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This paper establishes a sharp condition on the restricted isometry property (RIP) for
both the sparse signal recovery and low-rank matrix recovery. It is shown that if the
measurement matrix A satisfies the RIP condition δA

k < 1/3, then all k-sparse signals β

can be recovered exactly via the constrained �1 minimization based on y = Aβ . Similarly,
if the linear map M satisfies the RIP condition δMr < 1/3, then all matrices X of rank
at most r can be recovered exactly via the constrained nuclear norm minimization based
on b = M(X). Furthermore, in both cases it is not possible to do so in general when the
condition does not hold. In addition, noisy cases are considered and oracle inequalities are
given under the sharp RIP condition.

© 2012 Published by Elsevier Inc.

1. Introduction

Compressed sensing has been a very active field of recent research with a wide range of applications, including sig-
nal processing, medical imaging, seismology, and statistics. The goal is to develop efficient data acquisition techniques that
allow accurate reconstruction of highly undersampled sparse signals. It is now well understood that the constrained �1 min-
imization method provides an effective way for recovering sparse signals. See, e.g., Candès and Tao [6,7], Donoho [11] and
Donoho, Elad, and Temlyakov [12]. A closely related problem is the affine rank minimization problem, where the goal is
to recover a large low-rank matrix based on an observation of an affine transformation of the matrix. Applications include
linear system identification and control, Euclidean embedding, and image compression. See, e.g., Candès and Plan [9], and
Recht, Fazel and Parrilo [18].

More specifically, in compressed sensing, one observes (A, y) with

y = Aβ + z (1)

where y ∈ R
n , A ∈ R

n×p with n � p, β ∈ R
p is a sparse signal of interest, and z ∈ R

n is a vector of measurement errors.
One wishes to recover the unknown sparse signal β ∈ R

p based on A and y using an efficient algorithm. The affine rank
minimization problem aims to reconstruct a low-rank matrix X based on a known linear map M and an observed vector
b ∈ R

q where

b = M(X) + z. (2)
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Here M : Rm×n → R
q is a linear map, X ∈R

m×n is an unknown low-rank matrix of interest, and z ∈R
q is an error vector.

The methods of constrained �1 and nuclear norm minimization,

(PB) β̂ = arg min
β

{‖β‖1: Aβ − y ∈ B
}
, (3)

(PB) X∗ = arg min
X

{‖X‖∗: M(X) − b ∈ B
}
, (4)

as convex relaxations to �0 and rank minimization respectively, have been shown to be very effective in solving these
problems. Here ‖X‖∗ is the nuclear norm of X , which is defined to be the sum of the singular values of X , and B is a
bounded set determined by the noise structure. For example, B = {0} in the noiseless case and B is the feasible set of the
error vector z in the case of bounded noise.

One of the most commonly used frameworks for sparse signal and low-rank matrix recovery is the Restricted Isometry
Property (RIP). See Candès and Tao [6] and Recht et al. [18]. A vector is said to be k-sparse if | supp(v)| � k, where supp(v) =
{i: vi �= 0} is the support of v . In this paper, we shall use the phrase “r-rank matrices” to refer to matrices of rank at most r.
In compressed sensing, the RIP requires subsets of certain cardinality of the columns of A to be close to an orthonormal
system. The RIP conditions for the signal and matrix recovery are similar and we shall state them together to save space.
Let A ∈ R

n×p be a matrix and let M :Rm×n →R
q be a linear map. For integers 1 � k � p and 1 � r � min{m,n}, define the

restricted isometry constants (RIC) δA
k and δMr to be the smallest non-negative numbers such that for all k-sparse vectors

β and all r-rank matrices X ,(
1 − δA

k

)‖β‖2
2 � ‖Aβ‖2

2 �
(
1 + δA

k

)‖β‖2
2, (5)(

1 − δMr
)‖X‖2

F �
∥∥M(X)

∥∥2
2 �

(
1 + δMr

)‖X‖2
F (6)

where ‖X‖2
F = ∑

x2
i j is the squared Frobenius norm of X = (xij).

A major focus of compressed sensing is to find explicit and simple conditions under which the sparse signals can be
recovered exactly using a computational efficient algorithm. A variety of sufficient conditions on the RIP for the exact/stable
recovery of k-sparse signals and r-rank matrices have been introduced in the literature. Sufficient conditions for the signal
recovery include δA

2k <
√

2 − 1 in Candès [5], δA
2k < 0.472 in Cai, Wang and Xu [2], δ2k < 0.493 in Mo and Li [15] and

δA
k < 0.307 in Cai, Wang and Xu [4]; for the matrix recovery, sufficient conditions are δM4r <

√
2 − 1 in Candès and Plan

[9], δM5r < 0.607, δM4r < 0.558, δM3r < 0.4721 in Mohan and Fazel [16], δM2r < 0.4931, δMr < 0.307 in Wang and Li [20]. On
the other hand, negative results have also been obtained. In the case of signal recovery, Davies and Gribonval [10] and Cai,
Wang and Xu [4] showed respectively that it is impossible to recover certain k-sparse signals when δA

2k >
√

2/2 and when

δA
k = k−1

2k−1 < 0.5. For matrix recovery, Wang and Li [20] proved that nuclear norm minimization cannot recover exactly all

rank r matrices in the noiseless case when δMr = 1/3 or δM2r = √
2/2 + ε, where ε is arbitrarily small.

Among those RIP conditions, the ones on δA
k and δMr are arguably the most natural for the reconstruction of k-sparse

signals and r-rank matrices, respectively. The main goal of this paper is to establish a sharp condition on δA
k and δMr .

Specifically, we show that in the noiseless case (z = 0) the conditions

δA
k <

1

3
and δMk <

1

3
(7)

are sharp respectively for the exact recovery of k-sparse signals based on (1) and for the exact recovery of r-rank matrices
based on (2). These conditions are also sharp for the stable recovery in the noisy case. That is, under the condition δA

k < 1/3,
all k-sparse signals can be exactly recovered via the constrained �1 minimization (3) in the noiseless case and can be stably
recovered in the noisy case. Furthermore, it is not possible to do so in general if δA

k � 1/3. Similarly, for the recovery of
r-rank matrices using the constrained nuclear norm minimization based on (2), the condition δMr < 1/3 is sharp. To the
best of our knowledge, (7) is the first sharp RIP condition.

Various oracle inequalities have been given in the literature for the constrained �1/nuclear norm minimization estimators,
known as the Dantzig Selector, in the setting of Gaussian noise. See, for example, Candès and Tao [7] and Cai, Wang and
Xu [3] for the sparse signal recovery and Candès and Plan [9] for the matrix recovery under the condition δM4r <

√
2 − 1. In

this paper we derive oracle inequalities for both sparse signal and low-rank matrix recovery under the condition δA
k < 1/3

and δMr < 1/3.
Besides providing a sharp condition on δA

k and δMr , the same techniques can also be used to sharpen other RIP conditions
such as δA

2k and δM2r . We show that, in the noiseless case, δA
2k � 1/2 and δM2r � 1/2 are respectively sufficient for the exact

recovery of k-sparse signals based on (1) and for the exact recovery of r-rank matrices based on (2).
The rest of the paper is organized as follows. Section 2 reviews basic notations and definitions and states some useful

facts on the null spaces. Section 3.1 then introduces a technically important tool called the Division Lemma, which is used
in the detailed analysis for both the signal and matrix recovery. Sections 3.2 and 3.3 separately analyze the sparse signal
recovery and low-rank matrix recovery, in both the noiseless and noisy settings. Section 4 provides oracle inequalities for
Gaussian noise under the conditions δA

k < 1/3 and δMr < 1/3, and discusses other RIP conditions. The proofs of the main
results are given in Section 5.



76 T.T. Cai, A. Zhang / Appl. Comput. Harmon. Anal. 35 (2013) 74–93
2. Notations and preliminaries

In this section, we introduce basic notations and definitions that will be used throughout the paper, and state some facts
on the null spaces that will be used later.

For a vector v = (v1, . . . , v p)′ ∈R
p , define vmax(k) to be the vector v with all but the largest k entries in absolute values

set to zero, and let v−max(k) = v − vmax(k) . For a matrix X ∈ R
m×n (without loss of generality, assume that m � n), let

a1 � a2 � · · · � am be its singular values and let X = ∑m
i=1 aiui v T

i be the singular value decomposition of X . We define
Xmax(r) = ∑r

i=1 aiui v T
i and X−max(r) = X − Xmax(r) = ∑m

i=r+1 aiui v T
i .

For 0 < α < ∞ define the �α norm of a vector v ∈ R
p as ‖v‖α = (

∑p
i=1 |vi |α)1/α . In addition, ‖v‖∞ = supi |vi | and

‖v‖0 = | supp(v)|. For matrices X = (xij), Y = (yij) ∈ R
m×n , define the inner product of X and Y as 〈X, Y 〉 = trace(X T Y ) =∑m

i=1
∑n

j=1 xij yi j . The norm associated with this inner product is the Frobenius norm, ‖X‖F = √〈X, X〉 =
√∑m

i=1
∑n

j=1 x2
i j .

