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Abstract: This paper studies the problem of optimal estimation of a quadratic func-

tional of two normal mean vectors, Q(µ, ✓) = 1
n

Pn
i=1 µ

2
i ✓

2
i , with a particular focus

on the case where both mean vectors are sparse. We propose optimal estimators of

Q(µ, ✓) for di↵erent regimes and establish the minimax rates of convergence over a

family of parameter spaces. The optimal rates exhibit interesting phase transitions

in this family. We also include a simulation study to complement the theoretical

results in the paper.
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1. Introduction

The problem of estimating the quadratic functional
R

f

2 occupies an im-
portant position in nonparametric statistical inference literature. In the density
estimation setting where one observes an i.i.d. sample from a distribution with
density function f , Bickel and Ritov (1988) was the first to show that there is
an interesting phase transition where the minimax rate of convergence for es-
timating

R

f

2 under mean squared error is the usual parametric rate when the
Hölder smoothness parameter of the density function is greater than 1/4, and is
otherwise slower than the parametric rate. Giné and Nickl (2008) constructed an
adaptive estimator of

R

f

2 in the density estimation setting. Donoho and Nuss-
baum (1990) developed a minimax theory for estimating quadratic functionals of
periodic functions in the nonparametric regression model.

Quadratic functional estimation has been particularly well studied in the
Gaussian sequence model:

Yi = ✓i + �nzi, i = 1, 2, . . . , (1.1)

where zi
i.i.d.⇠ N(0, 1). The model (1.1) is equivalent to the white noise with drift

model and can be used to approximate other nonparametric function estimation
models. Estimating the quadratic functional Q(✓) =

P

✓

2
i under (1.1) is the

analog of estimating
R

f

2 in the density estimation or nonparametric regression
model. Fan (1991) and Efromovich and Low (1996) developed a minimax theory
for estimating Q(✓) =

P

✓

2
i over quadratically convex parameter spaces such as
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hyperrectangles and Sobolev balls. Cai and Low (2005, 2006b) further extended
this theory to minimax and adaptive estimation over parameter spaces that are
not necessarily quadratically convex. It is shown that the problem exhibits dif-
ferent phase transition phenomena in such a setting. A more recent paper by
Collier et al. (2015) gave a non-asymptotic analysis of estimation of quadratic
functional over ellipsoids and classes of sparse vectors. The focus so far has been
on the one-sequence case.

There are close connections between the problem of quadratic functional
estimation and that of signal detection under (1.1). Specifically, for a mean
vector ✓, we say that there is a signal at location i if ✓i 6= 0. The problem of
signal detection is then to distinguish between ✓ = 0 and ✓ 6= 0. Since Q(✓) = 0
if and only if ✓ = 0, it is not surprising that estimators of Q(✓) can be used to
construct procedures that are e↵ective for detecting signals. See, for instance,
Cai and Low (2005) and the references therein. The results on estimating the
quadratic functional Q(✓) also have important implications on hypothesis testing
and construction of confidence balls. See, for example, Li (1989), Dümbgen
(1998), Lepski and Spokoiny (1999), Ingster and Suslina (2003), Baraud (2004),
Genovese and Wasserman (2005), and Cai and Low (2006a,b).

In this paper, we consider the estimation of the quadratic functional

Q(µ, ✓) =
1

n

n
X

i=1

µ

2
i ✓

2
i (1.2)

under the Gaussian two-sequence model,

Xi = µi + �z

0
i, Yi = ✓i + �zi, i = 1, . . . , n, (1.3)

where z

0
1, . . . , z

0
n, z1, . . . , zn

i.i.d.⇠ N(0, 1) and � is the noise level. The goal is
to optimally estimate Q(µ, ✓) based on the observed data (Xi, Yi), i = 1, ..., n.
Strictly speaking, Q(µ, ✓) is a quartic functional, but we will refer to it as a
quadratic functional in the two-sequence case, as it is quadratic in µ given ✓, and
vice versa. We are particularly interested in the case where both mean vectors
µ = (µ1, . . . , µn) and ✓ = (✓1, . . . , ✓n) are sparse.

In addition to being of significant theoretical interest in its own right, this
estimation problem is also motivated by the problem of simultaneous signal de-
tection in integrative genomics, where it is of interest to test whether there are
single nucleotide polymorphisms (SNPs) that are simultaneously associated with
multiple human traits or disorders (Consortium, 2011; Cotsapas et al., 2011;
Sivakumaran et al., 2011; Rankinen et al., 2015; Li et al., 2015). More specifi-
cally, let Xi be the Z-score of the association between trait 1 and the i

th SNP,
and let Yi be the Z-score of the association between trait 2 and the i

th SNP,
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for i = 1, . . . , n. When the SNPs are chosen from di↵erent linkage equilibrium
blocks, then it is approximately true that the Xi’s are independent, as are the
Yi’s. Moreover, when Xi and Yi are calculated in independent datasets, then
for each i, Xi is independent of Yi. In a simplified statistical framework, the
simultaneous signal detection problem can then be studied under the Gaussian
two-sequence model (1.3), where the goal is to detect the presence of location i

with µi✓i 6= 0. Equivalently, we want to distinguish between µ ? ✓ = 0 and
µ ? ✓ 6= 0, where µ ? ✓ = (µ1✓1, . . . , µn✓n) is the coordinate-wise product of µ
and ✓. Of particular interest is the setting where the proportion of signals is
small, and the signal strengths are relatively weak. This is indeed the setting
in the genomics context, as only a small number of SNPs are expected to be
associated with both traits. Moreover, the association, if exists, is weak. Since
Q(µ, ✓) = 0 if and only if µ?✓ = 0, one might expect a connection similar to that
in the single Gaussian sequence model to exist between the estimation problem
and the simultaneous signal detection problem. More discussions on the appli-
cation of quadratic functional estimators to the problem of simultaneous signal
detection are given in Section 4.

In this paper, we focus on studying the estimation of Q(µ, ✓). We propose
optimal estimators of Q(µ, ✓) over a family of parameter spaces to be introduced,
and establish the minimax rates of convergence. It is shown that the optimal rate
exhibits interesting phase transitions in this family. Along with the establishment
of the minimax rates of convergence, we also explain the intuition behind the
construction of the optimal estimators.

The rest of the paper is organized as follows: Section 2 considers estima-
tion of the functional Q(µ, ✓) and establishes the minimax rates of convergence.
Section 3 complements our theoretical study with some simulation results. We
conclude the paper with a discussion in Section 4. Supplement S1 contains ad-
ditional results that are not included in the main text. We present the proofs of
some of the main results in Section 5, and relegate the rest to supplement S2 for
the reason of space.

2. Optimal Estimation of Q(µ, ✓)
In this section, we consider the estimation of the quadratic functionalQ(µ, ✓) =

1
n

Pn
i=1 µ

2
i ✓

2
i of two sparse normal mean vectors µ = (µ1, . . . , µn) and ✓ =

(✓1, . . . , ✓n) under the Gaussian two-sequence model (1.3). An additional con-
straint is also imposed on the number of coordinates that are simultaneously
nonzero for both mean vectors. The noise level � in model (1.3) is assumed to
be known. Estimation of the noise level, �, is relatively easy under the sparse
sequence model (1.3) and will be discussed in Section 3.

