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Compressed Sensing and Affine Rank Minimization
Under Restricted Isometry

T. Tony Cai and Anru Zhang

Abstract—This paper establishes new restricted isometry con-
ditions for compressed sensing and affine rank minimization. It
is shown for compressed sensing that guaran-
tees the exact recovery of all sparse signals in the noiseless case
through the constrained minimization. Furthermore, the upper
bound 1 is sharp in the sense that for any , the condition

is not sufficient to guarantee such exact recovery
using any recovery method. Similarly, for affine rank minimiza-
tion, if then all matrices with rank at most can be
reconstructed exactly in the noiseless case via the constrained nu-
clear norm minimization; and for any
does not ensure such exact recovery using any method. Moreover,
in the noisy case the conditions and
are also sufficient for the stable recovery of sparse signals and

low-rank matrices respectively. Applications and extensions are
also discussed.

Index Terms—Affine rank minimization, compressed sensing,
Dantzig selector, constrained minimization, low-rank matrix
recovery, constrained nuclear norm minimization, restricted
isometry, sparse signal recovery.

I. INTRODUCTION

C OMPRESSED sensing has received much recent atten-
tion in signal processing, applied mathematics and sta-

tistics. A closely related problem is affine rank minimization.
The central goal in these problems is to accurately reconstruct
a high dimensional object of a certain special structure, namely
a sparse signal in compressed sensing and a low-rank matrix
in affine rank minimization, through a small number of linear
measurements. Interesting applications of compressed sensing
and affine rank minimization include coding theory [1], [13],
magnetic resonance imaging [22], signal acquisition [16], [29],
radar system [4], [21], [32] and image compression [27], [30].
In compressed sensing, one wishes to recover a signal

based on where

(1)

Here is a given sensing matrix and is the
measurement error. In affine rank minimization, one observes

(2)
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where is a known linear map, is
an unknown matrix, and is an error vector. The goal is to
reconstruct based on and the linear map . In these prob-
lems, the dimension is typically much larger than the number
of measurements, i.e., and . A rather
remarkable fact is that, when the signal is sparse and the
matrix has low rank, they can be reconstructed exactly in
the noiseless case and stably in the noisy case using computa-
tional efficient algorithms, provided that the sensing matrix
and the linear map satisfy certain restricted orthogonality
conditions.
For the reconstruction of and , the most intuitive ap-

proach is to find the sparsest signal or the lowest-rank matrix
in the feasible set of possible solutions, i.e.,

where denote the norm of , which is defined to be
the number of nonzero coordinates, and is a bounded set
determined by the error structure. However, it is well-known
that such methods are NP-hard and thus computationally infea-
sible in the high dimensional settings. Convex relaxations of
these methods have been proposed and studied in the literature.
Candès and Tao [13] introduced an minimization method for
the sparse signal recovery and Recht, et al. [27] proposed a nu-
clear norm minimization method for the matrix reconstruction,

(3)

(4)

where is the nuclear norm of which is defined to be the
sum of all singular values of . Here in the noiseless
case and is the feasible set of the error vector when is
bounded. These methods have been shown to be effective for
the recovery of sparse signals and low-rank matrices in a range
of settings. See, e.g., [13], [14], [18], [27], [15].
One of the most commonly used frameworks for compressed

sensing is the Restricted Isometry Property (RIP) introduced in
[13]. The RIP framework was later extended to the affine rank
minimization problem by Recht et al. in [27]. A vector is said
to be -sparse if , where
is the support of . We shall use the phrase“ -rank matrices” to
refer to matrices of rank at most . For matrices

, and , define the inner product of
and as . The
norm associated with this inner product is the Frobenius norm,

. The following defi-
nitions are given by [13], [27], [23].