Note that Rm×n associated with this inner product is a Hilbert space. The spectral norm of a matrix X ∈ R
m×n is defined as

‖X‖ = supβ∈Rn ‖Xβ‖2/‖β‖2, which is equal to the largest singular value of X .
For a linear map M : Rm×n → R

q , we denote its adjoint operator by M∗ : Rq → R
m×n , so that for all X ∈ R

m×n and
b ∈ R

q , 〈X,M∗(b)〉 = 〈M(X),b〉�2 . For any given norm | · | in an inner product space (Rm×n, 〈· , ·〉), the dual norm | · |d is
defined as |X |d = max{〈X, Y 〉: |Y | = 1}. It is well known that the dual norm of the Frobenius norm is itself and the nuclear
norm and spectral norm are dual norms of each other. The null spaces of a matrix A ∈R

n×p and a linear map M : Rm×n →
R

q are denoted respectively by N (A) and N (M), i.e., N (A) = {β ∈R
p: Aβ = 0} and N (M) = {X ∈ R

m×n: M(X) = 0}.
Finally, we introduce a useful tool for providing conditions for the exact recovery. Stojnic, Xu and Hassibi [19] gave a

necessary and sufficient condition on the null space for the exact recovery of k-sparse signals in the noiseless case. It was
shown that one can recover all k-sparse signals β using (3) with B = {0} if and only if for all β ∈N (A) \ {0},

‖βmax(k)‖1 < ‖β−max(k)‖1. (∗)

Oymak and Hassibi [17] gave a similar result for the exact recovery of r-rank matrices in the noiseless case. One can recover
all r-rank matrices X using (4) with B = {0} if and only if for all X ∈N (M) \ {0},

‖Xmax(r)‖∗ < ‖X−max(r)‖∗. (∗∗)

Based on these results, one can consider the recovery problem by investigating the null spaces of A and M instead of
checking the original definition of exact recovery, which often simplifies the problem.

3. Sharp RIP conditions for sparse signal and low-rank matrix recovery

With the preparations given in Section 2, we establish in this section the main results of this paper – a sharp RIP bound
for the exact recovery of sparse signals and low-rank matrices in the noiseless case and the stable recovery in the noisy case.
A unified treatment is given for the sparse signal recovery and low-rank matrix recovery. We first introduce in Section 3.1
an elementary but important technical lemma which we call the Division Lemma, and then discuss the main results for
sparse signal recovery in Section 3.2 and the low-rank matrix recovery in Section 3.3.

3.1. Division Lemma

As discussed in Section 2, we will establish the RIP condition for the exact recovery using the null space properties of A
and M. In order to relate the general elements in the null space with the RIP condition whose constraint is on the sparse
vectors and low-rank matrices, a natural approach is to divide these elements into sums of sparse or low-rank components.
Consequently, we introduce the Division Lemma below, which is a key technical tool for the proof of the main results.

Lemma 3.1 (Division Lemma). Let r and m be positive integers with m � 2r. Let a1 � a2 � a3 � · · · � am � 0 be a sequence of
non-increasing real numbers satisfying

r∑
w=1

aw �
m∑

w=r+1

aw . (8)

Then there exist non-negative real numbers {si j}1�i�r,2r+1� j�m such that

r∑
i=1

si j = a j, ∀2r + 1 � j � m, (9)

and

1

r

r∑
w=1

aw � ar+i +
m∑

j=2r+1

si j, ∀1 � i � r. (10)
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The proof of Lemma 3.1 is simply by induction on m. The Division Lemma can be illustrated as in the following table.
Each row is an inequality; every element in the first row equals the sum of remaining elements in the same column:

a1 a2 · · · ar � ar+1 ar+2 · · · a2r + a2r+1 · · · am

a1/r a2/r · · · ar/r � ar+1 + s1,2r+1 · · · s1,m

a1/r a2/r · · · ar/r � ar+2 + s2,2r+1 · · · s2,m

.

.

.

.

.

.
. . .

.

.

. �
. . . +

.

.

.

.

.

.

a1/r a2/r · · · ar/r � a2r + sr,2r+1 · · · sr,m

3.2. Sparse signal recovery

We begin with the noiseless case (z = 0) of the sparse signal recovery model (1). In this case, The commonly used �1
minimization method is by (3) with B = {0}. We shall present the sharp RIP condition on δA

k for the exact recovery of all
k-sparse signals for any given integer k � 2.

The following theorem shows that the condition δA
k < 1/3 is sufficient for the exact recovery of k-sparse signals in the

noiseless case.

Theorem 3.1. Suppose the measurement matrix A ∈ R
n×p satisfies δA

k < 1/3 for some integer 2 � k � p. Let y = Aβ where β ∈ R
p

is a k-sparse vector. Then the minimizer β̂ of (3) with B = {0} recovers β exactly, i.e., β̂ = β .

The result below shows that the condition δA
k < 1/3 is sharp for the exact recovery in the noiseless case.

Theorem 3.2. Let 2 � k � p/2. There exists a measurement matrix A ∈ R
n×p with δA

k = 1/3 such that for some k-sparse signals
γ , η ∈ R

p with γ �= η, Aγ = Aη. Consequently, it is not possible for any method to exactly recover all k-sparse signals β based on
(A, y) with y = Aβ . In particular, the �1 minimization (3) with B = {0} cannot recover all k-sparse signals.

Theorems 3.1 and 3.2 together show that the condition δA
k < 1/3 is sharp for all 2 � k � p/2.

Remark 3.1. In the above theorems, the case k = 1 is excluded because the RIP cannot provide any sufficient condition for
the exact recovery via the constrained �1 minimization in this case. Take, for example, n = p − 1 � 1. Let A ∈ R

n×p with
Aβ = (β1 − β2, β3, β4, . . . , βp)T for any β = (β1, β2, β3, . . . , βp)T ∈R

p . Then for all 1-sparse vectors β ,

‖Aβ‖2
2 =

p∑
i=1

β2
i − 2β1β2 = ‖β‖2

2,

which implies the restricted isometry constant δA
1 = 0. However, b = Aγ = Aη where γ = (1,0, . . . ,0) and η =

(0,−1,0, . . . ,0) are both 1-sparse signals. Thus it is impossible to recover both of them exactly relying only on the in-
formation of (A,b). In particular, the �1 minimization (3) with B = {0} cannot recover all 1-sparse signals. Since δA

1 = 0, the
RIP cannot provide any sufficient condition in this case.

We shall now turn to the noisy case of the sparse signal recovery model (1). The noiseless case provides much insight
to the noisy case. In this case the error vector z is nonzero and we shall consider two bounded noise settings

B�2(η) = {
z: ‖z‖2 � η

}
, (11)

BD S(η) = {
z:

∥∥AT z
∥∥∞ � η

}
. (12)

The case of Gaussian noise, which is a canonical model in statistics, can be treated similarly. See Remark 3.2 below. In
the noisy case we shall also consider more general signals β which are not necessarily k-sparse. Decompose β = βmax(k) +
β−max(k) . The �1 norm minimization approach for recovering β in these bounded noise settings is by solving (3) with
B = B�2 (η) or B = BD S(η).

We first consider the stable recovery of β with the error z in a bounded �2 ball.

Theorem 3.3. Consider the signal recovery model (1) with ‖z‖2 � ε. Let β̂ be the minimizer of (3) with B = B�2 (η) defined in (11)
for some η � ε . If δ = δA

k < 1/3 with k � 2, then

‖β̂ − β‖2 �
√

2(1 + δ)

1 − 3δ
(ε + η) + 2

√
2(2δ + √

(1 − 3δ)δ) + 2(1 − 3δ)

1 − 3δ

‖β−max(k)‖1√
k

. (13)
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In particular, for all k-sparse signals β ,

‖β̂ − β‖2 �
√

2(1 + δ)

1 − 3δ
(ε + η).

The result is similar if the error z is in the bounded set ‖AT z‖∞ � ε. The �1 minimization method with B = BD S is
called the Dantzig Selector. See Candès and Tao [7].

Theorem 3.4. Consider the signal recovery model (1) with ‖AT z‖∞ � ε. Let β̂ be the minimizer of (3) with B = BD S(η) defined in
(12) for some η � ε . If δ = δA

k < 1/3 with k � 2, then

‖β̂ − β‖2 �
√

2k

1 − 3δ
(ε + η) + 2

√
2(2δ + √

(1 − 3δ)δ) + 2(1 − 3δ)

1 − 3δ

‖β−max(k)‖1√
k

. (14)

Remark 3.2. Since Gaussian noise is essentially bounded, the results for the signal recovery in Theorems 3.3 and 3.4 can
be directly applied to the Gaussian noise case. Interested readers are referred to Section 4 in [2] and Lemma 5.1 in [1] for
details.

3.3. Low-rank matrix recovery

We now turn to the affine rank minimization problem. As mentioned before, the results are parallel to those for the
sparse signal recovery. As in Section 3.2, we begin with the noiseless case. The ideas and results can be extended to the
noisy case later. Consider the matrix recovery model (2) with z = 0. The nuclear norm minimization method in this case is
given by (4) with B = {0}. The goal is to recover the matrix X whose rank is at most r.

For the same reason as in the signal recovery problem, we shall only consider the case r � 2. The following two theorems,
which are parallel to Theorems 3.1 and 3.2, are the main results in this paper for the low-rank matrix recovery. Theorem 3.5
shows that the condition δMr < 1/3 is sufficient for the exact recovery of r-rank matrices.

