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Motivated by DNA copy number variation (CNV) analysis based on high-density single nucleotide polymorphism (SNP) data, we consider
the problem of detecting and identifying sparse short segments in a long one-dimensional sequence of data with additive Gaussian white
noise, where the number, length, and location of the segments are unknown. We present a statistical characterization of the identifiable
region of a segment where it is possible to reliably separate the segment from noise. An efficient likelihood ratio selection (LRS) procedure
for identifying the segments is developed, and the asymptotic optimality of this method is presented in the sense that the LRS can separate
the signal segments from the noise as long as the signal segments are in the identifiable regions. The proposed method is demonstrated with
simulations and analysis of a real dataset on identification of copy number variants based on high-density SNP data. The results show that
the LRS procedure can yield greater gain in power for detecting the true segments than some standard signal identification methods.
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1. INTRODUCTION

In genetics, the study of DNA copy number variation (CNV)
provides important insights on human inheritance and disease
association (McCarroll and Altshuler 2007). CNV refers to du-
plication or deletion of a segment of DNA sequences com-
pared to a reference genome assembly. Current high-throughput
genotyping technology is able to generate genome-wide ob-
servations in kilobase resolution. In this type of ultrahigh-
dimensional data, the number of CNV segments can be very
small and the CNV segments can be very short, which impose
major difficulties for detecting and identifying these segments.
Note that changes in DNA copy number have also been highly
implicated in tumor genomes; most are due to somatic muta-
tions that occur during the clonal development of the tumor. The
copy number changes in tumor genomes are often referred to as
copy number aberrations (CNAs). In this paper, we focus on the
CNVs from the germline constitutional genome. An important
application is the detection and identification of CNVs based
on data generated by genome-wide single nucleotide polymor-
phism (SNP) genotyping arrays for the germline DNA samples
from normal tissues. There are about 500,000 to 1,000,000 nu-
merical observations along the human genome of an individual;
the number of CNV segments, however, is usually smaller than
100, and the CNV segments mostly range less than 20 SNPs
(Zhang et al. 2009). In order to identify these CNVs for a given
individual, it is important to first understand how the number of
CNVs, the segment length and signal intensity affect the statis-
tical power of CNV detection and identification. More discus-
sion and background on CNV detection are given in Section 4.3.
Similar problems arise in other fields including, for example,
detecting moving objects (NRC 1995), detecting fissures in ma-
terials (Mahadevan and Casasent 2001), and identifying streams
and roadbeds (Agouris, Stefanidis, and Gyftakis 2001). A com-
mon feature of these applications is that very sparse signals are
hidden in a large amount of noise.
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Motivated by the problem of CNV detection and other appli-
cations mentioned above, we consider in this paper the general
problem of detecting sparse and short segments from a long se-
quence of noisy data. In particular, we assume that these sig-
nals are composed of several short linear segments, and our
goals are to detect whether signal segments exist and iden-
tify the locations of these segments when they do exist. More
specifically, we consider the following model where we observe
{Xi, i = 1, . . . ,n} with

Xi = μ11{i∈I1} + · · · + μq1{i∈Iq} + σZi, 1 ≤ i ≤ n. (1)

Here q = qn is the unknown number of the signal segments,
possibly increasing with n, I1, . . . , Iq are disjoint intervals rep-
resenting signal segments with unknown locations, μ1, . . . ,μq

are unknown positive means, σ is an unknown noise level, and

Zi
iid∼ N(0,1). Let I = In be the collection of all signal segments.

We formulate the detection and identification problem as the
following testing problem

H0 : I = ∅ against H1 : I �= ∅,

and if the alternative is true, identify the set of signal seg-
ments I.

The problem of detecting and identifying sparse and short
signal segments pertains to statistical research in several areas.
Without segment structure, it is closely related to large-scale
multiple testing, which has motivated many novel procedures
such as false discovery rate (FDR) (Benjamini and Hochberg
1995) and higher criticism thresholding (HCT) (Donoho and
Jin 2008). Arias-Castro, Donoho, and Huo (2005) considered
the problem of detecting the existence of signals when there
is only one signal segment. This is a special case of the de-
tection part of our problem with q = 1. They showed that the
detection boundary in this case is

√
2 log n/

√|I|, that is, the
signal mean should be at least

√
2 log n/

√|I| in order for a sig-
nal with length |I| to be reliably detected and that the gener-
alized likelihood ratio test (GLRT) can be used for detecting
the segment. A closely related result in section 6 of Hall and
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Jin (2010) demonstrates the detection boundary under a wide
range of signal sparsity when signals appear in several clusters.
Further, Arias-Castro, Donoho, and Huo (2005) and Walther
(2009) studied detection of geometric objects and spatial clus-
ters in two-dimensional space, respectively, and Arias-Castro et
al. (2008) provides detection threshold for the existence of an
unknown path in a two-dimensional regular lattice or a binary
tree.

The problem we consider here is also related to the problem
of change-point detection, since it involves shifts in the char-
acteristics of a sequence of data. Change-point detection in a
single sequence has been extensively studied. See Zack (1983)
and Bhattacharya (1994) for a review of the literature. Olshen
et al. (2004) used the likelihood ratio based statistics for analy-
sis of DNA copy number data, and Zhang and Siegmund (2007)
proposed a BIC-based model selection criterion for estimating
the number of change-points. Olshen et al. (2004) further de-
veloped an iterative circular binary segmentation procedure for
segmentation of a single sequence and showed promising re-
sults in analysis of DNA copy number data, whereas Zhang et
al. (2008) extended the problem of change-point detection from
single sequence to multiple sequences in order to increase the
power of detecting changes.

In this paper, we consider the challenging setting where the
true signals are very sparse in the sense that both the number
and the lengths of signal segments are very small. We present
a statistical characterization of identifiable region of a signal
segment, where it is possible to separate the segment from
the noise. Furthermore, we propose a likelihood ratio selection
(LRS) procedure to identify the signal segments, and show that
the LRS provides consistent estimates for any signal segments
in the identifiable region. In other words, the LRS procedure is
an optimal procedure, which can reliably separate signal seg-
ments from noise as long as the signal segments can be esti-
mated.

