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Summary. This paper aims to develop an optimality theory for linear discriminant analysis in the
high-dimensional setting. A data-driven and tuning-free classification rule, which is based on an
adaptive constrained `1 minimization approach, is proposed and analyzed. Minimax lower bounds
are obtained and this classification rule is shown to be simultaneously rate optimal over a collection
of parameter spaces. In addition, we consider classification with incomplete data under the missing
completely at random (MCR) model. An adaptive classifier with theoretical guarantees is introduced
and optimal rate of convergence for high-dimensional linear discriminant analysis under the MCR
model is established. The technical analysis for the case of missing data is much more challenging
than that for the complete data. We establish a large deviation result for the generalized sample
covariance matrix, which serves as a key technical tool and can be of independent interest. An
application to lung cancer and leukemia studies is also discussed.
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1. Introduction

Classification is one of the most important tasks in statistics and machine learning with appli-
cations in a broad range of fields. See, for example, Hastie et al. [2009]. The problem has been
well studied in the low-dimensional setting. In particular, consider the Gaussian case where one
wishes to classify a new random vector Z drawn with equal probability from one of two Gaus-
sian distributions Np(µ1,Σ) (class 1) and Np(µ2,Σ) (class 2). In the ideal setting where all the
parameters θ = (µ1,µ2,Σ) are known, Fisher’s linear discriminant rule, which is given by

Cθ(Z) =

{
1, (Z − µ1+µ2

2 )>Ωδ < 0

2, (Z − µ1+µ2

2 )>Ωδ ≥ 0,
(1)

where δ = µ2−µ1, and Ω = Σ−1 is the precision matrix, is well known to be optimal [Anderson,
2003]. Fisher’s rule separates the two classes by a linear combination of features and its misclas-
sification error is given by Ropt(θ) = Φ

(
− 1

2∆
)
, where Φ is the cumulative distribution function

of the standard normal distribution and ∆ =
√
δ>Ωδ is the signal-to-noise ratio.

Although Fisher’s rule can serve as a useful performance benchmark, it is not practical for
real data analysis as the parameters µ1,µ2 and Σ are typically unknown and need to be esti-
mated from the data. In applications, it is desirable to construct a data-driven classification rule
based on two observed random samples, X(1)

1 , ...,X
(1)
n1

i.i.d.∼ Np(µ1,Σ) and X(2)
1 , ...,X

(2)
n2

i.i.d.∼
Np(µ2,Σ). In the conventional low-dimensional setting, this is easily achieved by plugging in
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Fisher’s linear discriminant rule (1) the corresponding sample means and pooled sample covari-
ance matrix for the parameters µ1,µ2 and Σ respectively. This classification rule is asymptoti-
cally optimal when the dimension p is fixed. See, for example, Anderson [2003].

Driven by many contemporary applications, much recent attention has been on the high-
dimensional setting where the dimension is much larger than the sample size. In this case, the
sample covariance matrix is not even invertible and it is difficult to estimate the precision matrix
Ω. The standard linear discriminant rule thus fails completely. Several regularized classification
methods, including the regularized LDA [Wu et al., 2009], covariance-regularized classification
[Witten and Tibshirani, 2009], and hard thresholding [Shao et al., 2011], have been proposed
for classification of high-dimensional data. However, all these methods rely on the individual
sparsity assumptions on Ω (or Σ) and δ. A fundamental quantity in LDA is the discriminant
direction β = Ωδ and a more flexible assumption is the sparsity of β. In particular, Cai and Liu
[2011], Mai et al. [2012] introduced a direct estimation method for the high-dimensional LDA
based on the key observation that the ideal Fisher’s discriminant rule given in (1) depends on the
parameters µ1,µ2 and Σ primarily through β = Ωδ. They proposed to estimate the discriminant
direction β directly instead of estimating Σ and δ separately, under the assumption that β is
sparse. The proposed classification rule was shown to be consistent.

Despite much recent progress in methodological development on high-dimensional classifica-
tion problems, there has been relatively little fundamental study on the optimality theory for
the discriminant analysis. Minimax study of high-dimensional discriminant analysis has been
considered in Azizyan et al. [2013] and Li et al. [2017] in the special case where the covariance
matrix Σ = σ2I for some σ > 0. However, even in this relatively simple setting there is still a gap
between the minimax upper and lower bounds. It is unclear what the optimal rate of convergence
for the minimax misclassification risk is and which classification rule is rate optimal under the
general Gaussian distribution. The first major goal of the present paper is to provide answers
to these questions. Furthermore, although the problem of missing data arises frequently in the
analysis of high-dimensional data, compared to the conventional low-dimensional setting, there
is a paucity of methods for inference with incomplete high-dimensional data. The second goal
of this paper is to develop an optimality theory for high-dimensional discriminant analysis with
incomplete data and to construct in this setting a data-driven adaptive classifier with theoretical
guarantees.

Given two random samples, X(1)
1 , ...,X

(1)
n1

i.i.d.∼ Np(µ1,Σ) and X(2)
1 , ...,X

(2)
n2

i.i.d.∼ Np(µ2,Σ),
we wish to construct a classifier Ĉ to classify a future data point Z drawn from these two
distributions with equal prior probabilities, into one of the two classes. Given the observed data,
the performance of the classification rule is measured by the misclassification error

Rθ(Ĉ) = Pθ(label(Z) 6= Ĉ(Z)), (2)

where θ = (µ1,µ2,Σ), Pθ denotes the probability with respect to Z ∼ 1
2Np(µ1,Σ)+ 1

2Np(µ2,Σ)
and Z is independent of the observed X’s. label(Z) denotes the true class of Z. For a given
classifier Ĉ, we use the excess misclassification risk relative to the oracle rule (1), Rθ(Ĉ)−Ropt(θ),
to measure the performance of the classifier Ĉ. Let n = min{n1, n2}. We consider in this paper
a collection of the parameter spaces G(s,Mn,p) defined by

G(s,Mn,p) = {θ = (µ1,µ2,Σ) : µ1,µ2 ∈ Rp,Σ ∈ Rp×p,Σ � 0,

‖β‖0 ≤ s,M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤M,Mn,p ≤ ∆ ≤ 3Mn,p}, (3)

where M > 1 is a constant, Mn,p > 0 can potentially grow with n and p, and λmax(Σ) and
λmin(Σ) are respectively the largest and smallest eigenvalue of Σ. The notation Σ � 0 means
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that Σ is symmetric and positive definite. Recall that ∆ =
√
δ>Ωδ and β = Ωδ. The sparsity

constraint ‖β‖0 ≤ s, according to the oracle rule (1), implies the belief that only a limited number
of covariates have discriminating power and contribute to the classification task. In addition,
our lower bound results in Theorem 7 show that this sparsity assumption is necessary in general
without further constraints of parameter space. Furthermore, we also assume the eigenvalues of
the covariance matrix Σ are bounded from below and above. This assumption is commonly used
in high-dimensional statistics, ranging from high-dimensional linear regression [Javanmard and
Montanari, 2014], covariance matrix estimation [Cai and Yuan, 2012], classification [Cai and Liu,
2011] and clustering [Cai et al., 2018].

Combining the upper and lower bounds results given in Section 3 leads to the following
minimax rates of convergence for the excess misclassification risk.

Theorem 1. Consider the parameter space G(s,Mn,p), s and p approach infinity as n grows
to infinity, and Mn,p = o(

√
n

s log p ) with n→∞,

(a) If Mn,p is a fixed constant not depending on n and p, then for any constant α ∈ (0, 1), we
have

inf

{
r : inf

Ĉ
sup

θ∈G(s,Mn,p)

P
(
Rθ(Ĉ)−Ropt(θ) ≥ r

)
≤ 1− α

}
� s log p

n
.

(b) If Mn,p →∞ as n→∞, then for sufficiently large n and any constant α ∈ (0, 1),

inf

{
r : inf

Ĉ
sup

θ∈G(s,Mn,p)

P
(
Rθ(Ĉ)−Ropt(θ) ≥ r

)
≤ 1− α

}
� s log p

n
· e−( 1

8 +o(1))M2
n,p .

It is worth noting that Mn,p represents the magnitude of ∆, which is interpreted as the
signal-to-noise ratio. As shown in the second case, when the signal-to-noise ratio grows, the
classification problem becomes easier and our result precisely characterizes that the convergence
rate is exponentially faster with an additional factor exp

(
− (1/8 + o(1))M2

n,p

)
.

Furthermore, we propose a three-step data-driven classification rule, called AdaLDA, by using
an adaptive constrained `1 minimization approach which takes into account the variability of
individual entries. This classification rule is shown to be simultaneously rate optimal over the
collection of parameter spaces G(s,Mn,p). To the best of our knowledge, this is the first optimality
result for classification of high-dimensional Gaussian data. Furthermore, in contrast to many
classification rules proposed in the literature, which require to choose tuning parameters, this
procedure is data-driven and tuning-free.

In addition, we also consider classification in the presence of missing data. As in the conven-
tional low-dimensional setting, the problem of missing data also arises frequently in the analysis
of high-dimensional data from in a range of fields such as genomics, epidemiology, engineering,
and social sciences [Libbrecht and Noble, 2015, White et al., 2011, Graham, 2009]. Compared to
the low-dimensional setting, there are relatively few inferential methods for missing data in the
high-dimensional setting. Examples include high-dimensional linear regression [Loh and Wain-
wright, 2012], sparse principal component analysis [Lounici, 2013], covariance matrix estimation
[Cai and Zhang, 2016], and vector autoregressive (VAR) processes [Rao et al., 2017]. In this
paper, following the missing mechanism considered in the aforementioned papers, we investigate
high-dimensional discriminant analysis in the presence of missing observations under the missing
completely at random (MCR) model.

We construct a data-driven adaptive classifier with theoretical guarantees based on incom-
plete data and also develop an optimality theory for high-dimensional linear discriminant analysis
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under the MCR model. The technical analysis for the case of missing data is much more chal-
lenging than that for the complete data, although the classification procedure and the resulting
convergence rates look similar. To facilitate the theoretical analysis, we establish a key technical
tool, which is a large deviation result for the generalized sample covariance matrix. This is re-
lated to the masked covariance matrix estimator considered in Levina and Vershynin [2012] and
Chen et al. [2012], see further discussions in Section 2.3. This technical tool can be of indepen-
dent interest as it is potentially useful for other related problems in high-dimensional statistical
inference with missing data.

The proposed adaptive classification algorithms can be cast as linear programs and are thus
easy to implement. Simulation studies are carried out to investigate the numerical performance
of the classification rules. The results show that the proposed classifiers enjoy superior finite
sample performance in comparison to existing methods for high-dimensional linear discriminant
analysis. The proposed classifiers are also illustrated through an application to the analysis of
lung cancer and leukemia datasets. The results show that they outperform existing methods.

The rest of the paper is organized as follows. In Section 2, after basic notation and definitions
are reviewed, we introduce an adaptive algorithm for high-dimensional discriminant analysis with
the complete data and then propose a more general procedure for the setting of incomplete data.
Section 3 studies the theoretical properties of these classification rules and related estimators. In
addition, minimax lower bounds are given. The upper and lower bounds together establish the
optimal rates of convergence for the minimax misclassification risk. Numerical performance of
the classification rules are investigated in Section 4 and an extension to the multiple-class LDA
is discussed in Section 5. The proofs of the main results are given in Section 6. Technical lemmas
are proved in the Supplementary Material [Cai and Zhang, 2018].

2. Methodology

In this section, we firstly introduce an adaptive algorithm for high-dimensional linear discrim-
inant analysis with the complete data. This algorithm is called AdaLDA (Adaptive Linear
Discriminant Analysis rule). We then propose a data-driven classifier, called ADAM (Adaptive
linear Discriminant Analysis with randomly Missing data), for the incomplete data under the
MCR model.

2.1. Notation and definitions
We begin with basic notation and definitions. Throughout the paper, vectors are denoted by
boldface letters. For a vector x ∈ Rp, the usual vector `0, `1, `2 and `∞ norms are denoted
respectively by ‖x‖0, ‖x‖1, ‖x‖2 and ‖x‖∞. Here the `0 norm counts the number of nonzero
entries in a vector. The support of a vector x is denoted by supp(x). The symbol ◦ denotes
the Hadamard product. For p ∈ N, [p] denotes the set {1, 2, ..., p}. For j ∈ [p], denote by ej
the j-th canonical basis in Rp. For a matrix Σ = (σij)1≤i,j≤p ∈ Rp×p, the Frobenius norm is
defined as ‖Σ‖F =

√∑
i,j σ

2
ij and the spectral norm is defined to be ‖Σ‖2 = sup‖x‖2=1 ‖Σx‖2.

