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Abstract: Existing high-dimensional statistical methods are largely developed for ana-

lyzing individual-level data. In this work, we study estimation and inference for high-

dimensional linear models when only “proxy data” is available. These proxies encompass

marginal statistics and sample covariance matrices computed from distinct sets of individ-

uals. We develop a rate optimal method for estimation and inference for the regression

coefficient vector and its linear functionals based on the proxy data. We show the intrin-

sic limitations in the proxy-data based inference: the minimax optimal rate for estimation

is slower than that in the conventional case where individual data are observed. These

interesting findings are illustrated through simulation studies and an analysis of a dataset

concerning the genetic associations of hindlimb muscle weights in a mouse population.
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1. Introduction

Large-scale genome-wide association studies (GWAS) provide opportunities for

developing genetic risk prediction models that have the potential to improve

disease prevention, intervention, and treatment. In epidemiology and genetics,

there is a growing interest in utilizing the published summary statistics, espe-

cially those from GWAS, for disease risk prediction. The abundant summary

data can enhance the power in signal detection using the framework of meta-

analysis. Comparing with the individual-level data, the summary data are less

privacy-sensitive and are more communication efficient for data sharing. How-

ever, statistical properties of learning based on the summary data remain largely

unknown.

1.1 Problem formulation

Let X ∈ Rn×p denote the genetic variants measurements in n independent indi-

viduals whose i-th row is x⊺
i , where p is the dimension of genetic variants. Let

y ∈ Rn denote the mean-adjusted response vector in this sample. In the linear
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model for the association between the outcome and the covariates,

yi = x⊺
iβ + ϵi, (1.1)

where E[ϵi|xi] = 0 and E[ϵ2i |xi] = σ2, the goal is to estimate and infer the effect

size vector β ∈ Rp and its functionals using only the summary data but not the

individual-level data.

GWAS reports the marginal statistics

Ŝj = X⊺
.,jy/n, j = 1, . . . , p

and their estimated standard errors. Besides the marginal statistics Ŝ, an estima-

tor of the covariance matrix of xi is often needed for estimation and inference.

One challenge is that the empirical covariance matrix for the samples involved

in Ŝ is often not available because this genomic data set is too large or privacy-

sensitive to share. That is, we do not observe Σ̂ = X⊺X/n. A common practice

is to obtain an estimate of covariance matrix Σ = E[X⊺X/n] from some exter-

nal genome panel, such as the 1000 genome project (Consortium et al., 2015).

Let x̃i ∈ Rp, i = 1, . . . , ñ, denote the genotype of the observations in the exter-
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nal data and define

Σ̃ =
1

ñ

ñ∑
i=1

x̃ix̃
⊺
i .

We call x̃i, i = 1, . . . , ñ, the proxy data and Σ̃ the proxy covariance matrix. In

this work, we assume that E[x̃ix̃⊺
i ] = Σ. That is, the proxy covariates have the

same covariance structure as the covariates in computing the marginal statistics

Ŝ. In genetic applications, the number of SNPs can be much larger than the

sample sizes. Hence, we focus on the regime that p is larger or much larger than

max{n, ñ}. We assume that β is sparse with ∥β∥0 = s, i.e., β has s nonzero

elements and s ≪ p.

1.2 Motivating applications with the proxy data

Learning the linear model (1.1) with summary statistics has important applica-

tions in genomic studies. Polygenic risk score (PRS) regression concerns pre-

dicting a certain health-related outcome using the associated single nucleotide

polymorphisms (SNPs), which can be formulated as a high-dimensional re-

gression problem (Chen et al., 2021). Vilhjálmsson et al. (2015) introduces an

Bayesian approach for PRS based on summary data. Mak et al. (2017) and Chen

et al. (2021) both consider shrinkage methods as extensions of the Lasso. The

method in Mak et al. (2017) is for linear models and the method in Chen et al.

(2021) can deal with binary outcomes based on approximations. However, the
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statistical guarantees and the choice of tuning parameters are largely unknown.

In addition, inference for the linear functionals of high-dimensional regression

coefficients based on proxy data has not been studied in literature. It is crucial in

PRS prediction to provide confidence intervals for x⊺
∗β given a new individual’s

genomic information x∗ ∈ Rp.

Besides, summary data provide the opportunity to combine multiple studies

(e.g., cohorts) into one large study to increase the sample size (Albiñana et al.,

2021), which is the goal of meta-analysis (Deelen et al., 2019). Hence, it is also

of statistical interest to estimate and make inference of β with the proxy data.

Another application of the proxy-data based inference is distributed infer-

ence, where the whole data set contains i.i.d. observations but the data are dis-

tributed at multiple remote machines. Distributed algorithms estimate the target

parameter by communicating some summary information across machines. To

reduce the communication costs, the gradient vectors are communicated but not

the high-dimensional Hessian matrix. The overall Hessian matrix can be ap-

proximated by a local matrix or by subsampling. See, for example, Jordan et al.

(2018) and Wang and Zhang (2019). This type of distributed inference also falls

in the category of proxy-data based inference.
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1.3 Main results and our contribution

Motivated by aforementioned applications, we study proxy-data based statisti-

cal inference in high-dimensional linear models. When individual level data are

available, estimation and inference for the regression coefficients have been ex-

tensively studied in high-dimensional linear models. Many penalized methods

have been proposed for prediction, estimation, and variable selection in high-

dimensional linear models, including Tibshirani (1996); Fan and Li (2001); Zou

(2006); Candes and Tao (2007); Meinshausen and Bühlmann (2010); Zhang

(2010). For statistical inference of individual coefficient, Zhang and Zhang

(2014), van de Geer et al. (2014), and Javanmard and Montanari (2014) con-

sider debiased estimators in linear models and generalized linear models. The

minimaxity and adaptivity of confidence intervals have been studied in Cai and

Guo (2017). Cai et al. (2021) and Javanmard and Lee (2020) propose meth-

ods for inference for a linear functional of the regression coefficients in linear

models.