Our results show that, when the segment structure of signals
is taken into account, much weaker signals can be identified,
and the overall power is significantly improved. For unstruc-
tured sparse signals, it follows from Donoho and Jin (2004)
and Jeng (2009) that the mean needs to be at least

√
2 log n

in order for the signals to be identifiable. On the other hand,
for structured signals with one segment of length |I|, the de-
tection threshold is

√
2 log n/

√|I| (Arias-Castro, Donoho, and
Huo 2005). Since identifying the locations of signals is more
difficult than detecting their existence, the identification thresh-
old for the structured signals should be at least

√
2 log n/

√|I|.
In this case, we find the identification threshold to be the same
as the detection threshold in Arias-Castro, Donoho, and Huo
(2005) when signals are very sparse. However, the fundamen-
tal difference between our procedure and that of Arias-Castro,
Donoho, and Huo (2005) is that, in addition to detecting the
existence of signals, our proposed LRS procedure accurately
identifies the locations of the segments. In addition, we ex-
tend the setting of Arias-Castro, Donoho, and Huo (2005) to
more than one segment. Our study also provides a novel con-
nection between recent developments in sparse signal detection
and change-point problems.

The rest of the paper is organized as follows. We first intro-
duce the LRS procedure for identifying the sparse linear seg-
ments in the data in Section 2. We then present the statistical

characterization of the identifiable region and the asymptotic
optimality results of the LRS in Section 3. Monte Carlo simula-
tions are demonstrated in Section 4 to compare the performance
of LRS with those of FDR and HCT. We also present real data
results from applying the LRS procedure to analyzing a CNV
data from a trio of three individuals. We conclude in Section 5
with some further discussions. The proofs are relegated to the
Appendix.

2. LIKELIHOOD RATIO SELECTION

As mentioned in the Introduction, our goal is to detect and
identify the signal segments based on the sample {X1, . . . ,Xn}
under the Model (1). In this section we introduce a procedure
that selects candidate intervals based on their likelihood ratio
statistics. For any given interval Ĩ ⊆ {1,2, . . . ,n}, define its like-
lihood ratio statistic as

X(Ĩ) =
∑
i∈Ĩ

Xi/

√
|Ĩ|.

Under the null hypothesis, X(Ĩ) follows the standard normal
distribution for any Ĩ. With sample size n, there are n2 candidate
intervals in total, and searching through all of them is compu-
tationally expensive if n is large as in many high-dimensional
applications. Motivated by applications such as the CNV analy-
sis and to reduce the computational complexity, we utilize the
short-segment structure of signals and only consider candidate
intervals with length less than or equal to L, where L is some
number much smaller than n. We denote the set of such candi-
date intervals as Jn(L) with cardinality n × L. We argue that the
selection of L should satisfy the following condition:

s̄ ≤ L < d, (2)

where s̄ is the maximum signal length and d is the minimum
gap between signals, that is,

s̄ = max
1≤j≤q

|Ij|, and

d = min
1≤j≤q−1

{distance between Ij and Ij+1}.

Condition (2) requires L to be larger than the maximum length
of the signal segments, so that each signal segment is covered
by some candidate intervals. On the other hand, L should be
smaller than the shortest gap between signal segments, which
ensure that no candidate reaches more than one signal segment.
For applications such as the CNV analysis, L can be easily se-
lected from a wide range since signals are very rare compared
to the amount of noise. In CNV data, the lengths of signal seg-
ments are usually less than 20 SNPs, while the distances be-
tween deletion/amplification segments are rarely below 1000
SNPs. We show later in Section 4 that different choices of L
only result in negligible differences in selection accuracy as
long as Condition (2) is satisfied. We mention that using smaller
L involves less computational complexity and is, thus, pre-
ferred. On the other hand, if L is selected too small (<s̄) and
some segments are estimated piece by piece, an easy remedy is
to combine the estimates that are very close to each other into
one piece.
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Based on extreme value theory of normal random variables,
we have

max
Ĩ∈Jn(L)

X(Ĩ) ≤ √
2 log(nL)

with probability tending to 1 under the null hypothesis. So a
reasonable threshold for significance testing is

tn = √
2 log(nL). (3)

Our algorithm first finds all the candidate intervals with the
likelihood ratio statistics greater than tn. Intuitively, the proper
estimates of signal segments should be the candidate intervals
whose likelihood ratio statistics achieve the local maximums.
Thus, the LRS procedure iteratively selects the interval from
the candidate set with the largest likelihood ratio statistic, and
then delete the selected interval and any other intervals overlap-
ping with it from the candidate set. In the following, we present
our procedure in detail for a chosen window size L.

Step 1. Let Jn(L) be the collection of all possible subinter-
vals in {1, . . . ,n} with interval length less than or equal to L.
Let j = 1. Define I(j) = {Ĩ ∈ Jn(L) : X(Ĩ) > tn}.

Step 2. Let Îj = arg maxĨ∈I(j) X(Ĩ).
Step 3. Update I(j+1) = I(j) \ {Ĩ ∈ I(j) : Ĩ ∩ Îj �= ∅}.
Step 4. Repeat Steps 2–4 with j = j + 1 until I(j) is empty.

Define the collection of selected intervals as Î = {Î1, Î2, . . .}.
If Î �= ∅, we reject the null hypothesis and identify the signal
segments by all the elements in Î.

Note that the above LRS procedure is designed for positive
signal segments (μj > 0). When both positive and negative sig-
nal segments exist, a simple modification is to replace the X(Ĩ)
in Steps 1 and 2 with |X(Ĩ)|.

3. ASYMPTOTIC OPTIMALITY OF LRS

In this section, we show that under certain conditions, LRS
can reliably separate signal segments from noise whenever the
signal segments can be estimated. This property is what we call
the optimality of LRS.

To elucidate the exact meaning of optimality, we first intro-
duce a quantity to measure the accuracy of an estimate of a sig-
nal segment. Recall that I is the collection of signal segments.
Denote Î to be the collection of interval estimates. For any Î ∈ Î

and I ∈ I, define the dissimilarity between Î and I as

D(Î, I) = 1 − |Î ∩ I|/
√

|Î||I|, (4)

where | · | represents the cardinality of a set. Note that
0 ≤ D(Î, I) ≤ 1 with D(Î, I) = 1 indicating disjointness and
D(Î, I) = 0 indicating complete identity. Similar quantity has
been used in Arias-Castro, Donoho, and Huo (2005) to mea-
sure the dissimilarity between intervals.

Definition 1. An identification procedure is consistent for a
subset � ⊆ I if its set of estimates Î satisfies

PH0(|Î| > 0) + PH1

(
max
Ij∈�

min
Îj∈Î

D(Îj, Ij) > δn

)
→ 0 (5)

for some δn = o(1). Obviously, the first term on the left mea-
sures the Type I error. The second term, which is the probability
that some signal segments in � are not “substantially matched”
by any of the estimates, essentially measures the Type II error.

Definition 2. For any fixed Ij ∈ I, if there exists a threshold
ρ∗

j such that when μj > ρ∗
j there exists some identification pro-

cedure that is consistent for Ij, and when μj ≤ ρ∗
j no such pro-

cedure exists, we call the regions corresponding to μj > ρ∗
j and

μj ≤ ρ∗
j the identifiable and unidentifiable regions of Ij, respec-

tively.

