∼ N�θ� σ2� be a normal variable with known variance σ2. We are
interested in estimating the mean θ with threshold estimator and we wish to
assess the risk of the estimator. Let λ = a σ with a ≥ 1. And let θ̂hλ = yI��y� >
λ� be a hard threshold estimator and let

θ̂sλ = sgn�y���y� − λ�+

be a soft threshold estimator of the mean θ. We recall the following results on
the risk upper bound of the threshold estimator θ̂ from [3].

Lemma 3. Suppose y ∼ N�θ� σ2�. Let θ̂sλ and θ̂hλ be the soft and hard thresh-
old estimators of θ, respectively. Let λ = a σ with a ≥ 1. Then

�i� E�θ̂sλ − θ�2 ≤ �a2 + 1�σ2 ∧ �2θ2 + exp�−a2/2�σ2��(6.1)

�ii� E�θ̂hλ − θ�2 ≤ �2a2 + 2�σ2 ∧ �2θ2 + 2a exp�−a2/2�σ2��(6.2)

The proofs of Theorems 3 and 4 are given only for soft threshold estimators.
The proofs for hard threshold estimators are similar.

Proof of Theorem 3. We follow the notation in Section 3.1. Let g�t� =
f�H−1�t�� and g̃�t� = n−1/2 ∑n

i=1 yiφJi�t� and let f̃�t� = g̃�H�t�� Then

f̃�t� = n−1/2
n∑
i=1

f�ti�φJi�H�t�� + n−1/2ε
n∑
i=1

ziφJi�H�t��

= f�t� + 7�t� + r�t��
where 7�t� = n−1/2 ∑n

i=1 f�ti�φJi�H�t�� − f�t� is the approximation error and
r�t� = n−1/2ε

∑n
i=1 ziφJi�H�t��. Now project f̃ onto the multiresolution space

VJ and decompose the orthogonal projection f̃J�t� = ProjVJ
f̃�t� into three

terms:

f̃J�t� = fJ�t� + 7J�t� + rJ�t��(6.3)

where fJ = ProjVJ
f, 7J = ProjVJ

7 and rJ = ProjVJ
r, respectively. Theorem

1 yields

�7J�2
2 = o�n−2α/�1+2α���(6.4)
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Denote θ̃jk = �f̃J�ψjk�. In the same fashion as in (6.3), we decompose θ̃jk into
three parts:

θ̃jk = θjk + djk + rjk for k = 1� � � � �2j� j = j0� � � � � J− 1�

where θjk = �f�ψjk� is the true wavelet coefficient of f, djk = �7J�ψjk� is
the approximation error and rjk = �rJ�ψjk� is the noise. Similarly separate
ξ̃j0k

= �f̃J�φj0k
� into three terms:

ξ̃j0k
= ξj0k

+ d′
j0k

+ r′
j0k

for k = 1� � � � �2j0 �

Let ξ̂j0k
and θ̂jk be given as in (3.2). Note that

2j0∑
k=1

�d′
j0k

�2 +
J−1∑
j=j0

2j∑
k=1

d2
jk = �7J�2

2 = o�n−2α/�1+2α���(6.5)

By the orthonormality of the wavelet basis, we have the isometry between
the L2 function norm and the l2 wavelet sequence norm:

E�f̂∗
n − f�2 =

2j0∑
k=1

E�ξ̂j0k
− ξj0k

�2 +
J−1∑
j=j0

2j∑
k=1

E�θ̂jk − θjk�2 +
∞∑
j=J

2j∑
k=1

θ2
jk

≡ S1 +S2 +S3�

It is easy to see from (3.9) that

S1 ≤ 2j0n−1ε2h+
2j0∑
k=1

�d′
j0k

�2 = o�n−2α/�1+2α���(6.6)

At each resolution level j, denote

Gj ≡ {
k supp�ψjk� = �2−jk�2−j�N+ k��
contains at least one jump point of f

}
�

Then card�Gj� ≤ N�m + 2� (counting two end points 0 and 1 as jump points
as well). Lemma 1 yields

�θjk� ≤ C2−j�1/2+α� for k /∈ Gj�(6.7)

�θjk� ≤ C2−j/2 for k ∈ Gj�(6.8)

where C is a constant not depending on f. Therefore,

S3 =
∞∑
j=J

∑
k∈Gj

θ2
jk +

∞∑
j=J

∑
k/∈Gj

θ2
jk

≤
∞∑
j=J

N�m+ 2�C22−j +
∞∑
j=J

2j∑
k=1

C22−j�1+2α�

= o�n−2α/�1+2α���

(6.9)
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Now we consider S2. First, note from (3.9) that σjk ≤ ujk and λjk =
ujk�2 log n�1/2, so ajk ≡ λjk/σjk ≥ �2 log n�1/2. It follows from (6.1) that