When only summary statistics or proxy data are available, statistical infer-

ence for high-dimensional linear regression models has not been addressed in the

literature. The key challenge is that the samples used to compute the observed

covariance matrix Σ̃ and summary statistics Ŝ are different. We highlight some

of our key contributions.
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Methodology-wise, we consider proxy-data based ℓ1-penalized regression

and prove that it is minimax optimal under typical regularity conditions. We fur-

ther propose debiased estimators to make inference for βj , 1 ≤ j ≤ p and x⊺
∗β

with the proxy data, respectively. The debiased estimators are asymptotically

normal and can be used to construct confidence intervals and for multiple testing

under certain conditions. We also demonstrate that confidence interval length

given by the debiased estimator of βj has minimax optimal length under certain

conditions.

Theoretically, we discover some interesting and new phenomena with the

proxy-data based learning. First, the minimax rates for estimation are slower

than the corresponding rates with individual data, even if ñ → ∞. The relative

loss gets larger when the signal-to-noise ratio gets larger. Second, comparing

with the debiased Lasso based on individual data, the debiased Lasso estimator

of βj based on proxy data has larger bias and variance. Hence, its asymptotic

normality requires different sample size conditions and simply treating the proxy

summary data as individual-level data can lead to invalid inference.

1.4 Organization and notation

In Section 2, we describe the ℓ1-regularized method for estimating β with high-

dimensional proxy data and study its convergence rate and minimax optimality.
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In Section 3, we construct the debiased estimator of βj based on proxy data and

study its limiting distribution In Section 4, we construct confidence interval for

x⊺
∗β and provide theoretical guarantees. In Section 5, we study the empirical

performance of our proposals via extensive numerical experiments. In Section

6, we apply the individual-level data Lasso and summary statistics Lasso to a

GWAS in an outbred mice population. In Section 7, we discuss some other sum-

mary data motivated problems for future research. The proofs and other sup-

plementary information are provided in the Supplementary Materials (Li et al.,

2022).

Notation. For real-valued sequences {an}, {bn}, we write an ≲ bn if an ≤

cbn for some universal constant c ∈ (0,∞), and an ≳ bn if an ≥ c′bn for some

universal constant c′ ∈ (0,∞). We say an ≍ bn if an ≲ bn and an ≳ bn.

c, C, c0, c1, c2, · · · , and so on refer to universal constants in the paper, with their

specific values possibly varying from place to place. For a vector v ∈ Rd and

a subset S ⊆ [d], we use vS to denote the restriction of vector v to the in-

dex set S. For a matrix A ∈ Rn1×n2 , let Λmax(A) denote the largest singular

value of A, Λmin(A) denote the smallest singular value of A, and ∥A∥∞,∞ de-

note maxi≤n1,j≤n2 |Ai,j|. For a random variable u ∈ R, define its sub-Gaussian

norm as ∥u∥ψ2 = supl≥1 l
−1/2E1/l[|u|l]. For a random vector U ∈ Rn, define

its sub-Gaussian norm as ∥U∥ψ2 = sup∥v∥2=1,v∈Rn ∥⟨U ,v⟩∥ψ2 . Let SNR =
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∥Σ1/2β∥22/σ2 denote the signal-to-noise ratio. Let τq denote the q-th quantile of

standard normal distribution.

2. Estimation and prediction based on proxy data

In this section, we introduce our proposed estimators for prediction and estima-

tion based on proxy data in Section 2.1. We study its theoretical properties and

minimax optimality in Section 2.2.

2.1 Lasso based on two-sample summary data

For the estimation and prediction tasks, the methods for proxy data resemble

high-dimensional regression methods with individual-level data. The Lasso es-

timator (Tibshirani, 1996) provides a rate optimal estimator of β in the conven-

tional setting. Decomposing the empirical loss ∥y−Xb∥22 as ∥y∥22−2b⊺X⊺y+

∥Xb∥22 and removing the constant term, the Lasso estimator can be written as

β̂(os) = argmin
b∈Rp

{
1

2
b⊺Σ̂b− b⊺Ŝ + λ(os)∥b∥1

}

with some tuning parameter λ(os) > 0 and the superscript “os” is short for “one-

sample” or individual-level data. In fact, we have seen that the Lasso can be

equivalently performed based on one-sample summary data Σ̂ and Ŝ. Hence,
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we will refer to β̂(os) as one-sample Lasso for simplicity in the sequel.

With proxy data, it is natural to consider the following estimator

β̂(ts) = argmin
b∈Rp

{1
2
b⊺Σ̃b− b⊺Ŝ + λ(ts)∥b∥1}, (2.1)

where we replace the unknown Σ̂ with its proxy Σ̃ and consider a possibly

different tuning parameter λ(ts). The superscript “ts” is short for “two-sample”

or summary statistics data.

The summary statistics-based Lasso estimator, or two-sample Lasso esti-

mator, β̂(ts) has been considered in Mak et al. (2017) and Chen et al. (2021).

However, the choice of λ(ts), the convergence rate, and minimax optimality have

not been established. We provide the theoretical guarantees for β̂(ts) in the next

subsection.

2.2 Convergence rates for estimation and prediction

We assume the following conditions for theoretical analysis.

Condition 2.1 (Gaussian designs). Each row of X and X̃ are i.i.d. Gaussian

with mean zero and positive definite covariance Σ such that c1 ≤ Λmin(Σ) ≤

Λmax(Σ) ≤ c2 for some positive constants c1 ≤ c2.

Condition 2.2 (sub-Gaussian noises). The random noises ϵi, i = 1, . . . , n, are
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i.i.d. with mean zero and variance σ2 > 0. ϵi and xi are independent for i =

1, . . . , n. The sub-Gaussian norms of ϵi are upper bounded by a constant.

For estimation and prediction, it suffices to relax Conditions 2.1 and 2.2 to

assume independent sub-Gaussian designs and independent sub-Gaussian noises.

Here we assume slightly stronger regularity conditions, Gaussian designs and

i.i.d. noises, which ensure that the asymptotic variance of the debiased estima-

tors only depends on the first two moments of the observations. With individual

samples, this assumption is not necessary because one can estimate the variance

based on the empirical noises in heteroskedastic settings (Dezeure et al., 2017).

In lack of the individual-level data, we cannot estimate the asymptotic variance

empirically and have to rely on the properties of higher moments, which makes

Gaussian distribution a natural assumption.