We shall call a procedure an optimal procedure if it is consis-
tent for all the segments in their identifiable regions.

In this section, we demonstrate the optimality of LRS under
Condition (2) on L and additionally

log L = o(log n). (6)

L that satisfies (6) can, for example, be of order loga n, a > 1.
Conditions (2) and (6) can both hold in the situations that
we are interested in, where signals are very sparse. We note
that a consistent procedure also consistently estimates the true
break points, which is usually of great interest in practical ap-
plications. This is because the dissimilarity measure D(Î, I) is
closely related to the measure of distance between the estimated
break points and the true break points. For two intervals I and Î
with dissimilarity D(Î, I) < 1, define

BP(Î, I) = |Î \ Î ∩ I| + |I \ Î ∩ I|. (7)

Note that BP(Î, I) is the sum of distances between the lower
and upper break points and their respective estimates. Then, it
is easy to show that

BP(Î, I) ≤ 2D(Î, I)(|Î| + |I|).
We also assume in this section that the variance σ 2 is known
and, without loss of generality, is set to be 1. In real data analy-
sis, σ can be easily estimated from the data since signals are
sparse. More discussion on estimating σ is given in Section 5.

3.1 Optimality of the LRS When q = 1

In order to present all the basic theoretical elements in their
simplest and cleanest form, we start with q = 1 and define I =
I1 and μ = μ1. The following theorem provides the consistency
result of LRS. The proof is given in the Appendix.

Theorem 1. Fix q = 1. Assume Model (1), Conditions (2)
and (6). If

μ ≥ √
2(1 + εn) log n/

√|I| (8)

for some εn such that εn 
 max{1/
√

log n, log L/ log n}, then
the LRS is consistent for I, and the set of estimates Î satisfies

PH0(|Î| > 0) ≤ C/
√

log n → 0, (9)

and

PH1

(
min
Î∈Î

D(Î, I) > δn

)
≤ Cn−Cε2

n + Cs̄Ln−Cδ2
n → 0 (10)

for any δn such that
√

log s̄ + log L/
√

log n � δn � 1.

The result in Theorem 1 implies that the identification thresh-
old ρ∗ (= ρ∗

1 ) is smaller than or equal to
√

2 log n/
√|I|. In or-

der to specify ρ∗, we also need to derive a good lower bound
for ρ∗. By theorem 2.3 in Arias-Castro, Donoho, and Huo
(2005), it follows that given log s̄ = o(log n), which is implied
by (2) and (6), no method can reliably detect the existence of
the signal segment when μ ≤ √

2 log n/
√|I|. Since identifying
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the location of a signal segment is more difficult than detect-
ing its existence, no identification procedure can be consistent
when μ ≤ √

2 log n/
√|I|. Therefore, ρ∗ should be larger than

or equal to
√

2 log n/
√|I|. By summarizing the above, we have

the following corollary on the exact level of ρ∗ and the optimal-
ity of LRS.

Corollary 1. Fix q = 1. Consider Model (1) and assume that
Conditions (2) and (6) hold. Then the identification thresh-
old ρ∗ is

√
2 log n/

√|I|, and no identification procedure for
I is consistent when μ ≤ √

2 log n/
√|I|. On the other hand,

the LRS is optimal in a sense that it is consistent for I when
μ ≥ √

2(1 + εn) log n/
√|I| for some εn such that 1/

√
log n �

εn � 1.

The proof of Corollary 1 is straightforward and thus is omit-
ted.

3.2 Optimality of LRS When q > 1

We now consider the general case with q > 1 and assume

log q = o(log n), (11)

which says that the number of signal segments is relatively very
small. Define

�+ = {
Ij ∈ {I1, . . . , Iq} :

μj
√|Ij| ≥

√
2(1 + εn) log n

}
, q1 = |�+|

for some εn such that εn 
 max{√log q/
√

log n, log L/ log n}
and

�− = {
Ij ∈ {I1, . . . , Iq} :μj

√|Ij| ≤
√

2 log n
}
, q2 = |�−|.

Note that �+ ∪ �− asymptotically equals to the whole set
{I1, . . . , Iq} when εn = o(1). We show that no procedure is con-
sistent for �−. But it is possible for �+, and LRS is consistent
for �+.

Theorem 2. Consider Model (1) and assume that Conditions
(2), (6), and (11) hold. Then LRS is consistent for �+, and no
procedure is consistent for �−.

In addition to being consistent for �+, LRS has a desirable
property of estimating the segments in an order that reveals
the relative signal strength of the segments. It is clear that the
strength of a signal segment depends on its length and mean
level. We can order the segments in �+ as I(1), . . . , I(q1) such
that μ(1)

√|I(1)| ≥ · · · ≥ μ(q1)

√|I(q1)|, and we show that under
some mild conditions on the separation of signal strength, LRS
first identify I(1), then I(2), and so on. This additional informa-
tion can be important to practitioners and provides a rank order
of the segments identified by the LRS procedure.

Theorem 3. Consider Model (1) and assume that Conditions
(2), (6), and (11) hold. In addition, assume

μ(j)
√|I(j)| − μ(j+1)

√|I(j+1)| ≥ δn
√

2 log n,

∀j = 1, . . . ,q1 − 1 (12)

for some δn such that
√

log q1 + log s̄ + log L/
√

log n � δn � 1.
Then LRS is consistent for �+ and identifies the elements in
�+ in the order of I(1), . . . , I(q1).

Remark. Condition (12) requires that the signal strengths of
segments are well separated. Otherwise, it is intuitively clear
that the order of the segments being identified may change.

3.3 Comparison With Identifying Unstructured Signals

When signals do not compose of segments or any other spe-
cific structures, we have the following standard model for a se-
quence of high-dimensional data:

X ∼ N(θ, In), θ ∈ Fs,μ, (13)

where In is an n×n identity matrix and Fs,μ is the collection of
n-dimensional vectors with at most s entries equal to μ > 0 and
other entries equal to 0. The parameters s, μ, and the locations
of the nonzero entries are unknown. Compared to Model (1),
the current model does not include any information on signal
structure, so that consistent identification should be more diffi-
cult. This is shown in the following lemma.

Lemma 1. Assume Model (13) with log s = o(log n), then
when μ ≤ √

2 log n, no identification procedure is consistent
for I = {i : θi �= 0}.

Lemma 1 follows directly from theorem 5 in Genovese, Jin,
and Wasserman (2009) when log s = o(log n). The result im-
plies that the identifiable regions for unstructured signals cannot
be broader than μ >

√
2 log n. Comparing this result with the

identifiable regions in Corollary 1, which is μ >
√

2 log n/
√|I|,

we see a clear advantage of the latter if signals have segment
structure with |I| > 1. Note that similar to log s = o(log n) in
Lemma 1, log s̄ = o(log n) is implied by Conditions (2) and (6)
in Corollary 1. So the comparison here is meaningful. By utiliz-
ing the segment structure, LRS is able to reliably identify much
weaker signals than the popular methods such as the FDR. More
comparisons are demonstrated in Section 4.