Theorem 3.5. Suppose 2 � r � min(m,n). Let X be a matrix of rank at most r and let b = M(X). If δMr < 1/3, then the solution X∗
of the nuclear norm minimization (4) with B = {0} recovers X exactly, i.e., X∗ = X.

The following theorem shows that the condition δMr < 1/3 is sharp. These results together establish the optimal bound
on δMr for the exact recovery in the noiseless case.

Theorem 3.6. Let 2 � r � min(m,n)/2. There exists a linear map M with δMr = 1/3 such that for some matrices X, Y ∈ R
m×n with

rank(X), rank(Y ) � r, M(X) = M(Y ). Consequently, there does not exist any method that can exactly recover all matrices of rank
at most r based on (M,b) with b = M(X). In particular, the nuclear norm minimization (4) with B = {0} cannot recover all r-rank
matrices.

We should note that the result above is stronger than Theorem 1.2 in Wang and Li [20] as it shows that there exists
some linear map M with δMr = 1/3 such that all methods, not just nuclear norm minimization, fail to recover all rank r
matrices in the noiseless case.

Remark 3.3. The reason for excluding the case r = 1 in the two theorems given above is the same as that in the signal
recovery problem: the RIP cannot provide any sufficient condition in this case for the exact recovery through the nuclear
norm minimization. An example is given as follows. Let m,n � 2 and let the linear map M :Rm×n →R

mn−2 be defined by

M(X) = (x11 − x22, x12 + x21, x13, . . . , x1n, x23, . . . , x2n, x31, . . . , xmn)
T

for X = (xij) ∈R
m×n . Then for all matrices X such that rank(X) � 1,

∥∥M(X)
∥∥2

2 =
m∑

i=1

n∑
j=1

x2
i j − 2(x11x22 − x12x21) = ‖X‖2

F .

This implies the restricted isometry constant δMr = 0. In addition, one can check that X = diag(1,0, . . . ,0), Y =
diag(0,−1,0, . . . ,0) are both of rank 1. In addition, b = M(X) = M(Y ). This means that the exact recovery is impossi-
ble based on (M,b) in the noiseless case. Hence the RIP cannot provide a sufficient condition to ensure the exact recovery
of all matrices with rank at most 1.
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We now turn to the noisy case. As in the signal recovery problem, we also consider bounded noise in two settings

B�2(η) = {
z: ‖z‖2 � η

}
, (15)

BD S(η) = {
z:

∥∥M∗z
∥∥ � η

}
. (16)

We shall also consider general matrices that are not necessarily exactly low-rank. Decompose X = Xmax(r) + X−max(r) . The
nuclear norm minimization method is to recover X by solving (4) with B = B�2 (η) or B = BD S(η).

We first consider the case where the error z is in a bounded �2 ball, ‖z‖2 � ε.

Theorem 3.7. Consider the affine rank minimization problem (2) with ‖z‖2 � ε. Let X∗ be the minimizer of (4) with B = B�2 (η)

defined in (15) for some η � ε . If δMr < 1/3 with r � 2, then

‖X∗ − X‖F �
√

2(1 + δ)

1 − 3δ
(ε + η) + 2

√
2(2δ + √

(1 − 3δ)δ) + 2(1 − 3δ)

1 − 3δ

‖X−max(r)‖∗√
r

. (17)

For matrix recovery under the model (2) with the error bound ‖M∗(z)‖ � ε, we have the following similar result for
the matrix Dantzig Selector.

Theorem 3.8. Consider the affine rank minimization problem (2) with ‖M∗(z)‖ � ε. Let X∗ be the minimizer of (4) with B = BD S(η)

defined in (16) for some η � ε . If δMr < 1/3 with r � 2, then

‖X∗ − X‖F �
√

2r

1 − 3δ
(ε + η) + 2

√
2(2δ + √

(1 − 3δ)δ) + 2(1 − 3δ)

1 − 3δ

‖X−max(k)‖∗√
r

. (18)

We omit the proof of Theorem 3.8, which is essentially the same as that of Theorem 3.7.

Remark 3.4. Similarly as in the sparse signal recovery problem, the results for the low-rank matrix recovery in Theorems 3.7
and 3.8 can be extended to the Gaussian noise case. The readers are referred to Lemma 1.1 in Candès and Plan [9] for details.

4. Oracle inequalities and RIP conditions on δA
2k and δM2r

Oracle inequality provides great insight into the performance of a procedure as compared to that of an ideal estimator. It
was first introduced in Donoho and Johnstone [14] in the context of statistical signal processing using wavelet thresholding.
This method has since been applied in many other problems. In particular, various oracle inequalities have been given in
the literature for the constrained �1/nuclear norm minimization procedures. See, for example, Candès and Tao [7], Cai, Wang
and Xu [3], and Candès and Plan [9]. Theorem 4.1 below provides oracle inequalities for sparse signal and low-rank matrix
recovery under the condition δA

k < 1/3 and δMr < 1/3 given in this paper. The technique is analogous to the one used in
Candès and Plan [9], along with Lemma 4.1 given below, Theorems 3.4 and 3.8.

Theorem 4.1. Given the signal recovery model (1), suppose z ∼ N p(0, σ 2 I) and the signal β ∈ R
p is k-sparse. Assume that β̂ is the

minimizer of (3) with B = {z: ‖AT z‖∞ � λ = 4σ
√

(2/3) log p }. If δA
k < 1/3 with k � 2, then

‖β̂ − β‖2
2 � 512

3(1 − 3δA
k )2

log p
∑

i

min
(
β2

i ,σ 2) (19)

with probability at least 1 − 1√
π log p

.

Similarly, for the matrix case (2), suppose z ∼ Nq(0, σ 2 I) and rank(X) � r. Assume that X∗ is the minimizer of (4) with B =
{z: ‖M∗(z)‖ � λ = 16σ

√
(1/3) log(12)max(m,n) }. If δMr < 1/3 with r � 2, then

‖X∗ − X‖2
F � 212 log 12

3(1 − 3δMr )2

∑
i

min
(
σ 2

i (X),max(m,n)σ 2) (20)

with probability at least 1 − e−c max(m,n) , where c > 0 is an absolute constant, and σi(X), i = 1, . . . ,min(m,n) are the singular values
of X .

We should note that the main ideas for the proof here are essentially the same as those for the proof of Theorem 2.6 in
[9], where readers can find more details. Finally, it is noteworthy from these oracle inequalities that in the case of β = 0 or
X = 0, i.e., the input signal or matrix is identically zero, the Dantzig Selector recovers the zero input exactly by zero with
high probability in the Gaussian noise case.
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In addition to providing the sharp condition on δA
k and δMr , the techniques developed in this paper can also be applied to

sharpen other RIP conditions such as δA
2k and δM2r for the exact/stable recovery of the sparse signals and low-rank matrices.

Since δ2k < 1 is known as a necessary condition for the model identifiability (see Lemma 1.2 in [6]), much previous attention
has been on the bounds for δA

2k and δM2r as the sufficient conditions for the recovery of the sparse signals and low-rank
matrices. Applying the same method as that used in the previous section on δMr and δA

k , we have the following theorem
for δA

2k and δM2r .

Theorem 4.2. Suppose 1 � k � p. Let y = Aβ for a k-sparse vector β ∈ R
p . If δA

2k � 1/2, then the minimizer β̂ of (3) with B = {0}
recovers β exactly, i.e., β̂ = β .

Similarly, suppose 1 � r � min(m,n) and let b = M(X) for some matrix X with r-rank. If δM2r � 1/2, then the minimizer X∗
of (4) with B = {0} recovers X exactly, i.e., X∗ = X.

To the best of our knowledge, these are the best bounds on δA
2k and δM2r available as a sufficient condition for the exact

recovery of the sparse signals and low-rank matrices, respectively. Note that Davies and Gribonval [10] proved that it is not
possible to exactly recover all k-sparse signals in the noiseless case when δA

2k >
√

2/2. Hence, the upper bounds on δA
2k are

necessarily less than
√

2/2. There is still a gap between the two bounds 1/2 and
√

2/2 on δA
2k . It is an interesting future

project to close this gap.
It is also noteworthy that Zhang [21, Remark 1] proved for some concave penalty ρ , the estimator

β̂ = arg min
β

(
‖y − Xβ‖2

2 +
p∑

i=1

ρ
(|βi|, λ

))

recovers k-sparse signals exactly in the noiseless case with a suitable choice of λ under the condition δ2k < 1/2 or δ3k < 2/3.
The constrained �1 minimization estimator β̂ defined in (3) with B = {0} is straightforward to compute. In contrast, the
concave penalized minimization estimator requires a good choice of the tuning parameter λ and is not as easy to implement.

It is also interesting to consider conditions on δA
sk and δMsr for some integer s � 1. The following result provides conve-

nient bounds on δA
sk and δMsr in terms of δA

k and δMr respectively. It is also useful for the proof of Theorem 4.1.

Lemma 4.1. For all matrix A ∈ R
n×p and k � 2, s � 2, we have δA

sk � (2s − 1)δA
k . Similarly, for all linear map M : Rm×n → R

q and

r � 2, s � 2, we have δMsr � (2s − 1)δMr .