We first derive the rate of convergence for β̂(ts) in the two-sample summary

setting. Let E[y2i ] = M and

γn,ñ = σ2 + ∥Σ1/2β∥22(
n

ñ
+ 1) = M +

n

ñ
β⊺Σβ. (2.2)

Loosely speaking, γn,ñ is the variance of the random noises based on proxy data.

In Theorem 1, we establish the convergence rate of β̂(ts) under mild conditions.

Theorem 1 (Convergence rates for β̂(ts)). Assume Conditions 2.1 and 2.2 and
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Ms log p ≪ min{n, ñ}. For λ(ts) = c1
√

γn,ñ log p/n, with large enough con-

stant c1, it holds that

∥Σ̃1/2(β̂(ts) − β)∥22 ∨ ∥β̂(ts) − β∥22 ≤ C
γn,ñs log p

n

∥β̂(ts) − β∥1 ≤ Cs

√
γn,ñ log p

n

with probability at least 1− exp(−c2 log p)− exp(−c3ñ) for some positive con-

stants c2 and c3.

The one-sample optimal rates in squared ℓ2-norm, which is σ2s log p/n. We

can see that the ratio of two rates (two-sample over one-sample) is

1 + SNR(
n

ñ
+ 1), (2.3)

where SNR = ∥Σ1/2β∥22/σ2. This implies that the estimation error rate in the

two-sample case is strictly worse than the one-sample case as long as SNR > 0.

Larger n and larger SNR lead to larger relative loss with β̂(ts) relative to β̂(os).

In contrast, larger ñ implies smaller relative loss. As a result, the condition for

consistency is no weaker in the proxy setting than that with one-sample data. The

two-sample tuning parameter λ(ts) ≍
√

γn,ñ log p/n, whose order is always no

smaller than its one-sample counterpart. The choice of λ(ts) is crucial in practice
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and cross validation cannot be performed without individual-level data. We will

discuss some practical choices in Section 5 and Section C.5.

To better understand the unique challenges with proxy data, we consider a

special scenario where ñ → ∞, or equivalently, Σ is known.

Remark 1 (The scenario of ñ → ∞). If ñ → ∞, which is equivalent to observ-

ing (Ŝ,Σ), then

∥β̂(ts) − β∥22 = OP

(
Ms log p

n

)
.

Remark 1 shows that even if ñ → ∞, the convergence rate of β̂(ts) is still

inflated when SNR > 0 in comparison to having one-sample data. This compar-

ison implies that, without the in-sample Σ̂, any estimator of Σ, even the oracle

one, can lead to dramatic loss in estimation accuracy. Comparing Remark 1

with Theorem 1, we see that the error caused by finite external data is of order

βTΣβs log p/ñ.

We now show that the convergence rate of β̂(ts) is minimax optimal in ℓ2-

norm. Consider the parameter space

Ξ(s,M0, σ
2
0) =

{
∥β∥0 ≤ s,β⊺Σβ ≤ M0, 0 < σ2 ≤ σ2

0,

0 < 1/C1 ≤ Λmin(Σ) ≤ Λmax(Σ) ≤ C1 < ∞} (2.4)

for some constant C1 > 1 and σ2
0 can be any positive constant. Let Z = {Ŝ, Σ̃}
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denote the observed data and F(Z) denote functions based on the summary data

Z .

Theorem 2 (Lower bound for estimating β). Consider the parameter space

Ξ(s,M0, σ
2
0) in (2.4) with s ≥ 2. Suppose that Ms log p ≪ n, and (βTΣβ ∨

1)s log p ≪ ñ. Then there exists some constant c1 that

min
β̂∈F(Z)

sup
β∈Ξ(s,M0,σ2

0)

P
(
∥β̂ − β∥22 ≥

c1(M0 + σ2
0)s log p

n
+

c1M0s log p

ñ

)
≥ 1/2.

In the parameter space Ξ(s,M0, σ
2
0), it holds that M = E[y2i ] ≤ M0 + σ2

0 .

Hence, the lower bound in Theorem 2 matches the ℓ2-upper bound in Theorem

1 in terms of rates. We mention that the sample size condition in Theorem

2 essentially restricts us to a class of Ŝ with distributional regularity, i.e., its

distribution conditioning on y has positive definite covariance matrix. As far as

we know, this is the first lower bound result based on summary data and the proof

is based on some novel analysis of the distribution of the marginal correlation

statistics.

3. Inference for individual coefficient based on proxy data

In this section, we consider statistical inference, such as hypothesis testing and

constructing confidence intervals for βj with some fixed 1 ≤ j ≤ p. It is known
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that the ℓ1-regularized estimates are biased and cannot be directly used for infer-

ence. For inference based on proxy data, we follow a similar idea as the debiased

methods, which have been proposed based on individual-level data. Specifically,

the debiased Lasso (Zhang and Zhang, 2014; van de Geer et al., 2014; Javanmard

and Montanari, 2014) can be written as

β̂
(os−db)
j = β̂

(os)
j +

(Xŵj)
⊺(y −Xβ̂(os))

n
= β̂

(os)
j + ŵ⊺

j (Ŝ − Σ̂β̂(os)), (3.1)

where β̂(os) is the one-sample Lasso estimator and ŵj ∈ Rp is a correction score

vector that can be computed based on Σ̂. We see that the debiased Lasso for βj

can also be realized based on the summary statistics Σ̂ and Ŝ. Hence, we refer

to the estimate in (3.1) as one-sample debiased Lasso (os-db) in the sequel. This

similarly motivates its counterpart with two-sample summary data:

β̂
(ts−db)
j = β̂

(ts)
j + w̃⊺

j (Ŝ − Σ̃β̂(ts)), (3.2)
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where β̂(ts) is computed in (2.1) and w̃j ∈ Rp is a correction score vector com-

puted based on Σ̃. Specifically, we consider

w̃j = argmin
w∈Rp

∥w∥1 (3.3)

subject to ∥Σ̃w − ej∥∞ ≤ λj,

where λj = cj
√

log p/ñ for some positive constant cj . The realization of w̃j

is via a Dantzig selector optimization (Candes and Tao, 2007), which induces a

sparse solution of the j-th column of the inverse covariance matrix Ω = Σ−1.