4. NUMERICAL STUDIES

4.1 Simulation Studies

In this section, we study numerical properties of the LRS via
Monte Carlo Simulations. The sample size is set to be n = 5 ×
104, q = 5 locations of signal segments are chosen randomly,
and the length of each signal segment is set to be s = 10. We set
the signal mean μ = 1, 1.75, and 2. The data Xi, i = 1, . . . ,n, is
generated from N(A,1), where A = μ if i is located on a signal
segment and 0 otherwise. We repeat each simulation example
50 times.

For each simulated dataset, we perform the LRS using L =
20, which satisfies Condition (2). Further, we set the threshold
tn at

√
2 log(nL) ≈ 5.26. Note that the identifiable threshold for

μ in Corollary 1 is
√

2 log(n)/
√

s ≈ 1.47. We measure the es-
timation accuracy of LRS by three summary statistics: Dj and
BPj measure how well a signal segment and particularly its two
endpoints are estimated, and #O measures the number of over-
selections. Specifically, for a signal segment Ij, define

Dj = min
Î∈Î

D(Î, Ij) and BPj = min
{

min
Î∈Î

BP(Î, Ij), s
}
,

where D(Î, Ij) and BP(Î, Ij) are defined as in (4) and (7). It is
clear that smaller Dj and BP(Î, Ij) corresponds to better match-
ing between Ij and some estimate Î ∈ Î, and Dj = 0 if and only
if Ij = Î. The summary statistic #O is defined as

#O = #{Î ∈ Î : Î ∩ Ij = ∅,∀j = 1, . . . ,q},
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Table 1. Medians of the summary statistics Dj, BPj, j = 1, . . . ,5 and #O over 50 replications for LRS.
In Tables 1–5, the estimated standard errors appear in parentheses

D1 D2 D3 D4 D5
BP1 BP2 BP3 BP4 BP5 #O

μ = 1 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 1.00 (0.000) 0 (0)
10 (0.00) 10 (0.00) 10 (0.00) 10 (0.00) 10 (0.00)

μ = 1.75 0.05 (0.023) 0.05 (0.026) 0.11 (0.074) 0.12 (0.075) 0.07 (0.028) 0 (0)
1 (0.47) 1 (0.51) 2 (0.99) 2.5 (1.40) 1 (0.54)

μ = 2 0.05 (0.015) 0.05 (0.014) 0.05 (0.017) 0.05 (0.009) 0.04 (0.004) 0 (0)
1 (0.29) 1 (0.29) 1 (0.35) 1 (0.26) 1 (0.02)

which is a nonnegative integer, and #O = 0 if there is no
over-selected intervals. We present in Table 1 the medians of
D1, . . . ,Dq, BP1, . . . ,BPq, and #O over 50 replications. To es-
timate the standard error of the medians, we generate 500 boot-
strap samples out of the 50 replication results, then calculate a
median for each bootstrap sample. The estimated standard error
is the standard deviation of the 500 bootstrap medians. The re-
sults indicate that the LRS quickly gains power after μ passes
the threshold 1.47 and becomes more accurate as μ further in-
creases. These results also indicate that the LRS can estimate
the exact segmental breakpoints very well when μ passes the
theoretical threshold, as reflected by the small values of the BP
statistics.

Next, we show the order of signal segments being estimated
by LRS. We use the same setting as in the previous example,
except that the signal means of the 5 segments are set differ-
ently as μ1 = 4, μ2 = 3.5, μ3 = 3, μ4 = 2.5, μ5 = 2, and the
segment lengths s = 10,15 are employed for each segment. Ac-
cording to Theorem 3, the order of the segments being esti-
mated should be I1, I2, I3, I4, I5. In Table 2, we show the me-
dian of the estimation orders for each segment in 50 replications
and the number of times when all segments are estimated in the
correct order. In detail, let Aj be the vector of estimation orders
of Ij in 50 replications and Nj = median(Aj). We report Nj for
j = 1, . . . ,q and #OC, the number of times when I1 is estimated
first, then I2, and so on.

The results in Table 2 clearly demonstrate that segments with
stronger signal strength are estimated earlier, and the estimation
order of each segment (represented by Nj) is very stable over
50 replications. On the other hand, the order consistency of all
segments (represented by #OC) is harder to be achieved, and
the result improves as the difference between signal strengths
increases. The signal strength is a combination of effects of μj

and
√|Ij|, so that, when s increases from 10 to 15, the difference

between signal strengths is multiplied by
√

15/
√

10.
We now compare the LRS procedure with two other popu-

lar procedures for selecting significant signals, the FDR and

Table 2. Medians (N1, . . . ,N5) of the estimation orders for segments
and number of times all segments are estimated in the correct

order over 50 replications

μ1 = 4 μ2 = 3.5 μ3 = 3 μ4 = 2.5 μ5 = 2 #OC

s = 10 1 (0) 2 (0) 3 (0) 4 (0) 5 (0) 28 (3.67)
s = 15 1 (0) 2 (0) 3 (0) 4 (0) 5 (0) 34 (3.26)

the HCT procedures, both of which do not consider seg-
ment structure of the signals. The FDR procedure is car-
ried out by first calculating the p-values of observations as
pi = P(N(0,1) > Xi),1 ≤ i ≤ n, and then performing the BH
procedure in Benjamini and Hochberg (1995). Note that the
unidentifiable region for unstructured signals is μ ≤ √

2 log n
as shown in Lemma 1. We conjecture that the successful region
for FDR and HCT is μ >

√
2 log n ≈ 4.65. In order to compare

these three procedures, we simulated data with signal mean set
to be μ = 2, 4, and 6. Since FDR and HCT procedures do not
provide interval estimates as LRS does, the measures of Dj and
#O cannot be applied. Instead, we report the median of the true
positives (TP), which counts the number of correctly identified
signals, and that of the false positives (FP), which counts the
number of incorrectly selected noises.

Table 3 presents results that clearly demonstrate the advan-
tages of using the LRS procedure. When μ = 2, which is greater
than the bound 1.36 for LRS and less than 4.65, FDR has no
power, HCT has some power but severe over-selection, while
LRS selects 39 out of 50 signals and controls the number of
false positives to be less than 2. As μ increases, the perfor-
mances of FDR and HCT improve, while LRS remains very
accurate. The simulation results clearly verify the advantage of
LRS achieved by utilizing segment structure of the signals.