The vector `∞ norm of the matrix Σ is |Σ|∞ = maxi,j |σij |. For a symmetric matrix Σ, we use
λmax(Σ) and λmin(Σ) to denote respectively the largest and smallest eigenvalue of Σ. Σ � 0
means that Σ is positive definite. For a positive integer s < p, let Γ(s) = {u ∈ Rp : ‖uSC‖1 ≤
‖uS‖1, for some S ⊂ [p] with |S| = s}, where uS denotes the subvector of u confined to S. For
two sequences of positive numbers an and bn, an . bn means that for some constant c > 0,
an ≤ cbn for all n, and an � bn if an . bn and bn . an. We say an event An holds with high
probability if lim inf

n→∞
P(An) = 1. Finally, c0, c1, c2, C, C1, C2, . . . denote generic positive constants
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that may vary from place to place.
The complete data X(1)

1 , ...,X
(1)
n1 and X(2)

1 , ...,X
(2)
n2 are independent realizations of X(1) ∼

Np(µ1,Σ) and X(2) ∼ Np(µ2,Σ). We assume n1 � n2 and define n = min{n1, n2}. In our
asymptotic framework, we let n be the driving asymptotic parameter, s and p approach infinity
as n grows to infinity. The missing completely at random (MCR) model assumes that one
observes samples {X(1)

1 , ...,X
(1)
n1 } and {X

(2)
1 , ...,X

(2)
n2 } with missing values, where the observed

coordinates of X(k)
t are indicated by an independent vector S(k)

t ∈ {0, 1}p for t = 1, ..., nk,
k = 1, 2, that is,

X
(k)
tj is observed if S(k)

tj = 1 and X(k)
tj is missing if S(k)

tj = 0; t ∈ [nk], j ∈ [p], k = 1, 2. (4)

Here X(k)
tj and S(k)

tj are respectively the j-th coordinate of the vectors X(k)
t and S(k)

t . Gen-
erally, we use the superscript “∗” to denote objects related to missing values. The incom-
plete samples with missing values are denoted by X(1)∗ = {X(1)∗

1 , ...,X
(1)∗
n1 } and X(2)∗ =

{X(2)∗
1 , ...,X

(2)∗
n2 }.

Regarding the mechanism for missingness, the MCR model is formally stated as below. This
assumption is more general than the one considered previously by Loh and Wainwright [2012]
and Lounici [2013].

Assumption 1. (Missing Completely at Random (MCR)) S =
{
S

(k)
t ∈ {0, 1}p: t = 1, ..., nk,

k = 1, 2
}
is independent of the values of X(1)

t and X(2)
t for t = 1, ..., nk, k = 1, 2. Here S(k)

t can
be either deterministic or random, but independent of X(1)

t and X(2)
t .

Amajor goal of the present paper is to construct a classification rule Ĉ in the high dimensional
setting where p� n for both complete and incomplete data.

2.2. Data-driven adaptive classifier for complete data
We first consider the case of complete data. In this setting, as mentioned in the introduction,
a number of high-dimensional linear discriminant rules have been proposed in the literature.
In particular, Cai and Liu [2011] introduced a classification rule called LPD (Linear Program-
ming Discriminant) rule by directly estimating the discriminant direction β through solving the
following optimization problem:

β̂LPD = arg min
β

{
‖β‖1 : subject to ‖Σ̂β − (µ̂2 − µ̂1)‖∞ ≤ λn

}
, (5)

where µ̂1, µ̂2, Σ̂ are sample means and pooled sample covariance matrix respectively, and λn =
C
√

log p/n is the tuning parameter with some constant C. Based on β̂LPD, the LPD rule is then
given by

ĈLPD(Z) =

{
1, (Z − µ̂1+µ̂2

2 )>β̂LPD < 0

2, (Z − µ̂1+µ̂2

2 )>β̂LPD ≥ 0
. (6)

The LPD rule is easy to implement and Cai and Liu [2011] proves the consistency of LPD
when the tuning parameter λn is appropriately chosen. However, it has three drawbacks. One
major drawback of the LPD rule is that it uses a common constraint λn for all coordinates of
a = Σ̂β − (µ̂2 − µ̂1). This essentially treats the random vector a as homoscedastic, while in
fact a is intrinsically heteroscedastic and the coordinates could have a wide range of variability.
The resulting estimator β̂LPD obtained in (5) of the discriminant direction β has yet to be
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shown as rate optimal; secondly, the procedure is not adaptive in the sense that the tuning
parameter λn is not fully specified and needs to be chosen through an empirical method such as
cross-validation. The third drawback is that the LPD rule ĈLPD does not come with theoretical
optimality guarantees.

To resolve these drawbacks, we introduce an adaptive algorithm for high-dimensional LDA
with complete data, called AdaLDA (Adaptive Linear Discriminant Analysis rule), which takes
into account the heteroscedasticity of the random vector a = Σ̂β − (µ̂2 − µ̂1). AdaLDA is
fully data-driven and tuning-free and will be shown to be minimax rate optimal later. Before
we describe the classifier in detail, it is helpful to state the following key technical result which
provides the motivation for the new procedure.

Lemma 1. Suppose {X(1)
t }

n1
t=1 and {X(2)

t }
n2
t=1 are i.i.d. random samples from Np(µ1,Σ) and

Np(µ2,Σ) respectively with Σ = (σij)1≤i,j≤p. Let δ = µ2 − µ1, β = Ωδ, ∆ =
√
β>δ and

a = Σ̂β − (µ̂2 − µ̂1), where µ̂1, µ̂2, Σ̂ are sample means and pooled sample covariance matrix
respectively. Then

Var(aj) =
n− 1

2n2
(σjj∆

2 + δ2
j ) +

2

n
σjj , j = 1, ..., p.

Furthermore, with probability at least 1− 4p−1,

|aj | ≤ 4

√
log p

n
· √σjj ·

(√
25∆2

2
+ 1

)
, j = 1, ..., p. (7)

A major step in the construction of the AdaLDA classifier is using Lemma 1 to construct an
element-wise constraint for Σ̂β − (µ̂2 − µ̂2), which relies on an accurate estimation of the right
hand side of (7). In (7), σjj can be easily estimated by the sample variances σ̂jj , but ∆2 is harder
to estimate. In the following, we begin by constructing a preliminary estimator β̃, estimating ∆2

by |β̃>(µ̂2 − µ̂1)|, and then applying Lemma 1 to refine the estimation of β. The data-driven
adaptive classifier AdaLDA is constructed in three steps.

Step 1 (Estimating ∆2). Fix λ0 = 25/2, we estimate β by a preliminary estimator

β̃ = arg min
β

‖β‖1

subject to |e>j
(

Σ̂β − (µ̂2 − µ̂1)
)
| ≤ 4

√
log p

n
·
√
σ̂jj · (λ0β

>(µ̂2 − µ̂1) + 1), j ∈ [p].

(8)

Then we estimate ∆2 by ∆̂2 = |β̃>(µ̂2 − µ̂1)|.

Step 2 (Adaptive estimation of β). Given ∆̂2, the final estimator β̂AdaLDA of β is con-
structed through the following linear optimization

β̂AdaLDA = arg min
β

‖β‖1

subject to |e>j
(

Σ̂β − (µ̂2 − µ̂1)
)
| ≤ 4

√
log p

n
·
√
σ̂jj(λ0∆̂2 + 1), j ∈ [p]. (9)

Step 3 (Construction of AdaLDA). The AdaLDA classification rule is obtained by plugging
β̂AdaLDA into Fisher’s rule (1),

ĈAdaLDA(Z) =

{
1,

(
Z − µ̂1+µ̂2

2

)>
β̂AdaLDA < 0,

2,
(
Z − µ̂1+µ̂2

2

)>
β̂AdaLDA ≥ 0.

(10)
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Note that there is a square root on ∆2 (or ∆̂2) in both (7) and (9), but this square root is
removed in (8). Intuitively, by removing the square root in (8), Step 1 becomes a linear program,
which provides a computationally efficient but sub-optimal estimator. This estimator is then
refined to be rate-optimal in Step 2 by adding back the square root. This two-step idea is in the
similar spirit as that in Cai et al. [2016] for adaptive estimation of precision matrices. Despite this
similarity in the ideas for the construction procedures, the problem considered and the technical
tools applied in the present paper are very different from those in Cai et al. [2016].

This classification rule does not require a tuning parameter and the estimator β̂AdaLDA is
solved by optimizing a linear program with an element-wise constraint, adapting to individual
variability of Σ̂β−(µ̂2− µ̂1). It will be shown in Section 3 that the AdaLDA classification rule is
adaptively minimax rate optimal. Our theoretical analysis also shows that the resulting estimator
β̂AdaLDA is rate optimally adaptive whenever λ0 is a sufficiently large constant. In particular, it
can be taken as fixed at λ0 = 25/2, which is derived from the concentration inequality given in
Lemma 1.

Remark 2.1. Note that the optimization problems (8) and (9) are both linear programs, so
the proposed AdaLDA rule is computationally easy to implement. In contrast, the LPD uses a
universal tuning parameter λn = C

√
log p/n, whose value is usually chosen by cross-validation.

This tuning procedure is computationally costly. In addition, cross-validation tends to overfit
[Friedman et al., 2001]. Therefore, estimator obtained through cross-validation can be variable
and its theoretical properties are unclear, while the AdaLDA procedure does not depend on any
unknown parameter and the estimator will be shown to be minimax rate optimal.

2.3. ADAM with randomly missing data
We now turn to the case of incomplete data under the MCR model. To generalize AdaLDA
to the incomplete data case, we proceed by firstly estimating µ1, µ2 and Σ. The following
estimators follow the idea in Cai and Zhang [2016], and for completeness, we present their
proposed estimators below. Let

n
(k)∗
ij =

nk∑
t=1

S
(k)
ti S

(k)
tj , 1 ≤ i, j ≤ p, k = 1, 2.

Here n(k)∗
ij is the number of vectors X(k)

t in which the ith and jth entries are both observed. In
addition, we denote n(k)∗

i = n
(k)∗
ii for simplicity and

n∗min = min
i,j,k

n
(k)∗
ij . (11)

In the presence of missing values, the usual sample mean and sample covariance matrix can
no longer be calculated. Instead, the “generalized sample mean” is proposed, defined by

µ̂1 = (µ̂∗1i)1≤i≤p with µ̂∗1i =
1

n
(1)∗
i

n1∑
t=1

X
(1)
ti S

(1)
ti , 1 ≤ i ≤ p;

µ̂2 = (µ̂∗2i)1≤i≤p with µ̂∗2i =
1

n
(2)∗
i

n2∑
t=1

X
(2)
ti S

(2)
ti , 1 ≤ i ≤ p.

The “generalized sample covariance matrix” is then defined by Σ̂ = (σ̂∗ij)1≤i,j≤p with

σ̂∗ij =
1

n
(1)∗
ij + n

(2)∗
ij

(
n1∑
t=1

(X
(1)
ti − µ̂

∗
1i)(X

(1)
tj − µ̂

∗
1j)S

(1)
ti S

(1)
tj +

n2∑
t=1

(X
(2)
ti − µ̂

∗
2i)(X

(2)
tj − µ̂

∗
2j)S

(2)
ti S

(2)
tj

)
.
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For these generalized estimators, we have the following bound under the MCR model.

Lemma 2. Let δ = µ2 − µ1, β = Ωδ, ∆ =
√
δ>Ωδ and a∗ = Σ̂β − (µ̂2 − µ̂1). Then

conditioning on S, we have with high probability,

|a∗j | ≤ 4

√
log p

n∗min

· √σjj ·
(√

64∆2 + 1
)
, j = 1, ..., p. (12)

Remark 2.2. Although the above result has a form that is similar to Lemma 1, its derivation
is quite different and relies on a new technical tool, the large deviation bound for Σ̂. This
is of independent interest and is related to that of the masked sample covariance estimator
considered in Levina and Vershynin [2012] and Chen et al. [2012]. In particular, the masked
sample covariance estimator considered in Chen et al. [2012] applies the mask matrix to the
sample covariance maxtrix, while our proposed estimator Σ̂ can be interpreted as applying the
mask matrix to each i.i.d. sample, and thus is more general. The proof of Lemma 2 uses the idea
of Lemma 2.1 in Cai and Zhang [2016], but yields a sharper bound. The detailed proof is given
in Section A.3.2 in the supplement [Cai and Zhang, 2018].