We begin by introducing some notation that will be used throughout the
paper. Given a vector ✓ = (✓1, . . . , ✓n), we denote by k✓k0 = Card({i : ✓i 6= 0})



T. TONY CAI AND XIN LU TAN

the `0-quasi-norm of ✓, k✓k2 =
q

Pn
i=1 ✓

2
i its `2-norm, and k✓k1 = max1in |✓i|

its `1-norm. For any real number a and b, we set a ^ b = min{a, b}, a _ b =
max{a, b} and a+ = a _ 0. Throughout, the notation an ⇣ bn means that there
exists some numerical constants c and C such that c  an

bn
 C when n is large.

By “numerical constants” we usually mean constants that might depend on the
characteristics of the problem but whose specific values are of little interest to
us. The precise values of the numerical constants c and C may also vary from
line to line.

Adopting an asymptotic framework where the vector size n is the driving
variable, we parameterize the signal strength, sparsity, and simultaneous sparsity
of µ and ✓ as functions of n. Specifically, we consider the family of parameter
spaces

⌦(�, ✏, b) = {(µ, ✓) 2 Rn ⇥ Rn : kµk0  kn, kµk1  sn, k✓k0  kn, k✓k1  sn,

kµ ? ✓k0  qn}, (2.1)

indexed by three parameters �, ✏, and b. We have the sparsity parameterization

kn = n

�
, 0 < � <

1

2
, (2.2)

the simultaneous sparsity parameterization

qn = n

✏
, 0 < ✏  �, (2.3)

and the signal strength parametrization

sn = n

b
, b 2 R. (2.4)

In other words, ⌦(�, ✏, b) is the collection of vector pairs (µ, ✓) 2 Rn⇥Rn, where
both µ and ✓ have at most kn nonzero entries, each entry is bounded in its
magnitude by sn, and the number of simultaneous nonzero entries for µ and ✓ is
at most qn. In principle, � can take any value between 0 and 1. We are primarily
interested in the estimation problem for the range 0 < � <

1
2 , as it is well-known

that this corresponds to the case of rare signals (Donoho and Jin, 2004).
Our goal is to derive the minimax rate of convergence for Q(µ, ✓) over

⌦(�, ✏, b):

R

⇤(n,⌦(�, ✏, b)) = inf
bQ

sup
(µ,✓)2⌦(�,✏,b)

E(µ,✓)( bQ�Q(µ, ✓))2.

We will show that R⇤(n,⌦(�, ✏, b)) satisfies

R

⇤(n,⌦(�, ✏, b)) ⇣ �n(�, ✏, b), (2.5)

where �n(�, ✏, b) is a function of n indexed by �, ✏ and b. There are two main
tasks in establishing the minimax rate of convergence. For each triple (�, ✏, b)
satisfying 0 < ✏  � <

1
2 and b 2 R, we
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(a) construct an estimator b

Q

⇤ that satisfies

sup
(µ,✓)2⌦(�,✏,b)

E(µ,✓)( bQ
⇤ �Q(µ, ✓))2  C�n(�, ✏, b),

(b) and show that

R

⇤(n,⌦(�, ✏, b)) � c�n(�, ✏, b),

where C and c are numerical constants that depend only on �, ✏, b, and �. Com-
bining the upper bound derived in task (a) and the lower bound derived in task
(b) yields the minimax rate of convergence (2.5). In this case, we say that the
estimator b

Q

⇤ attains the minimax rate of convergence over the parameter space
⌦(�, ✏, b).

Interestingly, the estimation problem exhibits di↵erent phase transitions for
the minimax rate �n(�, ✏, b) in three regimes: the sparse regime where 0 < ✏ <

�
2 ,

the moderately dense regime where �
2  ✏  3�

4 , and the strongly dense regime

where 3�
4 < ✏  �. Collectively, we call �

2  ✏  � the dense regime. In the
sparse regime, simultaneous signal is sparse in the sense that qn ⌧

p
kn, while

in the dense regime, simultaneous signal is dense in the sense that qn �
p
kn.

This is analogous to the terminology used in the one-sequence model, where
signal is called sparse if 0 < � <

1
2 (kn ⌧

p
n), and dense if 1

2  �  1
(kn �

p
n). The key distinction is that, in the two-sequence case, sparseness or

denseness is used to describe the relationship between simultaneous sparsity qn

and sparsity kn, as opposed to between kn and the vector size n. We remark that
our use of the terminology is not superficial — a detailed analysis of lower bound
and upper bound for the estimation problem does reveal intimate connection to
the corresponding regimes in the one-sequence case. In particular, when signal
is moderately strong, the hardness of the two-sequence estimation problem is
essentially characterized by an underlying one-sequence problem, which displays
di↵erent behavior in the sparse and the dense regimes. On the other hand,
we construct optimal estimators for Q(µ, ✓), borrowing intuition from optimal
estimators for Q(✓) in respective regimes.

Intuitively, when b is very small (i.e., signal is very weak), we are better o↵
estimating Q(µ, ✓) by

b

Q0 = 0, (2.6)

since any attempt to estimate Q(µ, ✓) will incur a greater estimation risk. On
the other hand, when b is su�ciently large (i.e., signal is strong), it is desirable
to estimate Q(µ, ✓) based on the observed data (Xi, Yi), i = 1, . . . , n. With a
slight abuse of terminology, we say that the signal is weak if it corresponds to the
region where b

Q0 is optimal, and we say that the signal is strong otherwise. We
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construct two estimators of Q(µ, ✓) that respectively attain the minimax rates
of convergence over the sparse and dense regimes when the signal is su�ciently
large in Sections 2.1 and 2.2.

Note that it is possible to generalize our parametrization to the case where
µ and ✓ have di↵erent levels of both sparsity and signal strengths. This amounts
to estimating Q(µ, ✓) over the parameter space

⌦(↵,�, ✏, a, b) = {(µ, ✓) 2 Rn ⇥ Rn : kµk0  jn, kµk1  rn, k✓k0  kn, k✓k1  sn,

kµ ? ✓k0  qn}, (2.7)

where jn = n

↵
, kn = n

�
, qn = n

✏ with 0 < ✏  ↵ ^ � <

1
2 , and rn = n

a
, sn = n

b

with a, b 2 R. In this section, however, we will focus on the simplest case where
jn = kn = n

� and rn = sn = n

b, since the technical analysis is similar to that
for the more general case (2.7) but less tedious. We did derive the minimax
rates of convergence for the case where jn = kn = n

� but rn and sn are allowed
to di↵er. As the phase transitions for the minimax rates of convergence in this
case are much more sophisticated but also are less easily digestible, we opt to
defer its presentation to supplement S1. The analysis for the general case (2.7)
where no constraint is imposed on either the sparsity or signal strength of µ and
✓ follows similarly, provided that the magnitude of the simultaneous sparsity ✏ is
compared to ↵ if a � b, and to � if b � a, for the determination of sparse and
dense regimes.