Our last set of simulations aim to evaluate the effect of pos-
sible spatial correlations on the LRS procedure by generating
the noises from a multivariate normal distribution with the cor-
relation matrix � specified by �i,j = ρj−i, for ρ = 0.5,0.7, and
0.9. All the other parameters are set to the same values as those
in the first example with μ = 2.0. Table 4 shows that the LRS
procedure is not very sensitive to the spatial correlations of the
noises, unless the correlations are very high. As we see in our
analysis of real CNV dataset in Section 4.3, the autocorrelations
of the noises are very small, we therefore expect the spatial cor-
relations should have no or little effect on the LRS procedure
for real applications.

4.2 Sensitivity to Choice of L

The parameter L determines the computational complexity
of LRS, so that smaller value of L is preferred as long as Con-
dition (2) is satisfied. We study the effect of L on estimation
accuracy using the same simulation setup as in Section 4.1 with
μ = 2 and present the results in Table 5.

Table 5 shows that the estimation result is robust with re-
spect to the choice of L as long as Condition (2) is satisfied.
When L < s̄, estimation accuracy deteriorates as no candidates
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Table 3. Medians of TP and FP in 50 replications for FDR with false discovery rate = 0.05 and 0.1, HCT and LRS

FDR (0.05) FDR (0.1) HCT LRS

TP FP TP FP TP FP TP FP

μ = 2 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 15 (4.1) 391 (677.5) 39 (1.6) 2 (0.5)

μ = 4 30 (1.1) 1 (0.3) 25 (1.2) 3 (0.4) 33 (1.3) 14 (2.4) 50 (0.1) 0 (0.0)

μ = 6 49 (0.1) 2 (0.3) 50 (0.5) 5 (0.5) 49 (0.2) 2 (0.5) 50 (0) 0 (0.0)

cover a whole segment and the LRS does not efficiently uti-
lize the segment structure. A simple remedy is to increase the
value of L, which will cost more computation complexity. An-
other simple remedy is to combine the identified intervals that
are very close to each other. A more serious problem may occur
when L > d. Then it is possible to have long interval estimates
that cover more than one signal segment, and the adjacent sig-
nal segments cannot be distinguished. However, we note that
in applications, such as CNV analysis, signal segments are rare
and randomly located, and the value of d is usually large. In the
simulation example with n = 5 × 104, s = 10, and q = 5, d is
observed to be above 1000 in all 50 replications.

Remark. We note that the variance σ 2 is prespecified in the-
ory and simulation analysis above. In practice, the noise level σ

is often unknown and needs to be estimated. Under the sparse
setting of the present paper, σ can be easily estimated. A sim-
ple robust estimator is the following median absolute deviation
(MAD) estimator:

σ̂ = median |Xj − median(Xj)|
0.6745

.

Alternatively, other standard estimation procedures such as the
MLE, can be applied. In particular, under the sparsity condition
in Section 3 [log q + log s̄ = o(log n)], the convergence rate of
the MLE σ̂ is

√
n, which is much faster than the convergence

rates in Section 3 for segment identification with known σ . In
numerical analysis, either the MAD estimator or the MLE can
be used.

4.3 Application to CNV Identifications

Copy number variants refer to duplication or deletion of a
segment of DNA sequences compared to a reference genome
assembly. Availability of high-throughput genotyping technol-
ogy such as the Illumina HumanHap550 BeadChip has greatly
facilitated the identification of such genomic structural varia-
tions in kilo-base resolution (Feuk, Carson, and Scherer 2006;
Eichler et al. 2007). Such CNVs are not so rare in the popula-
tion and have been reported to be associated with several com-
plex human diseases such as autism (Sebat et al. 2007), bipolar
disorder (Lachman et al. 2007), cardiovascular disease (Pollex

and Hegele 2007), and neuroblastoma (Diskin et al. 2009). It
is, therefore, very important to have computationally efficient
statistical methods to detect such copy variants.

We demonstrate our proposed method using the genotyping
data for a father–mother–child trio from the Autism Genetics
Resource Exchange (AGRC) collection (Bucan et al. 2009),
genotyped on the Illumina HumanHap550 array. For each in-
dividual and each SNP, our data is the measurement of normal-
ized total signal intensity ratio called the Log R ratio (LRR),
which is calculated as log2(Robs/Rexp) where Robs is the ob-
served total intensity of the two alleles for a given SNP, and
Rexp is computed from linear interpolation of canonical geno-
type clusters (Peiffer et al. 2006). For each individual, we have
a total of 547,458 SNPs over 22 autosomes, and the numbers of
SNPs on each chromosome range from 8251 on chromosome
21 to 45,432 on chromosome 2. To assess the levels of spa-
tial correlations, we calculated the first-order and second-order
autocorrelations for the LRRs along the chromosomes and ob-
tained the values of 0.095 and 0.085 for the child, 0.043 and
0.028 for the father, and 0.075 and 0.059 for the mother, respec-
tively. This indicates that the spatial correlations among noises
are indeed very weak. For each individual, our goal is to iden-
tify the CNVs based on the observed LRRs. We chose to use
data from a trio in order to partially validate our results since
we expect some CNVs are inherited from parents to child.

We first standardize the observed LRRs using MLE of mean
and variance of the noise. Since both duplication and deletion
can occur in a CNV region, a simple modification of taking
absolute value of the likelihood ratio should be added in the
LRS procedure, that is, replace the X(Ĩ) in Steps 1 and 2 with
|X(Ĩ)|. Also, because the numbers of SNPs in observed CNVs
are usually smaller than 20 SNPs, we chose L = 20 in our
LRS procedure. In addition, we only consider CNVs with 4
or more SNPs. The LRS procedure identified 18, 28, and 25
CNVs in father, mother, and the child, respectively. The sizes
of the identified CNV regions range from 4 to 20 for all three
individuals, with most of them smaller than 20. Figure 1 shows
the CNV segments with the likelihood ratio test scores (xstar)
for the segments that the LRS algorithm selected for the child.
We also plotted the CNV segments identified in the parents if

Table 4. Medians of the summary statistics Dj, j = 1, . . . ,5, and #O over 50 replications for the LRS for Gaussian
models with correlated noises, where ρ is the correlation between two nearby observations

D1 D2 D3 D4 D5 #O

ρ = 0.5 0.05 (0.051) 0.09 (0.026) 0.05 (0.021) 0.11 (0.028) 0.11 (0.028) 2 (0.24)

ρ = 0.7 0.09 (0.036) 0.10 (0.045) 0.09 (0.044) 0.10 (0.029) 0.09 (0.040) 6 (0.50)