5. Proofs

In this section we shall first prove the main results. The proofs of some of the main theorems rely on a few additional
technical lemmas. These technical results are collected and proved in Section 5.9.

5.1. Proof of Theorem 3.5

The key to the proof of this theorem is parallelogram identity, since it provides equality rather than inequality in the
estimation in �2 norm as we shall see later.

By (∗∗), we only need to show for all R ∈N (M)\{0}, it satisfies ‖Rmax(r)‖∗ < ‖R−max(r)‖∗ .
Suppose there exists R ∈ N (M) \ {0} such that ‖Rmax(r)‖∗ � ‖R−max(r)‖∗ . Assume R has SVD decomposition R =∑m

i=1 aiuT
i vi,a1 � a2 � · · · � am . Since we can set ai = 0 if i � m,n, without loss of generality we can assume that m,n � r.

By Lemma 3.1, we can find {si j}1�i�r,2r+1� j�m satisfying (9) and (10).

1. When r is even, suppose

R11 =
r/2∑
i=1

aiui vT
i , R12 =

r∑
i=r/2+1

aiui vT
i , R21 =

3r/2∑
i=r+1

aiui vT
i , R22 =

2r∑
i=3r/2+1

aiui vT
i ,

R31 =
m∑

j=2r+1

( r/2∑
i=1

si ju j vT
j

)
, R32 =

m∑
j=2r+1

(
r∑

i=r/2+1

si ju j vT
j

)
(21)

then M(R11 + R12 + R21 + R22 + R31 + R32) =M(R) = 0. By the parallelogram identity,∥∥M(−R11 + R22 + R32)
∥∥2 + ∥∥M(−R12 + R21 + R31)

∥∥2

= 1 [∥∥M(−R11 − R12 + R21 + R22 + R31 + R32)
∥∥2 + ∥∥M(−R11 + R12 − R21 + R22 − R31 + R32)

∥∥2]

2
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= 1

2

[∥∥M(2R11 + 2R12)
∥∥2 + 1

2

∥∥M(−2R11 − 2R21 − 2R31)
∥∥2 + 1

2

∥∥M(2R12 + 2R22 + 2R32)
∥∥]

= 2
∥∥M(R11 + R12)

∥∥2 + ∥∥M(R11 + R21 + R31)
∥∥2 + ∥∥M(R12 + R22 + R32)

∥∥2
. (22)

We use Lemma 5.2 by setting

g = h = r/2, bi = ai, ci = −ai+r/2,di = ai+r, ∀1 � i � r/2,

e j =
r∑

i=1

si, j+2r, ti j = si, j+2r, 1 � i � r/2, 1 � j � m − 2r,

then we get∥∥M(R11 + R21 + R31)
∥∥2 − ∥∥M(−R12 + R21 + R31)

∥∥2

�
(
1 − δMr

)( r/2∑
i=1

a2
i +

3r/2∑
i=r+1

(
ai +

m∑
j=2r+1

si j

)2)
− (

1 + δMr
)( r∑

i=r/2+1

a2
i +

3r/2∑
i=r+1

(
ai +

m∑
j=2r+1

si j

)2)
. (23)

Similarly,∥∥M(R12 + R22 + R32)
∥∥2 − ∥∥M(−R11 + R22 + R32)

∥∥2

�
(
1 − δMr

)( r∑
i=r/2+1

a2
i +

2r∑
i=3r/2+1

(
ai +

m∑
j=2r+1

si j

)2)

− (
1 + δMr

)( r/2∑
i=1

a2
i +

2r∑
i=3r/2+1

(
ai +

m∑
j=2r+1

si j

)2)
. (24)

Let the right-hand side of (22) minus the left-hand side. Along with (23), (24), we get

0 = RHS − LHS

� 2
(
1 − δMr

)( r∑
i=1

a2
i

)
− 2δMr

r∑
i=1

a2
i − 2δMr

(
2r∑

i=r+1

(
ai +

m∑
j=2r+1

si j

)2)

� 2
(
1 − 2δMr

) r∑
i=1

a2
i − 2δMr r

(∑r
i=1 ai

r

)2

� 2
(
1 − 3δMr

) r∑
i=1

a2
i .

The last two inequalities are due to (10) and the Cauchy–Schwarz inequality. It contradicts the fact that R �= 0 and
δMr < 1/3.

2. When r is odd, r � 3, note

R11 = a1u1 vT
1 , R12 =

(r+1)/2∑
i=2

aiui vT
i , R13 =

r∑
i=(r+3)/2

aiui vT
i ,

R21 = ar+1ur+1 vT
r+1, R22 =

(3r+1)/2∑
i=r+2

aiui vT
i , R23 =

2r∑
i=(3r+3)/2

aiui vT
i ,

R31 =
m∑

j=2r+1

s1 ju j vT
j , R32 =

m∑
j=2r+1

(
(r+1)/2∑

i=2

si j

)
u j vT

j , R33 =
m∑

j=2r+1

(
2r∑

i=(r+3)/2

si j

)
u j vT

j . (25)

Note X1 = −R11 + R21 + R31, X2 = −R12 + R22 + R23, X3 = −R13 + R23 + R33, we can easily show the following equality

4
∥∥M(X1)

∥∥2 + 4
∥∥M(X2)

∥∥2 + 4
∥∥M(X3)

∥∥2

= ∥∥M(X1 + X2 − X3)
∥∥2 + ∥∥M(−X1 + X2 + X3)

∥∥2

+ ∥∥M(X1 − X2 + X3)
∥∥2 + ∥∥M(X1 + X2 + X3)

∥∥2
. (26)
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By the fact that M(R) = 0, (26) means∥∥M(−R11 + R21 + R31)
∥∥2 + ∥∥M(−R12 + R22 + R32)

∥∥2 + ∥∥M(−R13 + R23 + R33)
∥∥2

= ∥∥M(R12 + R13 + R21 + R31)
∥∥2 + ∥∥M(R11 + R13 + R22 + R32)

∥∥2

+ ∥∥M(R11 + R12 + R23 + R33)
∥∥2 + ∥∥M(R11 + R12 + R13)

∥∥2
. (27)

Similarly as in the even case, by Lemma 5.2 we have∥∥M(R12 + R13 + R21 + R31)
∥∥2 − ∥∥M(−R11 + R21 + R31)

∥∥2

�
(
1 − δMr

)[ r∑
i=2

a2
i +

(
ar+1 +

m∑
j=2r+1

s1, j

)2]
− (

1 + δMr
)[

a2
1 +

(
ar+1 +

m∑
j=2r+1

s1, j

)2]
, (28)

∥∥M(R11 + R13 + R22 + R32)
∥∥2 − ∥∥M(−R12 + R22 + R32)

∥∥2

�
(
1 − δMr

)[
a2

1 +
r∑

i=(r+3)/2

a2
i +

(r+1)/2∑
i=2

(
ai +

m∑
j=2r+1

si j

)2]

− (
1 + δMr

)[(r+1)/2∑
i=2

a2
i +

(r+1)/2∑
i=2

(
ai +

m∑
j=2r+1

si j

)2]
, (29)

∥∥M(R11 + R12 + R23 + R33)
∥∥2 − ∥∥M(−R13 + R23 + R33)

∥∥2

�
(
1 − δMr

)[(r+1)/2∑
i=1

a2
i +

r∑
i=(r+3)/2

(
ai +

m∑
j=2r+1

si j

)2]

− (
1 + δMr

)[ r∑
i=(r+3)/2

a2
i +

r∑
i=(r+3)/2

(
ai +

m∑
j=2r+1

si j

)2]
. (30)

Let the right-hand side of (27) minus the left-hand side, we can get

0 �
(
1 − δMr

)[
3

r∑
i=1

a2
i +

r∑
i=1

(
ar+i +

m∑
j=2r+1

si j

)2]
− (

1 + δMr
)[ r∑

i=1

a2
i +

r∑
i=1

(
ar+i +

m∑
j=2r+1

si j

)2]

= 2

[(
1 − 2δMr

) r∑
i=1

a2
i − δMr

r∑
i=1

(
ar+i +

m∑
j=2r+1

si j

)2]

� 2
(
1 − 2δMr

) r∑
i=1

a2
i − 2δMr r

(∑r
i=1 ai

r

)2

� 2
(
1 − 3δMr

) r∑
i=1

a2
i .

The last two inequalities are due to (10) and the Cauchy–Schwarz inequality. It contradicts the fact that R �= 0 and
δMr < 1/3.

5.2. Proof of Theorem 3.1

The proof of Theorem 3.1 is essentially the same as that of Theorem 3.5. By (∗), we only need to show for all β ∈
N (A) \ {0}, it satisfies ‖βmax(k)‖1 < ‖β−max(k)‖1.

For the convenience of presentation, we call a vector with 1 or −1 in only one entry and zeros elsewhere as the indicator
vector.

Suppose there exists β ∈N (A) \ {0} such that ‖βmax(k)‖1 < ‖β−max(k)‖1. Then β can be written as

β =
p∑

aiui
i=1
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where {ui}p
i=1 are indicator vectors with different support in R

p ; {ai}p
i=1 is a non-negative and decreasing sequence. Since

we can set ai = 0 if i � p, without loss of generality we can assume that p � k.
By Lemma 3.1, we can find {si j}1�i�k,2k+1� j�p satisfying (9) and (10) with a modification of notations.