2.1 Estimation in the Sparse Regime

We begin with the estimation of Q(µ, ✓) = 1
n

P

µ

2
i ✓

2
i over the parameter

space ⌦(�, ✏, b) in the sparse regime, where qn is calibrated as in expression (2.3)
with 0 < ✏ <

�
2 .

To construct an optimal estimator for Q(µ, ✓), we base our intuition on the
estimation of the quadratic functional Q(✓) = 1

n

P

✓

2
i , in the case where we only

have one sequence of observations Yi, i = 1, . . . , n, from model (1.3). Consider
the family of parameter spaces indexed by kn = n

�
, 0 < � < 1 and sn = n

b
, b 2 R:

⇥(�, b) = {✓ 2 Rn : k✓k0  kn, k✓k1  sn}. (2.8)

That is, ⇥(�, b) is the collection of vectors in Rn that has at most kn nonzero
entries uniformly bounded in magnitude by sn. It can be shown that for 0 < � <

1
2 , the minimax rate of convergence for Q(✓) over ⇥(�, b) satisfies

R

⇤(n,⇥(�, b)) := inf
bQ

sup
✓2⇥(�,b)

E✓( bQ�Q(✓))2 ⇣ �n(�, b), (2.9)
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where

�n(�, b) =

8

<

:

n

2�+4b�2 if b  0,

n

2��2(log n)2 if 0 < b  �
2 ,

n

�+2b�2 if b > �
2 .

(2.10)

When 0 < � <

1
2 , we have kn ⌧

p
n. Thus, we anticipate only very few

coordinates of ✓ to be nonzero. If, in addition, b < 0, then the signal is both rare
and weak, and one can do no better than simply estimating Q(✓) by b

Q0 = 0.
Nonetheless, when b > 0, signal is rare but su�ciently strong, and the estimator

b

Q1 =
1

n

n
X

i=1

[(Y 2
i � �

2
⌧n)+ � ✓0], where ✓0 := E(Z2 � �

2
⌧n)+, Z ⇠ N(0,�2)

(2.11)
which performs coordinate-wise thresholding on Y

2
i with choice of tuning param-

eter ⌧n = 2 log n is optimal. Note that each term ✓

2
i is estimated independently

by (Y 2
i � �

2
⌧n)+ � ✓0, since the sparsity pattern is unstructured. The estimator

(2.11) involves a thresholding step, (Y 2
i � �

2
⌧n)+, for denoising, and a de-bias

step by subtracting ✓0 from the thresholded term so that we estimate the zero
coordinates of ✓ unbiasedly. This is important because the proportion of zero
entries in this case is relatively large, and a biased estimator for these coordinates
will unnecessarily inflates the estimation risk.

The results on the estimation of one-sequence quadratic functional over
classes of sparse vectors in (2.8)-(2.11) (and that over classes of dense vectors
in (2.16)-(2.17)) are new, though we were made aware of the appearance of sim-
ilar results in the concurrent work of Collier et al. (2015). The focus and main
contribution of our paper is on the estimation of the quadratic functional Q(µ, ✓)
in the two-sequence case.

We now return to the sparse regime in the two-sequence setting, where 0 <

✏ <

�
2 and 0 < � <

1
2 . In this case, kn ⌧

p
n, so the signal of individual

sequences is rare. Moreover, the simultaneous sparsity qn ⌧
p
kn, implying that

we rarely have signals occurring simultaneously at the same coordinate of each
sequence. This means that if we know for sure that µi is nonzero, it is unclear
if ✓i is nonzero unless |✓i| is large enough (and vice versa). Such an intuition
motivates the following estimator

b

Q2 =
1

n

n
X

i=1

[(X2
i � �

2
⌧n)+ � µ0][(Y

2
i � �

2
⌧n)+ � ✓0], (2.12)

where µ0 = ✓0 := E(Z2 � �

2
⌧n)+ with the threshold level ⌧n = log n, where

Z ⇠ N(0,�2). The construction of b

Q2 is a straightforward extension of the
construction of b

Q1: each term µ

2
i ✓

2
i is estimated independently by the product
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[(X2
i � �

2
⌧n)+ � µ0][(Y 2

i � �

2
⌧n)+ � ✓0]. Since qn ⌧

p
kn, following our previous

argument, thresholding X

2
i and Y

2
i independently at a common threshold level

is natural.
We now present a theorem on the upper bound of the mean squared error

of b

Q2.

Theorem 1 (Sparse Regime: Upper Bound). For b > 0, the estimator b

Q2 as in

(2.12) with ⌧n = log n satisfies

sup
(µ,✓)2⌦(�,✏,b)

E(µ,✓)( bQ2 �Q(µ, ✓))2  C

h

n

2✏+4b�2(log n)2 + n

✏+6b�2
i

. (2.13)

Straightforward calculation shows that for the estimator b

Q0 = 0,

sup
(µ,✓)2⌦(�,✏,b)

E(µ,✓)( bQ0 �Q(µ, ✓))2 = sup
(µ,✓)2⌦(�,✏,b)

✓

1

n

n
X

i=1

µ

2
i ✓

2
i

◆2

= q

2
ns

8
nn

�2 = n

2✏+8b�2
, (2.14)

for 0 < ✏  � <

1
2 and b 2 R. We now show that the combination of b

Q0

(when b < 0) and b

Q2 (when b � 0) is optimal, by providing a matching lower
bound.

Theorem 2 (Sparse Regime: Lower Bound). Let 0 < ✏ <

�
2 and 0 < � <

1
2 .

Then

R

⇤(n,⌦(�, ✏, b)) � c�n(�, ✏, b),

where

�n(�, ✏, b) =

8

<

:

n

2✏+8b�2 if b  0,
n

2✏+4b�2(log n)2 if 0 < b  ✏
2 ,

n

✏+6b�2 if b > ✏
2 .

(2.15)

Crucial to the derivation of lower bound is the Constrained Risk Inequality
(CRI) given in Brown and Low (1996). To apply CRI, it su�ces to construct
two priors supported on ⌦(�, ✏, b) that have small chi-square distance but a large
di↵erence in the expected values of the resulting quadratic functionals. The cases
b  ✏

2 and b >

✏
2 correspond to choices of distinct pairs of priors. For b > ✏

2 , the
CRI boils down to the standard technique of inscribing a hardest hyperrectangle,
with the Bayes risk for a simple prior supported on the hyperrectangle being a
lower bound for the minimax risk. Nevertheless, the case b  ✏

2 requires the use
of a rich collection of hyperrectangles and a mixture prior which mixes over the
vertices of the hyperrectangles in this collection. Mixing increases the di�culty of
the Bayes estimation problem and is needed here to attain a sharp lower bound.
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Remark 1. Combining (2.13), (2.14) and (2.15), we see that when 0 < ✏ <

�
2

and 0 < � <

1
2 ,

b

Q2 attains the optimal rate of convergence over ⌦(�, ✏, b) when

b > 0. On the other hand, b

Q0 attains the optimal rate of convergence over
⌦(�, ✏, b) when b  0.