Some existing one-sample methods, such as Javanmard and Montanari (2014),

do not look for a sparse estimate w̃j but choose a different objective function in

(3.3). In the proxy setting, however, the sparsity of w̃j plays a crucial role in the

analysis. Those non-sparse methods for one-sample setting cannot be directly

generalized for the current purpose as we will further discuss in Section 3.1.

3.1 Asymptotic normality for debiased two-sample Lasso

We study the asymptotic property of β̂(ts−db)
j defined in (3.2) and prove its asymp-

totic normality under certain conditions. Let Ω.,j denote the j-th column of Ω

and sj = ∥Ω.,j∥0.

Theorem 3 (Asymptotic normality of the debiased estimator). Assume that Con-
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dition 2.1 and Condition 2.2 hold, n ≫ log p, and ñ ≫ (s ∨ sj) log p. If

λj = cj
√
log p/ñ and cj ≥ c1

√
Σj,jΩj,j for some large enough constant c1 > 0,

then it holds that

β̂
(ts−db)
j − βj = zj +OP

(
γ
1/2
n,ñ

(s+ sj) log p√
nñ

)
, (3.4)

where γn,ñ is defined in (2.2) and

(V
(ts)
j )−1/2zj

D−→ N(0, 1) for V
(ts)
j =

Ωj,jγn,ñ
n

+
β2
j

n
+

β2
j

ñ
.

Further assuming (s ∨ sj) log p ≪
√
ñ, then (V

(ts)
j )−1/2(β̂

(ts−db)
j − βj)

D−→

N(0, 1).

Theorem 3 establishes the asymptotic distribution of β̂
(ts−db)
j in (3.4) and

provides the sample size condition for its asymptotic normality. The variance of

β̂
(ts−db)
j is V

(ts)
j and the remaining bias of β̂(ts−db)

j is shown in the last term on

the right hand side of (3.4).

We first bring some details into the magnitude of V (ts)
j . The last two terms of

V
(ts)
j , β2

j /n and β2
j /ñ, are dominated by the first term of V (ts)

j given the positive

definiteness of Ω. Hence, when ñ ≫ n, V (ts)
j ≍ Ωj,jM/n; when n ≫ ñ,

V
(ts)
j ≍ Ωj,j∥Σ1/2β∥22/ñ. In comparison to its one-sample counterpart, V (os)

j =
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Ωj,jσ
2/n, the relative loss in efficiency is

V
(ts)
j

V
(os)
j

≍ 1 + SNR(
n

ñ
+ 1),

which is identical to the relative loss in estimation (2.3). When ñ → ∞, i.e. Σ is

known, V (ts)
j is still larger than V

(os)
j . This shows the significant loss in efficiency

for inference problems when the marginal statistics and covariance estimator

are not based on the same set of samples. More importantly, the distinction

between V
(ts)
j and V

(os)
j implies that simply applying the inference algorithms

for individual level data to the proxy summary statistics data could be wrong.

The remaining bias of β̂(ts−db)
j is of order γ1/2

n,ñ(s + sj) log p/
√
nñ. In one-

sample setting, the remaining bias of debiased β̂
(os−db)
j in (3.1), is of order

s log p/n (van de Geer et al., 2014; Cai and Guo, 2017). If ñ/n is sufficiently

large, the remaining bias of β̂(ts−db)
j can be smaller than that of its one-sample

counterpart. In view of the asymptotic bias and asymptotic variance in (3.4), it

suffices to require (s∨ sj) log p ≪
√
ñ for asymptotic normality. This condition

implies that ñ determines the range of sparsity such that valid inference can be

established. In contrast, for one-sample debiased Lasso β̂
(os−db)
j , n determines

the range of sparsity for valid inference, which is s log p ≪
√
n. This can be

a blessing of proxy-data scenario. An extreme case is when Σ is known, or
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equivalently ñ → ∞ as in the following remark.

Remark 2 (The scenario of ñ → ∞). When Σ is known, w̃j = Ω.,j and

β̂
(ts−db)
j = Ωj,.X

⊺y/n, which is asymptotically normal with mean zero and

variance Ωj,jγn,∞/n+ β2
j /n.

It may be surprising to see that for fixed n and p, the remaining bias of

β̂
(ts−db)
j vanishes when ñ → ∞. However, many existing applications often

have ñ ≲ n. This can be due to the less cost of sharing GWAS statistics than

sharing the LD matrix. Same pattern holds for distributed inference, in which

case n is the total sample size and ñ is the local sample size. This should raise

some caution in applications with two-sample summary data.

We finally discuss the conditions on the sparsity sj . In classical one-sample

setting, inference for βj may not require sparse Ω.,j , see, for example, the anal-

ysis in Javanmard and Montanari (2014) for linear models. We mention that the

condition on sj cannot be removed using the same idea in our analysis. This

comes from a unique challenge of proxy data, where Ŝ implicitly depends on

Σ̂, which is unobserved but approximated. While the condition on sj can be

avoided by sample splitting, the splitting scheme is not viable with summary

data in most cases. Hence, we focus on the current procedure and the results

without sample splitting.

In the next theorem, we establish the minimax lower bound for estimating
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βj .

Theorem 4 (Minimax lower bound for estimation of βj). Consider the parame-

ter space Ξ(s,M0, σ
2
0) in (2.4). Suppose that max{1,M0 + σ2

0} ≤ c1min{n, ñ}

for some constant c1 > 0. Then for any fixed 1 ≤ j ≤ p, there exists some

constant c2 that

inf
β̂j∈F(Z)

sup
β∈Ξ(s,M0,σ2

0)

P

(
|β̂j − βj| ≥ c2

√
M0 + σ2

0

n
+ c2

√
M0

ñ

)
≥ 1

2
.