ρ = 0.9 0.30 (0.092) 0.15 (0.060) 0.12 (0.044) 0.23 (0.096) 0.20 (0.088) 11.5 (0.51)
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Table 5. Medians of Dj, j = 1, . . . ,5 and #O over 50 replications for LRS with different choices of L

D1 D2 D3 D4 D5 #O

L = 5 0.22 (0.083) 0.26 (0.049) 0.22 (0.026) 0.26 (0.152) 0.22 (0.000) 0 (0)
L = 10 0.05 (0.010) 0.02 (0.022) 0.05 (0.019) 0.05 (0.005) 0.02 (0.022) 0 (0)
L = 20 0.05 (0.022) 0.09 (0.022) 0.00 (0.025) 0.05 (0.014) 0.05 (0.020) 0 (0)
L = 100 0.05 (0.019) 0.07 (0.039) 0.09 (0.024) 0.05 (0.025) 0.05 (0.028) 0 (0)

they overlap with the CNV segments of the child. It is inter-
esting to note that many of the CNV segments identified in the
child were also observed in one of the parents, further indicating
that some CNVs are inheritable and our LRS algorithm can ef-
fectively identify these CNVs. We examined the segments that
were identified in the child only (i.e., the de novo CNVs) and
noted that most of these segments are real. For example, plot (a)
and (b) of Figure 2 presented the observed LRR values for the
CNV regions that were identified in the child, but not in either
of the parents. Plot (a) clearly indicates two CNVs identified
by the LRS procedure. Further examination of this region indi-
cates that there is in fact one longer CNV in this region, which is
longer than 20. The LRS algorithm identified these two CNVs
because L was set to 20 in order to save the computation time
(see our discussion on the choice of L in Section 4.2), so that
only intervals ≤ 20 were considered. As a common practice,
one can always perform certain postprocessing of the results to
merge the close segments. The LRR values in plot (b) are not
very large, however, most of the SNPs have negative LLR val-
ues. Comparing to the neighboring SNPs, it seems that there is
indeed a change in LRR values.

As a comparison, the hidden Markov model (HMM)-based
method as implemented in PennCNV package (Wang et al.
2007) identified 16, 18, and 17 CNVs in father, mother, and
child, respectively. If the trios are considered together and
the familial transmission of the CNVs is also considered, the
PennCNV identified 21, 21, and 20 CNVs in the father, mother,

Figure 1. Summary of results of LRS for CNV detection for a trio:
the LR test statistics for the CNV segments identified by the proposed
LRS procedure for the child, sorted by the absolute values of the like-
lihood ratio statistics. One segment with large statistics (−116.70 for
the child) is truncated as −40 for better view. The online version of
this figure is in color.

and child, respectively. Overall, we see that the LRS proce-
dure identified almost all the CNVs that were identified by
the HMM-based procedure. However, the LRS identified a few
more CNVs that are missed by the hidden Markov model-based
method. As an example, the LRS procedure identified an iden-
tical deletion CNV of 5 SNPs in both the father and the child
on chromosome 12, but the HMM method failed to identify this
CNV. The plot (c) of Figure 2 shows the observed LLR for the
SNPs in this CNV region, clearly indicating that the existence
of a CNV in this region. Another example includes a deletion
CNV with 6 SNPs that was not identified in the child by the
HMM approach [see plot (d) of Figure 2]. Note that the LLR of
all these 6 SNPs are negative in this CNV region, further indi-
cating that this CNV is likely to be true. However, this of course
needs further biological validation.

5. DISCUSSION

We have studied the problem of detecting and identifying
sparse short segments in a long one-dimensional sequence of
data with Gaussian noise. The conditions for the existence of
a consistent identification procedure were given. The LRS pro-
cedure was developed and shown to be optimal in selecting the
true segments. The simulation results have clearly demonstrated
that the proposed procedure can greatly outperform other pop-
ular methods such as the FDR or HCT when the segmental
features of the signals are present. We demonstrated the LRS
procedure in an application that identifies CNVs based on high-
density SNP data, showing that our procedure can be more pow-
erful than other popular methods such as the HMM-based meth-
ods.

The optimality of LRS is essentially guaranteed by its close
relationship to generalized likelihood ratio test (GLRT), which
can be computationally very expensive when dealing with
high-dimensional data. The LRS procedure utilizes the short-
segment structure of the data by only considering short intervals
as candidates, which reduces the order of computation com-
plexity from n2 to n × L. This large reduction makes LRS an
efficient method for handling ultrahigh-dimensional signal de-
tection problem.

In the present paper we focused on the optimal segment iden-
tification with Gaussian noise. Another important topic is the
development of efficient procedures and theoretical results for
segment identification with general noise. Moreover, an inter-
esting problem for future research is to develop a similar frame-
work for segment identifications using data from multiple se-
quences when one can assume that the segment starts at the
same location at least over a subset of these sequences (Zhang
et al. 2008). This can potentially increase the power of detecting
the true segments that are shared across multiple samples.
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(a) (b)

(c) (d)

Figure 2. LRR data for the CNV segments identified in the child. Top panel: CNV segments identified in the child, but not in either of the
parents. (a) The two CNV segments on chromosome 3 and (b) the CNV segment on chromosome 1 that were identified in the child but not
in either of the parents. Bottom panel: CNV segments identified by the LRS procedure but missed by the HHM method. (c) CNV segment on
a chromosome 12 region and (d) CNV segment on a chromosome 4 region that were identified by LRS procedure but missed by the hidden
Markov model. The CNV is marked by the two vertical dashed lines. The online version of this figure is in color.

APPENDIX: PROOFS

In this section, we provide the proofs for the theorems and lemma
presented in this paper. Denote PA(B) as the probability of B given A.

Proof of Theorem 1

We show (9) first. Recall that for any interval Ĩ,

X(Ĩ) =
∑
i∈Ĩ

Xi/

√
|Ĩ|.

The construction of Î by LRS implies that

PH0(|Î| > 0) ≤ PH0

(
max

Ĩ∈Jn(L)

X(Ĩ) > tn
)

≤ n · L · P(N(0,1) > tn) ≤ C√
log n

.

Next, we show (10). Recall I(1) = {Ĩ ∈ Jn(L) : X(Ĩ) > tn}. Define
the following events:

A = {
I
(1) �= ∅}

and B = {D(Î1, I) ≤ δn}.

It is easy to see that

PH1

(
min
Î∈Î

D(Î, I) > δn

)
= 1 − PH1(A ∩ B)

= 1 − PH1(A)
(
1 − PH1 (B

c|A)
)

≤ PH1(A
c) + PH1(B

c|A). (A.1)

Now we calculate the above two terms respectively. By definition of
I(1),

PH1(A
c) = PH1

(
max

Ĩ∈Jn(L)

X(Ĩ) ≤ tn
)

≤ PH1(X(I) ≤ tn)

= PH1

(
N(0,1) ≤ tn − μ

√
I
) ≤ n−Cε2

n (A.2)

under Condition (8). For the second term, define

Kn(L) = {
Ĩ ∈ I

(1) : D(Ĩ, I) > δn
}
.