1. When k is even, suppose

β11 =
k/2∑
i=1

aiui, β12 =
k∑

i=k/2+1

aiui, β21 =
3k/2∑

i=k+1

aiui, β22 =
2k∑

i=3k/2+1

aiui,

β31 =
p∑

j=2k+1

( k/2∑
i=1

si ju j

)
, β32 =

p∑
j=2k+1

(
k∑

i=k/2+1

si ju j

)
(31)

then A(β11 + β12 + β21 + β22 + β31 + β32) = Aβ = 0. By the parallelogram identity,

∥∥A(−β11 + β22 + β32)
∥∥2 + ∥∥A(−β12 + β21 + β31)

∥∥2

= 1

2

[∥∥A(−β11 − β12 + β21 + β22 + β31 + β32)
∥∥2 + ∥∥A(−β11 + β12 − β21 + β22 − β31 + β32)

∥∥2]
= 1

2

[∥∥A(2β11 + 2β12)
∥∥2 + 1

2

∥∥A(−2β11 − 2β21 − 2β31)
∥∥2 + 1

2

∥∥A(2β12 + 2β22 + 2β32)
∥∥]

= 2
∥∥A(β11 + β12)

∥∥2 + ∥∥A(β11 + β21 + β31)
∥∥2 + ∥∥A(β12 + β22 + β32)

∥∥2
. (32)

Similarly as in the matrix case, we use Lemma 5.2 and get

∥∥A(β11 + β21 + β31)
∥∥2 − ∥∥A(−β12 + β21 + β31)

∥∥2

�
(
1 − δA

k

)( k/2∑
i=1

a2
i +

3k/2∑
i=k+1

(
ai +

p∑
j=2k+1

si j

)2)
− (

1 + δA
k

)( k∑
i=k/2+1

a2
i +

3k/2∑
i=k+1

(
ai +

p∑
j=2k+1

si j

)2)
. (33)

Similarly,

∥∥A(β12 + β22 + β32)
∥∥2 − ∥∥A(−β11 + β22 + β32)

∥∥2

�
(
1 − δA

k

)( k∑
i=k/2+1

a2
i +

2k∑
i=3k/2+1

(
ai +

p∑
j=2k+1

si j

)2)

− (
1 + δA

k

)( k/2∑
i=1

a2
i +

2k∑
i=3k/2+1

(
ai +

p∑
j=2k+1

si j

)2)
. (34)

Let the right-hand side of (32) minus the left-hand side. Along with (33), (34), we get

0 = RHS − LHS

� 2
(
1 − δA

k

)( k∑
i=1

a2
i

)
− 2δA

k

k∑
i=1

a2
i − 2δA

k

(
2k∑

i=k+1

(
ai +

p∑
j=2k+1

si j

)2)

� 2
(
1 − 2δA

k

) k∑
i=1

a2
i − 2δA

k k

(∑k
i=1 ai

k

)2

� 2
(
1 − 3δA

k

) k∑
i=1

a2
i .

The last two inequalities are due to (10) and the Cauchy–Schwarz inequality. It contradicts the fact that β �= 0 and
δA < 1/3.
k
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2. When k is odd, k � 3, note

β11 = a1u1, β12 =
(k+1)/2∑

i=2

aiui, β13 =
k∑

i=(k+3)/2

aiui,

β21 = ak+1uk+1, β22 =
(3k+1)/2∑

i=k+2

aiui, β23 =
2k∑

i=(3k+3)/2

aiui,

β31 =
p∑

j=2k+1

s1 ju j, β32 =
p∑

j=2k+1

(
(k+1)/2∑

i=2

si j

)
u j, β33 =

p∑
j=2k+1

(
2k∑

i=(k+3)/2

si j

)
u j. (35)

Note γ1 = −β11 + β21 + β31, γ2 = −β12 + β22 + β23, γ3 = −β13 + β23 + β33, we can easily show the following equality

4‖Aγ1‖2 + 4‖Aγ2‖2 + 4‖Aγ3‖2

= ∥∥A(γ1 + γ2 − γ3)
∥∥2 + ∥∥A(−γ1 + γ2 + γ3)

∥∥2 + ∥∥A(γ1 − γ2 + γ3)
∥∥2 + ∥∥A(γ1 + γ2 + γ3)

∥∥2
. (36)

By the fact that Aβ = 0, (36) means∥∥A(−β11 + β21 + β31)
∥∥2 + ∥∥A(−β12 + β22 + β32)

∥∥2 + ∥∥A(−β13 + β23 + β33)
∥∥2

= ∥∥A(β12 + β13 + β21 + β31)
∥∥2 + ∥∥A(β11 + β13 + β22 + β32)

∥∥2

+ ∥∥A(β11 + β12 + β23 + β33)
∥∥2 + ∥∥A(β11 + β12 + β13)

∥∥2
. (37)

Similarly as in the even case, by Lemma 5.2 we have∥∥A(β12 + β13 + β21 + β31)
∥∥2 − ∥∥A(−β11 + β21 + β31)

∥∥2

�
(
1 − δA

k

)[ k∑
i=2

a2
i +

(
ak+1 +

p∑
j=2k+1

s1, j

)2]
− (

1 + δA
k

)[
a2

1 +
(

ak+1 +
p∑

j=2k+1

s1, j

)2]
, (38)

∥∥A(β11 + β13 + β22 + β32)
∥∥2 − ∥∥A(−β12 + β22 + β32)

∥∥2

�
(
1 − δA

k

)[
a2

1 +
k∑

i=(k+3)/2

a2
i +

(k+1)/2∑
i=2

(
ai +

p∑
j=2k+1

si j

)2]

− (
1 + δA

k

)[(k+1)/2∑
i=2

a2
i +

(k+1)/2∑
i=2

(
ai +

p∑
j=2k+1

si j

)2]
, (39)

∥∥A(β11 + β12 + β23 + β33)
∥∥2 − ∥∥A(−β13 + β23 + β33)

∥∥2

�
(
1 − δA

k

)[(k+1)/2∑
i=1

a2
i +

k∑
i=(k+3)/2

(
ai +

p∑
j=2k+1

si j

)2]

− (
1 + δA

k

)[ k∑
i=(k+3)/2

a2
i +

k∑
i=(k+3)/2

(
ai +

p∑
j=2k+1

si j

)2]
. (40)

Let the right-hand side of (37) minus the left-hand side, we can get

0 �
(
1 − δA

k

)[
3

k∑
i=1

a2
i +

k∑
i=1

(
ak+i +

p∑
j=2k+1

si j

)2]
− (

1 + δA
k

)[ k∑
i=1

a2
i +

k∑
i=1

(
ak+i +

p∑
j=2k+1

si j

)2]

= 2

[(
1 − 2δA

k

) k∑
i=1

a2
i − δA

k

k∑
i=1

(
ak+i +

p∑
j=2k+1

si j

)2]
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� 2
(
1 − 2δA

k

) k∑
i=1

a2
i − 2δA

k k

(∑k
i=1 ai

k

)2

� 2
(
1 − 3δA

k

) k∑
i=1

a2
i .

The last two inequalities are due to (10) and the Cauchy–Schwarz inequality. It contradicts the fact that β �= 0 and
δA

k < 1/3. �
5.3. Proof of Theorem 3.6

It is well known that for matrices X , B with the same size, |〈X, B〉| � ‖X‖F ‖B‖F . The following lemma provides a
stronger result given further constraint on matrix rank.

Lemma 5.1. Let X ∈R
m×n(m � n) be a matrix with singular values λ1 � λ2 � · · · � λm, then for all B ∈ R

m×n such that rank(B) � r,
we have

∣∣〈B, X〉∣∣ � ‖B‖F

√√√√ r∑
i=1

λ2
i .

Proof. Since the rank of B is at most r, we can suppose B, X have singular value decomposition B = UΣ V , X = W ΛZ ,
where U , W ∈ R

m×m , Σ,Λ ∈ R
m×n , V , Z ∈R

n×n . Then

〈B, X〉 = tr
(

BT X
) = tr

(
V T Σ T U T W ΛZ

) = tr
(
Σ T U T W ΛZ V T ) = diag(Σ) · diag

(
U T W ΛZ V T )

.

Since the rank of B is at most r, diag(Σ) is supported on the first r entries,

∣∣〈B, X〉∣∣ �

√√√√ r∑
i=1

Σ2
ii ·

√√√√ r∑
i=1

(
U T W ΛZ V T

)2
ii � ‖B‖F

√√√√ r∑
i=1

n∑
j=1

(
U T W ΛZ V T

)2
i j = ‖B‖F

∥∥KΛZ V T
∥∥

F

where we note K ∈R
r×n as the first r rows of U T W . In addition,∥∥KΛZ V T

∥∥2
F = tr

(
V Z T ΛT K T KΛZ V T ) = tr

(
ΛZ V T V Z T ΛT K T K

) = tr
(
Λ2 K T K

)
.

By K is the first r row of an n × n orthogonal matrix, we have tr(K T K ) = tr(K K T ) = tr(Ir) = r and all diagonal elements of
K T K are in [0,1], then

tr
(
Λ2 K T K

) =
n∑

i=1

λ2
i

(
K T K

)
ii �

r∑
i=1

λ2
i .