1053-587X/$31.00 © 2013 IEEE



3280 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 13, JULY 1, 2013

Definition 1.1: Let and let
be integers. The restricted isometry constant (RIC) of order is
defined to be the smallest non-negative number such that

(5)

for all -sparse vectors . The restricted orthogonality constant
(ROC) of order is defined to be the smallest non-nega-
tive number such that

(6)

for all -sparse vector and -sparse vector with disjoint
supports.
Similarly, let be a linear map and let

be integers. The restricted isometry
constant (RIC) of order is defined to be the smallest non-neg-
ative number such that

(7)

for all matrix of rank at most . The restricted or-
thogonality constant (ROC) of order is defined to be
the smallest non-negative number such that

(8)

for all matrices and which have rank at most and
respectively, and satisfy and .
In addition to RIP, another widely used criterion is the

mutual incoherence property (MIP) defined in terms of
. See, for example, [19], [7]. The MIP is

a special case of the restricted orthogonal property as
when the columns of are normalized.
Roughly speaking, the RIC and ROC measure

how far subsets of cardinality of columns of are to an or-
thonormal system. It is obvious that and are increasing
in each of their indices. It is noteworthy that our definition of
ROC in the matrix case is different from the one given in [23].
Sufficient conditions in terms of the RIC and ROC for the

exact recovery of -sparse signals in the noiseless case include
[13]; [14];

[5], [6], and
when [19], [20], [7]. Sufficient conditions for the exact
recovery of -rank matrices include

where [23]. It is however unclear if any of these
conditions can be further improved.
In this paper we establish more relaxed RIP conditions for

sparse signal and low-rank matrix recovery. More specifically,
we show that the condition

(9)

guarantees the exact recovery of all -sparse signals in the
noiseless case via the constrained minimization (3) with

. Furthermore, we show that the constant 1 in
(9) is sharp in the sense that for any , the condition

is not sufficient to guarantee such exact
recovery using any method. Similarly it is shown that the
condition

(10)

is sufficient for the exact reconstruction of all -rank matrices
in the noiseless case through the constrained nuclear norm min-
imization (4) with , and that for any , the con-
dition is not sufficient to guarantee such
exact recovery using any method. Moreover, in the noisy case
the conditions (9) and (10) also guarantee the stable recovery of
sparse signals and low-rank matrices respectively. In addition
to the sufficient conditions (9) and (10), extensions to the more
general RIP conditions are also considered.
The new RIP conditions are weaker than the known RIP con-

ditions in the literature. The techniques and results developed in
the present paper have a number of applications in signal pro-
cessing, including the design of compressed sensing matrices,
signal acquisition, and analysis of compressed sensing based
radar system. We discuss these applications in Section IV.
The rest of the paper is organized as follows. In Section II,

we first introduce the basic notations and definitions and then
present the main results for both sparse signal recovery and low-
rank matrix recovery. Extensions of the results
and to the more general RIP conditions are also
considered. Section III discusses the relationship between our
results and other known RIP conditions. Section IV illustrates
some applications of the results in signal processing. The proofs
of the main results are given in Section V.

II. NEW RIP CONDITIONS

We present the main results in this section. It will be first
shown that the conditions and
are sharp for the exact recovery in the noiseless case and stable
recovery in the noisy case. The more general RIP conditions
will be considered at the end of this section.
Let us begin with basic notation. For is de-

fined as the vector with all but the largest entries in absolute
value set to zero, and . For amatrix

(without loss of generality, assume that ) with
the singular value decomposition where the
singular values are in descending order

, we define and
. We should also note that the nuclear norm

of a matrix equals the sum of the singular values, and the spec-
tral norm of a matrix equals its largest singular value. Their
roles are similar to those of norm and norm in the vector
case, respectively. For a linear operator , we
denote its dual operator by .
It follows from [25] that the results for the low-rank matrix

recovery are parallel to those for the sparse signal recovery. So
we shall present the results for the two problems together in this
section. The following theorem shows that the conditions (9)
and (10) guarantee the exact recovery of all -sparse signals
and -rank matrices through the constrained minimization
and constrained nuclear norm minimization respectively.
Theorem 2.1: Let be a -sparse vector and .

If , then , where is the minimizer of
(3) with . Similarly, let be an -rank matrix and

. If , then , where is the
minimizer of (4) with .
We now turn to the noisy case. Although our main focus is

on the recovery of sparse signals and low-rank matrices, we
shall state the results for general signals and matrices that are
not necessarily sparse or low-rank.
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We consider two bounded noise settings: , and
(signal case) and (matrix case).

