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Consider a standard white Wishart matrix with parameters n and p. Mo-
tivated by applications in high-dimensional statistics and signal processing,
we perform asymptotic analysis on the maxima and minima of the eigenval-
ues of all the m × m principal minors, under the asymptotic regime that n,
p, m go to infinity. Asymptotic results concerning extreme eigenvalues of
principal minors of real Wigner matrices are also obtained. In addition, we
discuss an application of the theoretical results to the construction of com-
pressed sensing matrices, which provides insights to compressed sensing in
signal processing and high-dimensional linear regression in statistics.

1. Introduction. Random matrix theory is traditionally focused on the spectral anal-
ysis of eigenvalues and eigenvectors of a single random matrix. See, for example, Bai
and Silverstein (2010), Bryc, Dembo and Jiang (2006), Diaconis and Evans (2001), Dyson
(1962a, 1962b, 1962c), Jiang (2004b, 2004a), Johnstone (2001, 2008), Mehta (2004), Tracy
and Widom (1994, 1996, 2000), Wigner (1955, 1958). It has been proved to be a powerful tool
in many fields including high-dimensional statistics, quantum physics, electrical engineering,
and number theory.

The laws of large numbers and the limiting distributions for the extreme eigenvalues of
the Wishart matrices are now well known, see, for example, Bai (1999) and Johnstone (2001,
2008). Let X = Xn×p be a random matrix with i.i.d. N(0,1) entries and let W = XᵀX.
Let λ1(W) ≥ · · · ≥ λp(W) be the eigenvalues of W . The limiting distribution of the largest
eigenvalue λ1(W) satisfies, for n,p → ∞ with n/p → γ ,

P

(
λ1(W) − μn

σn

≤ x

)
→ F1(x),

where μn = (
√

n − 1 + √
p)2 and σn = (

√
n − 1 + √

p)( 1√
n−1

+ 1√
p
)1/3 and F1(x) is the

distribution function of the Tracy–Widom law of type I. The results for the smallest eigen-
value λp(W) can be found in, for example, Edelman (1988) and Bai and Yin (1993). These
results have also been extended to generalized Wishart matrices, that is, the entries of X are
i.i.d. but not necessarily normally distributed, in, for example, Bai and Silverstein (2010),
Péché (2009), Tao and Vu (2010). For limiting theory for Toeplitz minors and its connection
with random matrices, see, for example, Bump and Diaconis (2002), Johansson (1990), Szeg
(1939), Tracy and Widom (2002).

Motivated by applications in high-dimensional statistics and signal processing, we study
in this paper the extreme eigenvalues of the principal minors of a Wishart matrix W . Write
X = (xij )n×p = (x1, . . . , xp). Let S = {i1, . . . , ik} ⊂ {1,2, . . . , p} with the size of S being
k and XS = (xi1, . . . , xik ). Then WS = X

ᵀ
SXS is a k × k principal minor of W . Denote by

λ1(WS) ≥ · · · ≥ λk(WS) the eigenvalues of WS in descending order. The quantities of interest
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are the largest and the smallest eigenvalues of all the k × k principal minors of W in the
setting that n, p, and k are large but k relatively smaller than min{n,p}. More specifically,
we are interested in the properties of the maximum of the eigenvalues of all k × k minors:

(1.1) λmax(k) = max
1≤i≤k,S⊂{1,...,p},|S|=k

λi(WS)

and the minimum of the eigenvalues of all k × k minors:

(1.2) λmin(k) = min
1≤i≤k,S⊂{1,...,p},|S|=k

λi(WS),

where |S| denotes the cardinality of the set S.
This is a problem of significant interest in its own right, and it has important applications

in statistics and engineering. Before we establish the properties for the extreme eigenvalues
λmax(k) and λmin(k), of the k × k principal minors of a Wishart matrix W , we first discuss
an application in signal processing and statistics, namely the construction of the compressed
sensing matrix, as the motivation for our study. The properties of the extreme eigenvalues
λmax(k) and λmin(k) can also be used in other applications, including testing for the covari-
ance structure of a high-dimensional Gaussian distribution, which is an important problem in
statistics.

1.1. Construction of compressed sensing matrices. Compressed sensing, which aims to
develop efficient data acquisition techniques that allow accurate reconstruction of highly un-
dersampled sparse signals, has received much attention recently in several fields, including
signal processing, applied mathematics, and statistics. The development of the compressed
sensing theory also provides crucial insights into inference for high-dimensional linear re-
gression in statistics. It is now well understood that the constrained �1 minimization method
provides an effective way for recovering sparse signals. See, for example, Candes and Tao
(2005, 2007), Donoho (2006), and Donoho, Elad and Temlyakov (2006). More specifically,
in compressed sensing, one observes (X,y) with

y = Xβ + z,

where y ∈ R
n, X ∈ R

n×p with n being much smaller than p, β ∈ R
p is a sparse signal of

interest, and z ∈ R
n is a vector of measurement errors. One wishes to recover the unknown

sparse signal β ∈R
p based on (X,y) using an efficient algorithm.

Since the number of measurements n is much smaller than the dimension p, without struc-
tural assumptions, the signal β is under-determined, even in the noiseless case. A usual as-
sumption in compressed sensing is that β is sparse and one of the most commonly used
frameworks for sparse signal recovery is the restricted isometry property (RIP). See Candes
and Tao (2005). A vector is said to be k-sparse if | supp(v)| ≤ k, where supp(v) = {i : vi 	= 0}
is the support of v. In compressed sensing, the RIP requires subsets of certain cardinality of
the columns of X to be close to an orthonormal system. For an integer 1 ≤ k ≤ p, define
the restricted isometry constant δk ≥ 0 to be the smallest number such that for all k-sparse
vectors β ,

(1.3) (1 − δk)‖β‖2
2 ≤ ‖Xβ‖2

2 ≤ (1 + δk)‖β‖2
2.

There are a variety of sufficient conditions on the RIP for the exact/stable recovery of k-
sparse signals. For example, Cai, Wang and Xu (2009, 2010), Cai and Zhang (2013), Candès
(2008), Mo and Li (2011) provided sufficient conditions on δk or δ2k for the exact recovery
of all k-sparse signals. Dallaporta and De Castro (2019) studied the RIP condition from a
deviation inequality point of view under the assumption that X is random.
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A sharp condition was established in Cai and Zhang (2014) and a conjecture was proved
in Zhang and Li (2018). Let

(1.4) b∗(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t

4 − t
0 < t <

4

3
,√

t − 1

t
t ≥ 4

3
.

For any given t > 0, the condition δtk < b∗(t) guarantees the exact recovery of all k sparse
signals in the noiseless case through the constrained �1 minimization

β̂ = arg min
{‖γ ‖1 : y = Xγ,γ ∈ Rp}.

Moreover, for any ε > 0, δtk < b∗(t) + ε is not sufficient to guarantee the exact recovery of
all k-sparse signals for large k. In addition, the conditions δtk < b∗(t) are also shown to be
sufficient for stable recovery of approximately sparse signals in the noisy case.

One of the major goals of compressed sensing is the construction of the measurement ma-
trix Xn×p , with the number of measurements n as small as possible relative to p, such that
all k-sparse signals can be accurately recovered. Deterministic construction of large mea-
surement matrices that satisfy the RIP is known to be difficult. Instead, random matrices are
commonly used. Certain random matrices have been shown to satisfy the RIP conditions with
high probability. See, for example, Baraniuk et al. (2008). When the measurement matrix X

is a Gaussian matrix with i.i.d. N(0, 1
n
) entries, for any given t , the condition δtk < b∗(t) is

equivalent to that the extreme eigenvalues, λmax(tk) and λmin(tk), of the tk × tk principal
minors of the Wishart matrix W = XᵀX satisfy

1 − b∗(t) < λmin(tk) ≤ λmax(tk) < 1 + b∗(t).

Hence the condition (1.3) can be viewed as a condition on λmin(tk) and λmax(tk) as defined
in (1.1) and (1.2), respectively.

1.2. Main results and organization of the paper. In this paper, we investigate the asymp-
totic behavior of the extreme eigenvalues λmax(m) and λmin(m) defined in (1.1) and (1.2).
We also consider the extreme eigenvalues of a related Wigner matrix. We then discuss the
application of the results in the construction of compressed sensing matrices.

The rest of the paper is organized as follows. Section 2 describes the precise setting of the
problem. The main results are stated in Section 3. The proofs of the main theorems are given
in Section 4. The proofs of all the supporting lemma are given in the Appendix. The proof
strategy for the main results is given in Section 4.1.

2. Problem settings. In this paper, we consider a white Wishart matrix W =
(wij )1≤i,j≤p = XᵀX, where X = (xij )1≤i≤n,1≤j≤p and xij are independent N(0,1)-
distributed random variables. For S ⊂ {1, . . . , p}, set the principal minor WS = (wij )i,j∈S .
For an m × m symmetric matrix A, let λ1(A) and λm(A) denote the largest and the smallest
eigenvalues of A, respectively. Let

(2.1) Tm,n,p = max
S⊂{1,...,p},|S|=m

λ1(WS),

and |S| denotes the cardinality of the set S. We also define

(2.2) Vm,n,p = min
S⊂{1,...,p},|S|=m

λm(WS).

Of interest is the asymptotic behavior of Tm,n,p and Vm,n,p when both n and p grow large.
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Notice Wij is the sum of n independent and identically distributed (i.i.d.) random variables.
By the standard central limit theorem, for given i ≥ 1 and j ≥ 1, we have

wij − n√
n

=⇒ N(0,2) if i = j, and
wij√

n
=⇒ N(0,1) if i 	= j,

as n → ∞, where we use “=⇒” to indicate convergence in distribution. Motivated by this
limiting distribution, we also consider the Wigner matrix W̃ = (w̃ij )1≤i,j≤p , which is a sym-
metric matrix whose upper triangular entries are independent Gaussian variables with the
following distribution

(2.3) w̃ij ∼
{
N(0,2) if i = j ;
N(0,1) if i < j.

For S ⊂ {1, . . . , p}, set W̃S = (w̃ij )i,j∈S . We will work on the corresponding statistics

(2.4) T̃m,p = max
S⊂{1,...,p},|S|=m

λ1(W̃S)

and

(2.5) Ṽm,p = min
S⊂{1,...,p},|S|=m

λm(W̃S).

In this paper, we study asymptotic results regarding the four statistics Tm,n,p , Vm,n,p , Ṽm,p ,
and T̃m,p . In addition, we will also discuss the extension to random matrices with non-
Gaussian entries in Remark 4.

3. Main results. Throughout the paper, we will let n → ∞ and let p = pn → ∞ with a
speed depending on n. The following technical assumptions will be used in our main results.

ASSUMPTION 1. The integer m ≥ 2 is fixed and logp = o(n1/2); or m → ∞ with

(3.1) m = o

(
min

{
(logp)1/3

log logp
,

n1/4

(logn)3/2(logp)1/2

})
.

Notice the second part of Assumption 1 implies that logp = o(n1/2(logn−3)). It says the
population dimension p can be very large and it can be as large as exp{o(n1/2/ logn3)}.
This assumption is used in the analysis of Tm,n,p and Vm,n,p . The requirement m =
o((logp)1/3/ log logp) is used in the last step in (4.55). The second part of the condi-
tion m = o(n1/4(logn)−3/2(logp)−1/2) is needed in a few places including (4.52). The key
scales (logp)1/3 and n1/4 in condition (3.1) are tight, the terms of lower order log logp and
(logn)3/2 can be improved to be relatively smaller.

The next assumption is needed for studying the properties of Ṽm,p and T̃m,p .

ASSUMPTION 2. The integer m satisfies that

(3.2) m ≥ 2 is fixed, or m → ∞ with m = o

(
(logp)1/3

log logp

)
.

This condition is the same as the first part of (3.1). We start with asymptotic results for
Tm,n,p in (2.1) and Vm,n,p in (2.2).
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THEOREM 1. Suppose Assumption 1 in (3.1) holds. Recall Tm,n,p defined as in (2.1).
Then,

Zn := Tm,n,p − n√
n

− 2
√

m logp → 0

in probability as n → ∞. Furthermore,

(3.3) lim
n→∞E

[
eα|Zn|1{|Zn|≥δ}

] = 0

for all α > 0 and δ > 0.

REMARK 1. Suppose Assumption 1 in (3.1) holds. Recall Vm,n,p defined as in (2.2).
Similar to the proof of Theorem 1 it can be shown that

Z′
n := Vm,n,p − n√

n
+ 2

√
m logp → 0

in probability as n → ∞, and furthermore,

(3.4) lim
n→∞E

[
eα|Z′

n|1{|Z′
n|≥δ}

] = 0

for all α > 0 and δ > 0. For reasons of space, we omit the details here.

We now turn to the asymptotic analysis for T̃m,p and Ṽm,p .

THEOREM 2. Suppose Assumption 2 in (3.2) is satisfied. Recall T̃m,p defined as in (2.4).
Then,

Z̃p := T̃m,p − 2
√

m logp → 0

in probability as n → ∞. Furthermore,

(3.5) lim
p→∞E

[
eα|Z̃p |1{|Z̃p|≥δ}

] = 0

for all α > 0 and δ > 0.

REMARK 2. Suppose Assumption 2 in (3.2) is satisfied. Review W̃ = (w̃ij )1≤i,j≤p

above (2.3), we know W̃ and −W̃ have the same distribution. Let Ṽm,p be defined as in
(2.5). It follows that −T̃m,p and Ṽm,p have the same distribution. Then, by Theorem 2,

Z̃′
p := Ṽm,p + 2

√
m logp → 0

in probability as n → ∞. Furthermore,

(3.6) lim
p→∞E

[
eα|Z̃′

p |1{|Z̃′
p|≥δ}

] = 0

for all α > 0 and δ > 0.

The following remark provides a further explanation of the convergence results in (3.3)–
(3.6).