In summary,

∣∣〈B, X〉∣∣ � ‖B‖F
∥∥KΛZ V T

∥∥
F � ‖B‖F

√√√√ r∑
i=1

λ2
i . �

It is noteworthy that the signal version of this lemma simply holds by the Cauchy–Schwarz inequality.
Now we construct an example for Theorem 3.6, then check the feasibility by the lemma above. Note

X1 = diag

( 2r︷ ︸︸ ︷
1√
2r

, . . . ,
1√
2r

,0, . . . ,0

)
∈ R

m×n.

Suppose H = (Rm×n,‖X‖F ) is the Hilbert with inner product 〈· , ·〉. Since ‖X1‖F = 1, we can extend X1 into a basis
{X1, . . . , Xmn}. Define M : Rm×n → R

mn as

M(X) =
√

4

3

mn∑
i=2

ai Xi (41)

for all X = ∑mn
i=1 ai Xi .
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Then by Lemma 5.1, for all matrices X with rank at most r, we have

∣∣〈X, X1〉| �
√

r · 1

2r

∥∥X‖F =
√

1

2
‖X‖F ,

∥∥M(X)
∥∥2

2 = 4

3

mn∑
i=2

a2
i = 4

3

(‖X‖2
F − a2

1

) = 4

3

(‖X‖2
F − ∣∣〈X, X1〉

∣∣2)
.

Thus,

2

3
‖X‖2

F �
∥∥M(X)

∥∥2
2 � 4

3
‖X‖2

F , δMr (X) � 1/3.

Notice that

∥∥M(
diag(

r︷ ︸︸ ︷
1, . . . ,1,0, . . . ,0)

)∥∥2
2 = 2

3
r = 2

3

∥∥(
diag(

r︷ ︸︸ ︷
1, . . . ,1,0, . . . ,0)

)∥∥2
F ,

∥∥M(
diag(1,−1,0, . . . ,0)

)∥∥2
2 = 8

3
= 4

3

∥∥diag(1,−1,0, . . . ,0)
∥∥2

F

we can conclude that δMr = 1/3. Finally, suppose

X = diag(

r︷ ︸︸ ︷
1,1, . . . ,1,0, . . . ,0), Y = diag(

r︷ ︸︸ ︷
0, . . . ,0,

r︷ ︸︸ ︷
−1,−1, . . . ,−1,0, . . . ,0).

Then X , Y are both matrices of rank r such that X − Y ∈N (M), M(X) =M(Y ). Therefore, it is impossible to recover both
X and Y only given (b,M), which finishes the proof. �
5.4. Proof of Theorem 3.2

Again, the proof to this theorem is essentially the same as that of Theorem 3.6. Note

β1 =
( 2k︷ ︸︸ ︷

1√
2k

, . . . ,
1√
2k

,0, . . . ,0

)
∈ R

p .

Suppose H = (Rp,‖ · ‖2) is the Hilbert with inner product 〈·, ·〉. Since ‖β1‖2 = 1, we can extend β1 into a basis {β1, . . . , βp}.
Define A : Rp → R

p as

Aβ =
√

4

3

p∑
i=2

aiβi (42)

for all β = ∑p
i=1 aiβi .

Then by the Cauchy–Schwarz inequality, for all k-sparse vectors γ , we have

∣∣〈γ ,β1〉
∣∣ � ‖β1 · 1supp(γ )‖2‖γ ‖2 �

√
1

2
‖γ ‖2,

‖Aγ ‖2
2 = 4

3

p∑
i=2

a2
i = 4

3

(‖γ ‖2
2 − a2

1

) = 4

3

(‖γ ‖2
2 − ∣∣〈γ ,β1〉

∣∣2)
.

Thus,

2

3
‖γ ‖2

2 � ‖Aγ ‖2
2 � 4

3
‖γ ‖2

2, δA
k � 1/3.

Notice that

∥∥A
( k︷ ︸︸ ︷

1, . . . ,1,0, . . . ,0
)∥∥2

2 = 2

3
k = 2

3

∥∥( k︷ ︸︸ ︷
1, . . . ,1,0, . . . ,0

)∥∥2
2,∥∥A(1,−1,0, . . . ,0)

∥∥2
2 = 8

3
= 4

3

∥∥(1,−1,0, . . . ,0)
∥∥2

2

we can conclude that δA = 1/3. Finally, suppose
k
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γ = (

k︷ ︸︸ ︷
1,1, . . . ,1,0, . . . ,0), η = (

k︷ ︸︸ ︷
0, . . . ,0,

k︷ ︸︸ ︷
−1,−1, . . . ,−1,0, . . . ,0).

Then γ , η are both matrices of rank k such that γ − η ∈ N (A), Aγ = Aη. Therefore, it is impossible to recover both γ
and η only given (y, A), which finishes the proof. �
5.5. Proof of Theorems 3.3 and 3.7

For the proof of Theorem 3.3 and Theorem 3.7, we only show the latter one about the matrix case, as the proof to the
signal case is similar and simpler. Suppose R = X∗ − X , h = β̂ − β . We will use a widely used fact. The readers may refer to
[1,7,8,13] (signal case) or [20] (matrix case) for details:

‖h−max(k)‖1 � ‖hmax(k)‖∗ + 2‖β−max(k)‖1,

‖R−max(r)‖∗ � ‖Rmax(r)‖ + 2‖X−max(r)‖∗.

For the remaining part of the proof, we only prove the matrix case. Suppose R has singular value decomposition R =∑m
i=1 aiui v T

i . Then we have

r∑
i=1

ai + 2‖X−max(r)‖∗ �
m∑

i=r+1

ai . (43)

Applying Division Lemma 3.1 by setting a′
i = ai + 2‖X−max(r)‖∗/r, i = 1, . . . , r and a′

j = a j , j > r + 1, we can find
{si j}1�i�r,2r+1� j�m satisfying

r∑
i=1

si j = a j, ∀2r + 1 � j � m, (44)

1

r

r∑
w=1

aw + 2‖X−max(r)‖∗
r

� ar+i +
m∑

j=2r+1

si j, ∀1 � i � r. (45)

We also know∥∥M(R)
∥∥ �

∥∥M(X) − b
∥∥ + ∥∥b −M(X∗)

∥∥ � ε + η. (46)

Similarly as in Theorem 3.5, we finish the remaining part of the proof for even or odd r separately.

1. When r is even, we define R11, . . . , R32 as in (21), similarly as (22) and by parallelogram equality, we get∥∥M(−R11 + R22 + R32)
∥∥2 + ∥∥M(−R12 + R21 + R31)

∥∥2

= 1

2

[∥∥M(−R11 − R12 + R21 + R22 + R31 + R32)
∥∥2

+ ∥∥M(−R11 + R12 − R21 + R22 − R31 + R32)
∥∥2]

= 1

2

∥∥M(2R11 + 2R12) −M(R)
∥∥2 + 1

4

∥∥M(−2R11 − 2R21 − 2R31)
∥∥2

+ 1

4

∥∥M(2R12 + 2R22 + 2R32)
∥∥2 − 1

8

∥∥M(2R)
∥∥2

= 2
∥∥M(R11 + R12)

∥∥2 + ∥∥M(R11 + R21 + R31)
∥∥2

+ ∥∥M(R12 + R22 + R32)
∥∥2 − 2

〈
M(R),M(R11 + R12)

〉
. (47)

Let the right-hand side of (47) minus the left-hand side. Along with (23), (24), one gets

0 = RHS − LHS

� 2
(
1 − δMr

) r∑
i=1

a2
i − 2δMr

r∑
i=1

a2
i − 2δMr

(
2r∑

i=r+1

(
ai +

m∑
j=2r+1

si j

)2)
− 2

〈
M(R),M(R11 + R12)

〉

� 2
(
1 − 2δMr

) r∑
a2

i − 2δMr r

(∑r
i=1 ai

r
+ 2‖X−max(r)‖∗

r

)2

− 2(ε + η)

√√√√(
1 + δMr

) r∑
a2

i

i=1 i=1
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� 2
(
1 − 2δMr

) r∑
i=1

a2
i − 2δMr

(√√√√ r∑
i=1

a2
i + 2‖X−max(r)‖∗√

r

)2

− 2(ε + η)

√√√√(
1 + δMr

) r∑
i=1

a2
i . (48)

By (48) we can get an inequality of
√∑r

i=1 a2
i :√√√√ r∑

i=1

a2
i �

δ
2‖X−max(r)‖∗√

r
+ ε+η

2

√
1 + δ

1 − 3δ

+
√

(δ
2‖X−max(r)‖∗√

r
+ ε+η

2

√
1 + δ)2 + (1 − 3δ)δ‖2X−max(r)‖2∗/r

1 − 3δ

�
√

1 + δ(ε + η) + 2(2δ + √
(1 − 3δ)δ)‖X−max(r)‖∗/

√
r

1 − 3δ
. (49)

Finally, by Lemma 5.3,

m∑
i=r+1

a2
i �

(√√√√ r∑
i=1

a2
i + 2‖X−max(r)‖∗√

r

)2

.