Remark 2. So far, we have implicitly assumed that � is fixed and we characterize
each regime by the relative magnitude of ✏ to �. It is possible to turn this view
the other way around, to assume that ✏ is fixed and to characterize each regime
by the relative magnitude of � to ✏. We then see from (2.15) that within the
sparse regime where 0 < 2✏ < � <

1
2 , the minimax rate of convergence �n(�, ✏, b)

for a fixed ✏ does not involve �. Such a lack of dependency on � is also highlighted
in the two plot panels in the bottom row of Figure 2.1.

2.2 Estimation in the Dense Regime

We now consider estimating Q(µ, ✓) in the dense regime, where qn is cali-
brated as in expression (2.3) with �

2  ✏  �. The dense regime is subdivided

into two cases: the moderately dense case with �
2  ✏  3�

4 and the strongly

dense case with 3�
4 < ✏  �.

In the dense regime, the estimator b

Q2 defined in (2.12) is suboptimal, as the
thresholding step in both X

2
i and Y

2
i ends up thresholding too many coordinates

when the signal is weak. Note that the simultaneous sparsity qn �
p
kn suggests

that for each coordinate i with µi 6= 0, it is more often the case that ✓i 6=
0 (compared to when qn ⌧

p
kn), and vice versa. Therefore, it is no longer

reasonable to perform thresholding on X

2
i and Y

2
i independently. The additional

knowledge of relatively high proportion of simultaneous nonzero entries suggests
that whenever we observe a large value of X2

i (an implication of µi 6= 0), then
even if Y 2

i is small, we should still estimate µ

2
i ✓

2
i rather than setting it equals

zero. The same reasoning applies to the case where X

2
i is small but Y 2

i is large.
To construct an optimal estimator in the dense regime, we again borrow

some intuition from the estimation of the quadratic functional Q(✓) = 1
n

P

✓

2
i

in the one-sequence case. We consider the family of parameter spaces given in
(2.8), but for 1

2  � < 1. The minimax rate of convergence once again satisfies
(2.9), but with

�n(�, b) =

8

>

<

>

:

n

2�+4b�2 if b  1�2�
4 ,

n

�1 if 1�2�
4 < b  1��

2 ,

n

�+2b�2 if b > 1��
2 .

(2.16)

When 1
2  � < 1, we have kn �

p
n, meaning that ✓ contains a relatively large

number of non-zero coordinates compared to the case when 0 < � <

1
2 . The
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characterization of weak and strong signal is no longer b < 0 versus b � 0 as in
the case of 0 < � <

1
2 , but b  1�2�

4 versus b >

1�2�
4 . That is, given the same

signal strength b, the relatively large number of nonzero coordinates of ✓ when
kn �

p
n collectively represents a stronger signal as compared to the case when

kn ⌧
p
n. Thus, the threshold of “strong” signal as encoded by b is lowered

when kn �
p
n. It is not surprising that for the range of weak signal b  1�2�

4 ,

the estimator b

Q0 = 0 is optimal. On the other hand, when b >

1�2�
4 , the optimal

estimator for Q(✓) is the unbiased estimator

b

Q3 =
1

n

n
X

i=1

(Y 2
i � �

2). (2.17)

An optimal estimator is often one that strikes an appropriate balance be-
tween bias and variance in its mean squared error. The estimators b

Q0 and b

Q3

represent two extremities in terms of bias-variance tradeo↵. We see that b

Q0 that
is optimal for exceedingly weak signal has zero variance, while b

Q3 that is opti-
mal for su�ciently strong signal has zero bias. Due to the denseness of nonzero
coordinates when kn �

p
n, one could not a↵ord to introduce bias to the esti-

mator in the hope of achieving smaller variance. Without additional information
about the sparsity structure, the unbiased estimator b

Q3 is necessary for optimal
estimation of Q(✓).

We now return to the two-sequence setting for the estimation of Q(µ, ✓),
for the case �

2  ✏  � and 0 < � <

1
2 . Although the signal for individual

sequences is sparse (kn ⌧
p
n), the simultaneous signal is dense in the sense that

qn �
p
kn. The intuition garnered from the one-sequence case motivates the

following estimator:

b

Q4 =
1

n

n
X

i=1

⇥

(X2
i � �

2)(Y 2
i � �

2) (X2
i _ Y

2
i > �

2
⌧n)� ⌘

⇤

, (2.18)

where

⌘ = E[(Z2
1 � �

2)(Z2
2 � �

2) (Z2
1 _ Z

2
2 > �

2
⌧n)], Z1, Z2

i.i.d.⇠ N(0,�2).

From b

Q4, we see that each term µ

2
i ✓

2
i is estimated unbiasedly (modulo ⌘) by

(X2
i � �

2)(Y 2
i � �

2) whenever at least one of X2
i and Y

2
i is su�ciently large.

This is in accordance with our previous argument that estimation should be
done whenever we have at least one large value of X2

i or Y

2
i . The threshold ⌧n

is a tuning parameter whose value is yet to be determined during the analysis
of the mean squared error of b

Q4, though it turns out that ⌧n = c log n for any
c � 4 attains the optimal rate of convergence. The subtraction of ⌘ from (X2

i �
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�

2)(Y 2
i � �

2) (X2
i _ Y

2
i > �

2
⌧n) is needed because the majority of coordinates i

has µi = ✓i = 0. A biased estimator for these coordinates unavoidably inflates
the estimation risk. The naive unbiased estimator

1

n

n
X

i=1

(X2
i � �

2)(Y 2
i � �

2)

does not seem to perform well when 0 < � <

1
2 due to the rarity of nonzero

coordinates in individual sequences. A thresholding step (X2
i _ Y

2
i > �

2
⌧n) is

needed to guard against estimating entries with µi = ✓i = 0 with noise.
Note that b

Q2 defined in (2.12) can be written as

1

n

n
X

i=1

[(X2
i � �

2
⌧n) (X2

i > �

2
⌧n)� µ0][(Y

2
i � �

2
⌧n) (Y 2

i > �

2
⌧n)� ✓0].

Compare this expression with b

Q4, we see that when both X

2
i and Y

2
i are large,

the term µ

2
i ✓

2
i is roughly estimated as (X2

i ��2⌧n)(Y 2
i ��2⌧n). Moreover, (X2

i �
�

2
⌧n)(Y 2

i � �

2
⌧n) is a biased estimator of µ2

i ✓
2
i when ⌧n > 1.

We present an upper bound on the mean squared error of b

Q4 in the following
theorem.

Theorem 3 (Dense Regime: Upper Bound). For b > 0, the estimator b

Q4 as in

(2.18) with ⌧n = 4 log n satisfies

sup
(µ,✓)2⌦(�,✏,b)

E(µ,✓)( bQ4 �Q(µ, ✓))2  Cmax
n

n

2✏�2(log n)4, n✏+6b�2
, n

�+4b�2
o

.