In Theorem 4, we show that the parametric part of the rate for β̂(ts−db)
j is

minimax optimal. That is, under the sample size condition (s∨ sj) log p ≪
√
ñ,

the two-sample debiased estimator β̂(ts−db)
j has rate optimal confidence interval

length. Comparing with the minimax rate for one-sample inference, we see that

the variance part are inflated with proxy data. For the nonparametric part, the

proof based on summary statistics is much more involved. In the supplements

(Theorem A.1), we provide the minimax lower bound for estimating βj when Σ

is known and the lower bound matches the upper bound derived in Remark 2.
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3.2 Variance estimator and confidence intervals

In view of V (ts)
j , we propose a variance estimator for β̂(ts−db)

j as

V̂
(ts)
j = w̃⊺

j Σ̃w̃j(
∥y∥22
n2

+
2(β̂(ts))⊺Ŝ − (β̂(ts))⊺Σ̃β̂(ts)

ñ
)

+
(β̂

(ts−db)
j )2

n
+

(β̂
(ts−db)
j )2

ñ
. (3.5)

Notice that V̂ (ts)
j is not the two-sample analogy of variance estimator for the clas-

sical debiased Lasso. This is because the probabilistic limit of V̂ (ts)
j is asymp-

totically larger than the asymptotic variance of the conventional debased Lasso.

Hence, if we treat proxy data as one-sample summary data, correct coverages are

not guaranteed. We propose the following (1 − α) × 100%-confidence interval

for βj as

β̂
(ts−db)
j ± τα/2

√
V̂

(ts)
j . (3.6)

Once the z-statistics z(ts)j = β̂
(ts−db)
j /

√
V̂

(ts)
j is obtained for j = 1, . . . , p, we can

perform multiple testing with FDR control using the procedure in Javanmard and

Javadi (2019), which is a refined version based on Liu (2013).

In the next lemma, we prove the consistency of V̂ (ts)
j defined in (3.5) and

conclude the validness of the confidence interval (3.6).

Lemma 1 (A consistent variance estimator). Under the conditions of Theorem
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3,

|V̂ (ts)
j − V

(ts)
j |

V
(ts)
j

= OP

(
γn,ñ√
n

+ γn,ñ
s log p

n
+ γn,ñ

sj log p

ñ
+

1√
ñ

)
.

To summarize, assuming Condition 2.1, Condition 2.2, and (s∨sj) log p ≪
√
ñ,

then (V̂
(ts)
j )−1/2(β̂

(ts−db)
j − βj)

D−→ N(0, 1).

In the Supplementary Materials (Section B), we also study the power func-

tion of two-sample test statistics and demonstrate its potential power loss com-

pared with one-sample setting.

4. Inference for linear functionals

We now study statistical inference for the PRS µ∗ = x⊺
∗β given an individual’s

feature x∗. We can use µ̂∗ = x⊺
∗β̂ for prediction. Hence, we focus on con-

structing confidence intervals for µ∗. Inference for linear functionals of β have

been studied in the classical setting. The minimax rate is established in Cai and

Guo (2017) and various methods are established in Cai and Guo (2017), Cai

et al. (2021), and Javanmard and Lee (2020). All the afore-mentioned methods

consider the debiasing recipe: the correction scores are obtained by constrained

minimizations, where the constraints can be directly used to upper bound the the

remaining bias of the debiased estimator. Our problem is more challenging as
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some uncertainty coming from the unobserved covariance matrix Σ̂ cannot be

directly controlled based on the observed data.

Trading-off multiple sources of bias, we consider a different method. For

w̃j defined in (3.3), denote

Ω̃ = (w̃1, . . . , w̃p) ∈ Rp×p. (4.1)

In fact, Ω̃ is an estimate of the inverse covariance matrix. Our estimated Ω̃ is

equivalent to the CLIME estimator (Cai et al., 2011), which can be expressed as

Ω̃ = argmin
Ω∈Rp×p

∥Ω∥1

subject to ∥Σ̃Ω− Ip∥∞,∞ ≤ λ̃,

where λ̃ = c1
√

log p/ñ for some positive constant c1. We then obtain an ini-

tial bias-correction score Ω̃x∗. Next, we refine Ω̃x∗ to reduce the bias in the

direction of x∗:

w̃∗ = argmin
w∈Rp

∥w − Ω̃x∗∥1 (4.2)

subject to ∥Σ̃w − x∗∥∞ ≤ ∥x∗∥2λ̃.
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The optimization in (4.2) can be efficiently solved, because it equivalently com-

putes the Dantzig selector (Candes and Tao, 2007) by treating w − Ω̃x∗ as the

target parameter.

For β̂(ts) defined in (2.1) and w̃∗ defined in (4.2), define the debiased esti-

mator for µ∗ = x⊺
∗β as

µ̂(ts−db)
∗ = x⊺

∗β̂
(ts) + w̃⊺

∗(Ŝ − Σ̃β̂(ts)). (4.3)

Some more comments on w̃∗ defined in (4.2) are warranted. Our proposed

w̃∗ distinguishes from the constrained minimizations based on one-sample indi-

vidual data, say, expressions (7) and (8) of Cai et al. (2021) or expression (12) of

Javanmard and Lee (2020), directly control the bias in the direction of x∗ based

on the observed Σ̂. Their correction scores have no sparse guarantees and their

objective functions are quadratic. In the proxy setting, the analysis for debiasing

has more remainder terms to control, which involve the discrepancy between the

observed Σ̃ and the unobserved Σ̂. To control the bias term involving Σ̂, we

rely on the sparsity of the precision matrix Ω. The estimator w̃∗ in (4.2) can

simultaneously leverage the sparsity structure of Ω and control the bias in the

direction of x∗.



HIGH DIMENSIONAL REGRESSION WITH SUMMARY STATISTICS 25

4.1 Asymptotic normality for summary statistics debiased µ∗

We study the theoretical properties of µ̂
(ts−db)
∗ defined in (4.3). The theoret-

ical analysis for a generic linear functional is more challenging, because x∗

is non-sparse in general while canonical basis ej has sparsity one. Let sΩ =

maxj≤p ∥Ω.,j∥0.