The case of Gaussian noise, which is of significant interest in
statistics, can be essentially reduced to the bounded noise case.
See, for example, Section 4 in [6] for more discussions. In the
theorems below, we shall write for and and write for

and . We first consider the case where the norm of
the error vector is bounded.
Theorem 2.2: Consider the signal recovery model (1) with

. Let be the minimizer of (3) with
for some . If for some ,

then

(11)

Similarly, consider the matrix recovery model (2) with
. Let be the minimizer of (4) with
for some . If for some , then

(12)

We now consider the case where the error vector is in a
polytope defined by and . This
case is motivated by the Dantzig Selector method considered in
[14] for the Gaussian noise case.
Theorem 2.3: Consider the signal recovery model (1) with

. Let be the minimizer of (3) with
for some . If for some

, then

(13)

Similarly, suppose we have the signal and matrix recovery
model (2) with . Let be the minimizer of
(4) with for some . If

for some , then

(14)

Theorems 2.1, 2.2, and 2.3 shows that the conditions
and are respectively sufficient

for the exact and stable reconstruction of sparse signals and
low-rank matrices via the constrained minimization and
nuclear norm minimization. The following theorem shows that
the upper bound 1 in these conditions is in fact sharp.
Theorem 2.4: Let . There exists a sensingmatrix

such that and for some -sparse signals

with . Consequently, there does not
exist any method that can exactly recover all -sparse signals
based on with .
Let . There exists a linear map such

that and for some matrices with
, and . Therefore, it is

impossible for anymethod to recover all -rankmatrices exactly
based on with .
Remark 2.1: Theorem 2.4 implies that for any

fails to guarantee the exact recovery of all -sparse
signals. These results immediately show that for any , the
condition or is not sufficient
to ensure in the noisy case stably recovery of all -sparse signals
and all -rank matrices.
Remark 2.2: The results on the bounded noise case can be

applied to immediately yield the corresponding results for the
Gaussian noise case by using the same argument as in [5], [6].
We illustrate this point for the signal recovery. Suppose

in (1). Define
and . Then, with prob-
ability at least , the Dantzig selector given by

(3) with satisfies

(15)

and the constraint minimizer defined in (3) with
satisfies

(16)

with probability at least . We refer readers to [5], [6] for
further details.

A. Extensions to More General RIP Conditions

We have shown that the conditions and
are sufficient respectively for sparse signal recovery

and for low-rank matrix recovery. The same techniques can be
used to extend the results to a more general form,

(17)

(18)

Theorem 2.5: In the noiseless case, Theorem 2.1 holds with
the conditions and replaced by
(17) and (18) respectively.
In the noisy case, we have the following two theorems parallel

to Theorems 2.2 and 2.3.
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Theorem 2.6: Consider the signal recovery model (1) with
. Let be the minimizer of (3) with
for some . If for some

positive integers and with , then

(19)

Similarly, consider the matrix recovery model (2) with
. Let be the minimizer of (4) with
for some . If for some positive

integers and with , then

(20)

Theorem 2.7: Consider the signal recovery model (1) with
. Let be the minimizer of (3) with

for some . If for
some positive integers and with , then

(21)

Similarly, suppose we have the signal and matrix recovery
model (2) with . Let be the minimizer of
(4) with for some . If

for some integers and with ,
then

(22)

The next theorem shows that the upper bound 1 in the condi-
tions and cannot be
further improved.
Theorem 2.8: Let , and .

Let be defined as (17). Then there exists a sensing matrix
such that and for some -sparse

signals with . Consequently, there
does not exist any method that can exactly recover all -sparse
signals based on with .

Similarly, let and .
Let be defined as (18). Then there exists a linear map
such that and for some matrices

with , and .
Consequently, it is impossible for any method to exactly recover
all -rank matrices based on with .
Same as Theorem 2.4, Theorem 2.8 implies that in the noisy

case stably recovery of all -sparse signals and all -rank ma-
trices cannot be guaranteed by or

for any .
Remark 2.3: We established the more general RIP conditions

and . For fixed ,
among these conditions, the one with or
is the weakest. We shall illustrate this for the signal case. By
Lemma 5.4,

Hence, for all implies
.