We propose to estimate β adaptively and construct ADAM (Adaptive linear Discriminant
Analysis with randomly Missing data) in the following way:

Step 1 (Estimating ∆2). Fix λ1 = 64. We estimate β by a preliminary estimator

β̃ = arg min
β

‖β‖1

subject to |e>j
(

Σ̂β − (µ̂2 − µ̂1)
)
| ≤ 4

√
log p

n∗min
·
√
σ̂∗jj · (λ1β

>(µ̂2 − µ̂1) + 1), j ∈ [p].

(13)

Then we estimate ∆2 by ∆̂∗2 = |β̃>(µ̂2 − µ̂1)|.

Step 2 (Adaptive estimation of β). Given ∆̂∗2, the final estimator β̂ADAM of β is con-
structed by the following linear optimization problem

β̂ADAM = arg min
β

‖β‖1

subject to |e>j
(

Σ̂β − (µ̂2 − µ̂1)
)
| ≤ 4

√
log p

n∗min
·
√
σ̂∗jj(λ1∆̂∗2 + 1), j ∈ [p]. (14)

Step 3 (Construction of ADAM). Given the estimator β̂ADAM of the discriminant direction
β, we then construct the following ADAM classification rule by plugging β̂ADAM into the
oracle rule (1):

ĈADAM(Z) =

{
1,

(
Z − µ̂1+µ̂2

2

)>
β̂ADAM < 0,

2,
(
Z − µ̂1+µ̂2

2

)>
β̂ADAM ≥ 0.

(15)

As shown in Section 3, ĈADAM has the similar theoretical performance as ĈAdaLDA.

Remark 2.3. The ADAM algorithm is designed for the MCR model. Extensions to other
missing mechanism such as missing not at random (MNAR) is possible but challenging. In such



High-dimensional Linear Discriminant Analysis 9

a setting even parametric models are often not identifiable [Miao et al., 2016, Robins and Ritov,
1997]. Several authors have studied the problem of identification under MNAR with different
conditions [Rotnitzky and Robins, 1997, Sun et al., 2016, Tchetgen Tchetgen and Wirth, 2017].
The consistency of our algorithm only relies on consistent estimation of the mean vectors and
the covariance matrix. Therefore, if the means and the covariance matrix can be estimated
consistently under some MNAR model, for example, by using EM algorithm and imputing the
missing values [Schneider, 2001], we can then construct a consistent classification rule based on
these estimators. However, such imputation techniques are computationally intensive [Lounici,
2014].

3. Theoretical properties of AdaLDA and ADAM

In this section, we develop an optimality theory for high-dimensional linear discriminant analysis
for both the complete data and the incomplete data settings. We first investigate the theoretical
properties of the AdaLDA and ADAM algorithms proposed in Section 2 and obtain the upper
bounds for the excess misclassification risk. We then establish the lower bounds for the rate of
convergence. The upper and lower bounds together yield the minimax rates of convergence and
show that AdaLDA and ADAM are adaptively rate optimal.

3.1. Theoretical Analysis of AdaLDA
We begin by considering the properties of the estimator β̂AdaLDA of the discriminant direction
β. The following theorem shows that β̂AdaLDA attains the convergence rate of Mn,p

√
s log p/n

over the class of sparse discriminating directions G(s,Mn,p) defined in (3). The matching lower
bound given in Section 3.3 implies that this rate is optimal. Therefore, AdaLDA adapts to both
the sparsity pattern of β as well as the signal-to-noise ratio ∆.

Theorem 2. Consider the parameter space G(s,Mn,p) with Mn,p > cL for some cL > 0.
Suppose X(1)

1 , ...,X
(1)
n1

i.i.d.∼ Np(µ1,Σ), X(2)
1 , ...,X

(2)
n2

i.i.d.∼ Np(µ2,Σ) and n1 � n2. Assume that

Mn,p

√
s log p
n = o(1). Then

sup
θ∈G(s,Mn,p)

E[‖β̂AdaLDA − β‖2] .Mn,p

√
s log p

n
.

We then proceed to characterize the accuracy of the classification rule ĈAdaLDA, measured
by the excess misclassification risk Rθ(Ĉ)−Ropt(θ). Note that the conditional misclassification
rate of ĈAdaLDA given the two samples can be analytically calculated as

Rθ(ĈAdaLDA) =
1

2
Φ

− (µ̂− µ1)>β̂AdaLDA√
β̂>AdaLDAΣβ̂AdaLDA

+
1

2
Φ̄

− (µ̂− µ2)>β̂AdaLDA√
β̂>AdaLDAΣβ̂AdaLDA

 ,

where µ̂ = (µ̂1 + µ̂2)/2 and Φ̄(·) = 1− Φ(·).
We are interested in the excess misclassification risk Rθ(ĈAdaLDA) − Ropt(θ). That is, we

compare ĈAdaLDA with the oracle Fisher’s rule, whose risk is given by

Ropt(θ)
def
= Rθ(Cθ) = Φ

(
−1

2
∆

)
.

The following theorem provides an upper bound for the excess misclassification risk of the
AdaLDA rule.
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Theorem 3. Consider the parameter space G(s,Mn,p) with Mn,p > cL for some cL > 0 and
assume the conditions in Theorem 2 hold.

(a) If Mn,p ≤ Cb for some Cb > 0, then there exists some constant C > 0,

inf
θ∈G(s,Mn,p)

P
(
Rθ(ĈAdaLDA)−Ropt(θ) ≤ C · s log p

n

)
≥ 1− 8p−1.

(b) If Mn,p →∞ as n→∞, then there exist some constant C > 0 and δn = o(1), such that

inf
θ∈G(s,Mn,p)

P
(
Rθ(ĈAdaLDA)−Ropt(θ) ≤ C · e−( 1

8 +δn)M2
n,p · s log p

n

)
≥ 1− 8p−1.

Remark 3.1. The results in Theorem 3 improve the convergence rate of the misclassification
risk of the LPD rule given in Cai and Liu [2011]. Consider the first case where Mn,p is a
constant not depending on n and p, Theorem 3 of Cai and Liu [2011] shows that the convergence
rate is Rθ(ĈLPD) − Ropt(θ) = OP ((s log p/n)1/2), while Theorem 3 here shows a faster rate
OP ((s log p/n)) when Mn,p is a constant. Indeed, this improvement is due to a careful analysis
of the misclassification error. In the proof of Theorem 3, it can be seen that the first order
approximation error is vanishing, and only the second order approximation error, which has
a faster convergence rate, remains. The lower bounds given in Section 3.3 show that both
convergence rates in Theorem 3 are indeed optimal.

Similarly, upper bounds on the relative misclassification risk can be obtained.

Proposition 3.2. Consider the parameter space G(s,Mn,p) with Mn,p > cL for some cL > 0
and assume the conditions in Theorem 2 hold.

(a) If Mn,p ≤ Cb for some Cb > 0, then there exists some constant C > 0,

inf
θ∈G(s,Mn,p)

P

(
Rθ(ĈAdaLDA)−Ropt(θ)

Ropt(θ)
≤ C · s log p

n

)
≥ 1− 8p−1.

(b) If Mn,p →∞ as n→∞, then there exist some constant C > 0, such that

inf
θ∈G(s,Mn,p)

P

(
Rθ(ĈAdaLDA)−Ropt(θ)

Ropt(θ)
≤ C ·M4

n,p ·
s log p

n

)
≥ 1− 8p−1.

Remark 3.3. The results in Proposition 3 show that the relative misclassification risk has a
worse convergence rate when the magnitude of signal-to-noise ratio Mn,p becomes larger. This
is expected as when Mn,p becomes larger, the classification problem itself becomes easier and
the oracle misclassification risk is very small, making the oracle classification rule harder to be
mimicked.

3.2. Theoretical Analysis of ADAM
We now investigate the theoretical properties of the ADAM procedure in the presence of missing
data. Similar rates of convergence for estimation and excess misclassification risk can be obtained,
but the technical analysis is much more involved under the MCR model.

Under the MCR model, suppose that the missingness pattern S ∈ {0, 1}n1×p × {0, 1}n2×p is
a realization of a distribution F . We consider the distribution space Ψ(n0;n, p) given by

Ψ(n0;n, p) = {F : PS∼F (c1n0 ≤ n∗min(S) ≤ c2n0) ≥ 1− p−1},

for some constants c1, c2 > 0, and n∗min(S) is defined for S as in (11).
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Remark 3.4. This distribution space includes the missing uniformly and completely at ran-
dom (MUCR) model considered in Loh and Wainwright [2012], Lounici [2013] and Lounici
[2014]. More specifically, MUCR model assumes each entry X

(k)
i,j (k ∈ [2], i ∈ [nk], j ∈ [p])

is missing independently with probability ε. As shown in Section A.6 in the supplement, when
1

(1−ε)2

√
log p
n = o(1) as n→∞, the MUCR model is in the distribution space Ψ(n(1− ε)2;n, p).

In addition, this distribution space allows a more general variant of MUCR model that each
entry X

(k)
i,j is missing independently with different probabilities ε(k)

ij . If we assume c̃1 · ε ≤
mini,j,k ε

(k)
ij ≤ maxi,j,k ε

(k)
ij ≤ c̃2 · ε for some constants c̃1, c̃2 > 0, then use the similar technique,

this missingness pattern is included in Ψ(n(1− ε)2;n, p) when 1
(1−ε)2

√
log p
n = o(1) as n→∞.

The following two theorems provide respectively the convergence rates for the discriminating
direction estimator β̂ADAM and the excess misclassification rate of ĈADAM over the parameter
space G(s,Mn,p) for θ and the distribution space Ψ(n0;n, p).

Theorem 4. Consider the parameter space G(s,Mn,p) with Mn,p > cL for some cL > 0

and the distribution space Ψ(n0;n, p) with Mn,p

√
s log p
n0

= o(1). Suppose X(1)
1 , ...,X

(1)
n1 and

X
(2)
1 , ...,X

(2)
n2 are i.i.d. samples from Np(µ1,Σ) and Np(µ2,Σ) respectively. Assuming that

X
∗(1)
1 , ...,X

∗(1)
n1 and X∗(2)

1 , ...,X
∗(2)
n2 defined in (4) is observed and Assumption 1 with S =

{S(k)
t }t∈[nk],k∈[2] holds. Then the risk of estimating the discriminant direction β by ADAM

satisfies

sup
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

E[‖β̂ADAM − β‖2] .Mn,p

√
s log p

n0
.

Theorem 5. Suppose the conditions of Theorem 4 hold.

(a) If Mn,p ≤ Cb for some Cb > 0, then there exists some constant C > 0, such that

inf
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P
(
Rθ(ĈADAM)−Ropt(θ) ≤ C · s log p

n0

)
≥ 1− 12p−1.

(b) If Mn,p →∞ as n→∞, then there exist some constant C > 0 and δn = o(1), such that

inf
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P
(
Rθ(ĈADAM)−Ropt(θ) ≤ C · e−( 1

8 +δn)M2
n,p · s log p

n0

)
≥ 1− 12p−1.

In the complete data case, we have n0 = n, so the rates of convergence shown in Theorem 4
and 5 match those in Theorems 2 and 3.

Similarly, upper bounds for the relative misclassification risks can be obtained.

Proposition 3.5. Suppose the conditions of Theorem 4 hold.

(a) If Mn,p ≤ Cb for some Cb > 0, then there exists some constant C > 0,

inf
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P

(
Rθ(ĈADAM)−Ropt(θ)

Ropt(θ)
≤ C · s log p

n

)
≥ 1− 12p−1.
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(b) If Mn,p →∞ as n→∞, then there exist some constant C > 0, such that

inf
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P

(
Rθ(ĈADAM)−Ropt(θ)

Ropt(θ)
≤ C ·M4

n,p ·
s log p

n

)
≥ 1− 12p−1.

In addition, in the special case of MUCR model, Theorem 4 and 5 imply the following result.

Corollary 1. Under the conditions of Theorem 3 and consider the MUCR model with miss-

ing probability ε. If (M2
n,p

s log p
n ∨

√
log p
n ) · 1

(1−ε)2 = o(1), then the risk of estimating the discrim-
inant direction β by ADAM over the class G(s,Mn,p) satisfies

sup
θ∈G(s,Mn,p)

E[‖β̂ADAM − β‖2] .Mn,p

√
s log p

n(1− ε)2
.