REMARK 3. Equation (3.3) has the following implications, whose rigorous justification
is given in Section 4.

1. limn→∞E[eα|Zn|] = 1 for all α > 0;
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2. limn→∞E(|Zn|α) = 0 for all α > 0;
3. limn→∞ Var(Zn) = 0.

We now elaborate on the above results. First, the moment generating function of |Zn| ex-
ists and is close to 1 when n is large. As a result, |Zn| has a sub-exponential tail probability
for large n. Second, Zn converges to 0 in Lq for all q > 0. Third, the variance of Zn van-
ishes for large n, indicating that Var(Tm,n,p) = o(n) as n → ∞. Overall, we can see (3.3) is
stronger than the typical convergence in probability. This provides information on the behav-
ior of the tail probability. Similar interpretations can also be made for (3.4), (3.5) and (3.6),
respectively.

3.1. Extensions. In this section, we discuss extensions of Theorems 1 and 2. Similar ex-
tensions can also be made to Remarks 1 and 2. They are omitted for the clarity of presentation.

First, we point out that Theorems 1 and 2 still hold if we replace the size-m principal
minors by the principal minors with the size no larger than m in the definition of T̃m,p and
Tm,n,p , by the eigenvalue interlacing theorem (see, e.g., Horn and Johnson (2012)). We then
have the following corollary.

COROLLARY 1. Define T̂m,n,p = maxS⊂{1,...,p},|S|≤m λ1(WS) and T̂m,p =
maxS⊂{1,...,p},|S|≤m λ1(W̃S). Then, Theorems 1 and 2 still hold if “Tm,n,p” and “T̃m,p” are
replaced by “T̂m,n,p” and “T̂m,p”, respectively.

Next, we extend Theorem 2 to allow other values of variance for the Wigner matrix. Here,
we assume the matrix W̃ to have the following distribution, instead of that in (2.3). For some
η ≥ 0,

(3.7) w̃ij ∼
{
N(0, η) if i = j ;
N(0,1) if i < j.

In addition, assume that W̃ is symmetric and w̃ij are independent for i ≤ j . Note that if
η = 2, then the above distribution is the same as that defined in (2.3). For W̃ defined in (3.7),
we consider the statistic T̃m,p . The following law of large numbers is obtained.

THEOREM 3. Suppose p → ∞ and that Assumption 2 in (3.2) is satisfied. In addition,
assume W̃ has the distribution as in (3.7) with 0 ≤ η ≤ 2. Then,

(3.8)
T̃m,p√[4(m − 1) + 2η] logp

→ 1

in probability as n → ∞.

The law of large numbers in Theorem 3 is proved by bounding the limsup and the liminf
of the left hand side of (3.8), and show that the two bounds match. If η > 2, we are not able
to match the two bounds due to technical reasons. We leave it as future work.

REMARK 4. A related open question is whether Theorem 1 can be extended to non-
Gaussian xij for the Wishart distribution. We conjecture that with certain assumptions on the
moments of xij and under the asymptotic regime that n is sufficiently large compared to logp

and m, and
Var(x2

11)

Var(x11x12)
≤ 2, the asymptotic behavior of Tm,n,p−n√

n
will be similar to that of T̃m,p

as is discussed in Theorem 3. We leave this question for future research, because it requires
development of some technical tools that are beyond the scope of the current paper.
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Some special cases for this question have been answered in the literature for Wishart
matrices with non-Gaussian entries. For example, if m = 2, and xij follows an asymmetric
Rademacher distribution P(xij = 1) = p and P(xij = −1) = 1 − p, then it is easy to check

W{i,j} =

⎛
⎜⎜⎜⎜⎝

n

n∑
k=1

xkixkj

n∑
k=1

xkixkj n

⎞
⎟⎟⎟⎟⎠

and λ1(W{i,j}) = n + |∑n
k=1 xkixkj |. As a result, we can see that Tm,n,p =

max1≤i<j≤p λ1(W{i,j}) = n + max1≤i<j≤p |∑n
k=1 xkixkj |. Analysis on similar quantities has

been studied extensively in the literature including Cai and Jiang (2012, 2013) Fan, Shao and
Zhou (2018), Jiang (2004a), Li, Liu and Rosalsky (2010), Li, Qi and Rosalsky (2012), Li and
Rosalsky (2006), Shao and Zhou (2014), Zhou (2007). The limiting distributions of Tm,n,p

are the Gumbel distribution.

3.2. Application to construction of compressed sensing matrices. The main results given
above have direct implications for the construction of compressed sensing matrix Xn×p

whose entries are i.i.d. N(0, 1
n
). As discussed in the Introduction, the goal is to construct

the measurement matrix X with the number of measurements n as small as possible rela-
tive to p, such that k-sparse signals β can be accurately recovered. For any given t , the RIP
framework guarantees accurate recovery of all k-sparse signals β if the extreme eigenval-
ues, λmax(tk) and λmin(tk), of the tk × tk principal minors of the Wishart matrix W = XᵀX
satisfy

(3.9) 1 − b∗(t) < λmin(tk) ≤ λmax(tk) < 1 + b∗(t),

where b∗(t) is given in (1.4).
By setting m = tk, λmax(tk) = Tm,n,p/n, and λmin(tk) = Vm,n,p/n, it follows from Theo-

rem 1 and Remark 1 that, under Assumption 1 in (3.1),

λmax(tk) = 1 + 2

√
tk logp

n

(
1 + op(1)

)
and

λmin(tk) = 1 − 2

√
tk logp

n

(
1 + op(1)

)
.

On the other hand, Assumption 1 implies that
√

m logp
n

=
√

tk logp
n

= o(1). So the above
asymptotic approximation gives λmax(tk) = 1 + op(1) and λmin(tk) = 1 + op(1), and hence
(3.9) is satisfied. That is, Assumption 1 guarantees the exact recovery of all k sparse signals
in the noiseless case through the constrained �1 minimization as explained in (1.3) and (1.4).

4. Technical proofs. Throughout the proof, as mentioned earlier, we will let n → ∞
and p = pn → ∞; the integer m ≥ 2 is either fixed or m = mn → ∞. The following notation
will be adopted. We write an = O(bn) if there is a constant κ independent of n, p, and m

(unless otherwise indicated) such that |an| ≤ κbn. Moreover, we write an = o(bn), if there is
a sequence cn independent of n, p, and m such that cn → 0 and |an| ≤ cnbn. Define ξp =
log log logp. This is a sequence growing to infinity with a very slow speed compared to n

and p.
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This section is organized as follows. We first introduce the main steps in proving Theo-
rems 1 and 2 in Section 4.1. In Section 4.2, we present the proofs for Theorems 1–3, Corol-
lary 1, and Remark 3. The proofs for all technical lemmas are given in the Appendix. For the
reader’s convenience, we list the content of each section below.

Section 4.1. The Strategy of the Proofs for Theorems 1 and 2.
Section 4.2. Proof of the results in Section 3.
Section 4.2.1. Proof of Theorem 2.
Section 4.2.2. Proof of Theorem 1.
Section 4.2.3. Proofs of Theorem 3 and Remark 3.

4.1. The strategy of the proofs for theorems 1 and 2. We first explain the proof strategy
for Theorem 2 and then explain that for Theorem 1, since Wigner matrices have simpler
structure than Wishart matrices. The proof of Theorem 2 consists of three steps. The first step
is to find an upper bound on the right tail probability P(T̃m,p ≥ 2

√
m logp + t) for t ≥ δ. Our

method here is to first develop a moderate deviation bound of P(λ1(W̃S) ≥ 2
√

m logp + t)

for each S ⊂ {1, . . . , p} and |S| = m, and then use the union bound to control P(T̃m,p ≥
2
√

m logp+ t). The second step is to find an upper bound on the left tail probability P(T̃m,p ≤
2
√

m logp − t) for t ≥ δ. Our approach is to construct a sequence of events Ep,m with high
probability, such that when Ep,m occurs, there exists S ⊂ {1, . . . , p} satisfying |S| = m and
λ1(W̃S) ≥ 2

√
m logp − t . The third step is to combine the left and right tail bounds obtained

from the previous two steps to show (3.5).
The proof of Theorem 1 is based on a similar strategy to that of Theorem 2. A new and key

ingredient is to control the approximation speed of the Wishart matrix to the Wigner matrix
(after normalization). Change-of-measure arguments are used to quantify the approximation
speed in the moderate deviation domain.

We point out that the proof for the asymptotic lower bound of T̃m,p in this paper is different
from the standard technique for analyzing the maximum/minimum statistic for a large random
matrix (see, e.g. Jiang (2004a)). In particular, the proof in Jiang (2004a) employs the Chen–
Stein’s Poisson approximation method (see, e.g., Arratia, Goldstein and Gordon (1990)) and
the asymptotic independence. However, this method does not fit our problem. For this reason,
new technique are developed and, in particular, we construct an event on which T̃m,p achieves
the asymptotic lower bound.

4.2. Proof of the results in Section 3. As mentioned earlier, Wigner matrices have a sim-
pler structure than Wishart matrices. Thus, we first present the proof of Theorem 2, followed
by the proof of Theorem 1. At the end of the section, the proofs of Corollary 1, Theorem 3,
and Remark 3 are presented.

In each proof we will need auxiliary results. To make the proof clearer, we place the proofs
of the auxiliary results in the Appendix. Sometimes a statement or a formula holds as n is
sufficiently large. We will not say “as n is sufficiently large” if the context is apparent.

4.2.1. Proof of Theorem 2. To prove Theorem 2, we need the following two key results.

PROPOSITION 1. Suppose Assumption 2 in (3.2) is satisfied. Recall T̃m,p defined as in
(2.4). Then,

lim
p→∞ sup

t≥δ

eαt t2
P(T̃m,p ≥ 2

√
m logp + t) = 0

for every α > 0 and every δ > 0.
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PROPOSITION 2. Suppose Assumption 2 in (3.2) is satisfied. Recall T̃m,p defined as in
(2.4). Then,

lim
p→∞ sup

t≥δ

eαt t2
P(T̃m,p ≤ 2

√
m logp − t) = 0

for every α > 0 and every δ > 0.

Another auxiliary lemma is need. Its proof is put in the Appendix.

LEMMA 1. Let Z ≥ 0 be a random variable with E[eαZ] < ∞ for all α > 0. Then

E
[
eαZ1{Z≥δ}

] = eαδ
P(Z ≥ δ) + α

∫ ∞
δ

eαt
P(Z > t) dt

for every α > 0 and every δ > 0.

PROOF OF THEOREM 2. By Propositions 1 and 2, we have

lim
p→∞ sup

t≥δ

eαt t2
P
(|T̃m,p − 2

√
m logp| ≥ δ

) = 0

for any α > 0 and δ > 0. Consequently, for given α > 0, there exists a sequence of positive
numbers ap → 0 such that

(4.1) eαt t2
P
(|T̃m,p − 2

√
m logp| ≥ t

) ≤ ap

for all t ≥ δ as p is sufficiently large. Now we estimate

E
(
eα|T̃ −2

√
m logp|1{|T̃ −2

√
m logp|≥δ}

)
.

Apply Lemma 1 to Zp,m = |T̃ − 2
√

m logp|, we see

E
[
eα|T̃m,p−2

√
m logp|1|T̃m,p−2

√
m logp|≥δ

]
= eαδ

P(Zp,m ≥ δ) +
∫ ∞
δ

eαt
P(Zp,m ≥ t) dt.

According to (4.1), the above display can be bounded from above by δ−2ap + ap

∫∞
δ t−2 dt ,

which tends to 0 as p → ∞. The proof is then complete. �

Now we proceed to prove Propositions 1 and 2.

PROOF OF PROPOSITION 1. For any t > 0, we have from the definition of T̃m,p that

P(T̃m,p ≥ 2
√

m logp + t) ≤ ∑
S⊂{1,...,p},|S|=m

P
(
λ1(W̃S) ≥ 2

√
m logp + t

)

≤ pm
P
(
λ1(W̃{1,...,m}) ≥ 2

√
m logp + t

)
,

(4.2)

where the first inequality is due to the union bound and the definition of T̃m,p =
maxS⊂{1,...,p},|S|=m λ1(W̃S), and in the second inequality we use the fact that WS are identi-
cally distributed for all different S with |S| = m. The following result enables us to bound
the last probability.
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LEMMA 2. Let W̃{1,...,m} be defined as above (2.4) with S = {1, . . . ,m}. Then there is a
constant κ > 0 such that

P
(
λ1(W{1,...,m}) ≥ x or λm(W{1,...,m}) ≤ −x

) ≤ e−(x2/4)+κm logx

for all x > 4
√

m and all m ≥ 2.

Taking x := 2
√

m logp + t in the above lemma, we know x > 4
√

m as n is large enough,
and hence

log
[
eαtpm

P
(
λ1(W̃{1,...,m}) ≥ 2

√
m logp + t

)]
≤ αt + m logp − 1

4
(2
√

m logp + t)2 + κm log(2
√

m logp + t)

= αt − t
√

m logp − 1

4
t2

+ κm log(2
√

m logp) + κm log
(

1 + t

2
√

m logp

)
.

Note that −1
4 t2 ≤ 0, κm log(2

√
m logp) = O(m log logp), and κm log(1 + t

2
√

m logp
) =

O(
√

m√
logp

t) < t as p is sufficiently large. Thus, the above inequality further implies

log
[
eαtpm

P
(
λ1(W̃{1,...,m}) ≥ 2

√
m logp + t

)]
(4.3)

≤ − t

2

√
m logp + O(m log logp)

uniformly for all t ≥ 0 as p sufficiently large, where α > 0 is fixed. With the above inequality,
we complete the proof. �

PROOF OF PROPOSITION 2. Recall ξp = log log logp. The proof will be evidently fin-
ished if the following two limits hold. For each α > 0 and each δ > 0,

(4.4) lim
p→∞ sup

δ≤t≤2
√

m logp−mξp

eαt t2
P(T̃m,p ≤ 2

√
m logp − t) = 0

and

(4.5) lim
p→∞ sup

t≥2
√

m logp−mξp

eαt t2
P(T̃m,p ≤ 2

√
m logp − t) = 0.