III. RELATIONSHIP TO OTHER RESTRICTED
ISOMETRY CONDITIONS

In the last section, we have established the sufficient condi-
tions and for the exact recovery
in the noiseless case and stable recovery in the noisy case. We
discuss in this section the relationships between these condi-
tions and other restricted isometry conditions introduced in the
literature.
By the simple fact that for and

and , it is easy to see that the condition

is weaker than
and , which were

mentioned in the introduction. Note that setting in
the condition yields a sufficient condition

which is more general than the MIP
condition when given in [19] and [20] for
the noiseless case and [7] for the noisy case.
There are also several sufficient conditions in the literature

that are based on the RIC alone, such as
[10], [11]; [6]; [8];

[26] and and [9]. For the
matrix recovery, sufficient conditions include
[15]; , and [23];

and [31], and and
[9]. In particular, Cai and Zhang [9] showed that
and are sharp RIP conditions for the

exact recovery. It is interesting to compare these results on
, and with and .
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The following lemma provides a bound for the ROC in
terms of the RIC and can be used to compare different RIP
conditions.
Lemma 3.1: Let . Then we have

(23)

In addition, both coefficients, 2 in the even case and in
the odd case, cannot be further improved.
In the matrix case, suppose is a linear map,

then

(24)

In addition, the coefficient 2 in the even case cannot be further
improved.
With Lemma 3.1, we can naturally obtain the following result

which shows that the conditions and
are mostly weaker than the RIP conditions and

respectively.
Proposition 3.1: If for some integer , then

(25)

Similarly in the matrix case, if for some integer
, then

(26)

Sufficient conditions in terms of and are also com-
monly used in the literature. To the best of our knowledge,
the weakest bounds on and for the exact recovery are

and given by Cai and Zhang [9]. It is easy
to see that the conditions and
given in the present paper are strictly weaker than these condi-
tions respectively.
Proposition 3.2: If for some integer , then

Similarly, if for some integer , then

This is an immediate consequence of the results given in
Section II and the following lemma given in [15].
Lemma 3.2: Suppose and is a linear map from

to , then

(27)

IV. APPLICATIONS

As mentioned earlier, compressed sensing and affine rank
minimization have a wide range of applications. The techniques
and results developed in this paper naturally have a number
of applications in signal processing, including the design of
compressed sensing matrices, signal acquisition, and analysis
of compressed sensing based radar system. We discuss some of
these applications in this section.
An important problem in compressed sensing is the design of

sensing matrices that guarantee the exact recovery in the noise-
less case and stable recovery in the noisy case. Different types of
matrices have been shown to satisfy the previously known suf-
ficient RIP or MIP conditions with high probability. Examples
include i.i.d. Gaussian matrices [13], [14], general random ma-
trix satisfying concentration inequality [3], Toeplitz-structured
matrices [2], structurally random matrices [17] and the matrices
from transmission waveform optimization [32]. These matrices
are thus provably suitable for compressed sensing. A direct con-
sequence of the weaker RIP condition obtained in this paper is
that a smaller number of measurements are required to guar-
antee the exact or stable recovery of sparse signals.
Take for example i.i.d. Gaussian or Bernoulli random ma-

trices. Theorem 5.2 in [3] shows that if a random sensing matrix
satisfies

then for any positive integer and , the RIC
of the matrix satisfies

(28)

It is helpful to compare the condition in terms of
these random sensing matrices to the best known RIP conditions
in the literature: and [9]. Suppose for some
given one wishes the sensing matrix to satisfy the
RIP condition or with probability at least

. Then, based on (28), for given and the number of
measurements must satisfy respectively

and

On the other hand, it is easy to see that is implied
by which is in turn implied by the condition

and . Note that for given and
with

guarantees with probability at least , and
with
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ensures with probability at least . Hence,
holds with probability at least if the number

of measurements satisfies

(29)

Therefore, for large and , the required number of measure-
ments to ensure is less than 71.2% (115.4/
162) and 75.1% (115.4/153.6) of the corresponding required
number of measurements to ensure and ,
respectively.
The results given in this paper can also be used for certain

theoretical analysis in signal processing. One example is the
signal acquisition problem studied in [16]. Davenport et al. [16]
considered acquiring a finite window of a band-limited signal

given by

where ( is the imaginary unit) are the Fourier
basis functions, and is sparse. Sup-
pose the measurements are acquired as

where is measurement error. Then it can be written as

(30)

which is exactly (1). When with i.i.d. Gaussian
or Bernoulli, as discussed above, the measurement matrix
satisfies the RIP condition of order or with high probability
provided that