Then

‖R‖F =
√√√√ m∑

i=1

a2
i �

√√√√√ r∑
i=1

a2
i +

(√√√√ r∑
i=1

a2
i + 2‖X−max(r)‖∗√

r

)2

�

√√√√2
r∑

i=1

a2
i + 2‖X−max(r)‖√

r

�
√

2(1 + δ)

1 − 3δ
(ε + η) + 2

√
2(2δ + √

(1 − 3δ)δ) + 2(1 − 3δ)

1 − 3δ

‖X−max(r)‖∗√
r

. (50)

2. When r is odd, we use the definitions in (25). Similar equality as (47) holds as follows,∥∥M(−R11 + R21 + R31)
∥∥2 + ∥∥M(−R12 + R22 + R32)

∥∥2 + ∥∥M(−R13 + R23 + R33)
∥∥2

= ∥∥M(R12 + R13 + R21 + R31)
∥∥2 + ∥∥M(R11 + R13 + R22 + R32)

∥∥2

+ ∥∥M(R11 + R12 + R23 + R33)
∥∥2 + ∥∥M(R11 + R12 + R13)

∥∥2

− 2
〈
M(R11 + R12 + R13,M(R)

〉
.

By the method as in the even case, we can still get the inequality (48). Hence we have the same estimation. �

5.6. Proof of Theorem 4.2

By (∗), we only need to show for all R ∈N (M)\{0}, it satisfies ‖Rmax(r)‖∗ < ‖R−max(r)‖∗ .
Suppose there exists R ∈ N (M)\{0} such that ‖Rmax(r)‖∗ � ‖R−max(r)‖∗ . Suppose R has singular value decomposition:∑m

i=1 aiui v T
i . Note:

R1 =
r∑

i=1

aiui vT
i , R2 =

2r∑
i=r+1

aiui vT
i , R3 =

3r∑
i=2r+1

aiui vT
i , Rc =

m∑
i=3r+1

aiui vT
i . (51)

Notice that
∑r

i=1 ai �
∑m

i=r+1 ai �
∑m

i=2r+1 ai . In addition, two equalities cannot hold simultaneously since R �= 0. Thus,

r∑
i=1

ai >

m∑
i=2r+1

ai .

Applying Lemma 3.1 to {a1, . . . ,ar,a2r+1, . . . ,am}, we can find {si j}1�i�r,3r+1� j�m such that

r∑
i=1

si j = a j, ∀3r + 1 � j � m;
∑r

w=1 aw

r
� a2r+i +

m∑
j=3r+1

si j, ∀1 � i � r.

By
∑r

i=1 ai >
∑m

i=2r+1 ai , there exists 1 � i � r such that
∑r

w=1 aw
r > a2r+i + ∑m

j=3r+1 si j . We also have the equality in l2
space as follows,
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6
∥∥M(R1 + R2)

∥∥2 + 3
∥∥M(R1 + R3 + Rc)

∥∥2

= 2
∥∥M(−R2 + R3 + Rc)

∥∥2 + ∥∥M(3R1 + 2R2 + R3 + Rc)
∥∥2

= 2
∥∥M(−R2 + R3 + Rc)

∥∥2 + ∥∥M(−R1 + R3 + Rc)
∥∥2

. (52)

Let the left-hand side of (52) minus the right-hand side, by Lemma 5.2 we get

0 = 6
∥∥M(R1 + R2)

∥∥2 + 2
(∥∥M(R1 + R3 + Rc)

∥∥2 − ∥∥M(−R2 + R3 + Rc)
∥∥2)

+ (∥∥M(R1 + R3 + Rc)
∥∥2 − ∥∥M(−R1 + R3 + Rc)

∥∥2)
� 6

(
1 − δM2r

) 2r∑
i=1

a2
i + (

1 − δM2r

)(
2

r∑
i=1

a2
i + 3

r∑
i=1

(
a2r+i +

m∑
j=3r+1

si j

)2

+
r∑

i=1

a2
i

)

− (
1 + δM2r

)(
2

2r∑
i=r+1

a2
i + 3

r∑
i=1

(
a2r+i +

m∑
j=3r+1

si j

)2

+
r∑

i=1

a2
i

)

= (
8 − 10δM2r

) r∑
i=1

a2
i + (

4 − 8δM2r

) 2r∑
r+1

a2
i − 6δM2r

r∑
i=1

(
a2r+i +

m∑
j=3r+1

si j

)2

� 3

(
r∑

i=1

a2
i −

r∑
i=1

(
a2r+i +

m∑
j=3r+1

si j

)2)

> 3

(
r∑

i=1

a2
i − r

(∑r
i=1 ai

r

)2
)

� 0

which is a contradiction. �
5.7. Proof of Lemma 4.1

We only show the matrix case. For all X ∈ R
m×n such that rank(X) � 2r, suppose X has singular value decomposition

X = ∑l
i=1 aiui v T

i , l � sr. Without loss of generality we can assume l = sr as we can set ai = 0 if l < i � sr. Note

wi = M
(
aiui vT

i

) ∈R
q, 1 � i � sr.

We can verify the following identity∥∥∥∥∥
sr∑

i=1

wi

∥∥∥∥∥
2

2

+ s − 1

sr − 1

∑
1�i< j�sr

‖wi − w j‖2
2 = (

1 + (s − 1)
) sr∑

i=1

‖wi‖2
2 + 2

(
1 − s − 1

sr − 1

) ∑
1�i< j�sr

〈wi, w j〉

= s2(sr
r

) ∑
1�i1<···<ir�sr

‖wi1 + wi2 + · · · + wir ‖2
2

which implies

∥∥M(X)
∥∥2

2 =
∥∥∥∥∥

sr∑
i=1

wi

∥∥∥∥∥
2

2

� s2(1 + δMr )(sr
r

) ∑
1�i1<···<ir�sr

(
a2

i1
+ · · · + a2

ir

) − (s − 1)(1 − δMr )

sr − 1

∑
1�i< j�sr

(
a2

i + a2
j

)

= (
s
(
1 + δMr

) − (s − 1)
(
1 − δMr

)) rs∑
i=1

a2
i

= (
1 + (2s − 1)δMr

)‖X‖2
F ,
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∥∥M(X)
∥∥2

2 =
∥∥∥∥∥

sr∑
i=1

wi

∥∥∥∥∥
2

2

� s2(1 − δMr )(sr
r

) ∑
1�i1<···<ir�sr

(
a2

i1
+ · · · + a2

ir

) − (s − 1)(1 + δMr )

sr − 1

∑
1�i< j�sr

(
a2

i + a2
j

)

= (
s
(
1 − δMr

) − (s − 1)
(
1 + δMr

)) rs∑
i=1

a2
i

= (
1 − (2s − 1)δMr

)‖X‖2
F .

Hence, δMsr � (2s − 1)δMr . �
5.8. Proof of Theorem 4.1

By a small extension on Lemma 5.1 in [1], we know ‖AT z‖∞ � σ
√

(1 + δA
1 ) log p � λ/2 with probability at least

1/
√

π log p. While for the matrix case, by Lemma 1.1 in [9], we know ‖M∗‖ � 4σ
√

max(m,n)(1 + δA
1 ) log 12 � λ/2 with

probability at least 1− ec max(m,n) . Then in order to finish the proof, we only need to show (19) or (20) given the assumption
‖AT z‖∞ � λ/2 or ‖M∗(z)‖ � λ/2. For the following part, we only give the proof for the signal case, since the matrix case
is similar and the original proof by Candès and Plan in [9] is already for the matrix case. Define

K (ξ,β) = γ ‖ξ‖0 + ‖Aβ − Aξ‖2
2, γ = 3λ2

16
= 2σ 2 log p.

Let β̄ = arg minξ K (ξ, β), then we can deduce ‖β̄‖0 � ‖β‖0 � k by K (β̄, β) � K (β,β). By Lemma 4.1,

‖β̄ − β‖2
2 � 1

1 − δA
2k

‖Aβ̄ − Aβ‖2
2 � 1

1 − 3δA
k

‖Aβ̄ − Aβ‖2
2. (53)

By Lemma 5.4, we have∥∥AT (y − Aβ̄)
∥∥∞ �

∥∥AT (y − Aβ)
∥∥∞ + ∥∥AT A(β − β̄)

∥∥∞ � λ

which implies we can apply Theorem 3.4 by plugging β by β̄:

‖β̂ − β̄‖ �
√

2‖β̄‖0

1 − 3δA
k

· 2λ.

Hence,

‖β̂ − β‖2
2 � 2‖β̂ − β̄‖2

2 + 2‖β̄ − β‖2
2 � 16‖β̄‖0λ

2

(1 − 3δA
k )2

+ 2

1 − 3δA
k

‖Aβ̄ − Aβ‖2
2 � 256

3(1 − 3δA
k )2

K (β̄, β).

Suppose β ′ = ∑p
i=1 βi1{|βi |>μ}ei , where ei is the vector with 1 in the ith entry and 0 elsewhere, μ =

√
γ

1+δA
k

=
√

3λ2

16(1+δA
k )

.

Then

K (β̄, β) � K
(
β ′, β

)
� γ

p∑
i=1

1{|βi |>μ} + ∥∥Aβ − Aβ ′∥∥2
2

� γ

p∑
i=1

1{|βi |>μ} + (
1 + δA

k

) p∑
i=1

1{|βi |�μ}|βi|2 �
p∑

i=1

min
(
γ ,

(
1 + δA

k

)|βi|2
)

� 2 log p
p∑

i=1

min
(
σ 2, |βi |2

)
.