We now verify the above two limits.
The proof of (4.4). Recall

(4.6) λ1(A) ≥ 1

k

k∑
i=1

k∑
j=1

aij

for any k × k square and symmetric matrix A = (aij )1≤i,j≤k , where λ1(A) is the largest
eigenvalue of A.

For each S ⊂ {1, . . . , p} such that |S| = m and W̃S = (W̃ij ), set

(4.7) ÃS =
{
W̃ij ≥ (1 − εm,p,t )

√
4 logp

m
for all i, j ∈ S and i ≤ j

}
,

where εm,p,t := (4m logp)−1/2t . If 0 < t ≤ 2
√

m logp−mξp then 0 < εm,p,t < 1. According
to (4.6), if there exists S0 ⊂ {1, . . . , p} such that |S0| = m and ÃS0 occurs, then T̃m,p ≥
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λ1(W̃S0) ≥ m(1 − εm,p,t )

√
4 logp

m
= 2

√
m logp − t . Define Q̃m,p = ∑

S⊂{1,...,p}:|S|=m 1
ÃS

„

where 1
ÃS

is the indicator function of ÃS . Then,

(4.8) P(T̃m,p < 2
√

m logp − t) ≤ P(Q̃m,p = 0).

For any random variable Y with EY > 0 and E(Y 2) < ∞, we have

(4.9) P(Y ≤ 0) ≤ P
(
(Y −EY)2 ≥ (EY)2) ≤ Var(Y )

(EY)2 .

Applying this inequality to Q̃m,p , we obtain

(4.10) P(Q̃m,p = 0) = P(Q̃m,p ≤ 0) ≤ Var(Q̃m,p)

(EQ̃m,p)2
.

We proceed to find a lower bound on EQ̃m,p and an upper bound on Var(Q̃m,p) in two steps.
Step 1: the estimate of EQ̃m,p . Note that 1

ÃS
are identically (not independently) distributed

Bernoulli variables for different S with success rate P(Ã{1,...,m}). Thus, we have

(4.11) EQ̃m,p =
(

p

m

)
P(ÃS0),

where we choose S0 = {1, . . . ,m} with a bit of abuse of notation. For convenience, write

τm,p,t = (1 − εm,p,t )

√
4 logp

m
=

√
4 logp

m
− t

m
. Since the upper triangular entries of W̃ are

independent Gaussian variables, we have from (4.7) that

P(ÃS0) =
m∏

k=1

P(W̃kk ≥ τm,p,t )
∏

1≤i<j≤m

P(W̃ij ≥ τm,p,t ).

Recall that W̃kk ∼ N(0,2) and W̃ij ∼ N(0,1) for i 	= j . Hence

(4.12) P(ÃS0) = �̄

(
1√
2
τm,p,t

)m

�̄(τm,p,t )
m(m−1)

2 ,

where �̄(z) = ∫∞
z

1√
2π

e−w2
2 dw. It is well known that

(4.13) log �̄(x) = −x2

2
− log(x) − log

√
2π + o(1)

as x → ∞. Recall the assumption that t ≤ 2
√

m logp − mξp , so τm,p,t =
√

4 logp
m

− t
m

≥
ξp → ∞. Thus, by (4.12) and (4.13),

logP(ÃS0) = − 1

2
m · 1

2
· τ 2

m,p,t − m log
τm,p,t√

2

− 1

2
· m(m − 1)

2
(τm,p,t )

2 − m(m − 1)

2
log(τm,p,t ) + O

(
m2).

Note that 1 > 1−εm,p,t ≥ ξp

√
m

4 logp
since 0 < t ≤ 2

√
m logp−mξp . It follows that | log(1−

εm,p,t )| = O(log
√

logp

mξ2
p
) = O(log logp). Also, log

√
4 logp

m
= O(log logp). As a result, from

the definition of τm,p,t we have τ 2
m,p,t = (1 − εm,p,t )

2 · 4 logp
m

and log(τm,p,t ) = O(log logp).
It follows that

(4.14) logP(ÃS0) = −(1 − εm,p,t )
2m logp + O

(
m2 log logp

)
.
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Combining this with (4.11), we see

(4.15) log(EQ̃m,p) = log
(

p

m

)
− (1 − εm,p,t )

2m logp + O
(
m2 log logp

)
.

To control
( p
m

)
, we need the next result, which will be proved in the Appendix.

LEMMA 3. For all m ≥ p ≥ 1, m logp − m logm ≤ log
( p
m

) ≤ m logp + m − m logm.

Using the above lemma, (4.15), and note that m logm = O(m2 log logp), we have

(4.16) log(EQ̃m,p) = [
1 − (1 − εm,p,t )

2]m logp + O
(
m2 log logp

)
.

Step 2: the estimate of Var(Q̃m,p). Recalling Q̃m,p = ∑
S⊂{1,...,p}:|S|=m 1

ÃS
, we have

Var(Q̃m,p) = EQ̃2
m,p − (EQ̃m,p)2

= ∑
S1,S2⊂{1,...,p},|S1|=|S2|=m

P(ÃS1 ∩ ÃS2) − (EQ̃m,p)2.
(4.17)

Note that P(ÃS1 ∩ ÃS2) is determined by |S1 ∩ S2| and m. By (4.7),∑
S1,S2⊂{1,...,p},|S1|=|S2|=m

P(ÃS1 ∩ ÃS2)

=
m∑

l=0

∑
|S1∩S2|=l,|S1|=|S2|=m

P(ÃS1 ∩ ÃS2)

= p!
m!m!(p − 2m)!P(Ã{1,...,m})2 +

(
p

m

)
P(Ã{1,...,m})

+
m−1∑
l=1

p!
l!(m − l)!(m − l)!(p − 2m + l)!P(Ã{1,...,m} ∩ Ã{1,...,l,m+1,...,2m−l}).

(4.18)

On the other hand, EQ̃m,p = ( p
m

)
P(Ã{1,...,m}) and hence

(4.19) (EQ̃m,p)2 = p!
m!m!(p − 2m)!P(Ã{1,...,m})2 · p!(p − 2m)!

(p − m)!2 .

Combining (4.17), (4.18), and (4.19), we arrive at Var(Q̃m,p) = (EQ̃m,p)2(
(p−m)!2

p!(p−2m)! −
1) + EQ̃m,p +∑m−1

l=1
p!

l!(m−l)!(m−l)!(p−2m+l)!P(Ã{1,...,m} ∩ Ã{1,...,l,m+1,...,2m−l}). Observe that
p!

(p−2m+l)! = p(p − 1) · · · (p − 2m + l − 1) ≤ p2m−l and 1
l!(m−l)!(m−l)! ≤ 1. It follows that

Var(Q̃m,p) ≤ EQ̃m,p + (EQ̃m,p)2
(

(p − m)!2
p!(p − 2m)! − 1

)

+ m max
l=1,...,m−1

p2m−l
P(Ã{1,...,m} ∩ Ã{1,...,l,m+1,...,2m−l}).

(4.20)

Similar to (4.12) we have

P(Ã{1,...,m} ∩ Ã{1,...,l,m+1,...,2m−l}) =�̄

(
1√
2
τm,p,t

)2m−l

�̄(τm,p,t )
m(m−1)

2 ·2− l(l−1)
2 .(4.21)
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Again, we find an approximation for the above display by using (4.13) and simplifying it.
We arrive at logP(Ã{1,...,m} ∩ Ã{1,...,l,m+1,...,2m−l}) ≤ − 1

m
(2m2 − l2)(1 − εm,p,t )

2 logp +
O(m2 log logp). Therefore, for the last term in (4.20), we see

log
[
mp2m−l

P(Ã{1,...,m} ∩ Ã{1,...,l,m+1,...,2m−l})
]

≤
[
2m − l − 1

m
(1 − εm,p,t )

2(2m2 − l2)] logp + O
(
m2 log logp

)
.

(4.22)

The following lemma enables us to evaluate the coefficient of logp.

LEMMA 4. For any 0 < ε < 1 and m ≥ 2, maxl=1,...,m−1{(2m − l) − 2m2−l2

m
(1 − ε)2} =

(2m − 1) − (2m − 1
m

)(1 − ε)2 = 2m[1 − (1 − ε)2] − [1 − 1
m

(1 − ε)2].

Applying the above lemma to (4.22), we get

m max
l=1,...,m−1

p2m−l
P(Ã{1,...,m} ∩ Ã{1,...,l,m+1,...,2m−l})

≤ exp
{

2m
[
1 − (1 − εm,p,t )

2] logp

−
[
1 − 1

m
(1 − εm,p,t )

2
]

logp + O
(
m2 log logp

)}
.

This inequality together with (4.16) implies that

(EQ̃m,p)−2m max
l=1,...,m−1

p2m−l
P(Ã{1,...,m} ∩ Ã{1,...,l,m+1,...,2m−l})

≤ exp
{
−
[
1 − 1

m
(1 − εm,p,t )

2
]

logp + O
(
m2 log logp

)}
.

(4.23)

Combining the above display with (4.20), we arrive at

Var(Q̃m,p)

(EQ̃m,p)2
≤ exp

{
−
[
1 − 1

m
(1 − εm,p,t )

2
]

logp + O
(
m2 log logp

)}

+ (EQ̃m,p)−1 + (p − m)!2
p!(p − 2m)! − 1.

It is not hard to show that for all integers p ≥ m ≥ 1 satisfying 2m < p,

(4.24)
(p − m)!2

p!(p − 2m)! < 1.

Therefore,

Var(Q̃m,p)

(EQ̃m,p)2

≤ exp
{
−
[
1 − 1

m
(1 − εm,p,t )

2
]

logp + O
(
m2 log logp

)}+ (EQ̃m,p)−1.

(4.25)

We now study the last two terms one by one. For m ≥ 2,

−
[
1 − 1

m
(1 − εm,p,t )

2
]

logp + O
(
m2 log logp

) ≤ − 1

4
logp(4.26)
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for n sufficiently large under Assumption 2 in (3.2). Recalling εm,p,t = (4m logp)−1/2t , we
see from (4.16) that

log(EQ̃m,p)−1 = − [
1 − (1 − εm,p,t )

2]m logp + O
(
m2 log logp

)
≤ − t

2

√
m logp + O

(
m2 log logp

)
.

(4.27)

Combining (4.25), (4.26), and (4.27), we arrive at

Var(Q̃m,p)

(EQ̃m,p)2
≤ exp

{
− t

2

√
m logp + O

(
m2 log logp

)}+ exp
{
−1

4
logp

}
.

This together with (4.8) and (4.10) yields P(T̃m,p ≤ 2
√

m logp − t) ≤ exp{− t
2

√
m logp +

O(m2 log logp)} + 1
p1/4 uniformly for all δ ≤ t ≤ 2

√
m logp − mξp . Consequently, we get

(4.4).
The proof of (4.5). For any S ⊂ {1, . . . , p} with |S| = m, write W̃S = (W̃ij )i,j∈S . Note that

λ1(W̃S) ≥ maxi∈S W̃ii . Thus, T̃m,p ≥ maxS⊂{1,...,p},|S|=m λ1(W̃S)

≥ max1≤i≤p W̃ii . As a result,

P(T̃m,p ≤ 2
√

m logp − t) ≤ P

(
max

1≤i≤p
W̃ii ≤ 2

√
m logp − t

)

= �

(√
2m logp − 1√

2
t

)p

,

where the function �(z) = ∫ z
−∞ 1√

2π
e− s2

2 ds for z ∈ R. To proceed, we discuss two scenar-

ios: 2
√

m logp − mξp ≤ t ≤ 4
√

m logp and t > 4
√

m logp. For 2
√

m logp − mξp ≤ t ≤
4
√

m logp, we have

�

(√
2m logp − t√

2

)p

≤ �

(√
2m logp − 2

√
m logp − mξp√

2

)p

= exp
{
p log

(
1 − �̄

(
mξp√

2

))}

≤ exp
{
−p�̄

(
mξp√

2

)}
,

where �̄(z) = 1 − �(z) for any z ∈ R and the inequality log(1 − x) ≤ −x for any x < 1 is

used in the last step. Note �̄( 1√
2
mξp) = (1+o(1)) 1√

4πmξp
e−m2ξp

2

4 and p0.1(ξp)−1e−m2ξp
2

4 →
∞ since ξp = log log logp. Thus,

�

(√
2m logp − t√

2

)p

≤ exp
{−p0.9m

}
,(4.28)

for sufficiently large p. This further implies

lim
p→∞ sup

2
√

m logp−mξp≤t≤4
√

m logp

eαt t2
P(T̃m,p ≤ 2

√
m logp − t) = 0(4.29)

for any α > 0. Note that �(−x) = �̄(x) ≤ 1√
2πx

e−x2/2 ≤ e−x2/2 for any x ≥ 1. Then, for

the other scenario where t ≥ 4
√

m logp, we have �(
√

2m logp − t√
2
)p ≤ �(− t

2
√

2
)p ≤
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exp{−pt2

16 } as n is large enough. Thus,

lim
p→∞ sup

t≥4
√

m logp

eαt t2
P(T̃m,p ≤ 2

√
m logp − t) = 0(4.30)

for any α > 0. Joining (4.29) and (4.30), we see (4.5). This completes the whole proof. �

4.2.2. Proof of Theorem 1. To prove Theorem 1, we need the following two propositions.

PROPOSITION 3. Suppose Assumption 1 in (3.1) holds. Recall Tm,n,p defined as in (2.1).
Then, limn→∞ supt≥δ eαt t2

P( 1√
n
(Tm,n,p −n) ≥ 2

√
m logp+ t) = 0 for any α > 0 and δ > 0.