Theorem 5 (Asymptotic normality of µ̂(ts−db)
∗ ). Assume Condition 2.1 and Con-

dition 2.2 hold true, n ≫ log p and ñ ≫ (s ∨ sΩ) log p. It holds that

µ̂(ts−db)
∗ − µ∗ = z∗ +OP

(
γ
1/2
n,ñ∥x∗∥2

(s+ s
3/2
Ω ) log p√
nñ

)
,

where γn,ñ is defined in (2.2) and

(V (ts)
∗ )−1/2z∗

D−→ N(0, 1) for V (ts)
∗ =

x⊺
∗Ωx∗γn,ñ

n
+

µ2
∗
n

+
µ2
∗
ñ
.

Hence, given that

s log p ≪
√
ñ and s

3/2
Ω log p ≪

√
ñ, (4.4)

(V
(ts)
∗ )−1/2(µ̂

(ts−db)
∗ − µ∗)

D−→ N(0, 1).

Theorem 5 establishes the limiting distribution of µ̂(ts−db)
∗ and the asymp-
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totic normality for µ̂(ts−db)
∗ given (4.4). The sparsity condition on s is the same

as in Section 3.1 but the condition on sΩ is stricter. This comes from the chal-

lenge of dealing with a non-sparse loading x∗. We now connect Theorem 5

with the method in (4.2). We see that the remaining bias of µ̂
(ts−db)
∗ depends

on the sparsity of Ω, sΩ. We leverage the sparsity of Ω by first initialize Ω̃x∗

and compute w̃∗ as its projection to the ℓ∞-constrained space. Again, the num-

ber of proxy data ñ determines the range of sparsity condition for constructing

confidence intervals. The asymptotic variance V
(ts)
∗ is determined by n and ñ

simultaneously.

We introduce the variance estimator of µ̂(ts−db)
∗ , which is

V̂ (ts)
∗ = w̃⊺

∗Σ̃w̃∗(
∥y∥22
n2

+
2(β̂(ts))⊺Ŝ − (β̂(ts))⊺Σ̃β̂(ts)

ñ
)

+
(µ̂

(ts−db)
∗ )2

n
+

(µ̂
(ts−db)
∗ )2

ñ
. (4.5)

We can similarly show that V̂ (ts)
∗ defined in (4.5) is a consistent estimator of

V
(ts)
∗ . Hence, we propose the following (1− α)× 100%-confidence interval for

µ∗ as

µ̂(ts−db)
∗ ± τα/2

√
V̂

(ts)
∗ . (4.6)

Prior to the PRS prediction, an important question is whether the SNPs are

predictive for the trait of interest or whether the trait is heritable. Therefore,
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it is of interest to test H0 : βTΣβ = 0 versus H1 : βTΣβ > 0 based on

two-sample summary data. This is equivalent to testing whether the covariance

between the trait value yi and the PRS βTxi, Cov(yi,βTxi), is zero. We develop

an asymptotically valid test in Section D of the supplements.

5. Numerical results

In this section, we evaluate the empirical performance of the procedures devel-

oped in previous sections. A practical issue is the choice of tuning parameter

λ(ts). Without the individual data, cross-validation cannot be used. Alternative

strategies include using some information criteria such as Bayesian informa-

tion criterion (BIC). In the supplementary files (Section C.5), we compare three

methods for choosing tuning parameters, including BIC, resampling-based cri-

teria, and pseudo-validation (Mak et al., 2017). Results show that resampling-

based tuning parameter selection gives to smallest prediction errors in almost all

the scenarios which is adopted in all of our numerical studies. The variance of

β̂
(ts−db)
j depends on M , the second moment of yi. In fact, M can be approxi-

mated from the variance estimators of Ŝ. Specifically, we can show that

Var(Ŝj) = Var
(
X⊺

j y

nΣj,j

)
(1 + o(1)) =

Σj,jM + (Σj,SβS)
2

nΣ2
j,j

(1 + o(1)).
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When the correlation between x.,j j /∈ S and X.,S is sparse, say, |{j ≤ p :

Σj,S ̸= 0}| ≪ p, then a consistent estimate of M is M̂ = n
p

∑p
j=1 v̂ar(Ŝj)Σ̃j,j .

We consider (n, ñ) ∈ {(200, 400), (300, 300), (400, 200)}, which corre-

sponds to n/ñ ∈ {0.5, 1, 2}. We consider p = 2000 and s ∈ {4, 8, 12}. For

the design matrix, we consider two different settings. In the first setting, we

simulate independent genotypes and allele frequency for each SNP is randomly

chosen from (0.1, 0.2, 0.3). In the second setting, we simulate correlated geno-

types from outbred Carworth Farms White (CFW) mice population (Parker et al.,

2016) which will be further used in the data analysis. Details of the data gener-

ation are given in the supplementary materials (Section C.1). We denote these

two settings of the design matrices as “ind” and “cfw”, respectively.

5.1 Estimation and prediction results

In Table 1, we report the estimation and prediction results with one-sample and

two-sample Lasso. for a generic estimator b ∈ Rp, define its estimation error

and test errors as ∥b − β∥22 and ∥X̃(b − β)∥22/∥X̃β∥22, respectively. As one-

sample method only uses n individual samples, its estimation errors and test

errors decrease as n increases for any given s. For the two-sample Lasso, the test

and estimation errors are always larger than those with one-sample Lasso. When

n/ñ is fixed, both methods have errors increasing as the sparsity s increases.
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Table 1: Sum of squared errors for estimating β and test errors based on one-
sample Lasso (OS) and two-sample Lasso (TS) for n/ñ ∈ {1/2, 1, 2}, where the
SNP genotypes are either independently simulated or sampled from the CFW
mice genotypes (cfw).

Sum of Squared Errors Test Errors
SNPs s Method 1/2 1 2 1/2 1 2

ind

4
OS 0.029 0.022 0.018 0.641 0.478 0.375
TS 0.039 0.034 0.025 0.828 0.652 0.502

8
OS 0.047 0.037 0.032 0.824 0.641 0.540
TS 0.059 0.053 0.044 0.982 0.804 0.644

12
OS 0.060 0.050 0.044 0.895 0.745 0.646
TS 0.077 0.070 0.060 1.069 0.893 0.739

cfw

4
OS 0.055 0.036 0.028 0.404 0.265 0.207
TS 0.066 0.066 0.077 0.632 0.612 0.707

8
OS 0.154 0.116 0.093 0.594 0.429 0.340
TS 0.207 0.181 0.134 0.936 0.750 0.542

12
OS 0.266 0.211 0.177 0.721 0.540 0.440
TS 0.334 0.301 0.226 1.008 0.827 0.605

The errors of two-sample Lasso increase more significantly. This is because,

according to Theorem 1, as s increases, SNR increases which leads to larger

estimation errors.