Then given A, Bc implies Î1 ∈ Kn(L), which, by the definition of Î1,
implies the existence of some Ĩ ∈ Kn(L) such that X(Ĩ) ≥ X(I). Denote

K0 = {Ĩ ∈ Kn(L) : Ĩ ∩ I = ∅}, K1 = {Ĩ ∈ Kn(L) : Ĩ ∩ I �= ∅}.
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So we have

PH1 (B
c|A) ≤ PH1 (∃Ĩ ∈ Kn(L) : X(Ĩ) ≥ X(I))

≤
∑

Ĩ∈K0

PH1 (X(Ĩ) − X(I) ≥ 0)

+
∑

Ĩ∈K1

PH1(X(Ĩ) − X(I) ≥ 0). (A.3)

Since both X(Ĩ) and X(I) are normal random variables, we can write

X(Ĩ) − X(I) = LR1 + LR2 + LR3,

where

LR1 =
(

1√
|Ĩ|

− 1√|I|
) ∑

i∈Ĩ∩I

Xi ∼ N(ν1, τ1),

LR2 = 1√
|Ĩ|

∑
i∈Ĩ\Ĩ∩I

Xi ∼ N(ν2, τ2),

LR3 = − 1√|I|
∑

i∈I\Ĩ∩I

Xi ∼ N(−ν3, τ3),

ν1 =
(

1√
|Ĩ|

− 1√|I|
)

|Ĩ ∩ I|μ, ν2 = 0, ν3 = |I \ Ĩ ∩ I|√|I| μ,

τ1 =
(

1√
|Ĩ|

− 1√|I|
)2

|Ĩ ∩ I|, τ2 = |Ĩ \ Ĩ ∩ I|
|Ĩ| ,

τ3 = |I \ Ĩ ∩ I|
|I| .

Note that LR1, LR2 and LR3 are independent, then

LR1 + LR2 + LR3 ∼ N(ν, τ ),

where

ν = ν1 + ν2 − ν3 ≤
( |Ĩ ∩ I|√

|Ĩ|
−√|I|

)
μ, τ = τ1 + τ2 + τ3 ∈ [0,3].

Since M(Ĩ, I) < 1 − δn implies( |Ĩ ∩ I|√
|Ĩ|

− √|I|
)

μ < −δn
√|I|μ,

then for any Ĩ ∈ Kn(L),

ν ≤ −μ
√|I|1{Ĩ∩I=∅} − δnμ

√|I|1{Ĩ∩I �=∅}.

On the other hand, the cardinality of K0 is bounded
by

∑
Ĩ∈Jn(L):Ĩ∩I=∅ 1{X(Ĩ) > tn}, which converges to∑

Ĩ∈Jn(L):Ĩ∩I=∅ P(X(Ĩ) > tn) exponentially fast. Therefore, under

Condition (8), we have∑
Ĩ∈K0

PH1 (X(Ĩ) ≥ X(I)) ≤ C ·L ·P(
N(0, τ ) ≥ μ

√|I|) ≤ Cn−C (A.4)

and ∑
Ĩ∈K1

PH1 (X(Ĩ) ≥ X(I)) ≤ |I| · L · P
(
N(0, τ ) ≥ δnμ

√|I|)

≤ C|I|Ln−Cδ2
n , (A.5)

where |I|Ln−δ2
n → 0 by the range of δn. Combine (A.3), (A.4), and

(A.5), we have

PH1(B
c|A) ≤ Cn−Cεn + C|I|Ln−Cδ2

n . (A.6)

Finally, (10) follows by summing up (A.1), (A.2), (A.6), and the range
of εn.

Proof of Theorem 2

For the result in set �−, we apply a similar regrouping idea as in
Arias-Castro, Donoho, and Huo (2005). Assume (A) only segments in
�− exist, and they are in {kjs̄ + 1, . . . , (kj + 1)s̄} for some k1, . . . , kq1 .
We show that no procedure is consistent under this situation. This is
enough to show that no procedure is consistent in �− without assum-
ing (A). Let

Wk = (
Xks̄+1 +· · ·+X(k+1)s̄

)
/
√

s̄ = θk +Z′
k, k = 0, . . . ,n/s̄−1,

where Z′
k

iid∼ N(0,1). Note that θk = 0 at all but q2 randomly chosen
locations. Since log q2 = o(log n) is implied by Condition (11), then
result follows by Lemma 1.

For the result in set �+, it is enough to show

P�+=∅(|Î| > 0) ≤ C√
log n

→ 0, (A.7)

and

P�+�=∅
(

max
Ij∈�+ min

Îj∈Î

D(Îj, Ij) > δn

)
≤ Cq1n−Cε2

n + Cq1s̄Ln−Cδ2
n

→ 0 (A.8)

for εn and δn such that

εn 
 max

{√
log q√
log n

,
log L

log n

}
,

√
log q1 + log s̄ + log L√

log n
� δn � 1.

We extend the proof of Theorem 1 to the case q1 > 1. Obviously,
(A.7) can be derived by the same argument for (9). Now we consider
(A.8). Note that all the elements in Jn(L) cannot reach more than one
signal segments. Therefore, the construction of Î implies that the ac-
curacy of estimating any Ij ∈ �+ is not influenced by the estimation
of other elements in �+. (Other elements can only influence the or-
der of Ij being estimated.) This means that the accuracy of estimating
any Ij ∈ �+ is equivalent to the case when only one segment Ij exists.
Define the following events:

Aj = {
I
(1) �= ∅ and only Ij exists

}
,

Bj = {D(Î1, Ij) ≤ δn}, j = 1, . . . ,q1.

Then we have

P�+�=∅
(

max
Ij∈�+ min

Îj∈Î

D(Îj, Ij) > δn

)

≤ P(∃Ij ∈ �+ : Ij ∈ Ac
j ∪ (Aj ∩ Bc

j ))

≤
q1∑

j=1

P(Ac
j ) +

q1∑
j=1

P(Bc
j |Aj). (A.9)

By similar arguments leading to (A.2) and (A.6) in proof of Theorem 1,
we have

P(Ac
j ) ≤ n−Cε2

n ,

P(Bc
j |Aj) ≤ Cn−Cεn + C|Ij|Ln−Cδ2

n , j ∈ {1, . . . ,q1}. (A.10)

Then (A.8) follows after combining (A.9) and (A.10).
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Proof of Theorem 3

For the result of LRS in set �+, it is enough to show

P�+=∅(|Î| > 0) ≤ C√
log n

→ 0, (A.11)

and

P�+�=∅
(

max
1≤j≤q2

D
(
Îj, I(j)

)
> δn

)
≤ Cq1n−Cε2

n + Cq2
1s̄Ln−Cδ2

n

→ 0 (A.12)

for εn and δn such that

εn 
 max

{√
log q√
log n

,
log L

log n

}
,

√
log q1 + log s̄ + log L√

log n
� δn � 1.