Moreover, there exist constant C > 0 and δn = o(1), such that the excess misclassification risk
over the class G(s,Mn,p) satisfies

inf
θ∈G(s,Mn,p)

P
(
Rθ(ĈADAM)−Ropt(θ) ≤ C · e−( 1

8 +δn)M2
n,p · s log p

n(1− ε)2

)
≥ 1− 13p−1.

This result shows that, although the sample size only loses a proportion of ε, the convergence
rates for the estimation risk and misclassification rate shrunk at the rate of n(1− ε)2 under the
MUCR model.

3.3. Minimax lower bounds
To understand the difficulty of the classification problem and the related estimation problem as
well as to establish the optimality for the AdaLDA and ADAM classifiers, it is essential to obtain
the minimax lower bounds for the estimation risk and the excess misclassification risk. In this
section, we only state the results for the missing data setting as the complete data setting can be
treated as a special case. The following lower bound results show that the rates of convergence
obtained by AdaLDA and ADAM algorithms are indeed optimal, for both estimation of the
discriminant direction β and classification.

Theorem 6. Consider the parameter space G(s,Mn,p) with Mn,p > cL for some cL > 0

and the distribution space Ψ(n0;n, p) with Mn,p

√
s log p
n0

= o(1). For any n0 > 1, suppose 1 ≤
s ≤ o( n0

log p ) and log p
log(p/s) = O(1). Then under MCR model, the minimax risk of estimating the

discriminant direction β over the class G(s,Mn,p) and Ψ(n0;n, p) satisfies

inf
β̂

sup
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

E[‖β̂ − β‖2] &Mn,p

√
s log p

n0
.

Theorem 7. Consider the parameter space G(s,Mn,p) with Mn,p > cL for some cL > 0

and the distribution space Ψ(n0;n, p) with Mn,p

√
s log p
n0

= o(1). For any n0 ≥ 1, suppose 1 ≤
s ≤ o( n0

log p ) and log p
log(p/s) = O(1). Then under the MCR model, the minimax risk of the excess

misclassification error over the class G(s,Mn,p) and Ψ(n0;n, p) satisfies that
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(a) If Mn,p ≤ Cb for some Cb > 0, then for any α > 0, there are some constants Cα > 0 such
that

inf
Ĉ

sup
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cα ·
s log p

n0
) ≥ 1− α.

(b) If Mn,p → ∞ as n → ∞, then for any α > 0, there are some constants Cα > 0 and
δ̃n = o(1) such that

inf
Ĉ

sup
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cα · e−( 1
8 +δ̃n)M2

n,p · s log p

n0
) ≥ 1− α.

Remark 3.6. In the complete data case, n∗min = min{n1, n2} = n, so Theorems 6 and 7
together with Theorems 1-4 imply that both AdaLDA and ADAM algorithms attain the optimal
rates of convergence in terms of estimation and classification error.

We should also note that the proof of Theorem 7 is not straightforward. This is partially due
to the fact that the excess risk Rθ(Ĉ) − Ropt(θ) does not satisfy the triangle inequality that is
required by standard lower bound techniques. A key technique here is to make a connection to
an alternative risk function. For a generic classification rule Ĉ, we define

Lθ(Ĉ) = Pθ(Ĉ(Z) 6= Cθ(Z)), (16)

where Cθ(Z) is the Fisher’s linear discriminant rule in (1). The following lemma enables us to
reduce the loss Rθ(Ĉ)−Ropt(θ) to the risk function Lθ(Ĉ).

Lemma 3. Let Z ∼ 1
2Np(µ1,Σ) + 1

2Np(µ2,Σ) with parameter θ = (µ1,µ2,Σ). If a classifier
Ĉ satisfying Lθ(Ĉ) = o(1) as n→∞, then for sufficiently large n,

Rθ(Ĉ)−Ropt(θ) ≥
√

2π∆

8
e∆2/8 · L2

θ(Ĉ).

Lemma 3 shows the relationship between the risk function Rθ(Ĉ) − Ropt(θ) and a more
“standard” risk function Lθ(Ĉ), who has the following property which served the same purpose
as the triangle inequality.

Lemma 4. Let θ = (µ,−µ, Ip) and θ̃ = (µ̃,−µ̃, Ip) with ‖µ‖2 = ‖µ̃‖2 = ∆/2. For any
classifier C, if ‖µ− µ̃‖2 = o(1) as n→∞, then for sufficiently large n,

Lθ(C) + Lθ̃(C) ≥ 1

∆
e−∆2/8 · ‖µ− µ̃‖2.

Using Lemmas 3 and 4, we can then use Fano’s inequality to complete the proof of Theorem
7. The details are shown in Section 6.

In addition, similar minimax lower bounds for estimating β and the excess misclassification
error can be established under the MUCRmodel. The following result shows that the convergence
rates in Corollary 1 are minimax rate optimal.

Theorem 8. Under the conditions of Theorem 6 and MUCR model with missing probability

ε, and further assume that ((M2
n,p

s log p
n ) ∨

√
log p
n ) · 1

(1−ε)2 = o(1), then the minimax risk of
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estimating the discriminant direction β by ADAM over the class G(s,Mn,p) under the MUCR
model satisfies

inf
β̂

sup
θ∈G(s,Mn,p)

E[‖β̂ − β‖2] &Mn,p

√
s log p

n(1− ε)2
.

Moreover, if Mn,p →∞ and ε < 1− cB for some cB ∈ (0, 1), the minimax risk of the misclassi-
fication error over the class G(s,Mn,p) satisfies that for any α, δ > 0, there are some constants
Cα > 0, such that

inf
Ĉ

sup
θ∈G(s,Mn,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cα · e−( 1
8 +δ)M2

n,p · s log p

n(1− ε)2
) ≥ 1− α.

4. Numerical results

The proposed AdaLDA and ADAM classifiers are easy to implement, and the MATLAB code is
available at https://github.com/linjunz/ADAM. We investigate in this section the numerical
performance of AdaLDA and ADAM using both simulated and real data.

4.1. Simulations
In all the simulations, the sample size is n1 = n2 = 100 while the dimension p varies from 400, 800
to 1200. The probability of being in either of the two classes is equal. We consider the following
six models for the covariance matrix Σ and the discriminating direction β.

Model 1 Erdős-Rényi random graph: Let Ω̃ = (ω̃ij) where ω̃ij = uijδij , δij ∼ Ber(ρ) being
the Bernoulli random variable with success probability ρ = 0.2 and uij ∼ Unif[0.5, 1] ∪
[−1,−0.5]. After symmetrizing Ω̃, set Ω = Ω̃ + {max(−φmin(Ω̃), 0) + 0.05}Ip to ensure the
positive definiteness. Finally, Ω is standardized to have unit diagonals and Σ = Ω−1. The
discriminating direction β = (5/

√
s, . . . , 5/

√
s, 0, . . . , 0)> is sparse such that only the first

s entries are nonzero.

Model 2 Block sparse model: Ω = (B + δIp)/(1 + δ) where bij = bji = 10 × Ber(0.5) for
1 ≤ i ≤ p/2, i < j ≤ p; bij = bji = 10 for p/2 + 1 ≤ i < j ≤ p; bii = 1 for 1 ≤ i ≤ p. Here
δ = max(−φmin(B), 0) + 0.05. The matrix Ω is also standardized to have unit diagonals
and Σ = Ω−1. The discriminating direction β = (2/

√
s, . . . , 2/

√
s, 0, . . . , 0)> where the

first s entries are nonzero.

Model 3 AR(1) model: (Σij)p×p with Σij = 0.9|i−j|. The discriminating direction β =
(2/
√
s, . . . , 2/

√
s, 0, . . . , 0)> where the first s entries are nonzero.

Model 4 Varying diagonals model: We first let (Σij)p×p with Σij = 0.9|i−j|. Then we
add d = (10, 10, 10, 10, 10, U6, ..., Up) to the diagonal entries of Σ, where U6, .U7, ..., Up
i.i.d. ∼ U(0, 1). The discriminating direction β = (1/

√
s, . . . , 1/

√
s, 0, . . . , 0)> where the

first s entries are nonzero.

Model 5 Approximately sparse β: Let (Σij)p×p with Σij = 0.9|i−j|. The discriminating
direction β = (0.75, (0.75)2, (0.75)3, . . . , (0.75)p)> being approximately sparse.

Model 6 Sparse δ and Σ: Let Ω = (B + δIp)/(1 + δ) where bij = bji = 10 × Ber(0.2) for
1 ≤ i ≤ p/2, i < j ≤ p; bij = bji = 10 for p/2+1 ≤ i < j ≤ p; bii = 1 for 1 ≤ i ≤ p. In other
words, only the first p/2 rows and columns of Ω are sparse, whereas the rest of the matrix is

https://github.com/linjunz/ADAM
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not sparse. Here δ = max(−φmin(B), 0) + 0.05. The matrix Ω is also standardized to have
unit diagonals and Σ = Ω−1. The mean difference vector δ = (2/

√
s, . . . , 2/

√
s, 0, . . . , 0)>

where the first s = 10 entries are nonzero. Finally, let β = Ωδ.

Given the covariance matrix Σ and the discriminating direction β generated by the model
above, the means are µ1 = (0, . . . , 0)> and µ2 = µ1 − Σβ. The missing mechanism is chosen
such that each entry Xki is observed with probability p = 1− ε ∈ (0, 1). We change the missing
proportion ε from 0 to 0.2. We apply AdaLDA rule when the data is complete, i.e. ε = 0,
and apply ADAM rule when ε > 0. The AdaLDA rule is then compared with the LPD [Cai
and Liu, 2011], SLDA [Shao et al., 2011], FAIR [Fan and Fan, 2008], and NSC [Tibshirani
et al., 2002] rules whose tuning parameters are chosen by five-fold cross-validation over the
grid {

√
log p/n, 3

2

√
log p/n, 2

√
log p/n, ..., 5

√
log p/n}. We also note that one commonly used

method, the Naive Bayes rule is a special case of the NSC rule with tuning parameter λ∆ = 0,
so it’s not included in the comparison. In the following tables, the fitting times (in seconds) on
a regular computer (Intel Core i7-3770, 3.40 GHz) and misclassification errors (in %) of different
algorithms are recorded. The misclassification error of a classifier Ĉ is computed as

1

N

N∑
i=1

1{label(Zi) 6= Ĉ(Zi)},

where Zi’s are N fresh samples from the same distribution as the training data. Here we let
N = 200 and Zi are drawn from the two classes with the same probability. Due to different
signal-to-noise ratios across different models, the misclassification rates for the Fisher’s rule vary
in different models. For each setting, the number of repetition is set to 100.

According to the simulation results in Tables 1–5, the proposed AdaLDA algorithm, which
is purely data-driven and tuning-free, has a much shorter fitting time than that of LPD, which
requires choosing tuning parameters via cross-validation. In addition, due to the element-wise
constraints in the optimization, the AdaLDA algorithm adapts to the heteroscedasticity of a in
Lemma 1, and has a better, if not comparable, performance than that of the LPD algorithm with
optimally chosen tuning parameters and outperforms all the other methods. This advantage is
further demonstrated in Model 4, where the diagonals of covariance matrices Σ vary significantly.
According to Table 4, the AdaLDA algorithm has a significant improvement over the LPD rule.
Furthermore, we considered simulation settings where β is not sparse. In Table 5, the AdaLDA
algorithm still performs well and outperforms all the other methods when β is approximately
sparse in Model 5. Under Model 6 where δ and Σ are individually sparse and Σ is diagonally
dominant, which is a setting favoring SLDA and FAIR. In this setting, the numerical performance
of AdaLDA is not as good as SLDA and FAIR, but the differences are small.

In addition, we also investigate the numerical performance of ADAM for incomplete data.
According to Table 6, which shows the performance of ADAM across different missing proportions
ε under Model 1, ADAM does not lose much accuracy in the presence of missing data when the
missing proportion ε is small. As expected, the misclassification errors of ADAM grows when ε
increases. Since the pattern of the performances of ADAM are similar across different models,
the simulation results of ADAM under Models 2-6 are given in the supplementary material.