In Table 2, we evaluate the performance of statistical inference for the re-

gression coefficients based on one-sample and two-sample debiased Lasso. We

see that the one-sample and two-sample debiased Lasso have coverage probabil-

ities close to the nominal level in various configurations. The standard deviations

based on proxy data increase as s increases and are larger than those based on

one-sample data.
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Table 2: Coverage probabilities and standard deviations based on one-sample
(OS) and two-sample (TS) debiased Lasso for n/ñ ∈ {1/2, 1, 2}, where the
SNP genotypes are either independently simulated or sampled from the CFW
mice genotypes (cfw).

Average Coverage Average SD
SNPs s Method 1/2 1 2 1/2 1 2

ind

4
OS 0.964 0.965 0.965 0.03 0.03 0.02
TS 0.979 0.983 0.988 0.04 0.04 0.04

8
OS 0.971 0.972 0.972 0.04 0.03 0.03
TS 0.982 0.986 0.988 0.05 0.04 0.04

12
OS 0.976 0.977 0.977 0.04 0.04 0.03
TS 0.985 0.988 0.989 0.06 0.05 0.05

cfw

4
OS 0.950 0.950 0.950 0.04 0.03 0.03
TS 0.957 0.948 0.939 0.05 0.04 0.04

8
OS 0.950 0.950 0.950 0.06 0.05 0.04
TS 0.956 0.948 0.939 0.07 0.06 0.05

12
OS 0.949 0.950 0.950 0.07 0.06 0.05
TS 0.956 0.948 0.939 0.08 0.07 0.06
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We report the inference results of the true PRS µ∗ in Table 3. The cov-

erage probabilities are close to the nominal level in different settings for the

two-sample method. When s = 12, the one-sample debiased Lasso has low cov-

erage when n is small with independent SNPs. This agrees with our analysis

on the sample size conditions for asymptotic normality: when ñ is larger than

n, the two-sample debiased Lasso requires a weaker sample size condition for

asymptotic normality.

Table 3: Coverage probabilities and standard deviations based on one-sample
(OS) and two-sample (TS) debiased Lasso for µ∗ for n/ñ ∈ {1/2, 1, 2}, where
the SNP genotypes are either independently simulated or sampled from the CFW
mice genotypes (cfw).

Average Coverage Average SD
SNPs s Method 1/2 1 2 1/2 1 2

ind

4
OS 0.913 0.920 0.948 0.15 0.14 0.17
TS 0.923 0.996 0.988 0.46 0.30 0.21

8
OS 0.907 0.896 0.939 0.18 0.16 0.21
TS 0.925 0.995 0.986 0.54 0.35 0.25

12
OS 0.778 0.886 0.931 0.14 0.19 0.23
TS 0.938 0.998 0.988 0.61 0.38 0.27

cfw

4
OS 0.970 0.965 0.953 0.24 0.21 0.17
TS 0.951 0.995 0.997 0.27 0.33 0.43

8
OS 0.968 0.960 0.937 0.34 0.31 0.24
TS 0.953 0.996 0.996 0.38 0.48 0.61

12
OS 0.964 0.962 0.929 0.42 0.38 0.30
TS 0.950 0.995 0.996 0.46 0.60 0.75
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6. Data analysis

We apply the one-sample and two-sample methods to a GWAS in the outbred

Carworth Farms White (CFW) mice population (Parker et al., 2016). Parker

et al. (2016) show no widespread population structure or cryptic relatedness in

the CFW mice and therefore, we view these mice as independent of each other.

The primary pre-processing of phenotypes and genotypes, including outliers re-

moval and basic transformation, was conducted using the original paper’s code.

After the pre-processing, the data set consists of 1,038 mice with 79,824 genetic

variants and 71 different phenotypes. We study the genetic associations for the

weights of four hindlimb muscles: EDL (extensor digitorum longus), Gastroc

(gastrocnemius), Soleus, and TA (transverse abdominal), respectively.

We first predict each response based on constructed two-sample summary

data and evaluate the out-of-sample prediction accuracy. Take the EDL response

as an example. In each experiment, we randomly split the samples into two folds

and use one fold to compute the GWAS statistic, Ŝ, and the other fold to compute

the sample covariance matrix, Σ̃. We consider different sample size ratios where

the sample size for GWAS, n ∈ {250, 500, 750}, and ñ = 1038−n, which gives

n/ñ is approximated one of {1/3, 1, 3}. For each sample size configuration,

we repeat independent splittings and predictions 30 times. In order to build a

PRS, we first perform marginal screening based on the (X̃, ỹ) and keep the
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covariates whose marginal correlation is among the top-3000 significant. This

gives a subset of 3000 covariates, whose marginal correlations are strong.

We evaluate the PRS prediction using the samples that are used for estimat-

ing the sample covariate matrix. For a generic estimator b ∈ Rp, define its test

errors as ∥ỹ − X̃β̂(ts)∥22/∥ỹ∥22. From Table 4, we see that the SNPs are pre-

dictive for the EDL and Soleus weights, but are not predictive for the TA and

Gastroc weights. As n/ñ increases, the test errors decrease significantly in the

one-sample case but are less significant in the two-sample case. It aligns with

our theoretical analysis that one-sample Lasso has more accurate predictions on

average for different sample size ratios.

Table 4: Test errors using the samples that are used for estimating the sample
covariate matrix based on one-sample (OS) and two-sample (TS) methods with
n/ñ ∈ {1/3, 1, 3} for four hindlimb muscles.