(2.19)

We now provide a matching lower bound to complement the upper bound in
the dense regime.

Theorem 4 (Dense Regime: Lower Bound). Let �
2  ✏  � and 0 < � <

1
2 .

Then

R

⇤(n,⌦(�, ✏, b)) � c�n(�, ✏, b),

where

�n(�, ✏, b) =

8

>

>

>

<

>

>

>

:

n

2✏+8b�2 if b  0,

n

2✏�2(log n)4 if 0 < b  2✏��
4 ,

n

�+4b�2 if 2✏��
4 < b  ��✏

2 ,

n

✏+6b�2 if b > ��✏
2 ,

(2.20)

when �
2  ✏  3�

4 , and

�n(�, ✏, b) =

8

<

:

n

2✏+8b�2 if b  0,
n

2✏�2(log n)4 if 0 < b  ✏
6 ,

n

✏+6b�2 if b > ✏
6 .

(2.21)
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when 3�
4 < ✏  �.

The minimax rates of convergence display di↵erent phase transitions within
two subdivisions of the dense regime. In the moderately dense regime where
�
2  ✏  3�

4 , there are phase transitions at b = 2✏��
4 and b = ��✏

2 , given in

(2.20). Note that 2✏��
4  ��✏

2 if and only if ✏  3�
4 . In the strongly dense regime

where ✏ > 3�
4 , the phase 2✏��

4 < b  ��✏
2 is non-existent, and we only have one

intermediate phase 0 < b  ✏
6 , given in (2.21).

We establish the lower bound by constructing least favorable priors and ap-
plying CRI. Except for the rate n✏+6b�2 which is obtained through the inscription
of a hardest hyperrectangle, all other cases require some forms of mixing over
the vertices of a rich collection of hyperrectangles.

Remark 3. Combining (2.14), (2.19), (2.20), and (2.21), we see that for the
parameter space ⌦(�, ✏, b) with �

2  ✏  � <

1
2 ,

b

Q4 attains the minimax rate of

convergence when b > 0. On the other hand, b

Q0 = 0 attains the minimax rate
of convergence when b  0.

Remark 4. Following Remark 2, we see that similar to the sparse regime, the
minimax rate of convergence �n(�, ✏, b) for a fixed ✏ does not involve � in the
strongly dense regime where ✏  � <

4✏
3 . In contrast, �n(�, ✏, b) for a fixed ✏ does

depend explicitly on � in the moderately dense regime where 4✏
3  �  2✏. The

dependency or lack of dependency of �n(�, ✏, b) on � within each regime is also
illustrated in the two plot panels at the bottom of Figure 2.1.

Interestingly, in the two-sequence case, the regions {b : b  0} and {b : b > 0}
appears to constitute the regions of weak signal and strong signal, respectively,
regardless of the level of simultaneous sparsity. This is in contrast to the one-
sequence case where the dividing line is b = 0 when kn ⌧

p
n, and b = 1�2�

4 when
kn �

p
n. We caution that this apparent “reconciliation” in the two-sequence

case is simply because the signal strengths are taken to be the same for both
sequences µ and ✓ in the simplified results presented above.

Remark 5. When the signal strengths rn = n

a and sn = n

b of µ and ✓ are
allowed to di↵er, it turns out that {(a, b) : a ^ b  0} characterizes the region of
weak signal when qn ⌧

p
kn, while {(a, b) : a _ b  0} [ {(a, b) : a ^ b  ��2✏

4 }
comprises the region of weak signal when qn �

p
kn. We refer the readers to

supplement S1 for more details.

2.3 Phase Transitions in the Minimax Rates of Convergence

We see from Sections 2.1 and 2.2 that within each regime, the minimax rates
of convergence exhibit several phase transitions. In addition, each transition is
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governed by a change in the relative magnitudes of the sparsity parameter �, the
simultaneous sparsity parameter ✏, and the signal strength parameter b. In fact,
it is the way phase transitions occur within each regime that characterizes the
regime itself. Furthermore, the phase transitions actually display “continuity”
across the boundaries of di↵erent regimes.

To depict what we meant graphically, first note that from Sections 2.1 and
2.2, the minimax rates of convergence

�n(�, ✏, b) ⇣ n

r(�,✏,b)
, (2.22)

modulo a factor involving log n when applicable. In Figure 2.1, we plot the rate
exponent r(�, ✏, b) against b for the sparse, moderately dense, and strongly dense
regimes.

Specifically, in the top row of Figure 2.1, we fix � = 0.45 and plot r(�, ✏, b)
against b for a range of ✏ values in (0,�). The top left panel of Figure 2.1
provides a continuum view of r(�, ✏, b), as ✏ increases from 0 to �. Each piecewise
straight line corresponds to an ✏ value in the considered range. To highlight the
discrepancy among the three regimes, we color the sparse regime (0 < ✏ <

�
2 ) in

red, the moderately dense regime (�2  ✏  3�
4 ) in green, and the strongly dense

regime (3�4 < ✏  �) in blue. We see that the three regimes have somewhat
di↵erent behaviors for small positive values of b. In particular, the sparse regime
and the strongly dense regime experience two transitions (three di↵erent slopes),
while the moderately dense regime experience three transitions (four di↵erent
slopes). Note that the di↵erence in the number of transitions is restored at the
intersection of the blue region and the red region. Thus, the phase transition is in
some sense “continuous” across the regime boundaries — the piecewise straight
lines corresponding to r(�, ✏, b)’s exhibit smooth transition as ✏ increases from 0
to �. The top right panel of Figure 2.1 provides a static view for each regime.
We plot r(�, ✏, b) against b for three values of ✏ corresponding to three di↵erent
regimes: ✏ = 0.12 (sparse regime), ✏ = 0.28 (moderately dense regime), and
✏ = 0.4 (strongly dense regime). The knots on each dashed line indicate the
transition points for the slope of the line.

On the other hand, in the bottom row of Figure 2.1, we fix ✏ = 0.2 and
plot r(�, ✏, b) against b for a range of � values in (✏, 0.5). The bottom left panel
of Figure 2.1 provides a continuum view of r(�, ✏, b), as � increases from ✏ to
0.5. Again, the the strongly dense regime (✏  � <

4✏
3 ) is colored in blue,

the moderately dense regime (4✏3  �  2✏) in green, and the sparse regime
(� > 2✏) in red, with each piecewise straight line corresponding to a � value in
the considered range. The two grey vertical lines indicate the locations b = 0 and
b = ✏