(31)

in which case stable recovery of the signal can be achieved
through minimization.
The lower bound of in (31) is typically computed through

simulations [16], [29]. Our results yield a theoretical lower
bound for , namely based on (29). It is also
helpful to provide an upper bound for the error of recovery.
Suppose that and Condition (31) is satisfied.
Then (15) and (16) yield that the Dantzig selector and
constraint minimizer given in Remark 2.2 satisfy, with high
probability,

where are constants specified in Remark 2.2.

In addition, the results obtained in this paper are also useful in
the analysis of compressed sensing based radar system [4]. Sup-
pose the object of interest is represented by and the trans-
mitted radar pulse for detecting the object is . Then the re-
ceived radar signal is . Baraniuk
and Steeghs [4] discretizes this equation and the compressed
sensing based radar model then becomes

which is the same as the compressed sensing model (1) in the
noiseless case. Whether it is possible to recover the signal
with accuracy requires checking the condition on the matrix

with . Weaker RIP condi-
tion makes it easier to guarantee the recovery of the signal .

V. PROOFS

We now prove the main results of the paper. Throughout this
section, we shall call a vector an “indicator vector” if it has only
one non-zero entry and the value of this entry is either 1 or .
We first state and prove a key technical tool used in the

proof of the main results. It provides a way to estimate the
inner product and by the ROC when only one
component is sparse or low-rank.
Lemma 5.1: Let and . Suppose

have disjoint supports and is -sparse. If and
, then

(32)

Let and . Suppose
satisfy , and . If

and , then

(33)

Proof of Lemma 5.1: We first state the following result
which characterizes the property of and when
and . The result follows directly from Lemma 2.3 in
[27] and we thus omit the proof here.
Lemma 5.2: For

if and only if there exist orthonormal bases
and such that the singular value

decompositions of and have the form

and

where and are disjoint subsets of
.

We shall only prove the signal case in Lemma 5.1 as the proof
for the matrix case is essentially the same. Suppose ,
then is an -sparse vector. When , by the definition of

,

since . Thus (32) holds for .
Now consider the case . We shall prove by induction.

Assume that (32) holds for . For , suppose can be written
as , where
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are indicator vectors (defined in the beginning of this section)
with different supports. Notice that ,
so

which means is not empty. We can pick the largest element
, which implies

(34)

(It is noteworthy that even if the largest in is , (34) still
holds). Define

(35)

and

(36)

It is easy to check that

. By (34), for all ,

We also have

and

The last inequality follows from the first part of (34). Finally
since is -sparse, we can use the induction assumption,

which gives (32) for .

Proof of Theorems 2.1 and 2.5: It suffices to prove The-
orem 2.5 as Theorem 2.1 is a spacial case of Theorem 2.5. We
first state two lemmas. Lemma 5.3, which characterizes the null
space properties, is from [28] and [24]. Lemma 5.4, which re-
veals the relationship between ROC’s of different orders, is from
[6].
Lemma 5.3: In the noiseless case, using (3) with

one can recover all -sparse signal if and only if for all
,

Similarly in the noiseless case, using (4) with one
can recover all matrices of rank at most if and only if for
all ,

Lemma 5.4: For any and positive integers such
that is an integer, then

As mentioned before, by [25], the results for the sparse signal
recovery imply the corresponding results for the low-rank ma-
trix recovery. So we will only prove the signal case. By Lemma
5.3, it suffices to show that for all vectors

.
Suppose there exists such that

. Let , where is a non-neg-
ative and non-increasing sequence; are indicator vec-
tors (defined at the beginning of this section) with different sup-
ports in . Then we have . Hence,

and

We set , It then follows
from Lemma 5.1 that
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On the other hand, Lemma 5.4 yields

Hence,

which contradicts the fact that and .