PROPOSITION 4. Suppose Assumption 1 in (3.1) holds. Recall Tm,n,p defined as in (2.1).
Then, limn→∞ supt≥δ eαt t2

P( 1√
n
(Tm,n,p −n) ≤ 2

√
m logp− t) = 0 for any α > 0 and δ > 0.

PROOF OF THEOREM 1. Similar to the proof of Theorem 2, it is sufficient to prove (3.3).
By the same argument as in the proof of Theorem 2, with the upper bound for P(

Tm,n,p−n√
n

≥
2
√

m logp + t) given in Proposition 3 and the upper bound for P(
Tm,n,p−n√

n
≤ 2

√
m logp − t)

for t > δ given in Proposition 4, we get (3.3). �

In the following we start to prove Propositions 3 and 4.

PROOF OF PROPOSITION 3. Without loss of generality, we assume δ < 1 since the ex-
pectation in (3.3) is monotonically decreasing in δ.

Let W{1,...,m} be as WS above (2.1) with S = {1,2, . . . ,m}. Analogous to (4.2), we have

P

(
1√
n
(Tm,n,p − n) ≥ 2

√
m logp + t

)

≤ pm
P

(
1√
n

(
λ1(W{1,...,m}) − n

) ≥ 2
√

m logp + t

)
.

(4.31)

We now bound the last probability. Since the above tail probability involve moderate bound
and large deviation bound for different ranges of t , we will discuss three different cases and
use different proof strategies. Recall ξp = log log logp. Set

(4.32) ωn =
(

m

logp

)1/2
ξp logn.

The three cases are: (1) t >
δ
√

n
100 , (2) δ ∨ ωn ≤ t ≤ δ

√
n

100 , and (3) δ ≤ t < δ ∨ ωn. They cover
all situations for t ≥ δ. For the first two cases, the upper bound is based on the next lemma,
which gives a moderate deviation bound for the spectrum of 1√

n
W{1,...,m} from the identity

matrix Im.

LEMMA 5. There exists a constant κ > 0 such that for all n, p, m, r ≥ 1, 0 < d < 1/2,
and y > 2dmr , we have

P

(
λ1(W{1,...,m}) − n

n
≥ y

)

≤ 2 · exp
{
−nI (1 + y − 2dmr) + κm log

1

d

}
+ 2 · e−mnI (r)

(4.33)
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and

P

(
λm(W{1,...,m}) − n

n
≤ −y

)

≤ 2 · exp
{
−nI (1 − y + 2dmr) + κm log

1

d

}
+ 2 · e−mnI (r),

(4.34)

where I (s) = 1
2(s − 1 − log s) for s > 0 and I (s) = ∞ for s ≤ 0.

Case 1: t >
δ
√

n
100 . Let α > 0 be given. Choose r = max(2,1 + 80αt

mn
), d = min(1

2 , t
4m

√
nr

),

and y = 2
√

m logp+t√
n

in Lemma 5. The choice of r , d , and y satisfies that 2dmr ≤ t
2
√

n
and

hence y − 2dmr ≥ 2
√

m logp√
n

+ t
2
√

n
. Set z = 2

√
m logp√

n
+ t

2
√

n
. Notice that I (s) from Lemma

5 is increasing for s ≥ 1. Then, by the lemma,

t2eαtpm
P

(
λ1(W{1,...,m}) − n√

n
≥ 2

√
m logp + t

)

≤ 2 · exp
{
−n

2

[
z − log(1 + z)

]+ κm log
1

d
+ αt + 2 log t + m logp

}

+ 2 · exp
{
−1

2
(r − 1 − log r)mn + αt + 2 log t + m logp

}
.

(4.35)

The following lemma says that both of the last two terms go to zero.

LEMMA 6. Suppose Assumption 1 in (3.1) holds. Let α > 0 and δ > 0 be given. For

r = max(2,1 + 80αt
mn

), d = min(1
2 , t

4m
√

nr
), and z = 2

√
m logp√

n
+ t

2
√

n
, we have

lim
n→∞ sup

t>
δ
√

n
100

exp
{
−n

2

[
z − log(1 + z)

]+ κm log
1

d
+ αt + 2 log t + m logp

}
= 0,(4.36)

lim
n→∞ sup

t>
δ
√

n
100

exp
{
−1

2
(r − 1 − log r)mn + αt + 2 log t + m logp

}
= 0.(4.37)

Combining (4.31), (4.35)–(4.37), we conclude

(4.38) lim
n→∞ sup

t>
δ
√

n
100

t2eαt
P

(
1√
n
(Tm,n,p − n) ≥ 2

√
m logp + t

)
= 0.

Case 2: δ ∨ ωn ≤ t ≤ δ
√

n
100 . Review ωn in (4.32). Now we choose r = 2, d = t

8m
√

n
< 1

2 and

y = 2
√

m logp+t√
n

. Then y > t
2
√

n
= 2dmr . By (4.33),

t2eαtpm
P

(
λ1(W{1,...,m}) − n√

n
≥ 2

√
m logp + t

)

≤ 2 · exp
{
−n

2

[
z − log(1 + z)

]+ κm log
1

d
+ αt + 2 log t + m logp

}

+ 2 · exp
{
−1

2
(1 − log 2)mn + αt + 2 log t + m logp

}
,

(4.39)

where z := y − 2dmr = 2
√

m logp√
n

+ t
2
√

n
. The last two terms are analyzed in the next lemma.
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LEMMA 7. Suppose Assumption 1 in (3.1) holds. Let ωn be as in (4.32). For δ ∨ ωn ≤
t ≤ δ

√
n

100 , z = 2
√

m logp√
n

+ t
2
√

n
and d = t

8m
√

n
, we have

exp
{
−n

2

[
z − log(1 + z)

]+ κm log
1

d
+ αt + 2 log t + m logp

}

≤ exp
{
−1

4
t
√

m logp

}(4.40)

as n is sufficiently large. In addition, as n → ∞,

− 1

2
(1 − log 2)mn + αt + 2 log t + m logp

= −1

2
(1 − log 2)

[
1 + o(1)

]
mn.

(4.41)

Joining (4.39)–(4.41), we obtain

lim
n→∞ sup

δ∨ωn≤t≤ δ
√

n
100

pmt2eαt
P

(
λ1(W{1,...,m}) − n√

n
≥ 2

√
m logp + t

)
= 0,(4.42)

which together with (4.31) implies that

lim
n→∞ sup

δ∨ωn≤t≤ δ
√

n
100

t2eαt
P

(
1√
n
(Tm,n,p − n) ≥ 2

√
m logp + t

)
= 0.

This completes our analysis for Case 2. By using the same argument as obtaining (4.42), we
have the following limit, which will be used later on:

lim
n→∞ sup

δ∨ωn≤t≤ δ
√

n
100

t2eαtpm
P

(
λm(W{1,...,m}) − n√

n
≤ −2

√
m logp − t

)
= 0.(4.43)

We next study Case 3.
Case 3: δ ≤ t < δ ∨ ωn. Note that this case is only possible if n ≥ exp{((logp)/m)1/2 ×

ξp
−1δ}. We point out that Lemma 5 is not a suitable approach for bounding the tail probability

in this case because the term m log(1/d), which cannot be easily controlled, will dominate
the other terms in the error bound for very large n. Instead, we will use another approach to
obtain an upper bound of P(λ1(W{1,...,m}) ≥ 2

√
m logp+ t). The main step here is to quantify

the approximation of the extreme eigenvalue of a Wishart matrix to that of a Wigner matrix.
We will analyze their density functions and leverage them with the results in the proof of
Theorem 2.

Let μ = (μ1, . . . ,μm) be the order statistics of the eigenvalues of W{1,...,m} such that
μ1 > μ2 > · · · > μm. Write ν = (ν1, . . . , νm) with νi = (μi − n)/

√
n. Let W̃{1,...,m} =

(w̃ij )1≤i,j≤m where w̃ij ’s are as in (2.3). Let the eigenvalues of W̃{1,...,m} be λ1 > · · · > λm.
Set λ = (λ1, . . . , λm). Intuitively, the law of ν is close to that of λ when n is large. The
next lemma quantifies the approximation speed. Review ‖x‖∞ = max1≤i≤m |xi | for any
x = (x1, . . . , xm) ∈R

m.

LEMMA 8. Let gn,m(·) be the density function of ν, and let hm(·) be the density function
of λ. Assume m3 = o(n). Then,

loggn,m(v) − loghm(v)

= o(1) + O
(
m2n−1/2‖v‖∞ + m2n−1‖v‖2∞ + mn−1/2‖v‖3∞

)
for all v ∈ R

m with ‖v‖∞ ≤ 2
3

√
n.
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Let rm,n = 2
√

m logp + ωn, where ωn is as in (4.32). Then for t such that δ ≤ t ≤ ωn,

P

(
1√
n

(
λ1(W{1,...,m}) − n

) ≥ 2
√

m logp + t

)

≤ P

(
1√
n

(
λ1(W{1,...,m}) − n

) ≥ 2
√

m logp + t, max
1≤i≤m

|νi | ≤ rm,n

)

+ P

(
max

1≤i≤m
|νi | > rm,n

)
.

(4.44)

There are three probabilities above, denote the second one by Hn. For Hn, we use the change-
of-measure argument. In fact,

Hn =
∫
v1≥2

√
m logp+t,‖v‖∞≤rm,n

gn,m(v) dv

=
∫
v1≥2

√
m logp+t,‖v‖∞≤rm,n

exp
{
loggn,m(v) − loghm(v)

}
hm(v) dv

= exp
{
o(1)+O

(
m2n−1/2rm,n

)+ O
(
m2n−1r2

m,n

)+ O
(
mn−1/2r3

m,n

)}
·
∫
v1≥2

√
m logp+t,‖v‖∞≤rm,n

hm(v) dv

≤ 2 · exp
{
O
(
m2n−1/2rm,n

)+ O
(
m2n−1r2

m,n

)+ O
(
mn−1/2r3

m,n

)}
· P(λ1(W̃{1,...m}) ≥ 2

√
m logp + t

)
.

Recall the definition of ωn in (4.32) and note that rm,n >
√

m logp and m = o(n). It is
not hard to verify that O(m2n−1/2rm,n) + O(m2n−1r2

m,n) + O(mn−1/2r3
m,n) = o(

√
m logp),

where Assumption 1 from (3.1) is used. Therefore, Hn ≤ exp (o(
√

m logp)) ·
P(λ1(W̃{1,...m}) ≥ 2

√
m logp + t). Note that t ≤ et for all t > 0. It follows from (4.3) that

supt≥δ{pmeαt t2Hn} ≤ supt≥δ exp{−1
2 t

√
m logp + O(m log logp) + o(

√
m logp)} = o(1)

under Assumption 1. by the fact t ≥ δ and Assumption 1. Combining this with (4.44), we
have

sup
δ≤t≤δ∨ωn

{
pmeαt t2 · P

(
λ1(W{1,...,m}) − n√

n
≥ 2

√
m logp + t

)}

≤ o(1) + pmeαωn+2 logωn · P
(

max
1≤i≤m

|νi | ≥ rm,n

)
.

(4.45)

We next analyze P(max1≤i≤m |νi | ≥ rm,n). Recall rm,n = 2
√

m logp + ωn, where ωn is as in
(4.32). Recall that we only discuss Case 3 when δ ≤ t < δ ∨ ωn, and this is only meaningful

when ωn > δ. Thus, δ ∨ ωn = ωn ≤
√

nδ
100 . Thus, from (4.42) we have

(4.46) lim
n→∞pmeαωn+2 logωnP

(
λ1(W{1,...,m}) − n√

n
≥ rm,n

)
= 0.

By (4.43),

(4.47) lim
n→∞pmeαωn+2 logωnP

(
λm(W{1,...,m}) − n√

n
≤ −rm,n

)
= 0.

Since max1≤i≤m |νi | = max(ν1,−νm), by combining (4.46) and (4.47), we see that
limn→∞ pmeαωn+2 logωnP(max1≤i≤m |νi | ≥ rm,n) = 0. Combining this with (4.45), we fur-
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ther have

(4.48) lim
n→∞ sup

δ≤t≤δ∨ωn

pmeαt t2
P

(
1√
n

(
λ1(W{1,...,m}) − n

) ≥ 2
√

m logp + t

)
= 0.

This completes our analysis for Case 3.
Now, we combine (4.38), (4.42), and (4.48), and arrive at

lim
n→∞ sup

t≥δ

pmeαt t2
P

(
1√
n

(
λ1(W{1,...,m}) − n

) ≥ 2
√

m logp + t

)
= 0.

This and (4.31) conclude limn→∞ supt≥δ eαt t2
P( 1√

n
(Tm,n,p − n) ≥ 2

√
m logp + t) = 0. �

PROOF OF PROPOSITION 4. Noticing the expectation in (3.3) is nonincreasing in δ.
Without loss of generality, we assume δ < 1. Here we discuss two scenarios that are sim-
ilar to those in the proof of Theorem 2. They are 1) δ ≤ t ≤ 2

√
m logp − mξp and 2)

t > 2
√

m logp − mξp , where ξp = log log logp.
Scenario 1: δ ≤ t ≤ 2

√
m logp − mξp . Similar to the proof of Theorem 2, we define

the event AS as follows. For each S ⊂ {1, . . . , p} with |S| = m, set AS = { 1√
n
(Wkk − n) ≥

τm,p,t ,
Wij√

n
≥ τm,p,t for all i, j, k ∈ S and i < j}, where τm,p,t = (1 − εm,p,t )

√
4 logp

m
and

εm,p,t = (4m logp)−1/2t . We also define

(4.49) Qm,n,p = ∑
S⊂{1,...,p}:|S|=m

1AS
.

Similar to the discussion between (4.6) and (4.10) in the proof of Theorem 2, we have

(4.50) P(Tm,n,p ≤ 2
√

m logp − t) ≤ Var(Qm,n,p)

E(Qm,n,p)2 .