2 . Note that all the red lines overlap (so do all the blue lines), indicating that
r(�, ✏, b) for a fixed ✏ is independent of � in the sparse regime and the strongly
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Figure 2.1: Plot of the rate exponent r(�, ✏, b) against the signal strength b. In the sparse
regime ( ), r(�, ✏, b) changes in the order 2✏ + 8b � 2, 2✏ + 4b � 2, ✏ + 6b � 2. In the
moderately dense regime ( ), r(�, ✏, b) changes in the order 2✏ + 8b � 2, 2✏ � 2,� +
4b � 2, ✏ + 6b � 2. In the strongly dense regime ( ), r(�, ✏, b) changes in the order
2✏ + 8b � 2, 2✏ � 2, ✏ + 6b � 2. Top row, left panel: a continuum view of r(�, ✏, b) as ✏
increases from 0 to � = 0.45 (color changes from red to blue). Top row, right panel: a
static view of each regime: sparse (✏ = 0.12), moderately dense (✏ = 0.28), and strongly
dense (✏ = 0.4). Transition points are indicated by the knots on the dashed lines. Bottom
row, left panel: a continuum view of r(�, ✏, b) as � increases from ✏ = 0.2 to 0.5 (color
changes from blue to red). Grey vertical lines indicate b = 0 and b = ✏

2 . Bottom row,
right panel: a static view of each regime: strongly dense (� = 0.25), moderately dense
(� = 0.35), and sparse (� = 0.45).
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dense regime. In the moderately dense regime, r(�, ✏, b) only depends on � when
0 < b <

✏
2 . The bottom right panel of Figure 2.1 provides a static view for each

regime. We plot r(�, ✏, b) against b for three values of �: � = 0.25 (strongly dense
regime), � = 0.35 (moderately dense regime), and � = 0.45 (sparse regime). Due
to the overlap of all lines in the range b  0 and b >

✏
2 , we shift the dashed lines

corresponding to � = 0.45 and � = 0.25 (in red and in blue, respectively) slightly
to aid distinguishing the changes of r(�, ✏, b) in di↵erent regimes.

3. Simulation

In this section, we perform some simulation studies to compare the perfor-
mance of the three estimators b

Q0 = 0, bQ2 as in (2.12), and b

Q4 as in (2.18), under
di↵erent scenarios. We compute the mean squared error (MSE) of the three es-
timators and show that our simulation results is compatible with the theoretical
results given in Section 2.

So far, we have assumed that the noise level � is known. In practice, � is
typically unknown and needs to be estimated. Under the sparse setting of the
present paper, � is easily estimable. Denote by M 2 R2n with M2i�1 = Xi and
M2i = Yi for i = 1, . . . , n. A simple robust estimator of the noise level � can be
obtained from the median absolute deviation (MAD) of the combined sample:

�̂ =
medianj |Mj �mediank(Mk)|

0.6745
.

Such an estimator has been used in Donoho and Johnstone (1994) for wavelet
estimation.

We consider simulation studies over a range of sample size n, sparsity kn =
n

� , simultaneous sparsity qn = n

✏, and signal strength sn = n

b. More specif-
ically, we take n 2 {103, 104, . . . , 107}, � = 0.45 for individual sequences, b 2
{�0.1, 0.15, 0.2}, and three values of simultaneous sparsity, one for each regime:
✏ = 0.02 (sparse regime), ✏ = 0.3 (moderately dense regime) and ✏ = 0.44
(strongly dense regime). For each (n,�, ✏, b), we generate data from the gaus-
sian two-sequence model (1.3) with µ, ✓ 2 {0,±n

b}n, kµk0 = k✓k0 = [n� ], and
kµ?✓k0 = [n✏], where [·] denotes rounding to the nearest integer. Figure 3.2 is the
plot of the MSE (averaged over 200 replications) of the three estimators against
sample size in the log-log scale, for each combination of simultaneous sparsity
and signal strength.

The theoretical results in Section 2 indicate that for b

Q = b

Q0,
b

Q2, or b

Q4,

sup
(µ,✓)2⌦(�,✏,b)

E( bQ�Q(µ, ✓))2 ⇣ n

r(�,✏,b)

for some rate exponent r(�, ✏, b) (modulo a logarithmic factor when applicable).
Thus, it is not surprising that the results in Figure 3.2 (mostly) exhibit a linear
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Figure 3.2: Plot of MSE for the estimators b

Q0 ( ), b

Q2 ( ), and b

Q4 ( ) over
di↵erent sample sizes n 2 {103, . . . , 107}, in the log-log scale. Fixing � = 0.45, the
columns are ordered from left to right as ✏ = 0.02 (sparse regime), ✏ = 0.3 (moderately
dense regime), and ✏ = 0.44 (strongly dense regime). The rows are ordered from top to
bottom in increasing signal strength: b 2 {�0.1, 0.15, 0.2}. Solid grey line ( ) has a
slope equal to that of the optimal rate exponent r(�, ✏, b).

pattern. When the signal is weak with b = �0.1 (see the first row of Figure 3.2),

we see that b

Q0 (wide-dashed red line) and b

Q4 (dotted blue line) have the lowest

mean squared error. Note that we expect b

Q0 to be optimal when the signal is

weak. We observe that b

Q4 is nearly as good as b

Q0 from Figure 3.2. This is because

when the signal is weak, the thresholding step (X2
i _ Y

2
i � �

2
⌧n) thresholds
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both noise and weak signals, and the de-bias term ⌘ is extremely small when n

is moderately large, resulting in b

Q4 ⇡ b

Q0 = 0. As signal becomes su�ciently
strong (b 2 {0.15, 0.2}), b

Q2 starts to dominate in the sparse regime (✏ = 0.02)
while b

Q4 dominates in the moderately dense and strongly dense regimes (✏ 2
{0.3, 0.44}). When the signal is su�ciently large (b 2 {0.15, 0.2}), b

Q0 is clearly
suboptimal. In particular, in the case where signal is both dense and strong
(b = 0.2, ✏ 2 {0.3, 0.44}), the MSE of b

Q0 diverges to infinity, as indicated by
the positive slope of the wide-dashed red line. Note also that as either ✏ or b

increases, MSE increases, as can be seen by the flattening or reversing of slopes
towards the right end or bottom of the plot panel. This is compatible with the
fact that r(�, ✏, b) increases with respect to both ✏ and b.

For each combination (�, ✏, b), the solid grey line has a slope equal to the
optimal rate exponent r(�, ✏, b), and an intercept deliberately selected so that
it lies close to the line corresponding to the optimal estimator. We see from
Figure 3.2 that for all combinations of (b, ✏) except b = 0.15, ✏ 2 {0.3, 0.44}, the
slope of the grey line aligns well with that of the optimal estimator, confirming
the validity of our theoretical results. We conjecture that in the case b = 0.15, ✏ 2
{0.3, 0.44}, the worst case rate of the optimal estimator b

Q4 in ⌦(�, ✏, b) is not
attained at the configuration of location and magnitude of nonzero entries in
µ, ✓ considered in the simulation. This can be seen from the fact that b

Q4 has a
steeper slope than the optimal one (i.e., faster rate of convergence) for su�ciently
large n.