Proof of Theorems 2.2, 2.3, 2.6 and 2.7: Again, it suffices
to prove Theorems 2.6 and 2.7. We need the following Lemma
5.5 from [9] which provides an inequality between the sums of
the th power of two sequences of nonnegative numbers based
on the inequality of their sums.
Lemma 5.5: Suppose , and

. Then for all ,

(37)

More generally, suppose , and
, then for all ,

(38)

We first prove Theorem 2.2. Set and .
The following inequalities are well known,

and

See, for example, [18] (signal case) and [31] (matrix case).
Again, we show the signal case only. By the boundedness of
and the definition of the feasible set for ,

(39)

On the other hand, suppose , where are
non-negative and non-decreasing, are indicator vectors
with different supports. Then

(40)

Hence,

and

Now set , and
. Lemma 5.1 then yields

On the other hand,

(41)

Now we denote as , then

Hence

(42)
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Applying Lemma 5.5 with and yields

Finally, it follows from Lemma 5.4 that

So

which finishes the proof of Theorem 2.2.
The proof of Theorem 2.7 is basically the same, where we

only need to use the inequalities

and

instead of (39) and (41).

Proof of Theorem 2.4 and 2.8: Again, it suffices to prove
Theorem 2.8. We first prove the signal case. Set

Since , we can extend into an orthonormal basis
of . Define the linear map by

(43)

for all . The Cauchy-Schwarz Inequality yields
that for all -sparse vector

Note that

So

which implies .
Now we estimate . For any -sparse vector

and -sparse vector with disjoint supports,
write and , we have

.
1) When , The Cauchy-Schwarz Inequality yields
that

and

So

and consequently . Hence
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2) When , if or , it is clear that
for any . Without

loss of generality, we assume that and are non-zero
and are normalized so that . Since
and are -sparse respectively and and have

disjoint supports, it follows from the Cauchy-Schwarz In-
equality that for all ,

and

Hence,

where the last inequality is due to the facts that
and . So

and

To sum up, we have shown . Furthermore,
let

and

so and are both -sparse and , since .
Suppose , then the -sparse signals and are
not distinguishable based on . Finally,

is impossible by Theorem 2.5, we must have
. This finishes the proof for the signal case.
For the matrix case, the proof is essentially the same as the

signal case. First we present the following lemma which can
be regarded as an extension of the Cauchy-Schwarz Inequality

with a constraint on .
Lemma 5.6: Let be a matrix with sin-

gular values , then for all with
rank at most ,

Then the matrix case can be proved by replacing the notations
of vectors in the above proof by matrices and by using Lemma
5.6 instead of the Cauchy-Schwarz’s Inequality in the proof of
the signal case.

Proof of Lemma 3.1: For -sparse vectors with
disjoint supports, we can write them as

where is the support of is the support of
, and is the vector with th entry equals to and all others
entries equal to zero.
Correspondingly, suppose with rank at most
, which satisfies . Lemma 5.2 shows that
they have singular value decompositions

and

where the disjoint subsets and satisfy . We
now consider the even and odd cases separately.
Case 1. Is Even: We only consider the matrix case.

The proof of the signal case is similar. Without loss of gen-
erality, we assume that and are normalized so

. Divide and into two parts,
, such that are disjoint and

for . Denote

and

Then

and consequently . Now in the example provided in
the proof of Theorem 2.4, if , we have
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, which means the coefficient “2” in the inequalities
of the even case in (24) cannot be improved.
Case 2. Is Odd: For the proof of (23) and (24), we

only show the matrix case as the signal case is similar. Since we
can set or for or , Without loss of
generality, we assume that might be 0
for . Also without loss of generality, we can assume
and are normalized so

and

Then we have

which implies

Next we will construct an example for the signal recovery in
the odd case where . Suppose is
odd and , denote

and

(44)

Similarly as in the proof of Theorem 2.4, we can extend and
to an orthonormal basis of as . Then for

, we define by

for . Then it is clear that for all ,

Let and be -sparse vectors with disjoint supports and
. Then

which implies . It can be easily verified that when

we have . These together imply
.

Denote as the th entry of . Now let us estimate . For
all -sparse , suppose , then
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Suppose and
, then and

where the last inequality is due to the facts that is a non-
negative integer and is odd. It then follows that for all -sparse
vector ,

It can also be easily verified that the equality above can be
achieved for

Hence . In summary, in our

setting, which implies that the constant in (23) is not
improvable.
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