E�θ̂jk − θjk�2 ≤ �4 log n+ 2�hε2n−1 ∧ �8θ2
jk + 2hε2n−2� + 10d2

jk(6.10)

Write

S2 =
J−1∑
j=j0

∑
k∈Gj

E�θ̂jk − θjk�2 +
J−1∑
j=j0

∑
k/∈Gj

E�θ̂jk − θjk�2

≡ S21 +S22�

Since card�Gj� ≤ N�m+ 2�, it follows from (6.10) that

S21 ≤
J−1∑
j=j0

N�m+ 2���4 log n+ 2�hε2n−1 + 10d2
jk� = o�n−2α/�1+2α���(6.11)

Now let J1 be an integer satisfying 2J1�1+2α� = n/ log n. (For simplicity, we
assume the existence of such an integer. In general, choose J1 = �1/�1 +
2α� log2�n/ log n��.) From (6.10), we have

E�θ̂jk − θjk�2 ≤ 5ε2n−1 log n+ 10d2
jk for j0 ≤ j ≤ J1 − 1� k /∈ Gj�(6.12)

E�θ̂jk − θjk�2 ≤ 8C22−j�1+2α� + 2hε2n−2 + 10d2
jk

for J1 ≤ j ≤ J− 1� k /∈ Gj�
(6.13)

Therefore,

S22 ≤
J1−1∑
j=j0

∑
k/∈Gj

5ε2n−1 log n+
J−1∑
j=J1

∑
k/∈Gj

�8C22−j�1+2α� + 2hε2n−2�

+ 10
J−1∑
j=j0

2j∑
k=1

d2
jk

= C�log n/n�2α/�1+2α��1 + o�1���

(6.14)

We finish the proof by putting (6.6), (6.9), (6.11) and (6.14) together:

E�f̂∗
n − f�2

2 ≤ C �log n/n�2α/�1+2α��1 + o�1��� ✷(6.15)

Proof of Theorem 4. First, we recall a simple but useful inequality.

Lemma 4. Let Xi be random variables, i = 1� � � � � n� Then

E

( n∑
i=1

Xi

)2

≤
( n∑
i=1

�EX2
i �1/2

)2

�(6.16)
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Now, applying the inequality (6.16), we have

E�f∗
n�t0� −f�t0��2 = E

[ 2j0∑
k=1

�ξ̂j0k
− ξj0k

�φj0k
�t0� +

∞∑
j=j0

2j∑
k=1

�θ̂jk − θjk�ψjk�t0�
]2

≤
[ 2j0∑
k=1

�E�ξ̂j0k
− ξj0k

�2φ2
j0k

�t0��1/2

+
J−1∑
j=j0

2j∑
k=1

�E�θ̂jk − θjk�2ψ2
jk�t0��1/2 +

∞∑
j=J

2j∑
k=1

�θjkψjk�t0��
]2

≡ �Q1 +Q2 +Q3�2�

Now consider the three terms separately. Note that at each resolution level j
there are at most N basis functions ψjk that are nonvanishing at t0, where
N is the length of the support of wavelet functions φ and ψ. Therefore,

Q1 =
2j0∑
k=1

(
E�ξ̂j0k

− ξj0k
�2)1/2�φj0k

�t0��

≤ C

(
Nn−1ε2h+

2j0∑
k=1

�d′
jk�2

)1/2

= o�n−α/�1+2α���
(6.17)

For the third term, it follows from Lemma 1(i) that

Q3 =
∞∑
j=J

2j∑
k=1

�θjk� �ψjk�t0�� ≤
∞∑
j=J

N�ψ�∞2j/2C2−j�1/2+α� ≤ Cn−α�(6.18)

Now let us consider the term Q2. First, note that for the function f ∈
 α�M�B�0� the approximation error 7�t� satisfies supt �7�t�� ≤ Cn−s�α�. This
yields

�djk� = ��7�ψjk�� ≤ C12−j/2n−s�α��

where the constant C1 does not depend on f. Let the integer J1 be given as
in the proof of Theorem 3. Applying (6.12) and (6.14),

Q2 ≤ N�ψ�∞
J1−1∑
j=j0

(
5ε2n−1 log n+ 10C2

12−jn−2s�α�)1/2

+N�ψ�∞
J−1∑
j=J1

(
8C22−j�1+2α� + 2hε2n−2 + 10C2

12−jn−2s�α�)1/2

= C

(
log n
n

)α/�1+2α�
�1 + o�1���

(6.19)

Combining (6.17), (6.18) and (6.19), we have

E�f∗
n�t0� − f�t0��2 ≤ C�log n/n�2α/�1+2α��1 + o�1��� ✷(6.20)
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