4.2. Real data analysis
In addition to the simulation studies, we also illustrate the merits of the AdaLDA and ADAM
classifiers in an analysis of two real datasets to further investigate the numerical performance of
the proposed methods. One dataset, available at www.chestsurg.org, is the Lung cancer data
analyzed by Gordon et al. (2002). Another dataset is the Leukemia data from high-density
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Table 1. Misclassification errors (%) and model fitting times for Model 1 with complete data
(s, p) AdaLDA LPD SLDA FAIR NSC Oracle

(10,400) 17.50(1.51) 18.50(0.42) 42.77(1.89) 30.42(1.34) 34.05(1.21) 12.60(0.51)
[0.58s] [55.02s] [2.18s] [1.40s] [42.56s]

(20,400) 19.73(0.54) 20.65(0.72) 41.60(2.10) 25.92(0.71) 26.87(0.75) 11.05(0.61)
[0.58s] [49.73s] [2.50s] [2.96s] [43.54s]

(10,800) 20.15(1.24) 25.37(1.62) 41.46(2.14) 29.55(0.81) 33.60(1.01) 15.13(0.42)
[3.39s] [187.03s] [8.74s] [5.15s] [111.60s]

(20,800) 28.30(1.07) 29.10(1.63) 43.68(2.49) 31.58(0.97) 31.62(0.86) 14.30(0.74)
[3.35s] [195.59s] [7.18s] [5.62s] [115.15s]

(10,1200) 26.10(0.73) 26.32(0.80) 42.26(2.45) 31.78(0.75) 34.73(0.71) 16.00(0.60)
[9.90s] [531.74s] [28.21s] [21.43s] [244.57s]

(20,1200) 32.96(1.72) 35.70(1.68) 44.23(2.65) 37.48(2.31) 36.67(1.01) 18.90(0.58)
[9.94s] [493.31s] [28.14s] [26.41s] [244.28s]

(10,1600) 24.40(0.52) 28.44(2.41) 43.14(3.16) 32.48(0.89) 34.55(0.99) 19.90(0.51)
[21.77s] [809.22s] [56.78s] [34.36s] [333.84s]

(20,1600) 26.20(0.71) 30.87(2.05) 44.24(2.49) 38.52(2.56) 35.15(0.92) 17.35(0.39)
[21.75s] [1019.35s] [54.92s] [34.64s] [421.86s]

Table 2. Misclassification errors (%) and model fitting times for Model 2 with complete data
(s, p) AdaLDA LPD SLDA FAIR NSC Oracle

(10,400) 11.88(0.16) 12.57(0.15) 14.05(0.66) 17.52(0.70) 17.58(0.78) 11.35(0.56)
[0.59s] [66.8s] [3.12s] [1.56s] [38.52s]

(20,400) 10.53(0.94) 11.28(0.67) 12.03(0.43) 12.28(0.41) 12.25(0.40) 7.40(0.45)
[0.62s] [71.8s] [1.72s] [1.25s] [37.15s]

(10,800) 13.40(1.01) 16.60(1.78) 15.10(0.66) 18.48(0.72) 21.98(0.67) 13.35(0.64)
[3.44s] [232.64s] [9.52s] [5.77s] [114.5s]

(20,800) 13.45(0.98) 16.85(1.75) 14.48(0.68) 15.28(0.75) 16.53(0.68) 9.85(0.41)
[3.34s] [245.62s] [8.58s] [5.93s] [111.56s]

(10,1200) 15.20(0.21) 17.57(1.04) 18.20(0.26) 18.88(0.53 21.68(0.73) 12.93(0.50)
[9.87s] [577.16s] [17.16s] [11.08s] [243.50s]

(20,1200) 14.27(0.82) 15.20(0.87) 17.40(0.42) 15.93(0.71) 17.68(1.01) 9.72(0.28)
[9.90s] [600.76s] [18.72s] [9.67s] [245.75s]

(10,1600) 14.38(0.43) 15.74(1.01) 15.35(0.42) 16.08(0.73) 22.07(0.68) 11.77(0.42)
[21.87s] [1215.31s] [29.02s] [18.88s] [420.08s]

(20,1600) 15.74(0.65) 17.60(1.47) 16.46(0.53) 16.97(0.71) 19.90(0.81) 12.03(0.30)
[21.75s] [1212.03s] [30.26s] [17.16s] [413.55s]
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Table 3. Misclassification errors (%) and model fitting times for Model 3 with complete data
(s, p) AdaLDA LPD SLDA FAIR NSC Oracle

(10,400) 27.98(0.90) 29.65(1.12) 33.77(0.88) 37.15(1.16) 30.00(1.00) 23.12(0.82)
[0.61s] [79.42s] [3.43s] [0.62s] [38.22s]

(20,400) 35.17(0.82) 36.40(0.80) 40.45(0.71) 43.73(0.85) 37.78(0.90) 29.08(0.93)
[0.62s] [73.49s] [2.50s] [2.65s] [37.75s]

(10,800) 28.45(0.80) 34.75(0.79) 34.83(0.66) 42.18(1.10) 31.87(0.67) 22.50(0.50)
[3.36s] [255.77s] [10.14s] [5.77s] [112.40s]

(20,800) 34.25 (0.68) 41.52 (0.67) 41.85 (1.32) 44.98 (1.46) 39.13 (0.68) 29.83 (0.49)
[3.39s] [250.27s] [9.52s] [5.15s] [113.40s]

(10,1200) 28.23(0.59) 34.10(1.05) 34.53(0.83) 41.08(0.87) 30.15(0.56) 21.15(0.72)
[9.81s] [903.35s] [24.18s] [14.98s] [250.96s]

(20,1200) 34.65(0.95) 41.68(1.33) 41.53(1.48) 46.45(1.05) 38.07(1.42) 28.05(1.15)
[9.93s] [929.33s] [24.03s] [16.0s] [256.52s]

(10,1600) 27.88(0.89) 34.13(1.02) 35.57(1.23) 41.32(1.12) 30.73(0.78) 22.17(0.58)
[21.71s] [1321.28s] [27.92s] [17.78s] [414.58s]

(20,1600) 33.45(0.72) 37.82(0.50) 41.80(1.52) 46.05(1.13) 38.70(0.95) 27.65(0.42)
[21.06s] [1864.71s] [41.03s] [28.70s] [478.12s]

Table 4. Misclassification errors (%) and model fitting times for Model 4 with complete data
(s, p) AdaLDA LPD SLDA FAIR NSC Oracle

(10,400) 10.80(0.45) 16.03(0.57) 23.87(1.04) 16.27(0.58) 12.33(0.77) 8.18 (0.40)
[0.59s] [77.95s] [5.30s] [2.34s] [38.02s]

(20,400) 16.42(0.68) 24.05(0.62) 32.27(0.90) 23.20(1.01) 20.50(0.80) 11.22(0.59)
[0.60s] [78.06s] [4.68s] [2.62s] [37.75s]

(10,800) 12.03(0.57) 21.17(0.70) 29.00(0.81) 23.95(0.40) 17.20(1.00) 10.05(0.33)
[3.41s] [252.72s] [7.33s] [6.08s] [111.58s]

(20,800) 18.48(0.85) 25.40(0.75) 36.20(0.71) 26.28(0.69) 26.22(0.53) 11.20(0.72)
[3.35s] [249.07s] [9.67s] [5.15s] [111.34]

(10,1200) 13.98(0.58) 21.90(0.82) 28.63(0.49) 25.52(0.48) 17.40(0.70) 9.27(0.42)
[9.89s] [630.88s] [15.91s] [12.32s] [244.53s]

(20,1200) 21.70(0.90) 29.77(0.46) 34.33(0.64) 28.40(0.88) 25.82(0.72) 10.70(0.61)
[9.95s] [631.24s] [14.82s] [9.67s] [245.78s]

(10,1600) 13.90(0.42) 22.07(0.65) 27.05(0.71) 28.73(0.90) 20.20(0.37) 11.67(0.49)
[21.29s] [1846.61s] [40.56s] [27.77s] [480.78s]

(20,1600) 23.95(1.03) 29.57(0.92) 34.60(0.78) 28.98(1.09) 23.05(0.45) 15.90(0.82)
[21.56s] [1215.36s] [27.46s] [17.47s] [414.57s]
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Table 5. Misclassification errors (%) and model fitting times for Model 5 (the first four rows) and 6
(the last four rows) with complete data

Method AdaLDA LPD SLDA FAIR NSC Oracle
p = 400 27.98(0.66) 31.68(0.46) 46.72(0.83) 34.68(0.61) 31.90(0.60) 18.55(0.56)

[0.61s] [84.19s] [4.28s] [2.03s] [39.23s]
p = 800 29.50(0.73) 34.15(1.03) 46.30(0.64) 37.20(0.87) 33.63(0.96) 19.35(0.73)

[3.37s] [253.53s] [10.76s] [7.49s] [112.38s]
p = 1200 27.43(1.25) 36.40(0.78) 46.68(0.82) 39.20(0.74) 33.45(0.72) 18.53(0.88)

[10.00s] [642.98s] [15.76s] [12.01s] [248.86s]
p = 1600 27.38(0.64) 37.82(0.65) 47.30(0.80) 41.38(1.12) 35.98(1.11) 20.62(0.68)

[21.67s] [1314.69s] [26.83s] [17.94s] [424.20s]
p = 400 18.27(0.74) 28.52(0.70) 20.60(0.64) 18.98(0.68) 21.12(0.78) 4.77(0.25)

[0.60s] [56.94s] [4.84s] [4.62s] [37.66s]
p = 800 19.10(0.99) 26.68(2.06) 21.30(0.89) 18.82(0.73) 21.10(0.61) 4.30(0.23)

[3.34s] [202.69s] [7.18s] [5.62s] [111.74s]
p = 1200 18.50(0.83) 25.60(2.12) 18.90(0.60) 17.25(0.52) 20.18(0.73) 4.25(0.33)

[9.93s] [514.57s] [15.60s] [11.39s] [244.46s]
p = 1600 18.23(1.08) 24.65(1.94) 18.80(0.68) 17.32(0.60) 22.95(0.76) 4.62(0.24)

[21.65s] [1105.70s] [27.46s] [17.32s] [420.25s]

Table 6. Misclassification errors (%) and model fitting times for Model 1 with missing
proportion ε

Method ADAM AdaLDA
(s, p)\ε 0.2 0.15 0.1 0.05 0
(10,400) 20.55(0.91) 19.70(1.11) 19.20(1.34) 18.40(0.78) 17.50(1.51)

[0.68s] [0.65s] [0.66s] [0.65s] [0.58s]
(20,400) 24.95(1.34) 23.60(0.26) 23.67(0.10) 21.28(0.91) 19.73(0.54)

[0.67s] [0.66s] [0.64s] [0.64s] [0.58s]
(10,800) 26.28(1.10) 25.30(0.72) 22.15(0.74) 21.18(1.08) 20.15(1.24)

[3.60s] [3.60s] [3.59s] [3.59s] [3.39s]
(20,800) 34.00(1.02) 33.55(1.56) 32.97(1.14) 31.90(0.95) 28.30(1.07)

[3.63s] [3.61s] [3.64s] [3.60s] [3.35s]
(10,1200) 30.62(1.12) 30.39(1.08) 29.65(1.72) 27.42(1.16) 26.10(0.73)

[10.56s] [10.73s] [10.56s] [10.53s] [9.90s]
(20,1200) 35.62(0.81) 34.10(1.62) 33.95(0.91) 33.77(1.04) 32.96(1.72)

[10.51s] [10.54s] [10.52s] [10.52s] [9.94s]
(10,1600) 33.47(1.59) 30.53(0.79) 27.40(1.61) 26.40(1.52) 24.40(0.52)

[23.01s] [22.94s] [23.11s] [23.12s] [21.77s]
(20,1600) 37.40(0.91) 33.79(0.74) 32.70(1.12) 31.77(1.01) 26.20(0.71)

[23.00s] [22.95s] [23.01s] [22.96s] [21.75s]
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Table 7. Classification error of Lung cancer data by various methods
ADAM(ε=0.1) ADAM(ε=0.05) AdaLDA LPD SLDA FAIR NSC

Testing error 5.53% 3.22% 2.09% 2.11% 4.88% 3.64% 7.30%

Table 8. Classification error of Leukemia data by various methods
ADAM(ε=0.1) ADAM(ε=0.05) AdaLDA LPD SLDA FAIR NSC

Testing error 8.47% 7.53% 2.94% 3.09% 5.76% 2.94% 8.82%

Affymetrix oligonucleotide arrays that was previously analyzed in Golub et al. (1999), and is
available at www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. These two datasets were frequently
used for illustrating the empirical performance of the classifier for high-dimensional data in recent
literature. We will compare AdaLDA and ADAM with the existing methods.