EDL Gastroc Soleus TA
n/ñ OS TS OS TS OS TS OS TS
1/3 0.733 0.762 1.015 1.028 0.715 0.745 0.999 1.003
1 0.653 0.703 1.006 1.002 0.648 0.699 0.952 0.954
3 0.624 0.701 0.994 0.982 0.596 0.692 0.939 0.946

For the inference results of PRS, we consider constructing confidence inter-

vals for y∗ and its standard deviation is
√
V

(ts)
∗ + σ2 as µ∗ is unknown. We again

evaluate the PRS inference results using the samples that are used for estimating

the sample covariate matrix. We plug in σ̃2 = M̂ − 2(β̂(ts))T Ŝ+(β̂(ts))T Σ̃β̂(ts)
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Table 5: Inference results for µ̄∗ using the samples that are used for estimating
the sample covariate matrix based on one-sample (OS) and two-sample (TS)
methods with n/ñ ∈ {1/3, 1, 3} for four hindlimb muscles.

Significance Average Coverage Average SD
Method 1/3 1 3 1/3 1 3 1/3 1 3

EDL
OS 0.173 0.200 0.229 0.940 0.983 0.973 0.687 0.691 0.692
TS 0.023 0.037 0.007 0.977 0.993 0.997 1.808 1.123 0.851

Gastroc
OS 0.083 0.060 0.087 0.943 0.970 0.940 1.016 1.125 1.166
TS 0.003 0.000 0.000 0.997 0.977 0.967 1.907 1.182 0.954

Soleus
OS 0.187 0.267 0.273 0.910 0.923 0.973 0.630 0.667 0.691
TS 0.010 0.013 0.017 0.993 0.990 1.000 1.787 1.119 0.833

TA
OS 0.153 0.183 0.303 0.320 0.347 0.500 0.988 0.957 0.995
TS 0.030 0.020 0.107 0.870 0.597 0.317 1.920 1.193 0.928

as an estimate of σ2. In Table 5, we report the proportion of significant PRS de-

tected with 5% significance level. One-sample and two-sample debiased meth-

ods have average coverage close to the nominal level for outcomes EDL, Gas-

troc, and Soleus. In view of the lengths of the confidence intervals, we see that

the one-sample confidence intervals are shorter than the two-sample confidence

intervals and this observation agrees with our theoretical results.
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7. Discussion

Statistical learning with summary data has attracted significant interests in ge-

netic, epidemiology, and other health-related studies. In this work, we have pro-

vided statistical inference methods and theoretical guarantees with proxy data

in high-dimensional linear models. Our theoretical analysis sheds light on the

practical use of two-sample methods. Interesting future research directions in-

cluding dealing with heteroscedastic noises and model misspecification. In these

two cases, the asymptotic variance of the debiased Lasso need to be estimated

empirically (Bühlmann et al., 2015; Dezeure et al., 2017), which cannot be di-

rectly applied with summary data.

Supplementary Materials

The Supplementary Material includes proofs of the main theorems and the tech-

nical lemmas, details on power analysis, and additional simulation results.
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Bühlmann, P., S. van de Geer, et al. (2015). High-dimensional inference in

misspecified linear models. Electronic Journal of Statistics 9(1), 1449–1473.

Cai, T., T. T. Cai, and Z. Guo (2021). Optimal statistical inference for individ-

ualized treatment effects in high-dimensional models. Journal of the Royal

Statistical Society: Series B 83, 669–719.

Cai, T. T. and Z. Guo (2017). Confidence intervals for high-dimensional linear

regression: Minimax rates and adaptivity1. The Annals of Statistics 45(2),

615–646.

Cai, T. T., W. Liu, and X. Luo (2011). A constrained l1 minimization approach

to sparse precision matrix estimation. Journal of the American Statistical

Association 106(494), 594–607.



HIGH DIMENSIONAL REGRESSION WITH SUMMARY STATISTICS 37

Candes, E. and T. Tao (2007). The dantzig selector: Statistical estimation when

p is much larger than n. The Annals of Statistics 35(6), 2313–2351.

Chen, T.-H., N. Chatterjee, M. T. Landi, and J. Shi (2021). A penalized re-

gression framework for building polygenic risk models based on summary

statistics from genome-wide association studies and incorporating external in-

formation. 116(533), 133–143.

Consortium, . G. P. et al. (2015). A global reference for human genetic variation.

Nature 526(7571), 68–74.

Deelen, J., D. S. Evans, D. E. Arking, N. Tesi, M. Nygaard, X. Liu, M. K.

Wojczynski, M. L. Biggs, A. van Der Spek, G. Atzmon, et al. (2019). A meta-

analysis of genome-wide association studies identifies multiple longevity

genes. Nature Communications 10, 3669.

Dezeure, R., P. Bühlmann, and C.-H. Zhang (2017). High-dimensional simulta-

neous inference with the bootstrap. TEST 26(4), 685–719.

Fan, J. and R. Li (2001). Variable selection via nonconcave penalized likeli-

hood and its oracle properties. Journal of the American Statistical Associa-

tion 96(456), 1348–1360.



HIGH DIMENSIONAL REGRESSION WITH SUMMARY STATISTICS 38

Javanmard, A. and H. Javadi (2019). False discovery rate control via debiased

lasso. Electronic Journal of Statistics 13(1), 1212–1253.

Javanmard, A. and J. D. Lee (2020). A flexible framework for hypothesis test-

ing in high dimensions. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 82(3), 685–718.

Javanmard, A. and A. Montanari (2014). Confidence intervals and hypothesis

testing for high-dimensional regression. The Journal of Machine Learning

Research 15, 2869–2909.

Jordan, M. I., J. D. Lee, and Y. Yang (2018). Communication-efficient dis-

tributed statistical inference. Journal of the American Statistical Associa-

tion 114(526), 668–681.

Li, S., T. T. Cai, and H. Li (2022). Supplements to “estimation and inference

with proxy data and its genetic applications”.

Liu, W. (2013). Gaussian graphical model estimation with false discovery rate

control. The Annals of Statistics 41(6), 2948–2978.

Mak, T. S. H., R. M. Porsch, S. W. Choi, X. Zhou, and P. C. Sham (2017).

Polygenic scores via penalized regression on summary statistics. Genetic epi-

demiology 41(6), 469–480.



HIGH DIMENSIONAL REGRESSION WITH SUMMARY STATISTICS 39
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