4. Discussion

In this paper, we discuss the estimation of the quadratic functional Q(µ, ✓) =
1
n

P

µ

2
i ✓

2
i over a family of parameter spaces where µ and ✓ are constrained in

terms of the magnitude, sparsity, and simultaneous sparsity. Similar to the one-
sequence estimation problem, we show that the minimax rates of convergence
display di↵erent phase transitions over the sparse regime and the dense regime.
Di↵erent from the one-sequence estimation problem, in the two-sequence case, the
dense regime can be further subdivided into the moderately dense regime and the
strongly dense regime. Despite the similarity in terminology, we emphasize that
denseness and sparseness refer to the relationship between simultaneous sparsity
and individual sparsity in the two-sequence problem, rather than that between
sparsity and vector size as in the one-sequence problem. The construction of
the optimal estimators b

Q2 and b

Q4 are inspired by their one-sequence correspon-
dence in respective regimes, with appropriate modification that accounts for the
structure of the two-sequence problem.

Our study of the two-sequence estimation problem can be generalized in sev-
eral aspects. In supplement S1, we show that the optimal rates of convergence
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for estimation of Q(µ, ✓) continue to subsume the aforementioned regimes, when
µ and ✓ are allowed unequal signal strengths. Moreover, the optimal rates are
attained by the same estimators in respective regimes. Nonetheless, the distinc-
tion between the sparse and dense regimes is more apparent in this setting. In
the sparse regime, estimation is only desirable when the signal strength of both
sequences are su�ciently strong. In contrast, in the dense regime, estimation is
desirable whenever at least one sequence admits su�ciently strong signal (and
the signal strength of the other sequence is not too weak). Throughout the pa-
per, we assume that both sequences {Xi : 1  i  n} and {Yi : 1  i  n}
have a common noise level �. Our analysis can be easily extended to the case
where �X 6= �Y , by appropriately replacing the threshold levels in the proposed
estimators b

Q2 and b

Q4 with ones that involve �X or �Y . Such a modification
yields estimators which attain minimax rates of convergence that are identical
to that given in the paper. When �X and �Y are unknown, we can use MAD to
estimate the noise level of each sequence and plug in to the modified estimators.

The focus of this paper is on minimax rates of convergence for the estimation
of Q(µ, ✓). Adaptive estimation of Q(µ, ✓) is an interesting but technically chal-
lenging problem. Cai and Low (2005) introduced a block thresholding estimator
for adaptive estimation of quadratic functional in the one-sequence setting. It
would be interesting to explore if a similar idea could be used for adaptively
estimating the quadratic functional in the two-sequence setting. In this paper,
we consider the estimation of Q(µ, ✓) over the parameter space defined in (2.1),
where signal strengths are incorporated through the `1-norm. For future work, it
would also be interesting to study the behavior of the estimation problem under
`p-norm constraint on the signal strengths, where p 2 (0,1).

A problem that is closely related to the estimation of the quadratic func-
tional Q(µ, ✓) is the simultaneous signal detection problem, where the goal is to
distinguish between µ ? ✓ = 0 and µ ? ✓ 6= 0. In the single Gaussian sequence set-
ting where one observe Yi ⇠ N(✓i,�2), i = 1, . . . , n, it is of interest to test ✓ = 0
against ✓ 6= 0 and there are two natural approaches: the sum of squares type
test statistic

P

Y

2
i and the max-type test statistic max |Yi|. Simultaneous sig-

nal detection generalizes the one-sequence testing problem and arises frequently
in the context of integrative genomics. In genetics, for instance, it is often of
interest to identify polymorphisms that are associated with multiple related con-
ditions (Rankinen et al., 2015; Li et al., 2015). The problem of simultaneous
signal detection has been studied by Zhao et al. (2014) under a mixture model
framework, and a max-type statistic, max(|Xi| ^ |Yi|), is proposed for detect-
ing sparse simultaneous signals. On the other hand, in this paper we study the
estimation of quadratic functional under the sequence model framework. The
proposed estimators b

Q2 and b

Q4 can be applied to the simultaneous signal detec-
tion problem as well. Similar to the problem of quadratic functional estimation,
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it turns out that the simultaneous signal detection problem behaves di↵erently
over two regimes. In the dense regime, signal is detectable provided that the sig-
nal strength of at least one of the sequences is su�ciently strong and the signal
strength of the other sequence is not too weak. In contrast, in the sparse regime,
signal is only detectable when both sequences admit su�ciently strong signals.
A crude analysis shows that the test procedures based on the statistics b

Q2 and
b

Q4 are e↵ective in detecting simultaneous signals over the respective detectable
regions. A complete analysis of the optimality and adaptivity of such a test
procedure is an interesting but challenging problem which we leave for future
work.

5. Proofs of Theorems 1 and 2
In this section, we present the proofs of Theorems 1 and 2, which concern

estimation results of Q(µ, ✓) in the sparse regime. For reason of space, we relegate
the proofs of Theorem 3 and 4 to supplement S2.

Henceforth, we omit the subscripts n in kn, qn, sn and ⌧n that signifies their
dependence on the sample size. We denote by  µ the density of a Gaussian
distribution with mean µ and variance �2, and we denote by `(n, k) the class of
all subsets of {1, . . . , n} of k distinct elements. We let �(z) and �(z) = P (Z  z)
be the density and cumulative distribution function of a standard normal random
variable Z, respectively. Finally, c and C denote generic positive constants whose
values may vary for each occurrence.

5.1 Proof of Theorem 1
The proof of Theorem 1 involves a careful analysis of the bias and variance

of the estimator b

Q2 (defined in (2.12)). We need the following lemma from Cai
and Low (2005) (Lemma 1, page 2939) for proving Theorem 1.

Lemma 1. Let Y ⇠ N(✓,�2) and let ✓0 = E(Z2 � �

2
⌧)+, where Z ⇠ N(0,�2).

Then for ⌧ � 1 and b

✓

2 = (Y 2 � �

2
⌧)+ � ✓0,

|✓0| 
4�2p

2⇡⌧1/2e⌧/2
,

|E( b✓2)� ✓

2|  min{2�2⌧, ✓2},

Var( b✓2)  6�2✓2 + �

4 4⌧
1/2 + 18

e

⌧/2
.

Lemma 2 is an immediate consequence of Lemma 1.

Lemma 2. Let Y ⇠ N(✓,�2) and let ✓0 = E(Z2 � �

2
⌧)+, where Z ⇠ N(0,�2).

Then for ⌧ � 1,

(E(Y 2 � �

2
⌧)+ � ✓0)

2  max

⇢

6�2✓2 + �

4 4⌧
1/2 + 18

e

⌧/2
, 10✓4

�

. (5.1)
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Proof. Let B(✓) = E(Y 2 � ⌧�

2)+ � ✓0. We first note that B(�✓) = B(✓) � 0 for
✓ � 0. This follows from

B

0(✓) = 2�[�(⌧1/2 � ✓/�)� �(⌧1/2 + ✓/�)]

� 2✓[�(⌧1/2 � ✓/�)� �(�⌧1/2 � ✓/�)� 1]

� 0

and B(0) = 0. So we have B(✓) = E(Y 2�⌧�2)+�✓0 � 0 for all ✓ 2 R. It follows
that (E[(Y 2 � ⌧�

2)+ � ✓0])2  (E(Y 2 � ⌧�

2)+)2  E[(Y 2 � ⌧�

2)2+]. To bound
the term E[(Y 2 � ⌧�

2)2+], we consider two cases: ✓  � and ✓ > �. It follows
from the proof of Lemma 1 in Cai and Low (2005) that when ✓  �, then

E[(Y 2 � ⌧�

2)2+]  6�2✓2 + �

4 4⌧
1/2 + 18

e

⌧/2
.