The last inequality is due to 2 log p � (1+δA
k ). In summary, we get (19) given the assumption ‖AT z‖∞ � λ/2, which finishes

the proof. �
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5.9. Technical lemmas

As seen in the proofs of Theorems 3.1 and 3.5, it is necessary to estimate the left-hand side of (23), (24), (28), (29)
and (30). Notice that these terms are of the similar type – they are all the differences of the squared Frobenius norm of
two matrices which only differ on a few leading terms in their SVD decompositions, we have the following lemma for the
general estimation of this type of differences. Before we present the lemma, recall that we have defined the concept of
indicator vector in Theorem 3.1.

Lemma 5.2. For the vector case, suppose g,h � 0, g + h � k, {di}g
i=1 , {e j}l

j=1 , {ti j}1�i�g,1� j�l are non-negative real numbers
satisfying

min
1�i�g

di � max
1�i�l

ei, (54)

g∑
i=1

ti j = e j, ∀1 � j � l (55)

{bi}h
i=1, {ci}h

i=1 are real numbers. {u11, . . . , u1h; u31, . . . , u3g; u41, . . . , u4l} is a set of indicator vectors with different support in R
p ;

{u21, . . . , u2h; u31, . . . , u3g; u41, . . . , u4l} is also a set of indicator vectors with different support. Define

β1 =
h∑

i=1

biu1i +
g∑

i=1

diu3i +
l∑

j=1

e ju4 j ∈R
p,

β2 =
h∑

i=1

ciu2i +
g∑

i=1

diu3i +
l∑

j=1

e ju4 j ∈R
p .

Then we have

‖Aβ1‖2
2 − ‖Aβ2‖2

2 �
(
1 − δA

k

)( h∑
i=1

b2
i +

g∑
i=1

(
di +

l∑
j=1

ti j

)2)
− (

1 + δA
k

)( h∑
i=1

c2
i +

g∑
i=1

(
di +

l∑
j=1

ti j

)2)
. (56)

For the matrix case, suppose g,h � 0, g + h � r, {di}g
i=1 , {e j}l

j=1 , {ti j}1�i�g,1� j�l are non-negative real numbers satisfying

min
1�i�g

di � max
1�i�l

ei, (57)

g∑
i=1

ti j = e j, ∀1 � j � l (58)

{bi}h
i=1 , {ci}h

i=1 are real numbers. {u31, . . . , u3g; u41, . . . , u4l} is a set of orthogonal unit vectors in R
m, {u11, . . . , u1h} and

{u21, . . . , u2h} are two sets of orthogonal unit vectors lying in the perpendicular space of span{u31, . . . , u3g; u41, . . . , u4l};
{v31, . . . , v3g; v41, . . . , v4l} is a set of orthogonal unit vectors in R

n, {v11, . . . , v1h} and {v21, . . . , v2h} are two sets of orthogonal
unit vectors lying in the perpendicular space of span{v31, . . . , v3g; v41, . . . , v4l}. Define

X1 =
h∑

i=1

biu1i vT
1i +

g∑
i=1

diu3i vT
3i +

l∑
j=1

e ju4 j vT
4 j ∈R

m×n,

X2 =
h∑

i=1

ciu2i vT
2i +

g∑
i=1

diu3i vT
3i +

l∑
j=1

e ju4 j vT
4 j ∈R

m×n.

Then we have∥∥M(X1)
∥∥2

2 − ∥∥M(X2)
∥∥2

2

�
(
1 − δMr

)( h∑
i=1

b2
i +

g∑
i=1

(
di +

l∑
j=1

ti j

)2)
− (

1 + δMr
)( h∑

i=1

c2
i +

g∑
i=1

(
di +

l∑
j=1

ti j

)2)
. (59)
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Proof. We prove the lemma by induction on l.
When l = 0, (59) is clear to hold by the definition of δMr and the fact that g + h � r. Suppose (59) holds for l − 1 (l � 1),

we note

Yi = −u3i vT
3i + u4l v

T
4l, 1 � i � g, (60)

P z = Xz −
g∑

i=1

tilYi, z = 1,2, (61)

Q iz = Xz −
g∑

w=1

twlY w + (til + di)Yi, z = 1,2, 1 � i � g. (62)

We can show the following equality in l2-space:

μ

∥∥∥∥∥M
(

Xz −
g∑

i=1

tilYi

)∥∥∥∥∥
2

2

+
g∑

i=1

νi

∥∥∥∥∥M
(

Xz −
g∑

w=1

twlY w + (til + di)Yi

)∥∥∥∥∥
2

2

= ∥∥M(Xz)
∥∥2

2 + μ

∥∥∥∥∥M
( g∑

i=1

tilYi

)∥∥∥∥∥
2

2

+
g∑

i=1

νi

∥∥∥∥∥M
(

−
g∑

w=1

twlY w + (til + di)Yi

)∥∥∥∥∥
2

2

(63)

where z = 1,2, νi = til
di+til

, μ = 1 − ∑g
i=1

til
di+til

. By (57), (58) we have

μ � 1 −
g∑

i=1

til

di
= 1 − el

di
� 0.

Thus, νi,μ are all non-negative numbers satisfying μ + ∑g
i=1 νi = 1. Considering the difference of these two equalities (63)

(z = 1,2), we get

∥∥M(X1)
∥∥2

2 − ∥∥M(X2)
∥∥2

2 = μ
[∥∥M(P1)

∥∥2
2 − ∥∥M(P2)

∥∥2
2

] +
g∑

i=1

νi
[∥∥M(Q i1)

∥∥2
2 − ∥∥M(Q i2)

∥∥2
2

]
. (64)

By computing directly we can get

P1 =
h∑

i=1

biu1i vT
1i +

g∑
i=1

(di + til)u3i vT
3i +

l−1∑
j=1

e ju4 j vT
4 j,

P2 =
h∑

i=1

ciu2i vT
2i +

g∑
i=1

(di + til)u3i vT
3i +

l−1∑
j=1

e ju4 j vT
4 j,

Q i1 =
h∑

w=1

bw u1w vT
1w +

[ g∑
w=1, w �=i

(dw + twl)u3w vT
3w + (di + til)u4l v

T
4l

]
+

l−1∑
j=1

e ju4 j vT
4 j,

Q i2 =
h∑

w=1

cw u2w vT
2w +

[ g∑
w=1, w �=i

(dw + twl)u3w vT
3w + (di + til)u4l v

T
4l

]
+

l−1∑
j=1

e ju4 j vT
4 j

which corresponds with the assumption of l − 1. Now by induction assumption of l − 1, for all 1 � w � g we have∥∥M(P1)
∥∥2

2 − ∥∥M(P2)
∥∥2

2

�
(
1 − δMr

)( h∑
i=1

b2
i +

g∑
i=1

(
di +

l∑
j=1

ti j

)2)
− (

1 + δMr
)( h∑

i=1

c2
i +

g∑
i=1

(
di +

l∑
j=1

ti j

)2)
,

∥∥M(Q w1)
∥∥2

2 − ∥∥M(Q w2)
∥∥2

2

�
(
1 − δMr

)( h∑
i=1

b2
i +

g∑
i=1

(
di +

l∑
j=1

ti j

)2)
− (

1 + δMr
)( h∑

i=1

c2
i +

g∑
i=1

(
di +

l∑
j=1

ti j

)2)
. (65)

Together (65) with (64), we can get (59) for the case l. �
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Lemma 5.3. Suppose m � r, a1 � a2 � · · · � am � 0,
∑r

i=1 ai �
∑m

i=r+1 ai , then for all α � 1,

m∑
j=r+1

aα
j �

r∑
i=1

aα
i . (66)

More generally, suppose a1 � a2 � · · · � am � 0, λ � 0 and
∑r

i=1 ai + λ �
∑m

i=r+1 ai , then for all α � 1,

m∑
j=r+1

aα
j � r

(
α

√∑r
i=1 aα

i

r
+ λ

r

)α

. (67)

Proof. It is sufficient to show the general part only. Since we can set a j = 0 when j > m, we assume m � 2r without loss
of generality. By Lemma 3.1, we can find {si j}1�i�r,2r+1� j�m satisfying (44), (45). Hence,

m∑
j=r+1

aα
j =

m∑
j=2r+1

aα−1
j

(
r∑

i=1

si j

)
+

2r∑
j=r+1

aα
j =

r∑
i=1

(
aα

r+i +
m∑

j=2r+1

aα−1
j si j

)

�
r∑

i=1

aα−1
r+i

(
ar+i +

m∑
j=2r+1

si j

)
�

r∑
i=1

(
ar+i +

m∑
j=2r+1

si j

)α

� r

(∑r
i=1 ai

r
+ λ

r

)α

� r

(
α

√∑r
i=1 aα

i

r
+ λ

r

)α

. �
Lemma 5.4. Suppose β̄ = arg minξ K (ξ, β), then it satisfies ‖AT A(β̄ − β)‖ � λ/2.

This is the vector version of Lemma 3.5 in [9], for which we omit the proof here.
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