In the rest of the discussion under Scenario 1, we will develop a lower bound for E(Qm,n,p)

and an upper bound for Var(Qm,n,p) in two steps.
Step 1: the estimate of E(Qm,n,p). For a m × m symmetric matrix M , we use ‖M‖

to denote its spectral norm. Set S0 = {1,2, . . . ,m}. Review ωn in (4.32). Since {1AS
;S ⊂

{1, . . . , p}with|S| = m} are identically distributed, we have

(4.51) E(Qm,n,p) =
(

p

m

)
P(AS0) ≥

(
p

m

)
P(AS0 ∩Lm,n,p),

where we let sm,n,p = max{10
√

m logp,2
√

m logp + ωn} and define Lm,n,p :=
{‖W{1,...,m}−nIm‖√

n
≤ sm,n,p}. It is easy to check that Assumption 1 in (3.1) implies

(4.52)
sm,n,p√

n
→ 0 and

√
ms3

m,n,p√
n logp

→ 0.

Similar to Lemma 8, we need the following lemma, which quantifies the speed that a Wishart
matrix converges to a Wigner matrix. The difference is that Lemma 8 provides a log-
likelihood ratio bound for the eigenvalues of random matrices, while the following Lemma 9
gives such a bound for all the entries jointly. Both lemmas are needed in the proof as neither
can be directly derived from the other.

Write W{1,...,m} for WS above (2.1) with S = {1,2, . . . ,m}. Review that the Wigner matrix
W̃{1,...,m} = (w̃ij )m×m, where w̃ij ’s are as in (2.3).
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LEMMA 9. Let fm,n(w) be the density function of 1√
n
(W{1,...,m} − nIm) and f̃m(w) be

the density function of W̃{1,...,m}. If m3 = o(n), then

logfm,n(w) − log f̃m(w)

= o(1) + O
(
m2n−1/2‖w‖ + m2n−1‖w‖2 + mn−1/2‖w‖3)

for all m × m symmetric matrix w with ‖w‖ ≤ 2
3

√
n.

REMARK 5. We note that the approximation of the Wigner matrix by the Whishart matri-
ces has been studied in the literature. For example, Doumerc (2002) studied the convergence
theory and its connection with Brownian percolation when m is fixed and n → ∞. Also,
see Chapter 3 Anderson (1962), for the asymptotic joint distribution of the sample mean and
sample covariance of i.i.d. multivariate Gaussian observations. Different from these exist-
ing results, Lemma 9 quantifies the convergence speed for growing n and m in terms of the
log-likelihood ratio.

Below, we combine the above Lemma 9 and some change of measure arguments to obtain
a lower bound of P(AS0 ∩ Lm,n,p). Define a nonrandom set Bm,p = {wij : wij ≥ τm,p,t ,1 ≤
i ≤ j ≤ m}. By the first limit from (4.52), sm,n,p ≤ 2

3

√
n. Therefore, from Lemma 9 we have

P(AS0 ∩Lm,n,p)

=
∫
w∈Bm,p,‖w‖≤sm,n,p

f̃m(w) · exp
{
logfm,n(w) − log f̃m(w)

}
dw

= exp
{
o(1) + O

(
m2sm,n,p√

n
+ m2s2

m,n,p

n
+ ms3

m,n,p√
n

)}

· P(Ã{1,...,m} ∩ L̃m,n,p)

≥ 1

2
· exp

{
O

(
m2sm,n,p√

n
+ m2s2

m,n,p

n
+ ms3

m,n,p√
n

)}

· [P(Ã{1,...,m}) − P
(
L̃c

m,n,p

)]
,

where Ã{1,...,m} is as in (4.7) with S = {1, . . . ,m} and L̃m,n,p = {‖W̃{1,...,m}‖ ≤ sm,n,p}. Un-

der Assumption 1 in (3.1), evidently m
s2
m,n,p

→ 0 and m√
nsm,n,p

→ 0. This implies m2sm,n,p√
n

+
m2s2

m,n,p

n
+ ms3

m,n,p√
n

= O(
ms3

m,n,p√
n

). Thus, we have

P(AS0 ∩Lm,n,p) ≥ 1

2
· eO(ms3

m,n,p/
√

n){
P(Ã{1,...,m}) − P

(
L̃c

m,n,p

)}
.(4.53)

Obviously, E(Qm,n,p) = ( p
m

)
P(A{1,...,m}). Recalling Ã{1,...,m} and Q̃m,p as in (4.7) and

Q̃m,p = ∑
S⊂{1,...,p}:|S|=m 1

ÃS
, respectively, we see that E(Q̃m,p) = ( p

m

)
P(Ã{1,...,m}). Thus,

we further have from (4.51) and (4.53) that

E(Qm,n,p) ≥ 1

2
· eO(ms3

m,n,p/
√

n)
{
E(Q̃m,p) −

(
p

m

)
P
(
L̃c

m,n,p

)}
.(4.54)

To further obtain a lower bound of the above expression, we analyze each term on the right-
hand side. Recall the definition of εm,p,t below (4.7), we know εm,p,t ∈ (0,1). By (4.16),

E(Q̃m,p) ≥ exp
{
εm,p,tm logp + O

(
m2 log logp

)}
≥ exp

{
δ

4

√
m logp

}
,

(4.55)
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where the condition m = o((logp)1/3/ log logp) from Assumption 1 in (3.1) is essentially
used in the last step. Now,(

p

m

)
P
(
L̃c

m,n,p

) ≤ pm
P
(‖W̃{1,...,m}‖ ≥ sm,n,p

)
= 2pm

P
(
λ1(W̃{1,...,m}) ≥ sm,n,p

)
,

(4.56)

where the fact that W̃{1,...,m} and −W̃{1,...,m} have the same distribution is used in the last step.
The following lemma helps us estimate the last probability.

LEMMA 10 (Lemma 4.1 from Jiang and Li (2015)). Let W̃{1,...,m} be defined by W̃S

above (2.4) with S = {1, . . . ,m}. Then there is a constant κ > 0 such that P(λ1(W̃{1,...,m}) ≥
x or λm(W̃{1,...,m}) ≤ −x) ≤ κ · e− x2

4 +κ
√

mx for all x > 0 and all m ≥ 2.

By letting x = sm,n,p in Lemma 10, we have P(λ1(W̃{1,...,m}) ≥ sm,n,p) ≤ exp{− s2
m,n,p

4 +
κ
√

msm,n,p}. Combining this with (4.56), we arrive at

(
p

m

)
P
(
L̃c

m,n,p

) ≤ 2 · exp
{
m logp − s2

m,n,p

4
+ κ

√
msm,n,p

}
.

Since sm,n,p ≥ 10
√

m logp, we know m logp − 1
4s2

m,n,p ≤ − 6
25s2

m,n,p .
Moreover,

√
msm,n,p = o(s2

m,n,p). Consequently,(
p

m

)
P
(
L̃c

m,n,p

) ≤ exp
{
−
(

6

25
+ o(1)

)
s2
m,n,p

}
.(4.57)

Comparing the above inequality with (4.55), we obtain
( p
m

)
P(L̃c

m,n,p) = o(1) = o(E(Q̃m,p)).
This result, combined with (4.54), gives

(4.58) E(Qm,n,p) ≥ 1

3
· eO(ms3

m,n,p/
√

n)
E(Q̃m,p),

which joint with (4.16) concludes

E(Qm,n,p) ≥ 1

3
exp

{[
1 − (1 − εm,p,t )

2]m logp

+ O
(
m2 log logp + mn−1/2s3

m,n,p

)}
.

(4.59)

This completes our analysis for E(Qm,n,p).
Step 2: the estimate of Var(Qm,n,p). Replacing “ÃS” in (4.7) with “AS” in (4.49), and

using the same argument as obtaining (4.20), we have from (4.24) that

Var(Qm,n,p) ≤ E(Qm,n,p)

+ m max
l=1,...,m−1

p2m−l
P(A{1,...,m} ∩ A{1,...,l,m+1,...,2m−l}).

(4.60)

Now we bound the last term above. Review L2m,n,p below (4.51). Trivially,

P(A{1,...,m} ∩ A{1,...,l,m+1,...,2m−l})
≤ P(A{1,...,m} ∩ A{1,...,l,m+1,...,2m−l} ∩L2m,n,p) + P

(
Lc

2m,n,p

)
.

(4.61)

By (4.57), we know mp2m
P(Lc

2m,n,p) = o(1). Let f2m,n(w) be the density function of
1√
n
(W{1,...,2m} − nI2m) and f̃2m(w) be the density function of W̃{1,...,2m}. Recall AS =
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{ 1√
n
(Wkk − n) ≥ τm,p,t ,

Wij√
n

≥ τm,p,t for all i, j, k ∈ S and i < j}. Define the (nonrandom)
set

BS = {
(wij )i,j∈S;wij ≥ τm,p,t for all i, j ∈ S with i ≤ j

}
.

Then,

P(A{1,...,m} ∩ A{1,...,l,m+1,...,2m−l} ∩L2m,n,p)

=
∫
B

f̃2m(w) · exp
{
logf2m,n(w) − log f̃2m(w)

}
dw,

where B := B{1,...,m} ∩B{1,...,l,m+1,...,2m−l} ∩ {‖w‖ ≤ s2m,n,p}. By Lemma 9 and by a change-
measure argument similar to the one getting (4.53), we see

P(A{1,...,m} ∩ A{1,...,l,m+1,...,2m−l} ∩L2m,n,p)

≤ 2 · eO(ms3
m,n,p/

√
n)
P(Ã{1,...,m} ∩ Ã{1,...,l,m+1,...,2m−l}).

(4.62)

The benefit of the above step is transferring the probability on the Wishart matrix to that on the
Wigner matrix up to a certain error. Combining (4.61)–(4.62), we have mp2m−l

P(A{1,...,m} ∩
A{1,...,l,m+1,...,2m−l}) ≤ 2 · eO(ms3

m,n,p/
√

n) · mp2m−l
P(Ã{1,...,m} ∩ Ã{1,...,l,m+1,...,2m−l}) + o(1).

Combining this with (4.60), we have Var(Qm,n,p) ≤ E(Qm,n,p)+2 ·eO(s3
m,n,p/

√
n) ·Gm+o(1),

where

Gm := max
l=1,...,m−1

{
mp2m−l

P(Ã{1,...,m} ∩ Ã{1,...,l,m+1,...,2m−l})
}
.

Thus,

Var(Qm,n,p)

E(Qm,n,p)2 ≤ eO(ms3
m,n,p/

√
n)[

E(Qm,n,p)
]−2 · Gm

+ [
E(Qm,n,p)

]−1 + o
([
E(Qm,n,p)

]−2)
.

(4.63)

According to (4.23) and (4.58), the first term on the right-hand side of the above inequality is
no more than

9 · exp
{
−
[
1 − 1

m
(1 − εm,p,t )

2
]

logp + O

(
m2 log logp + ms3

m,n,p√
n

)}
.

Notice that 1 − εm,p,t ≤ 1 and m ≥ 2 and O(m2 log logp + mn−1/2s3
m,n,p) = o(logp). Thus,

the above display further implies

eO(s3
m,n,p/

√
n)(

E(Qm,n,p)
)−2 · Gm ≤ exp

{
−
(

1

2
+ o(1)

)
logp

}
.

We next study the last two terms from (4.63).
By the condition m = o((logp)1/3/ log logp) from Assumption 1 in (3.1) and the second

limit in (4.52),

(4.64) O

(
ms3

m,n,p√
n

+ m2 log logp

)
= o(

√
m logp).

Recall εm,p,t := (4m logp)−1/2t . It is readily seen that [1 − (1 − εm,p,t )
2]m logp ≥

εm,p,tm logp ≥ t
2

√
m logp. Consequently, it is known from (4.59) that E(Qm,n,p) ≥ 1

3 ·
exp{ t

2

√
m logp} uniformly over δ ≤ t ≤ 2

√
m logp − mξp . Therefore, we conclude from

(4.59) and (4.64) that

(
E(Qm,n,p)

)−1 + o
((
E(Qm,n,p)

)−2) ≤3 · exp
{
−
(

1

2
+ o(1)

)
t
√

m logp

}
.(4.65)



EXTREME EIGENVALUES OF PRINCIPAL MINORS 2975

Combining (4.63)–(4.65), we see

Var(Qm,n,p)

E(Qm,n,p)2

≤ exp
{
−
(

1

2
+ o(1)

)
logp

}
+ 3 · exp

{
−
(

1

2
+ o(1)

)
t
√

m logp

}
.

By (4.50) and the above inequality,

P(Tm,n,p ≤ 2
√

m logp − t)

≤ exp
{
−
(

1

2
+ o(1)

)
logp

}
+ 3 · exp

{
−
(

1

2
+ o(1)

)
t
√

m logp

}
.

Finally, from the inequality t2 ≤ 2et we have that

lim sup
n→∞

sup
δ≤t≤2

√
m logp−mξp

eαt t2
P(Tm,n,p ≤ 2

√
m logp − t) = 0(4.66)

for any α > 0 and δ > 0.
Scenario 2: t > 2

√
m logp − mξp . Review (2.1). By the fact that λ1(M) ≥ max1≤i≤m Mii

for any nonnegative definite matrix M = (Mij )m×m, we have Tm,n,p ≥
maxS⊂{1,...,p},|S|=m λ1(WS) ≥ max1≤i≤p Wii , where Wii = ∑n

j=1 x2
ji and {Wii;1 ≤ i ≤ m}

are i.i.d. random variables. Thus, by independence,

(4.67) P

(
Tm,n,p − n√

n
≤ 2

√
m logp − t

)
≤ P

(
W11 − n√

n
≤ 2

√
m logp − t

)p

.