4.2.1. Lung cancer data
We evaluate the proposed methods by classifying between malignant pleural mesothelioma (MPM)
and adenocarcinoma (ADCA) of the lung. There are 181 tissue samples (31 MPM and 150
ADCA) and each sample is described by 12533 genes in the lung cancer dataset in Gordon et
al. (2002). This dataset has been analyzed in Fan and Fan (2008) using FAIR and NSC. In this
section we apply the AdaLDA and ADAM rules to this dataset for disease classification. When
ADAM rule is used, we make each entry in the dataset missing uniformly and independently with
probability ε. In the simulation, given the small sample size, we choose ε = 0.05 and ε = 0.1.

The sample variances of the genes range over a wide interval. We first compute the sample
variances for each gene and drop the lower and upper 6-quantiles to control the condition number
of Σ̂. The average misclassification errors are computed by using 5-fold cross-validation for
various methods with 50 repetitions. To reduce the computational costs, in each repetition, only
1500 genes with the largest absolute values of the two sample t statistics are used. We then apply
all the aforementioned methods to this reduced dimensional dataset. As seen in the Table 7, the
classification result of AdaLDA is better than existing methods, including LPD [Cai and Liu,
2011], SLDA [Shao et al., 2011], FAIR [Fan and Fan, 2008], and NSC [Tibshirani et al., 2002]
methods, although only 1500 genes were used. Moreover, in the incomplete data case, ADAM
still has satisfactory accuracy.

4.2.2. Leukemia data
Golub et al. (1999) applied gene expression microarray techniques to study human acute leukemia
and discovered the distinction between acute myeloid leukemia (AML) and acute lymphoblastic
leukemia (ALL). There are 72 tissue samples (47 ALL and 25 AML) and 7129 genes in the
Leukemia dataset. In this section, we apply the AdaLDA rule to this dataset and compare the
classification results with those obtained by LPD [Cai and Liu, 2011], SLDA [Shao et al., 2011],
FAIR [Fan and Fan, 2008], and NSC [Fan and Fan, 2008] methods. Same as the analysis of lung
cancer data, when ADAM rule is used, we make each entry in the dataset missing independently
with probability ε ∈ {0.05, 0.1}

As in the analysis of the lung cancer data, we first drop genes with extreme sample variances
out of lower and upper 6-quantiles. Similar to the analysis of the lung cancer data, the average
misclassification errors are computed by using two-fold cross-validation for various methods with
50 repetitions, and to control the computational costs, we use 2000 genes with the largest absolute
values of the two sample t statistics in each repetition. After the application of all methods to
the same reduced dimensional dataset, classification results are then summarized in Table 8. The
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AdaLDA has the similar performance as the LPD rule and FAIR, as obtain the misclassification
error of about 3%. In contrast, the navie-Bayes rule misclassifies 20.59% testing samples and
SLDA misclassifies 5.76% testing samples. Fan and Fan [2008] report a test error rate of 2.94%
for FAIR and a test error rate of 8.82% for NSC proposed by Tibshirani et al. [2002]. In the
presence of missing data, ADAM misclassifies 7.53% and 8.47% testing samples when the missing
proportion is 0.05 and 0.1 respectively.

5. Extension to multiple-class LDA

We have so far focused on the two-class high-dimensional LDA. The procedure can be extended
to the following K-class setting:

X
(k)
1 , ..., X(k)

nk

i.i.d.∼ Np(µk,Σ), for k = 1, ...,K.

For ease of presentation, we focus on the complete data case in this section. For an inde-
pendent observation Z drawn from these K distributions with prior probabilities π1, ..., πK , let
Lk(Z) = πk · |Σ|−1/2 exp(−1/2(Z − µK)>Σ−1(Z − µK)). Then

P(label(Z) = k | Z) =
P(Z | label(Z) = k) · P(label(Z) = k)∑K
k=1 P(Z | label(Z) = k) · P(label(Z) = k)

=
Lk(Z)∑K
k=1 Lk(Z)

,

and the oracle classification rule is given by

Cθ(Z) = arg max
k∈[K]

P(label(Z) = k | Z) = arg max
k∈[K]

Lk(Z) = arg max
k∈[K]

Lk(Z)

L1(Z)

= arg max
k∈[K]

log(
Lk(Z)

L1(Z)
) = arg max

k∈[K]

Dk,

(17)

where D1 = 0 and Dk = (Z − µ1+µK

2 )>βk + log(πk

π1
) for k = 2, ...,K, with βk = Ω(µk − µ1).

A similar data-driven adaptive classifier, called K-class AdaLDA, can then be constructed
based on the estimation of β2, ...,βK and ∆k =

√
β>k Σβk, as follows.

Let µ̂k, k ∈ [K] and Σ̂ be the sample means and pooled sample covariance matrix respectively.

Step 1 (Estimating ∆2
k). Fix λ0 = 25/2. For k = 2, ...,K, we estimate βk by a preliminary

estimator

β̃k = arg min
β

‖β‖1

subject to |e>j
(

Σ̂β − (µ̂k − µ̂1)
)
| ≤ 4

√
log p

n
·
√
σ̂jj · (λ0β

>(µ̂k − µ̂1) + 1), j ∈ [p].

(18)

Then we estimate ∆2
k by ∆̂2

k = |β̃>k (µ̂k − µ̂1)|, k = 2, ..,K.

Step 2 (Adaptive estimation of βk). Given ∆̂2, the final estimator β̂k of βk is constructed
through the following linear optimization

β̂k = arg min
β

‖β‖1

subject to |e>j
(

Σ̂β − (µ̂k − µ̂1)
)
| ≤ 4

√
log p

n
·
√
σ̂jj(λ0∆̂2

k + 1), j ∈ [p]. (19)
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Step 3 (Construction of K-class AdaLDA). The K-class AdaLDA classification rule is ob-
tained by plugging β̂k into Fisher’s rule (17),

ĈK−AdaLDA(Z) = arg max
k∈[K]

D̂k, (20)

where D̂1 = 0 and D̂k = (Z − µ̂1+µ̂K

2 )>β̂k + log(π̂k/π̂1) with π̂k = nk/
∑K
j=1 nj for

k = 2, ...,K.

For theoretical analysis, we consider the following parameter space GK(s,Mn,p) defined by

GK(s,Mn,p) = {θ = (π1, ...πK ,µ1, ...,µK ,Σ) : µk ∈ Rp, πk ∈ (c, 1− c),
K∑
k=1

πk = 1,Σ ∈ Rp×p,Σ � 0,

‖βk‖0 ≤ s,M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤M,Mn,p ≤ ∆ ≤ 3Mn,p},

where M > 1 and c ∈ (0, 1/2) are some constants, Mn,p > 0 can potentially grow with n and p.
Theoretical properties of K-class AdaLDA can be established by applying the same technical

argument as before.

Theorem 9. Consider the parameter space GK(s,Mn,p) with Mn,p > cL for some cL > 0.

Suppose X(k)
1 , ...,X

(k)
nk

i.i.d.∼ Np(µk,Σ) for k = 1, ...,K. Assume that Mn,p

√
s log p
n = o(1). Then

for k ∈ [K],

sup
θ∈G(s,Mn,p)

E[‖β̂k − βk‖2] .Mn,p

√
s log p

n
.

The following theorem provides an upper bound for the excess misclassification riskRθ(ĈK−AdaLDA)−
Ropt(θ) of the K-class AdaLDA rule.

Theorem 10. Consider the parameter space GK(s,Mn,p) with Mn,p > cL for some cL > 0
and assume the conditions in Theorem 2 hold.

(a) If Mn,p ≤ Cb for some Cb > 0, then there exists some constant C > 0,

inf
θ∈GK(s,Mn,p)

P
(
Rθ(ĈK−AdaLDA)−Ropt(θ) ≤ C · s log p

n

)
≥ 1− 8p−1.

(b) If Mn,p →∞ as n→∞, then there exist some constant C > 0 and δn = o(1), such that

inf
θ∈GK(s,Mn,p)

P
(
Rθ(ĈK−AdaLDA)−Ropt(θ) ≤ C · e−( 1

8 +δn)M2
n,p · s log p

n

)
≥ 1− 8p−1.

Remark 5.1. Multi-class sparse discriminant analysis has been considered in the literature
[Witten and Tibshirani, 2011, Clemmensen et al., 2011, Mai et al., 2019]. However, there are no
theoretical justification for the methods in Witten and Tibshirani [2011] and Clemmensen et al.
[2011], and Mai et al. [2019] only shows consistency. In contrast, our result gives an explicit
convergence rate.

6. Proofs

In this section, we prove the main results, Theorem 2, 3, 4 5, 6 and 7. Theorem 1 follows
from Theorems 3 and 7. Since n1 � n2, without loss of the generality we shall assume n1 =
n2 = n in the proofs. For reasons of space, the proofs of the technical lemmas are given in the
Supplementary Material [Cai and Zhang, 2018].
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6.1. Proof of Theorem 2
To prove Theorem 2 we begin by collecting a few important technical lemmas that will be used
in the main proofs.

6.1.1. Auxiliary Lemmas
Lemma 5. Suppose X1, ...,Xn i.i.d. ∼ Np(µ,Σ), and assume that µ̂, Σ̂ are the sample mean

and sample covariance matrix respectively. Let Γ(s) = {u ∈ Rp : ‖uSC‖1 ≤ ‖uS‖1, for some S ⊂
[p] with |S| = s}, then with probability at least 1− p−1,

sup
u∈Γ(s)

u>(µ̂− µ) .

√
s log p

n
;

sup
u,v∈Γ(s)

u>(Σ̂− Σ)v .

√
s log p

n
.

Lemma 6. Suppose x,y ∈ Rp. Let h = x − y and S = supp(y). If ‖x‖1 ≤ ‖y‖1, then
h ∈ Γ(s) with s = |S|, that is,

‖hSc‖1 ≤ ‖hS‖1.

6.1.2. Main proof of Theorem 2
Recall that β̂AdaLDA is constructed by the following two steps.

Step 1. Estimating ∆2

β̃ = arg min
β

{
|e>j

(
Σ̂β − (µ̂2 − µ̂1)

)
| ≤ 4

√
log p

n
·
√
σ̂jj · (λ0β>(µ̂2 − µ̂1) + 1), j ∈ [p]

}
.

(21)
Then we estimate ∆2 by ∆̂2 = |〈β̃, µ̂2 − µ̂1〉|.

Step 2. Adaptive estimation of β. Given ∆̂2, the final estimator β̂AdaLDA of β is constructed
by the following linear optimization problem

β̂AdaLDA = arg min
β

{
|e>j

(
Σ̂β − (µ̂2 − µ̂1)

)
| ≤ 4

√
log p

n
·
√
λ0σ̂jj∆̂2 + σ̂jj , j ∈ [p]

}
.

(22)

Firstly, let’s show the consistency of estimating ∆2. Recall the definition of β̃ and using
Lemma 5, we have with high probability at least 1− 3p−1,

|(β̃ − β)>Σ(β̃ − β)| ≤|(β̃ − β)>(Σ̂β̃ − δ̂)|+ |(β̃ − β)>(Σ̂− Σ)β̃)|+ |(β̃ − β)>(δ − δ̂)|

≤‖β̃ − β‖1‖Σ̂β̃ − δ̂‖∞ + |(β̃ − β)>(Σ̂− Σ)(β̃ − β))|+ |(β̃ − β)>(Σ̂− Σ)β)|

+ |(β̃ − β)>(δ − δ̂)|

.
√
s‖β̃ − β‖2 · ‖Σ̂β̃ − δ̂‖∞ + ‖β̃ − β‖2 ·

√
s log p

n
· ‖β − β̃‖2

+ ‖β − β̃‖2

√
s log p

n
· ‖β‖2 + ‖β − β̃‖2

√
s log p

n
,

(23)
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where the third inequality uses Lemma 5 and the fact that β, β̃ − β ∈ Γ(s). In fact, β is a
feasible solution to (8) due to Lemma 1 and thus ‖β̃‖1 ≤ ‖β‖1. Then by Lemma 6, we have
β̃ − β ∈ Γ(s). In addition, ‖β‖0 ≤ s, so we have β ∈ Γ(s).

In addition, by standard derivation of the accuracy of sample variance, sinceM−1 ≤ λmin(Σ) ≤
λmax(Σ) ≤M , by using the union bound technique, we have with probability at least 1− p−1,

max
i∈[p]
|σ̂ii − σii| .