Note that the order of segments being estimated is fixed in (A.12).
Obviously, (A.11) can be derived by the same argument for (9).

Now consider (A.12). Define the following events:

Aj = {
I
(j) �= ∅}

,

Bj = {
D

(
Îj, I(j)

) ≤ δn
[
2 log n/

(
μ2

(j)I(j)
)]}

, j = 1, . . . ,q1.

Then we have

P�+�=∅
(

max
1≤j≤q1

D
(
Îj, I(j)

)
> δn

)

≤ 1 − P�+�=∅
(
A1 ∩ B1 ∩ · · · ∩ Aq1 ∩ Bq1

)
≤ P�+�=∅(Ac

1) + P�+�=∅(Bc
1|A1) + · · ·

+ P�+�=∅
(
Bc

q1

∣∣A1,B1, . . . ,Aq1

)
. (A.13)

Since the signal segments are not too close to each other, by the
choice of L in (2), none of the candidates in I(1) reaches more than
one signal segments. This means that given A1,B1, . . . ,Aj−1,Bj−1,
I(j) has not been deleted in the first j − 1 loops. So by similar argument
leading to (A.2), we have

P�+�=∅(Ac
j |A1,B1, . . . ,Aj−1,Bj−1)

≤ P�+�=∅
(
X
(
I(j)

) ≤ tn
)

≤ n−Cε2
n , j = 1, . . . ,q1. (A.14)

Some modifications are needed to derive a similar result as (A.6).
Given Aj, we have X(Îj) ≥ X(I(j)) since I(j) is not deleted in the first
j − 1 loops. Define

K
(j)
n (L) = {

Ĩ ∈ I
(1) :

D
(
Ĩ, I(j)

)
> δn

[
2 log n/

(
μ2

(j)I(j)
)]}

, j = 1, . . . ,q1.

Then given Aj, Bc
j implies Îj ∈ K

(j)
n (L), which further implies the exis-

tence of some Ĩ ∈ K
(j)
n (L) such that X(Ĩ) ≥ X(I(j)). Denote

K
(j)
0 = {

Ĩ ∈ K
(j)
n (L) : Ĩ ∩ I(k) = ∅, k = 1, . . . ,q1

}
,

K
(j)
1 = {

Ĩ ∈ K
(j)
n (L) : Ĩ ∩ I(k) �= ∅, k ∈ {1, . . .q1}}.

So we have

P�+�=∅(Bc
j |A1, . . . ,Bj−1,Aj)

≤
∑

Ĩ∈K
(j)
0

P
(
X(Ĩ) − X

(
I(j)

) ≥ 0
)

+
∑

Ĩ∈K
(j)
1

P
(
X(Ĩ) − X

(
I(j)

) ≥ 0
)
. (A.15)

Rewrite X(Ĩ)− X(I) = LR1 + LR2 + LR3 the same way as in the proof
of Theorem 1. Consider the set Ĩ \ Ĩ ∩ I(j). Unlike in the q = 1 case,
where this set includes only noise, here it can overlap with other signal
segments, which are I(j+1), . . . , I(q1) and I(1) \ (Î1 ∩ I(1)), . . . , I(j−1) \
(Îj−1 ∩ I(j−1)). Note that for any k ∈ {1, . . . , j − 1},

Bk ⇒
√

|Îk ∩ I(k)|√|I(k)|
≥ 1 − δn

2 log n

μ2
(k)|I(k)|

⇒ ∣∣Îk ∩ I(k)
∣∣ ≥

(
1 − δn

2 log n

μ2
(k)|I(k)|

)2∣∣I(k)∣∣

⇒
√∣∣I(k) \ (

Îk ∩ I(k)
)∣∣ ≤ 2

√
δn

log n

μ2
(k)

⇒ μ(k)

√∣∣I(k) \ (
Îk ∩ I(k)

)∣∣ ≤ 2
√

δn log n.

Then, given A1, . . . ,Bj−1,Aj, LR2 has mean value

ν2 ≤ max
{
μ(j+1)

√∣∣I(j+1)

∣∣,2
√

δn log n
} = μ(j+1)

√∣∣I(j+1)

∣∣
when Ĩ ∩ I(k) �= ∅ for k �= j, and ν2 = 0 otherwise. Correspondingly,
given A1, . . . ,Bj−1,Aj, Bc

j implies that LR1 + LR2 + LR3 has mean
value

ν ≤
( |Ĩ ∩ I(j)|√

Ĩ
−

√
|I(j)|

)
μ(j) + μ(j+1)

√∣∣I(j+1)

∣∣1{Ĩ∩I(k) �=∅,k �=j}

≤ −μ(j)

√∣∣I(j)∣∣1{Ĩ∩(I(1)∪···∪I(q1))=∅} − δnμ(j)

√∣∣I(j)∣∣1{Ĩ∩I(j) �=∅}

− (
μ(j)

√∣∣I(j)∣∣ − μ(j+1)

√∣∣I(j+1)

∣∣)1{Ĩ∩I(k) �=∅,k �=j}.

By the fact that μ(j)
√|I(j)| ≥ √

2(1 + εn) log n in �+ and Condi-
tion (12), we further get

ν ≤ −√
2(1 + εn) log n1{Ĩ∩(I(1)∪···∪I(q1))=∅}

− δn
√

2 log n1{Ĩ∩I(k) �=∅,k∈{1,...,q1}}.

So, in set �+, we have∑
Ĩ∈K

(j)
0

P
(
X(Ĩ) − X

(
I(j)

) ≥ 0
) ≤ CLP

(
N(0, τ ) ≥ √

2(1 + εn) log n
)

≤ Cn−C (A.16)

and ∑
Ĩ∈K

(j)
1

P
(
X(Ĩ) − X

(
I(j)

) ≥ 0
) ≤ q1s̄LP

(
N(0, τ ) ≥ δn

√
2 log n

)

≤ Cq1s̄Ln−Cδ2
n . (A.17)

Combine (A.15), (A.16), and (A.17), we have

P�+�=∅(Bc
j |A1, . . . ,Bj−1,Aj) ≤ Cn−Cεn + Cq1s̄Ln−Cδ2

n . (A.18)

Finally, (A.12) follows by summing up (A.13), (A.14), and (A.18).

[Received February 2010. Revised April 2010.]
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