Note that W11 = ∑n
j=1 x2

j1 is a sum of i.i.d. random variables with Var(x11) = 2 and

E(x6
11) < ∞. We discuss two situations: 2

√
m logp − mξp ≤ t ≤ 4

√
m logp and t ≥

4
√

m logp.
Assuming 2

√
m logp − mξp ≤ t ≤ 4

√
m logp for now. Recalling �(x) = (2π)−1/2 ×∫ x

−∞ e−t2/2 dt , we get from the Berry–Essen theorem that

P

(
W11 − n√

n
≤ 2

√
m logp − t

)
≤ �

(√
2m logp − t√

2

)
+ κ√

n

≤ 2 · max
{
�

(√
2m logp − t√

2

)
,

κ√
n

}

for some constant κ > 0. Combine the above inequalities with (4.28) to see

P

(
Tm,n,p − n√

n
≤ 2

√
m logp − t

)
≤ 2 · max

{
e−mp0.9

, e−p logn
2 (1+o(1))}.

By (3.1),
√

m logp ≤ logp. It is easy to check

(4.68) lim
n→∞ sup

2
√

m logp−mξp≤t≤4
√

m logp

eαt t2
P

(
Tm,n,p − n√

n
≤ 2

√
m logp − t

)
= 0.

We proceed to the second situation: t ≥ 4
√

m logp. In this case, 2
√

m logp − t ≤
−2

√
m logp. By Lemma 1 from Laurent and Massart (2000), P(W11 − n ≤ −2

√
nx) ≤ e−x

for any x > 0. Thus, P(W11−n√
n

≤ 2
√

m logp− t) ≤ exp{−( t
2 −√

m logp)2} ≤ exp{− t2

16}. This
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inequality and (4.67) yield P(
Tm,n,p−n√

n
≤ 2

√
m logp − t) ≤ exp{−pt2

16 }. Consequently,

sup
t≥4

√
m logp

eαt t2
P

(
Tm,n,p − n√

n
≤ 2

√
m logp − t

)

≤ sup
t≥4

√
m logp

exp
{
−pt2

16
+ αt + 2 log t

}

≤ exp
{−mp(logp)

(
1 + o(1)

)}
.

Hence,

lim
n→∞ sup

t≥4
√

m logp

eαt t2
P

(
Tm,n,p − n√

n
≤ 2

√
m logp − t

)
= 0.(4.69)

By collecting (4.66), (4.68), and (4.69) together, we arrive at

lim
n→∞ sup

t≥δ

eαt t2
P

(
Tm,n,p − n√

n
≤ 2

√
m logp − t

)
= 0.

The proof is complete. �

4.2.3. Proofs of Theorem 3 and Remark 3. The following lemma serves as the proof of
Theorem 3. Its own proof is placed in the Appendix.

LEMMA 11. Let W̃ = W̃m×m be as defined in (3.7) with 0 ≤ η ≤ 2. Then

P
(
λ1(W̃ ) ≥ x

) ≤ m1.5 logm

δm
· exp

{
− (x − 2rδ)2

2m−1(η − 2) + 4

}
+ 2 · e−r2/8

for all r ≥ 4m, δ ∈ (0,1) and x > 2rδ + 1.

PROOF OF THEOREM 3. For any 0 < ε < 1, we first show that

(4.70) P
(
λ1(W̃{1,...,m}) ≥ (1 + ε)

√{
4m + 2(η − 2)

}
logp

) = o
(
p−m)

by using Lemma 11. To do so, set x = (1 + ε)
√[4m + 2(η − 2)] logp,r = √

128m logp and

δ = (8r)−1ε
√[4m + 2(η − 2)] logp. Rewrite δ such that δ = ( 1

64

√
2m+η−2

m
)ε. It is easy to

check that the coefficient of ε is always sitting in [1/64,2/64] for any m ≥ 2 and η ∈ [0,2].
This, the fact that supk≥2(k

1.5 log k) · δk < ∞, and the definition of r lead to

(4.71)
m1.5 logm

δm
= O

(
ε−2m) and e−r2/8 = o

(
p−6m).

We can see that x − rδ = (1 + 7
8ε) · √[4m + 2(η − 2)] logp. It follows that − (x−2rδ)2

2m−1(η−2)+4
≤

− (1+ ε
2 )2[4m+2(η−2)] logp

2m−1(η−2)+4
, and thus exp{− (x−2rδ)2

2m−1(η−2)+4
} ≤ p−[1+(ε/2)]2m. This and (4.71) im-

plies (4.70). Consequently,

P
(
T̃m,p ≥ (1 + ε)

√[
4m + 2(η − 2)

]
logp

)
≤ pm

P
(
λ1(W̃{1,...,m}) ≥ (1 + ε)

√[
4m + 2(η − 2)

]
logp

) → 0.

To complete the proof, it is enough to check that

(4.72) P
(
T̃m,p < (1 − ε)

√[
4m + 2(η − 2)

]
logp

) → 0
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for each ε ∈ (0,1). For notational simplicity, let Km = 4m + 2(η − 2) and τm,p = logp/Km.
Similar to the proof of Theorem 2, define ÃS = {W̃ii ≥ 2(1 − ε)η

√
τm,p, W̃ij ≥ 4(1 −

ε)
√

τm,p for all i, j ∈ S and i ≤ j} for each S ⊂ {1, . . . , p} with |S| = m. We next com-

pute P(ÃS0) and P(ÃS0 ∩ ÃS1), respectively, where S0 = {1, . . . ,m} and S1 = {1, . . . , l,m +
1, . . . ,2m − l}. By independence,

P(ÃS0) =
m∏

i=1

P
(
W̃ii ≥ 2(1 − ε)η

√
τm,p

)

× ∏
1≤i<j≤m

P
(
W̃ij ≥ 4(1 − ε)

√
τm,p

)
.

Since W̃ii ∼ N(0, η) and W̃ij ∼ N(0,1) for all i 	= j , we further have

P(ÃS0) = �̄
(
2(1 − ε)

√
ητm,p

)m
�̄
(
4(1 − ε)

√
τm,p

)m(m−1)
2 ,

where �̄(x) = (2π)−1/2 ∫∞
x e−t2/2 dt for x ∈R. Similar to (4.21),

P(ÃS0 ∩ ÃS1)

= �̄
(
2(1 − ε)

√
ητm,p

)2m−l
�̄
(
4(1 − ε)

√
τm,p

)m(m−1)
2 ·2− l(l−1)

2 .

(4.73)

From (4.13), log �̄(x) = −x2

2 − log(x) − log
√

2π + o(1) as x → ∞. Then,

logP(ÃS0) = −2m(1 − ε)2ητm,p − 4m(m − 1)(1 − ε)2τm,p + Rm,p,

where

Rm,p := − m log
[
2(1 − ε)

√
ητm,p

]− m log
√

2π

− m(m − 1)

2
· log

[
4(1 − ε)

√
τm,p

]− m(m − 1)

2
· log

√
2π + o

(
m2).

Notice −2m(1 − ε)2ητm,p − 4m(m − 1) · (1 − ε)2τm,p = −(1 − ε)2m logp. Similar to
(4.14), we obtain that Rm,p = O(m2 log logp). Thus, logP(ÃS0) = −(1 − ε)2m logp +
O(m2 log logp). By the same argument as obtaining (4.16), we see

(4.74) log
[(

p

m

)
P(ÃS0)

]
= [

1 − (1 − ε)2]m logp + O
(
m2 log logp

)
.

In particular the above goes to infinity as n → ∞. By (4.13) and (4.73),

logP(ÃS0 ∩ ÃS1)

= −2(2m − l)(1 − ε)2ητm,p − 8
[
m(m − 1) − 1

2
l(l − 1)

]
(1 − ε)2τm,p

+ O
(
m2 log logp

)
.

The right hand side above without the term “O(m2 log logp)” is identical to −2(1 −
ε)2m logp + (1 − ε)2(logp) · K−1

m · (4l − 4 + 2η)l. Thus,

log
[
mp2m−l

P(ÃS0 ∩ ÃS1)
]

= [
2m − l − 2(1 − ε)2m

]
logp + (1 − ε)2(logp) · K−1

m · l(4l − 4 + 2η)

+ O
(
m2 log logp

)
= (logp)

{
2
[
1 − (1 − ε)2]m + [−1 + (1 − ε)2 · K−1

m · (4l − 4 + 2η)
]
l
}

+ O
(
m2 log logp

)
.

(4.75)
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Let us take a closer look at the above display. For 1 ≤ l ≤ m − 1, K−1
m (4l − 4 + 2η) =

4(l−1)+2η
4(m−1)+2η

< 1. Thus, for 1 ≤ l ≤ m − 1 and 0 < ε < 1, [−1 + (1 − ε)2K−1
m (4l − 4 + 2η)]l ≤

[−1 + (1 − ε)2] · l ≤ −ε. Combining this with (4.75), we obtain that

(4.76) log
[
mp2m−l

P(ÃS0 ∩ ÃS1)
] ≤ 2

[
1 − (1 − ε)2]m logp − ε logp + O

(
m2 log logp

)
uniformly for 1 ≤ l ≤ m − 1. Define Q̃p = ∑

S⊂{1,...,p},|S|=m 1
ÃS

. From (4.74), EQ̃p =( p
m

)
P(ÃS0) → ∞ as n → ∞. Moreover, we see from (4.74) and (4.76) that

(EQ̃p)−2 max1≤l≤m−1 mp2m−l
P(ÃS0 ∩ ÃS1) ≤ exp{−ε logp + O(m2 log logp)} → 0. By

(4.24) and a similar argument to (4.20), we get Var(Q̃p) ≤ EQ̃p + max1≤l≤m−1 mp2m−l ×
P(ÃS0 ∩ ÃS1). This and the analysis imply Var(Q̃p)

(EQ̃p)2 → 0. As a result, limp→∞ P(Q̃p = 0) = 0

by (4.9). According to (4.6), if there exists S0 ⊂ {1, . . . , p} such that |S0| = m and ÃS0

occurs, then T̃m,p ≥ λ1(W̃S0) ≥ 1
m

(2m(1 − ε)η
√

τm,p + 4m(m − 1)(1 − ε)
√

τm,p) = (1 −
ε)

√[4m + 2(η − 2)] logp. Therefore,

P
(
T̃m,p < (1 − ε)

√{
4m + 2(η − 2)

}
logp

) ≤ P(Q̃p = 0) → 0.

This implies (4.72). The proof is finished. �

PROOF OF REMARK 3. These results are direct consequences of the following lemma,
whose proof is given in Appendix B. �

LEMMA 12. Let {Zp}p≥1 be a sequence of nonnegative random variables. Consider the
following statements.

(i) limp→∞E[eαZp1{Zp≥δ}] = 0 for all α > 0 and δ > 0.
(ii) limp→∞E(eαZp) = 1 for all α > 0.

(iii) limp→∞E(Zα
p) = 0 for all α > 0.

(iv) limp→∞ P(Zp ≥ δ) = 0 for all δ > 0.
(v) limp→∞ Var(Zp) = 0 for all α > 0.

Then, (i) ⇐⇒ (ii) =⇒ (iii) =⇒ (iv) and (v). Here, “A ⇐⇒ B” means the two statements
A and B are equivalent, and A =⇒ B means statement A implies statement B.

APPENDIX

There are two sections in this part. In Appendix A we derive some results on Gamma
functions, which will be used later on. The material in this part is independent of previous
sections. In Appendix B we will prove the lemmas that appeared in earlier sections.

APPENDIX A: AUXILIARY RESULTS ON GAMMA FUNCTIONS

Recall the Gamma function �(x) = ∫∞
0 tx−1e−t dt for x > 0.

LEMMA A.1. Let

cm,n = m!2−nm/2
m∏

j=1

�(3/2)

�(1 + j/2)�((n − m + j)/2)
;

C(m,n) = nm/2e−nm/2nm(n−m+1)/2−mnm(m−1)/4cm,n;

cm = m!2−m2−m(m−1)/4π−m/2
m∏

j=1

�(3/2)

�(1 + j/2)
.

If m3 = o(n), then logC(n,m) − log cm = o(1) as n → ∞.
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PROOF OF LEMMA A.1. Easily,

C(m,n)

cm

= nm/2e−nm/2nm(n−m+1)/2−mnm(m−1)/4 · 2−nm/2

2−m2−m(m−1)/4π−m/2 ·∏m
j=1 �((n − m + j)/2)

= nm(2n−m−1)/4e−mn/22(m−2n+3)m/4πm/2e−Jn,

where

(A.1) Jn := log
m−1∏
j=0

�
(
(n − j)/2

) = m log�

(
n

2

)
+ log

m−1∏
j=0

�((n − j)/2)

�(n/2)
.

Then

log
C(m,n)

cm

= m

4
(2n − m − 1) logn − 1

2
mn + m

4
(m − 2n + 3) log 2(A.2)

+ m

2
logπ − Jn

= m

4
(2n − m − 1) log

n

2
− 1

2
mn + m

2
log(2π) − Jn.(A.3)

Write log �(x+b)
�(x)

= (x + b) log(x + b)− x logx − b + δ(x, b). By Lemma 5.1 from Jiang and

Qi (2015), there exists a constant C > 0 free of x and b such that |δ(x, b)| ≤ C · b2+|b|x+1
x2 for

all x ≥ 10 and |b| ≤ x/2. It is easy to see that
∑m−1

j=0 |δ(n
2 ,− j

2 )| ≤ C′ · m3+nm2+m
n2 where C′

is a constant free of m and n. This implies that

log
m−1∏
j=0

�((n − j)/2)

�(n/2)
= O

(
m2

n

)
+

m−1∑
j=0

(
n − j

2
log

n − j

2
− n

2
log

n

2
+ j

2

)

as n → ∞. Write
n − j

2
log

n − j

2
− n

2
log

n

2
= n

2
log

(
1 − j

n

)
− j

2
log

n

2
− j

2
log

(
1 − j

n

)
.