√
log p

n
,

which implies with probability at least 1− p−1,

max
i∈[p]
|σ̂ii| ≤ 2M.

In addition, since ∆ ≥Mn,p ≥ cL > 0, then with probability at least 1− 3p−1,

‖Σ̂β̃ − δ̂‖∞ ≤4

√
log p

n
·
√
σ̂jj · (λ0β̃

>(µ̂2 − µ̂1) + 1)

.

√
log p

n
· |(β̃ − β)>(µ̂2 − µ̂1) + 1|+

√
log p

n
· |β>(µ̂2 − µ̂1)|

≤
√

log p

n
· (|(β̃ − β)>(µ2 − µ1)|+ |(β̃ − β)>(µ̂2 − µ̂1 − µ2 + µ1)|+ 1)

+

√
log p

n
· (|β>(µ2 − µ1)|+ |β>(µ2 − µ1 − µ̂2 + µ̂1)|)

.

√
log p

n
∆‖β̃ − β‖2 +

√
s · log p

n
‖β̃ − β‖2 +

√
log p

n
∆2 +

√
s · log p

n
∆,

where the last inequality uses the fact that ‖µ2−µ1‖2, ‖β‖2 . ∆, since ∆ =
√

(µ2 − µ1)>Ω(µ2 − µ1) ≥
1√
M
‖µ2 − µ1‖2, and ∆ =

√
β>Σβ ≥ 1√

M
‖β‖2.

It follows that with probability at least 1− 6p−1,

|(β̃ − β)>Σ(β̃ − β)| .
√
s log p

n
∆‖β̃ − β‖22 +

s log p

n
‖β̃ − β‖22 +

√
s log p

n
∆2‖β̃ − β‖2

+
s log p

n
∆‖β̃ − β‖2 +

√
s log p

n
· ‖β̃ − β‖22

+

√
s log p

n
∆‖β̃ − β‖2 + ‖β̃ − β‖2 ·

√
s log p

n

.

√
s log p

n
∆‖β̃ − β‖22 +

√
s log p

n
∆2‖β̃ − β‖2,

where the last inequality uses the fact that ∆ ≥Mn,p ≥ cL > 0.
On the other hand, since

|(β̃ − β)>Σ(β̃ − β)| ≥ λmin(Σ)‖β̃ − β‖22 ≥
1

M
‖β̃ − β‖22.

We then have, with probability at least 1− 6p−1,

‖β̃ − β‖2 .

√
s log p

n

(
∆‖β̃ − β‖2 + ∆2

)
,
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Assuming Mn,p

√
s log p
n = o(1), which implies ∆

√
s log p
n = o(1), then we have

‖β̃ − β‖2 .
∆2
√

s log p
n

1−∆
√

s log p
n

.

Since ‖β̃‖1 ≤ ‖β‖1 and combining with Lemma 5, we then have with probability at least 1−7p−1,

|∆̂
2 −∆2

∆2
| ≤ |β̃

>(δ − δ̂)|+ |δ>(β̃ − β)|
∆2

≤ ‖β‖1 · ‖δ − δ̂‖∞ + ‖δ‖2 · ‖β − β̃‖2
∆2

≤
√
s · ‖β‖2 · ‖δ − δ̂‖∞ + ‖δ‖2 · ‖β − β̃‖2

∆2

.

√
s ·∆

√
log p
n + ∆ · ∆2

√
s log p

n

1−∆
√

s log p
n

∆2
= o(1),

given ∆ ≥ cL and ∆
√

s log p
n = o(1).

Secondly, let’s proceed to showing the accuracy of β̂AdaLDA. We use β̂ to denote β̂AdaLDA in
this subsection for simplicity. By Lemma 1, β lies in the feasible set of (9), so ‖β̂‖1 ≤ ‖β‖1. By
a similar argument as in (23), we have that with probability at least 1− 3p−1,

|(β̂ − β)>Σ(β̂ − β)|

≤|(β̂ − β)>(Σ̂β̂ − δ̂)|+ |(β̂ − β)>(Σ̂− Σ)β̂)|+ |(β̂ − β)>(δ − δ̂)|

.
√
s‖β̂ − β‖2 · ‖Σ̂β̂ − δ̂‖∞ + ‖β̂ − β‖2 ·

√
s log p

n
· ‖β − β̂‖2

+ ‖β − β̂‖2

√
s log p

n
· ‖β‖2 + ‖β − β̂‖2

√
s log p

n
.

(24)

Now since we have | ∆̂
2−∆2

∆2 | = o(1) with probability at least 1 − 7p−1, this implies with
probability at least 1− 10p−1,

‖Σ̂β̂ − δ̂‖∞ ≤
√

log p

n
·
√
σ̂jj∆̂2 + 2σ̂jj . ∆

√
log p

n
.

Then using the fact |(β̃−β)>Σ(β̃−β)| ≥ λmin(Σ)‖β̃−β‖22 again, we have with probability
at least 1− 10p−1,

‖β̂ − β‖22 . ∆

√
s log p

n
· ‖β̂ − β‖2 +

√
s log p

n
· ‖β̂ − β‖22.

This implies that there exists some constant C > 0, such that with probability at least
1− 10p−1,

‖β̂AdaLDA − β‖2 ≤ C∆ ·
√
s log p

n
.

In addition, since ‖β̂AdaLDA‖1 ≤ ‖β‖1 ≤
√
p‖β‖2 ≤

√
pM ·∆, we then have

E[‖β̂AdaLDA − β‖2]

≤E[‖β̂AdaLDA − β‖2 · 1{‖β̂AdaLDA−β‖2>C∆·
√

s log p
n }] + E[‖β̂AdaLDA − β‖2 · 1{‖β̂AdaLDA−β‖2≤C∆·

√
s log p

n }]

≤
√
pM ·∆ · 10p−1 + C∆ ·

√
s log p

n
. ∆ ·

√
s log p

n
.Mn,p ·

√
s log p

n
.
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6.2. Proofs of Theorem 3
For a vector x ∈ Rp, we define ‖x‖2,s = sup‖y‖2=1,y∈Γ(s) |x>y|. We start with the following
lemma.

Lemma 7. For two vectors γ and γ̂, if ‖γ − γ̂‖2 = o(1) as n → ∞, and ‖γ‖2 ≥ c for some
constant c > 0, then when n→∞,

‖γ‖2 · ‖γ̂‖2 − γ>γ̂ � ‖γ − γ̂‖22.

We postpone the proof of Lemma 7 to Section A.6 in the supplement, and continue the proof
of Theorem 3.

Let δn = ‖β̂ − β‖2 ∨ ‖µ̂1 − µ1‖2,s ∨ ‖µ̂2 − µ2‖2,s. We are going to show

Rθ(Ĉ)−Ropt(θ) . e−∆2/8 ·∆ · δ2
n.

Given the estimators ω̂, µ̂k, and β̂, the sample Z is classified as

Ĉ(Z) =

{
1, (Z − (µ̂1 + µ̂2)/2)>β̂ ≥ 0

2, (Z − (µ̂1 + µ̂2)/2)>β̂ < 0.

Let ∆̂ =

√
β̂>Σβ̂ and µ̂ = µ̂1+µ̂2

2 . The misclassification error is

Rθ(Ĉ) =
1

2
Φ
(
− (µ̂− µ1)>β̂

∆̂

)
+

1

2
Φ̄
(
− (µ̂− µ2)>β̂

∆̂

)
,

with Ropt(θ) = 1
2Φ
(
−∆/2

)
+ 1

2 Φ̄
(

∆/2
)
. Define an intermediate quantity

R∗ =
1

2
Φ
(
− δ

>β̂/2

∆̂

)
+

1

2
Φ̄
(δ>β̂/2

∆̂

)
.

We first show that R∗−Ropt(θ) . e−∆2/8 ·∆ · δ2
n. Applying Taylor’s expansion to the two terms

in R∗ at ∆
2 and −∆

2 respectively, we obtain

R∗ −Ropt(θ) =
1

2

(∆

2
− δ

>β̂

2∆̂

)
Φ′
(∆

2

)
+

1

2

(
− δ

>β̂

2∆̂
+

∆

2

)
Φ′
(
− ∆

2

)
+O

(
e−∆2/8 1

∆
· δ4
n

)
,

(25)

In fact, the remaining term can be written as

1

2

(δ>β̂
2∆̂
− ∆

2

)2

Φ′′(t1,n) +
(δ>β̂

2∆̂
− ∆

2

)2

Φ′′(t2,n),

where t1,n, t2,n are some constants satisfying |t1,n|, |t2,n| are between ∆
2 and δ>β̂/2

∆̂
.

Therefore, the remaining term can be bounded by using the facts that∣∣∣δ>β̂
2∆̂
− ∆

2

∣∣∣ = O(
1

∆
δ2
n), and Φ′′(tn) = O(e−∆2/8∆),

for |tn| is between ∆
2 and δ>β̂/2

∆̂
.
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In fact, for the first term, we can obtain this inequality by letting γ = Σ1/2β and γ̂ = Σ1/2β̂
in Lemma 7. Then∣∣∣∆− δ>β̂

∆̂

∣∣∣ =
∣∣‖γ‖2 − γ>γ̂‖γ̂‖2 ∣∣ =

∣∣‖γ‖2‖γ̂‖2 − γ>γ̂
‖γ̂‖2

∣∣ . 1

∆
‖γ̂ − γ‖22 .

1

∆
δ2
n.

In addition, since as δn → 0, (δ∗)>β̂/2

∆̂
→ ∆

2 , we then have |Φ′′(tn)| � ∆·e−
(∆/2)2

2 = ∆·e−∆2/8.

Then (25) can be further expanded such that

R∗ −Ropt(θ) �
(
− δ

>β̂

2∆̂
+

∆

2

)
e−

1
2

(
∆
2

)2

+
(
− δ

>β̂

2∆̂
+

∆

2

)
e−

1
2

(
−∆

2

)2

+O
(
e−∆2/8 1

∆
· δ4
n

)
= exp

(
− ∆2

8

)
·
(
− δ

>β̂

∆̂
+ ∆

)
+O

(
e−∆2/8 1

∆
· δ4
n

)
.e−∆2/8 · |δ

>β̂

∆̂
−∆|+O

(
e−∆2/8 1

∆
· δ4
n

)
. e−∆2/8 · δ2

n.

Eventually we obtain R∗ −Ropt(θ) . e−∆2/8∆ · δ2
n.

To upper bound Rθ(Ĉ)−R∗, applying Taylor’s expansion to Rθ(Ĉ),

Rθ(Ĉ) =
1

2

{
Φ
(δ>β̂/2

∆̂

)
+

(µ̂− µ1)>β̂ − δ>β̂/2
∆̂

Φ′
(δ>β̂/2

∆̂

)
+O

(
e−∆2/8∆ · δ2

n

)}

− 1

2

{
Φ̄
(−δ>β̂/2

∆̂

)
+

(µ̂− µ2)>β̂ + δ>β̂/2

∆̂
Φ′
(
− δ

>β̂/2

∆̂

)
+O

(
e−∆2/8∆ · δ2

n

)}
,

where the remaining term can be obtained similarly as (25) by using the fact∣∣∣ (µ̂− µ1)>β̂ − δ>β̂/2
∆̂

∣∣∣ = O(δn) and |Φ′′(·)| = O(e−∆2/8∆).

In fact, when |∆̂−∆| ≤ |
√

(β̂ − β)Σ(β̂ − β)| . ‖β̂ − β‖2 . δn = o(1), we have

∣∣∣ (µ̂− µ1)>β̂ − δ>β̂/2
∆̂

∣∣∣ ≤ 1

2∆
|(µ̂2 − µ̂1 − µ2 + µ2)β̂| . δn.

This leads to

|Rθ(Ĉ)−R∗| .
∣∣∣δ>β̂/2− (µ̂− µ1)>β̂

∆̂
Φ′(
δ>β̂/2

∆̂
)

+
δ>β̂/2 + (µ̂− µ2)>β̂

∆̂
Φ′(−δ

>β̂/2

∆̂
) +O

(
e−∆2/8∆ · δ2

n

)∣∣∣
=
∣∣∣δ>β̂/2− (µ̂− µ1)>β̂

∆̂
e−

1
2

{
δ>β̂/2

∆̂

}2

+
δ>β̂/2 + (µ̂− µ2)>β̂

∆̂
e−

1
2

{
δ>β̂/2

∆̂

}2

+O
(
e−∆2/8∆ · δ2

n

)∣∣∣.
Since

δ/2− (µ̂− µ1) + δ/2 + (µ̂− µ2) = δ − (µ2 − µ1) = 0,
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then it follows that

|Rθ(Ĉ)−R∗| . e−∆2/8∆ · δ2
n.