Easily, log(1 − j
n
) = − j

n
+ O(m2

n2 ) as n → ∞ uniformly for all 1 ≤ j ≤ m. Hence,

m−1∑
j=0

(
n − j

2
log

n − j

2
− n

2
log

n

2
+ j

2

)

= O

(
m2

n

)
− 1

4
m(m − 1) log

n

2
+ (m − 1)m(2m − 1)

12n

= −1

4
m(m − 1) log

n

2
+ O

(
m3

n

)

as n → ∞. In summary,

log
m−1∏
j=0

�((n − j)/2)

�(n/2)
= −1

4
m(m − 1) log

n

2
+ O

(
m3

n

)

as n → ∞. On the other hand, by the Stirling formula,

m log�

(
n

2

)
= (n − 1)m

2
log

n

2
− 1

2
mn + m

2
log(2π) + O

(
m

n

)
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as n → ∞. From (A.1) and the above two assertions we see

(A.4) Jn = m

4
(2n − m − 1) log

n

2
− 1

2
mn + m

2
log(2π) + o(1)

as n → ∞, which together with (A.2) proves the lemma. �

LEMMA A.2. Let

�m

(
n

2

)
= πm(m−1)/4

m∏
j=1

�

(
n − j + 1

2

)
;

A(m,n) = nm(m+1)/4+m(n−m−1)/2e−nm/22− nm
2 /�m(n/2);

B(m) = (2π)−m(m+1)/42−m/2.

If m3 = o(n), then logA(m,n) − logB(m) → 0 as n → ∞.

PROOF OF LEMMA A.2. Observe

log
A(m,n)

B(m)

=
[

1

4
m(m + 1) + 1

2
m(n − m − 1)

]
logn − 1

2
mn(A.5)

− 1

2
m(n − 1) log 2 + 1

4
m(m + 1) log(2π) − log�m

(
n

2

)
.

By definition, �m(n
2 ) = πm(m−1)/4 ∏m−1

j=0 �(
n−j

2 ). From (A.1) and (A.4), we see that

log�m

(
n

2

)

= 1

4
m(m − 1) logπ + m

4
(2n − m − 1) log

n

2
− 1

2
mn + m

2
log(2π) + o(1)

= m

4
(2n − m − 1) logn − 1

2
mn − 1

2
m(n − 1) log 2 + 1

4
m(m + 1) log(2π) + o(1).

By comparing this identity with (A.5), we conclude log A(m,n)
B(m)

→ 0. �

APPENDIX B: PROOFS OF LEMMAS

The following result is based on a slight modification of the second inequality of (4.8)
from Jiang and Li (2015) and a care taken by noticing that the version of the Wigner matrix
here is

√
2 times of the version there.

PROOF OF LEMMA 2. Review the proof of Lemma 4.1 from Jiang and Li (2015). Notice
that the version of the Wigner matrix here is

√
2 times of the version there. From the second

inequality in (4.8) in the paper, there is a positive constant C not depending on m such that
P(λ1(W̃{1,...,m}) ≥ x or λm(W̃{1,...,m}) ≤ −x) ≤ C · exp{−x2

4 + Cm logx + Cm} for all x >

4
√

m and all m ≥ 2. Since the right side of this inequality is increasing in C, without loss of
generality, we assume C > 1. It is easy to see logC ≤ Cm ≤ Cm logx under the assumption
that x > 4

√
m. By taking κ = 3C we get the desired conclusion. �

PROOF OF LEMMA 3. Note that
( p
m

) = p·(p−1)·····(p−m+1)
m! and p−l

m−l
≥ p

m
for l ≥ 0. Thus,( p

m

) ≥ (
p
m

)m. On the other hand, by the Sterling formula, m! ≥ √
2πmm+1/2e−m > mme−m.

Therefore,
( p
m

) ≤ pm

m! <
pm

mme−m . Combining the two inequalities, we complete the proof. �
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PROOF OF LEMMA 4. Write g(x) := (2m − x) − 2m2−x2

m
(1 − ε)2 = 2m[1 − (1 − ε)2] +

(1−ε)2

m
x2 − x for 1 ≤ x ≤ m − 1. Obviously, g(x) is a convex function. This leads to that

max1≤l≤m−1 g(l) = g(1) ∨ g(m − 1). It is trivial to check that g(1) ≥ g(m − 1). The first
identity is thus obtained. The second identity follows from the first one. �

PROOF OF LEMMA 1. Note that

E
(
eαZ1{Z≥δ}

) = E

[∫ Z

−∞
αeαt dt · 1{Z ≥ δ}

]
= E

[∫ ∞
−∞

αeαt dt · 1{Z ≥ δ ∨ t}
]
dt.

Use the Fubini Theorem to see E(eαZ1{Z≥δ}) = ∫ δ
−∞ αeαt dtP(Z ≥ δ) + α

∫∞
δ eαt

P(Z ≥
t) dt = eαδ

P(Z ≥ δ) + α
∫∞
δ eαt

P(Z ≥ t) dt . �

PROOF OF LEMMA 5. The technique to be used here is similar to that from Fey, van
der Hofstad and Klok (2008), where the large deviations for the extreme eigenvalues of
Wishart matrices are developed. Thus we will omit the repetitive details and only state the
main steps. To ease notation, we write Un = 1

n
W{1,...,m}, and we use λm(Un) to denote its

smallest eigenvalue. The event {λ1(W{1,...,m})−n√
n

≥ √
ny} is equal to {λ1(Un) ≥ 1 + y} and

{λm(W{1,...,m})−n√
n

≤ −√
ny} is equal to {λm(Un) ≤ 1 − y}. We start to bound P(λm(Un) ≤

1 − y). Since λm(W{1,...,m}) ≥ 0, we assume y ∈ (0,1) without loss of generality.
Note that λm(Un) = minv:‖v‖=1 vᵀUnv and the sphere Sm−1 = {v ∈ R

m : ‖v‖ = 1} can
be covered by ∪B(v(i), d) for some v(1), . . . , v(Nd) ∈ Sm−1. Here, we use B(v, d) to denote
an open ball centered around v with radius d . It is straightforward to verify that for any
v ∈ Sm−1, there always exists j ∈ {1, . . . ,Nd} such that

(B.1)
∣∣vᵀUnv − v(j)ᵀUnv

(j)
∣∣ ≤ 2λ1(Un)d.

Therefore, by if considering {λ1(Un) ≥ rm} occurs or not, we have

P
(
λm(Un) ≤ 1 − y

)
= P

(
min

v:‖v‖=1
vᵀUnv ≤ 1 − y

)
(B.2)

≤ Nd · sup
v:‖v‖=1

P
(
vᵀUnv ≤ 1 − y + 2dmr

)+ P
(
λ1(Un) ≥ mr

)
for all r > 0. We next analyze Nd , P(vᵀUnv ≤ 1−y+2dmr) and P(λ1(Un) ≥ mr) separately.

We start with Nd , which is the minimum number of balls with the radius d required to
cover Sm−1. By a result from Rogers (1963) we see Nd = O(m1.5(logm)d−m) for all 0 <

d < 1/2 and m ≥ 1. As a result,

(B.3) logNd = O

(
m log

1

d

)
, 0 < d <

1

2
.

We proceed to an upper bound for P(vᵀUnv ≤ 1 − y + 2dmr). Recall that Un =
1
n
X

ᵀ
·,[1,...,m]X·,[1,...,m], where we use the notation X·,[1,...,m] = (xij )1≤i≤n,1≤j≤m. Thus,

(B.4) vᵀUnv = 1

n
‖X·,[1,...,m]v‖2 = 1

n

n∑
i=1

S2
v,i ,

where we define Sv,i = ∑m
l=1 Xilvl . Review ‖v‖ = 1. Since xij ’s are standard normals, so are

{Sv,i;1 ≤ i ≤ n}. By the large deviation bound for the sum of i.i.d. random variables (see,
e.g., page 27 from Dembo and Zeitouni (1998)),

(B.5) P

(
1

n

n∑
i=1

S2
v,i ∈ A

)
≤ 2 · exp

{
−n inf

x∈A
I (x)

}
,
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where A ⊂ R is any Borel set and I (x) = supt∈R{tx − logEetN(0,1)2}. Since

logE(etN(0,1)2
) = −1

2 log(1 − 2t) for t < 1/2, it is easy to check that

I (x) =
⎧⎨
⎩

1

2
(x − 1 − logx), if x > 0;

∞, if x ≤ 0.

Observe that I (x) is decreasing for x ≤ 1. This together with (B.4) and (B.5) implies that

(B.6) P
(
vᵀUnv ≤ 1 − y + 2dmr

) ≤ e−nI (1−y+2dmr)

for all y > 2dmr .
Now we estimate P(λ1(Un) ≥ r) appeared in (B.2). Noting that Un is semi-positive defi-

nite, we have λ1(Un) ≤ trace(Un) ≤ 1
n

∑n
i=1

∑m
l=1 x2

il , and hence

(B.7) P
(
λ1(Un) ≥ mr

) ≤ P

(
1

mn

n∑
i=1

m∑
l=1

x2
il ≥ r

)
≤ e−mnI (r)

for r ≥ 1 by (B.5). Combining (B.3), (B.6), and (B.7), we obtain from (B.2) that

P
(
λm(Un) ≤ 1 − y

)
≤ exp

{
−nI (1 − y + 2dmr) + O

(
m log

1

d

)}
+ exp

{−mnI (r)
}
,

(B.8)

for y > 2dmr and r ≥ 1. This confirms (4.34).
To get (4.33), just notice λ1(Un) = maxv:‖v‖=1 vᵀUnv. From (B.1) and (B.2) we see that

P
(
λ1(Un) ≥ 1 + y

) ≤ Nd · sup
v:‖v‖=1

P
(
vᵀUnv ≥ 1 + y − 2dmr

)+ P
(
λ1(Un) ≥ mr

)
.

Then (4.33) follows from similar arguments to (B.6)–(B.8). �

PROOF OF LEMMA 6. Review Assumption 1 in (3.1). We start with the analysis of
(4.37). Here, we consider two sub-cases: t ≤ mn

80α
and t > mn

80α
. For t ≤ mn

80α
, we have

r = max(2,1 + 80αt
mn

) = 2 and

exp
{
−1

2
(r − 1 − log r)mn + αt + 2 log t + m logp

}

≤ exp
{
−1 − log 2

2
mn + mn

80
+ 2 log

(
mn

80α

)
+ m logp

}
.

Trivially 1−log 2
2 − 1

80 = 0.14 · · · > 1
10 . Note that log mn

80α
= o(mn) and m logp = o(mn) under

Assumption 1 in (3.1). It follows that

−1 − log 2

2
mn + mn

80
+ 2 log

(
mn

80α

)
+ m logp ≤ −

[
1

10
+ o(1)

]
mn.

This implies

(B.9) lim
n→∞ sup

δ
√

n
100 ≤t≤ mn

80α

exp
{
−1

2
(r − 1 − log r)mn + αt + 2 log t + m logp

}
= 0.

Now we consider another sub-case where t ≥ mn
80α

. For this case, r = 1+ 80αt
mn

. It is not hard to
see r −1− log r ≥ r

12 for r ≥ 2. Apparently, m logp ≤ αt for t ≥ mn
80α

as n is sufficiently large.
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For this range of t , it is easy to verify that exp{−1
2(r −1− log r)mn+αt +2 log t +m logp} ≤

exp{−(4α
3 + o(1))t}. This implies

(B.10) lim
n→∞ sup

t≥ mn
80α

exp
{
−1

2
(r − 1 − log r)mn + αt + 2 log t + m logp

}
= 0.

Combining (B.9) and (B.10), we obtain

lim
n→∞ sup

t≥ δ
√

n
100

exp
{
−1

2
(r − 1 − log r)mn + αt + 2 log t + m logp

}
= 0.

This completes the proof of (4.37). We next show (4.36).

Recall z = 2
√

m logp√
n

+ t
2
√

n
≥ t

2
√

n
. Obviously, z > δ

200 as t >
δ
√

n
100 . It is elementary to check

there exists ε > 0 such that x − log(1 + x) ≥ εx for all x > δ
200 . Hence, n

2 [z − log(1 + z)] ≥
1
2nεz ≥ ε

4

√
nt for all t >

δ
√

n
100 . Reviewing r = max(2,1 + 80αt

mn
) and d = min(1

2 , t
4m

√
nr

), we
have

m log
1

d
= O

(
m logn + m log

(
1 + 80αt

mn

))
= O

(
m logn + t

n

)
since 0 < log(1 + x) < x for all x > 0. Furthermore, αt + 2 log t ≤ 2αt as t is sufficiently
large, and m logp = o(mn) by Assumption 1 in (3.1). Consequently,

sup
t>

δ
√

n
100

exp
{
−n

2

(
z − log(1 + z)

)+ κm log
1

d
+ αt + 2 log t + m logp

}

≤ sup
t>

δ
√

n
100

exp
{
−ε

4

√
nt + 3αt + O(m logn)

}

= exp
{
−(

1 + o(1)
)ε
4

√
nt

}

= o(1).

We obtain (4.36) and the proof is complete. �

PROOF OF LEMMA 7. Recall the assumption that δ ∈ (0,1). Then z = 2
√

m logp√
n

+ t
2
√

n
≤

2
√

m logp√
n

+ δ
200 ≤ 1 as n is sufficiently large. Now,

z2 =
(

2
√

m logp√
n

+ t

2
√

n

)2
≥ 4m logp

n
+ 2t

√
m logp

n
.

It is trivial to show that z − log(1 + z) ≥ 1
4z2 for 0 ≤ z ≤ 1. By this inequality, we see

(B.11) z − log(1 + z) ≥ m logp

n
+ t

√
m logp

2n
.

Now, reviewing d = t
8m

√
n

and t ≥ δ, we have m log(1/d) = O(m logm + m logn) =
O(m logn). This joint with (B.11) implies that

exp
{
−n

2

[
z − log(1 + z)

]+ κm log
1

d
+ αt + 2 log t + m logp

}

≤ exp
{
−1

4
t
√

m logp + O(m logn) + αt + 2 log t

}

= exp
{[

−1

4
+ o(1)

]
t
√

m logp + O(m logn)

}
.
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Since t ≥ (m/ logp)1/2ξp logn, we know O(m logn) = o(t
√

m logp) uniformly in t . Thus,

exp
{
−n

2

[
z − log(1 + z)

]+ κm log
1

d
+ αt + 2 log t + m logp

}

≤ exp
{
−
[

1

2
+ o(1)

]
t
√

m logp

}

≤ exp
{
−1

4
t
√

m logp

}

as n is sufficiently large. We then get (4.40). Evidently, sup
δ∨ωn≤t≤ δ

√
n

100
{αt +2 log t} = O(

√
n)

as n → ∞. This implies that

−1

2
(1 − log 2)mn + αt + 2 log t + m logp = −1 − log 2

2

[
1 + o(1)

]
mn.

The assertion (4.41) is verified. �

PROOF OF LEMMA 8. Review the notation W{1,...,m} above (2.1) with S = {1, . . . ,m}.
Let μ1 > · · · > μm be the eigenvalues of W{1,...,m}. According to James (1964) or Muirhead
(2009), μ = (μ1, . . . ,μm) has density function

fm,n(μ) = cm,ne
−

∑m
i=1 μi

2

m∏
i=1

μ
n−m+1

2 −1
i

∏
1≤j<i≤m

(μj − μi)I (μ1 > · · · > μm > 0),

where cm,n = m!2−nm/2 ∏m
j=1

�(3/2)
�(1+(j/2))�((n−m+j)/2)

. In addition, λ = (λ1, . . . , λm) has den-
sity

hm(λ) = cme− 1
4
∑m

k=1 λ2
k

∏
1≤j<i≤m

(λj − λi) with

cm = m!2−m2−m(m−1)/4π−m/2
m∏

j=1

�(3/2)

�(1 + (j/2))
;

see, for example, Chapter 17 from Mehta (2004). Note that νi = (μi − n)/
√

n, so we can
write down the expression of gn,m as follows:

gn,m(v)

= nm/2cm,n exp

(
−1

2

m∑
i=1

(
√

nvi + n)

)
m∏

i=1

(
√

nvi + n)
n−m+1

2 −1

· ∏
1≤j<i≤m

(
√

nvj − √
nvi)

= nm/2e−nm/2nm(n−m+1)/2−mnm(m−1)/4cm,n

· e−(
√

n/2)
∑m

i=1 vi

m∏
i=1

(
1 + vi√

n

) n−m−1
2 ∏

1≤j<i≤m

(vj − vi)

for v1 > v2 > · · · > vm > −√
n and gn,m(v) = 0, otherwise. Denote C(m,n) = nm/2 ×

e−nm/2nm(n−m+1)/2−mnm(m−1)/4cm,n. Then,

loggn,m(v) − loghm(v)

= logC(m,n) − log cm +
m∑

i=1

[
−

√
n

2
vi + n − m − 1

2
log

(
1 + vi√

n

)]
+ 1

4

m∑
i=1

v2
i
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for v1 > v2 > · · · > vm > −√
n. By Lemma A.1 in Appendix A,

loggn,m(v) − loghm(v)

= o(1) +
m∑

i=1

[
−

√
n

2
vi + n − m − 1

2
log

(
1 + vi√

n

)
+ 1

4
v2
i

](B.12)

for v1 > v2 > · · · > vm > −√
n. By the Taylor expansion, | log(1 + x) − (x − x2

2 )| ≤∑∞
i=3

|x|k
k

≤ |x|3
3(1−|x|) for all |x| < 1. Therefore,

(B.13)
∣∣∣∣log(1 + x) −

(
x − x2

2

)∣∣∣∣ ≤ |x|3

for |x| < 2
3 . Writing n−m−1

2 = n
2 − m+1

2 , it is easy to check

(B.14)
m∑

i=1

[
−

√
n

2
vi + n − m − 1

2

(
vi√
n

− v2
i

2n

)
+ 1

4
v2
i

]
= −m + 1

2

m∑
i=1

(
vi√
n

− v2
i

2n

)
.

Combining (B.12)–(B.14), and noting that |vi | ≤ ‖v‖∞ for all i, we get

loggn,m(v) − loghm(v)

= o(1) + �m,n

+
m∑

i=1

[
−

√
n

2
vi + n − m − 1

2

(
vi√
n

− v2
i

2n

)
+ 1

4
v2
i

]

= o(1) + �m,n − m + 1

2

m∑
i=1

(
vi√
n

− v2
i

2n

)

provided ‖v‖∞ ≤ 2
3

√
n, where �m,n is the error term and it is controlled by

|�m,n| ≤ n − m − 1

2
· 1

n3/2

m∑
i=1

|vi |3 ≤ 1

n1/2

m∑
i=1

|vi |3.

By using the trivial bound that |vi | ≤ ‖v‖∞ for each i, we obtain the desired conclusion from
the above two assertions. �

PROOF OF LEMMA 9. According to the density function of the Wishart distribution (see,
e.g., Anderson (1962) or Muirhead (2009)), the density function for W{1,...,m} is

fW,m(V ) = |V |(n−m−1)/2e− tr(V )/2

�m(n
2 )2mn/2 ,

for every m × m positive definite matrix V , where �m(·) is the multivariate gamma function
defined by �m(n

2 ) = πm(m−1)/4 ∏m
j=1 �(

n−j+1
2 ), and we write |V | for the determinant of a

matrix V . It is easy to see that the density function for W{1,...,m}−nIm√
n

is given by

fm,n(w) := (
√

n)
m(m+1)

2 fW,m(
√

nw + nIm)

= nm(m+1)/4 |√nw + nIm|(n−m−1)/2e− tr(
√

nw+nIm)/2

�m(n
2 )2mn/2



2986 T. T. CAI, T. JIANG AND X. LI

for every m × m matrix w such that w + √
nIm is positive definite. Simplifying the above

display, we further have

fm,n(w) = A(m,n) exp
{
n − m − 1

2
log

∣∣∣∣1 + w√
n

∣∣∣∣− 1

2

√
n tr(w)

}
,

where A(m,n) = nm(m+1)/4+m(n−m−1)/2e−nm/22− nm
2 /�m(n/2). On the other hand, f̃m(w) =

B(m)e− tr(w2)
4 , where B(m) = (2π)−m(m+1)/22−m/2; see, for instance, Mehta (2004). Now we

consider

logfm,n(w) − log f̃m(w)

= logA(m,n) − logB(m)

+ n − m − 1

2
log

∣∣∣∣1 + w√
n

∣∣∣∣− 1

2

√
n tr(w) + 1

4
tr
(
w2)

= o(1) +
m∑

i=1

[
n − m − 1

2
log

(
1 + λi√

n

)
− 1

2

√
nλi + 1

4
λ2

i

]

for every λi > −√
n and i = 1, . . . ,m by Lemma A.2 in Appendix A, where λ1, . . . , λm are

the eigenvalues of w. From (B.13) and (B.14),

logfm,n(w) − log f̃m(w) = o(1) + εm,n − m + 1

2

m∑
i=1

(
λi√
n

− λ2
i

2n

)

if max1≤i≤m |λi | ≤ 2
3

√
n, where εm,n is the error term satisfying

|εm,n| ≤ n − m − 1

2

m∑
i=1

|λi |3
n3/2 ≤ m

n1/2 max
1≤i≤m

|λi |3 = mn−1/2‖w‖3.

In addition, |∑m
i=1 λi | ≤ mmax1≤i≤m |λi | = m‖w‖, and

∑m
i=1 λ2

i ≤ mmax1≤i≤m |λi |2 =
m‖w‖2

2, The above three assertions lead to

logfm,n(w) − log f̃m(w)

= o(1) + O
(
m2n−1/2‖w‖ + m2n−1‖w‖2 + n−1/2m‖w‖3)

provided ‖w‖ = max1≤i≤m |λi | ≤ 2
3

√
n. The proof is finished. �

PROOF OF LEMMA 11. Let B(v1, δ), . . . ,B(vN, δ) be N balls centered around v1, . . . ,

vN , respectively, such that ∪B(vi, δ) covers the unit sphere {v ∈ R
m; ‖v‖ = 1}. Then, for any

r > 0, by (B.1),

P

(
sup

‖v‖=1
vᵀW̃{1,...,m}v ≥ x

)

≤ N · max
1≤i≤N

P
(
v
ᵀ
i W̃{1,...,m}vi ≥ x − 2rδ

)+ P
(
λ1(W̃{1,...,m}) ≥ r

)
.

(B.15)

According to the distribution of W̃ , v
ᵀ
i W̃ vi ∼ N(0, f (vi)), where f (y) := f (y) = 2 +

(η − 2)
∑m

i=1 y4
i for any y = (y1, . . . , ym)ᵀ ∈ R

m. In fact, for any y = (y1, . . . , ym)ᵀ ∈ R
m,

yᵀW̃y = ∑m
i=1 w̃iiy

2
i + 2

∑
i<j w̃ij yiyj ∼ N(0, σ 2

y ) such that σ 2
y is equal to

E

(
m∑

i=1

w̃iiy
2
i + 2

∑
i<j

w̃ij yiyj

)2

= η

m∑
i=1

y4
i + 4

∑
i<j

y2
i y2

j = f (y)
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by independence. Recall P(N(0,1) ≥ x) ≤ e−x2/2 for all x ≥ 1. Thus, for x − 2rδ > 1, the
first term on the right side of (B.15) is bounded by

N · sup
‖y‖=1

exp
{
− (x − 2rδ)2

2(
∑m

i=1 y4
i (η − 2) + 2)

}

= N · exp
{
− (x − 2rδ)2

2[(inf‖y‖=1
∑m

i=1 y4
i )(η − 2) + 2]

}
,

since 0 ≤ η ≤ 2. Observe that inf‖y‖=1
∑m

i=1 y4
i = 1

m
. Thus,

(B.16) N · max
1≤i≤N

P
(
v
ᵀ
i W̃{1,...,m}vi ≥ x − 2rδ

) ≤ N · exp
{
− (x − 2rδ)2

2[m−1(η − 2) + 2]
}

if x − 2rδ > 1. Now turn to estimate the last probability in (B.15). Note that

λ1(W̃{1,...,m}) ≤ (
tr
(
W̃ 2{1,...,m}

))1/2 =
(

m∑
i=1

m∑
j=1

W̃ 2
ij

)1/2

.

Note that
∑m

i=1
∑m

j=1 W̃ 2
ij and ηQ1 +2Q2 have the same distribution, where Q1 ∼ χ2

m, Q2 ∼
χ2

m(m−1)/2 and Q1 and Q2 are independent. Also ηQ1 + 2Q2 ≤ 2(Q1 + Q2) ∼ 2 · χ2
m(m+1)/2

Thus, the last probability in (B.15) is dominated by

P

(
m∑

i=1

m∑
j=1

W̃ 2
ij ≥ r2

)
≤ P

(
χ2

m(m+1)/2 ≥ r2/2
)

≤ P

( χ2
m(m+1)/2

m(m + 1)/2
≥ r2

m(m + 1)

)
.

Notice r2

m(m+1)
≥ 8 under the given condition r ≥ 4m. Let I (x) = 1

2(x − 1 − logx) for x > 0.

It is easy to check that I (8) = (7 − log 8)/2 > 2.4 and that I (x) = 1
2(x − 1 − logx) ≥ 1

4x

as x ≥ 8. By (B.5), the last probability above is no more than 2 · exp(−m(m+1)
2 I ( r2

m(m+1)
)) ≤

2 · e−r2/8. Hence,

P
(
λ1(W̃{1,...,m}) ≥ r

) ≤ P

(
m∑

i=1

m∑
j=1

W̃ 2
ij ≥ r2

)
≤ 2 · e−r2/8.

Combining the above display with (B.15) and (B.16), we have

P

(
sup

‖v‖=1
vᵀW̃{1,...,m}v ≥ x

)
≤ N · exp

{
− (x − 2rδ)2

2[m−1(η − 2) + 2]
}

+ 2 · e−r2/8.

The desired conclusion follows since N ≤ m1.5(logm)δ−m (Rogers (1963)). �

PROOF OF LEMMA 12. (i) =⇒ (ii): Easily, E[eαZp ] ≤ E[eαZp1{Zp≥δ}] + eαδ . Taking
lim supp→∞ on both sides and then letting δ ↓ 0, we obtain lim supp→∞E[eαZp ] ≤ 1. On the
other side, lim infp→∞E[eαZp ] ≥ 1 since Zp ≥ 0. Hence, limp→∞E[eαZp ] = 1.

(ii) =⇒ (i): For each β > 0, we know 1{Zp≥δ} ≤ eβ(Zp−δ). Thus,

E
[
eαZp1{Zp≥δ}

] ≤ E
[
eαZp+β(Zp−δ)] = e−βδ

E
[
e(α+β)Zp

]
.

Taking lim supp→∞ on both sides and then letting β → ∞, we obtain
limp→∞E[eαZp1{Zp≥δ}] = 0.
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(ii) =⇒ (iii): First, E[Zα
p] = α

∫∞
0 xα−1P(Zp ≥ x)dx. By the Markov inequality,

P(Zp ≥ x) ≤ e−βx
EeβZp for all x > 0 and β > 0. It follows that E[Zα

p] ≤ α(EeβZp) ×∫∞
0 xα−1e−βx dx = α�(α)

βα EeβZp for all β > 0. The conclusion then follows by first letting
p → ∞ and then sending β → ∞.

(iii) =⇒ (iv): This is a direct consequence of the Chebyshev inequality and the equality
limp→∞E(Zp) = 0.

(iii) =⇒ (v): Let α = 2 in (iii), then lim supp Var(Zp) ≤ limp→∞E(Z2
p) = 0. �
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