Combining the pieces, we obtain

Rθ(Ĉ)−Ropt(θ) . e−∆2/8 ·∆ · δ2
n.

Finally, by Lemma 5 and the derivation in Theorem 2, with probability at least 1 − 12p−1,

δn . Mn,p

√
s log p
n . In addition, ∆ ∈ [Mn,p, 3Mn,p], we then have with probability at least

1− 12p−1,

Rθ(Ĉ)−Ropt(θ) . e−M
2
n,p/8 ·M3

n,p ·
s log p

n
.

Now we consider the two cases. On the one hand, when Mn,p is bounded by Cb, we have

Rθ(Ĉ)−Ropt(θ) . e−M
2
n,p/8 · s log p

n
.

On the other hand, when Mn,p →∞ as n grows,

Rθ(Ĉ)−Ropt(θ) . e
−( 1

8−
3 log Mn,p

M2
n,p

)M2
n,p ·M3

n,p ·
s log p

n
,

where 3 logMn,p

M2
n,p

is an o(1) term as n→∞.

6.3. Proofs of Theorems 4 and 5
We proceed to proving Theorems 4 and 5 under the event {c1n0 ≤ n∗min(S) ≤ c2n0} that happens
with probability at least 1− p−1. The results then rely on the following lemma.

Lemma 8. Consider the MCR model and assume that µ̂, Σ̂ are the generalized sample mean
and sample covariance matrix respectively. If c1n0 ≤ n∗min(S) ≤ c2n0. then with probability at
least 1− p−1,

sup
u∈Γ(s)

u>(µ̂− µ) .

√
s log p

n0
;

sup
u,v∈Γ(s)

u>(Σ̂− Σ)v .

√
s log p

n0
.

Given Lemma 8, the derivation of Theorems 4 is very similar to the case with AdaLDA in
Section 6.1, and 5 can be derived from Theorem 4 by using the same logic as in Section 6.2, and
thus are omitted.

6.4. Proofs of the minimax lower bound results (Theorems 6 and 7)
In this section we are going to prove Theorems 6 and 7. We start with providing lemmas that
will be used in the proof.



28 T. Cai and L. Zhang

6.4.1. Auxiliary lemmas
The proof of Theorem 6 relies on the following Fano’s Lemma.

Lemma 9 (Tsybakov [2009]). Suppose Θp is a parameter space consisting ofM parameters
θ0,θ1, ...,θM ∈ Θp for some M > 0, and d(·, ·) : Θp × Θp → R+ is some distance. Denote Pθ
to be some probability measure parametrized by θ. If for some constants α ∈ (0, 1/8), γ > 0,
KL(Pθi ,Pθ0

) ≤ α logM/n for all 1 ≤ i ≤M , and d(θi,θj) ≥ γ for all 0 ≤ i 6= j ≤M , then

inf
θ̂

sup
i∈[M ]

Eθi [dθi(θ̂,θi)] & γ.

The proof of Theorem 7, however, is not straightforward, since the excess risk Rθ(Ĉ)−Ropt(θ)
is not a distance as required in Lemma 9. The key step in our proof of Theorem 7 is to reduce
the excess risk Rθ(Ĉ) − Ropt(θ) to Lθ(Ĉ), defined in (16). The following lemma suggests that
it suffices to provide a lower bound for Lθ(Ĉ), and Lθ(Ĉ) satisfies an approximate triangle
inequality (Lemma 4).

Although Lθ(Ĉ) is not a distance function and does not satisfy an exact triangle inequality,
the following lemma provides a variant of Fano’s Lemma.

Lemma 10 (Tsybakov [2009]). Let M ≥ 0 and θ0,θ1, ...,θM ∈ Θp. For some constants
α0 ∈ (0, 1/8], γ > 0, and any classifier Ĉ, if KL(Pθi ,Pθ0

) ≤ α0 logM/n for all 1 ≤ i ≤ M , and
Lθi(Ĉ) < γ implies Lθj (Ĉ) ≥ γ for all 0 ≤ i 6= j ≤M , then

inf
Ĉ

sup
i∈[M ]

Pθi(Lθi(Ĉ) ≥ γ) ≥
√
M√

M + 1
(1− 2α0 −

√
2α0

logM
).

Lemma 11 (Tsybakov [2009]). Define Ap,s = {u : u ∈ {0, 1}p, ‖u‖0 ≤ s}. If p ≥ 4s, then
there exists a subset {u0,u1, ...,uM} ⊂ Ap,s such that u0 = {0, ..., 0}>, ρH(ui,uj) ≥ s/2 and
log(M + 1) ≥ s

5 log(ps ), where ρH denotes the Hamming distance.

6.4.2. Proof of Theorem 6
In this section we prove the lower bound of estimation of β. First we construct a subset of
the parameter space Θ that characterizes the hardness of the problem. By Lemma 11, there
exist u0,u1, ...,uM ∈ Ap,s = {u ∈ {0, 1}p : ‖u‖0 ≤ s}, such that ρH(ui,uj) > s/2 and
log(M + 1) ≥ s

5 log(ps ), denote this collection of ui by Ãp,s. In addition, denote u0 = 0p.
Since log p

log(p/s) = O(1), so for sufficiently large p, we have s < p/2. Define b0 be the p-

dimensional vector with the last s entries being Mn,p√
s

and the rest being 0, so we have ‖b0‖2 =

Mn,p. Let r = dp/2e. For u ∈ Ãp,s = {u0,u1, ...,uM}, let Bu be the p × p symmetric matrix
whose i-th row and column are both ε · ui · b0

Mn,p
for i ∈ {1, ..., r}, where ε is to be determined

later. The parameter set we considered is

Θ0 = {θ = (µ1,µ2,Σ) : µ1 = b0,µ2 = −b0,Σ = (Ip +Bu)−1;u ∈ Ãp,s ∪ {0p}}.

For a given u, the corresponding discriminating direction is βu = −2(Ip +Bu)b0, which implies

‖βu − βũ‖22 = 4‖(Bu −Bũ)b0‖22 ≥ 4ρH(u, ũ)ε2‖b0‖22 ≥ 2sM2
n,pε

2.

In addition, when ‖Bu‖2 = o(1), for sufficiently large n, we have ∆ =
√

4b>0 (Ip +Bu)b0 ∈
(Mn,p, 3Mn,p), which implies that Θ0 ⊂ G(s,Mn,p).
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We then proceed to bound KL(Pθui
,Pθu0

) for i ∈ [M ], where Pθui
,Pθu0

denote the distri-
butions Np(b0, (Ip +Bui

)−1) and Np(b0, Ip) respectively. We then have

KL(Pθui
,Pθu0

) =
1

2
[− log |Ip +Bui

| − p+ tr(Ip +Bui
))] .

Note that b0

Mn,p
is a unit vector. If we take ε such that ‖Bui‖2 ≤ ‖Bu‖F ≤

√
2s · ε2 = o(1),

and denote the eigenvalues of Ip +Bui
by 1 + ∆λ1

,...,1 + ∆λp
with ∆λj

= o(1). We then have

KL(Pθui
,Pθu0

) =
1

2

− p∑
j=1

log(1 + ∆λj
)− p+

p∑
j=1

(1 + ∆λj
)


�1

4

p∑
j=1

∆2
λj

=
1

4
‖Bu‖2F ≤

1

2
sε2

where we use the fact that log(1 + x) � x − x2

2 when x = o(1). Now let ε = 1
5
√

2

√
log p
n , then

KL(Pθui
,Pθu0

) ≤ α logM/n for α = 1/8.

In addition, let γ = 1
10Mn,p

√
s log p
n , then for 0 ≤ i 6= j ≤ M and any β̂ ∈ Rp, such that

‖β̂ − βui
‖2 ≤ γ, we have

‖β̂−βuj
‖2 ≥ ‖βuj

−βuj
‖2−‖β̂−βui

‖2 ≥
1

5
Mn,p

√
s log p

n
− 1

10
Mn,p

√
s log p

n
=

1

10
Mn,p

√
s log p

n
= γ.

Then by Fano’s lemma (Lemma 9), we have inf β̂ supi∈[M ] E‖β̂ − βui
‖2 &Mn,p

√
s log p
n .

For the incomplete data case with n0 ≥ 1, we consider a special pattern of missingness S0:

(S0)ij = 1{1≤i≤n0,1≤j≤p} with probability 1.

Under this missingness pattern, n∗min = n0 with probability 1, and the problem essentially
becomes complete data problem with n0 samples, which implies

inf
β̂

sup
θ∈G(s,Mn,p)

S∈Ψ(n0;n,p)

E[‖β̂ − β‖2] &Mn,p

√
s log p

n0
.

6.4.3. Proof of Theorem 7
We proceed by applying Lemma 10 to obtain the minimax lower bound for the excess misclas-
sification error. We first construct a subset of the parameter space Θ that characterizes the
hardness of the problem. Let e1 be the basis vector in the standard Euclidean space whose first
entry is 1 and zero elsewhere. By Lemma 11, there exist u1, ...,uM ∈ Ǎp,s = {u ∈ {0, 1}p :
,u>e1 = 0, ‖u‖0 = s}, such that ρH(ui,uj) > s/2 and log(M + 1) ≥ s

5 log(p−1
s ). Note the first

entry in uj is 0 for all j = 1, . . . ,M .
Define the parameter space

Θ1 = {θ = (µ1,µ2,Σ) : µ1 = εu+ λe1,µ2 = −µ1,Σ = σ2Ip;u ∈ Ǎp,s},

where ε = σ
√

log p/n, σ2 = O(1) and λ is chosen to ensure θ ∈ G(s,Mn,p) such that

(µ1 − µ2)TΣ−1(µ1 − µ2) =
4‖εu+ λe1‖22

σ2
= Mn,p.
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To apply Lemma 10, we need to verify two conditions: (i) the upper bound on the KL
divergence between Pθu and Pθv , and (ii) the lower bound of Lθu(Ĉ) +Lθv (Ĉ) for u 6= v ∈ Ǎp,s.

We calculate the KL divergence first. For u ∈ Ǎp,s, denote µu = εu + λe1. For θu =
(µu,−µu, σ2Ip) ∈ Θ1, we consider the distribution Np(µu, σ2Ip).

Then, the KL divergence between Pθu and Pθv can be bounded by

KL(Pθu ,Pθv ) ≤ 1

2
‖µu − µv‖22 ≤ σ2 · s log p

n
. (26)

In addition, by applying Lemma 4, we have that for any u,v ∈ Ǎp,s,

Lθu(Ĉ) + Lθv (Ĉ) &
1

Mn,p
e−M

2
n,p/8

√
s log p

n
.

So far we have verified the aforementioned conditions (i) and (ii). Lemma 10 immediately
implies that, there is some Cα ≥ 0, such that

inf
Ĉ

sup
θ∈G(s,Mn,p)

P(Lθ(Ĉ) ≥ Cα
1

Mn,p
e−M

2
n,p/8

√
s log p

n
) ≥ 1− α. (27)

Finally combining (27) with Lemma 3, we obtain the desired lower bound for the excess mis-
classficiation error

inf
Ĉ

sup
θ∈G(s,Mn,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cα
1

Mn,p
e−M

2
n,p/8

s log p

n
) ≥ 1− α.

Under this missingness data case, we consider the same missingness pattern S0 as described
in Section 6.4.2 with n∗min = n0. Then we have

inf
β̂

sup
θ∈G(s,Mn,p)

S∈Ψ(n0;n,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cα
1

Mn,p
e−M

2
n,p/8

s log p

n0
) ≥ 1− α.

This implies that

(a) If Mn,p ≤ Cb for some Cb > 0, then

inf
Ĉ

sup
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cαe−
1
8M

2
n,p · s log p

n0
) ≥ 1− α.

(b) If Mn,p →∞ as n→∞, then for any δ > 0,

inf
Ĉ

sup
θ∈G(s,Mn,p)

F∈Ψ(n0;n,p)

P(Rθ(Ĉ)−Ropt(θ) ≥ Cαe−( 1
8 +δ)M2

n,p · s log p

n0
) ≥ 1− α.
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