On the other hand, when ✓ > �, we have

E[(Y 2 � ⌧�

2)2+]  E[Y 4] = ✓

4 + 6�2✓2 + 3�4  10✓4.

If follows that (5.1) holds.

Proof of Theorem 1. We first bound the bias of the estimator b

Q2 defined in
(2.12). Using the equality

AB � ab = (A� a)(B � b) + a(B � b) + b(A� a),

the independence of Xi and Yi, and the triangle inequality, we get
�

�

�

E(µi,✓i){[(X
2
i � �

2
⌧)+ � µ0][(Y

2
i � �

2
⌧)+ � ✓0]}� µ

2
i ✓

2
i

�

�

�


�

�

�

Eµi [(X
2
i � �

2
⌧)+ � µ0]� µ

2
i

�

�

�

·
�

�

�

E✓i [(Y
2
i � �

2
⌧)+ � ✓0]� ✓

2
i

�

�

�

+ µ

2
i

�

�

�

E✓i [(Y
2
i � �

2
⌧)+ � ✓0]� ✓

2
i

�

�

�

+ ✓

2
i

�

�

�

Eµi [(X
2
i � �

2
⌧)+ � µ0]� µ

2
i

�

�

�

 min{2�2⌧, µ2
i }min{2�2⌧, ✓2i }+ µ

2
i min{2�2⌧, ✓2i }+ ✓

2
i min{2�2⌧, µ2

i }
 2µ2

i min{2�2⌧, ✓2i }+ 2✓2i min{2�2⌧, µ2
i },

the second inequality follows from Lemma 1. It follows that for (µ, ✓) 2 ⌦(�, ✏, b)
and ⌧ � 1,

|E(µ,✓)( bQ2)�Q(µ, ✓)|

=

�

�

�

�

1

n

n
X

i=1

E(µi,✓i){[(X
2
i � �

2
⌧)+ � µ0][(Y

2
i � �

2
⌧)+ � ✓0]}�

1

n

n
X

i=1

µ

2
i ✓

2
i

�

�

�

�

 2

n

n
X

i=1

⇥

µ

2
i min{2�2⌧, ✓2i }+ ✓

2
i min{2�2⌧, µ2

i }
⇤

 4

n

min{2�2qs2⌧, qs4},
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the second inequality follows from the fact that for (µ, ✓) 2 ⌦(�, ✏, b), there are

at most q entries that are simultaneously nonzero for µ and ✓.

We now proceed to bounding the variance of b

Q2. Applying the equality

Var(AB) = Var(A)Var(B) + [E(A)]2Var(B) + [E(B)]2Var(A),

for ⌧ � 1, we have

Var(µi,✓i){[(X
2
i � �

2
⌧)+ � µ0][(Y

2
i � �

2
⌧)+ � ✓0]}

= Varµi [(X
2
i � �

2
⌧)+ � µ0]Var✓i [(Y

2
i � �

2
⌧)+ � ✓0]

+ [Eµi(X
2
i � �

2
⌧)+ � µ0]

2Var✓i [(Y
2
i � �

2
⌧)+ � ✓0]

+ [E✓i(Y
2
i � �

2
⌧)+ � ✓0]

2Varµi [(X
2
i � �

2
⌧)+ � µ0]

 3



6�2µ2
i + �

4 4⌧
1/2 + 18

e

⌧/2

�

6�2✓2i + �

4 4⌧
1/2 + 18

e

⌧/2

�

+ 10µ4
i



6�2✓2i + �

4 4⌧
1/2 + 18

e

⌧/2

�

+ 10✓4i



6�2µ2
i + �

4 4⌧
1/2 + 18

e

⌧/2

�

,

the inequality follows from Lemma 1 and Lemma 2. Thus, for (µ, ✓) 2 ⌦(�, ✏, b)

and ⌧ � 1,

Var(µ,✓)( bQ2)

=
1

n

2

n
X

i=1

Var(µi,✓i){[(X
2
i � �

2
⌧)+ � µ0][(Y

2
i � �

2
⌧)+ � ✓0]}

 3

n

2

n
X

i=1



6�2µ2
i + �

4 4⌧
1/2 + 18

e

⌧/2

�

6�2✓2i + �

4 4⌧
1/2 + 18

e

⌧/2

�

+
10

n

2

n
X

i=1

µ

4
i



6�2✓2i + �

4 4⌧
1/2 + 18

e

⌧/2

�

+
10

n

2

n
X

i=1

✓

4
i



6�2µ2
i + �

4 4⌧
1/2 + 18

e

⌧/2

�

 3

n

2



36�4qs4 + 12�6ks2
✓

4⌧1/2 + 18

e

⌧/2

◆

+ n�

8

✓

4⌧1/2 + 18

e

⌧/2

◆2�

+
20

n

2



6�2qs6 + �

4
ks

4

✓

4⌧1/2 + 18

e

⌧/2

◆�

.
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Combining the bias and variance term, we get, for ⌧ � 1,

sup
(µ,✓)2⌦(�,✏,b)

E(µ,✓)( bQ2 �Q(µ, ✓))2

 C

n

2



min{q2s4⌧2, q2s8}+max

⇢

qs

4
, qs

6
, ks

2

✓

4⌧1/2 + 18

e

⌧/2

◆

,

ks

4

✓

4⌧1/2 + 18

e

⌧/2

◆

, n

✓

4⌧1/2 + 18

e

⌧/2

◆2��

=
C

n

2



min{n2✏+4b
⌧

2
, n

2✏+8b}+max

⇢

n

✏+4b
, n

✏+6b
, n

�+2b

✓

4⌧1/2 + 18

e

⌧/2

◆

,

n

�+4b

✓

4⌧1/2 + 18

e

⌧/2

◆

, n

✓

4⌧1/2 + 18

e

⌧/2

◆2��

.

Suppose that b > 0. Then letting ⌧ = log n leads to

sup
(µ,✓)2⌦(�,✏,b)

E(µ,✓)( bQ2 �Q(µ, ✓))2  C



n

2✏+4b�2(log n)2 + n

✏+6b�2

�

.

5.2 Proof of Theorem 2

To prove Theorem 2, it su�ces to show that for 0 < � <

1
2 ,

�n(�, ✏, b) �

8

<

:

n

2✏+4b�2(log n)2 if b > 0, for 0 < ✏ <

�
2 , (Case 1)

n

2✏+8b�2 if b  0, for 0 < ✏  �, (Case 2)
n

✏+6b�2 if b > 0, for 0 < ✏  �. (Case 3)

For individual regions in {(�, ✏, b) : 0 < ✏ <

�
2 , 0 < � <

1
2 , b 2 R}, the min-

imax rate of convergence is then given by the sharpest rate among all cases
in which the region belongs to. For instance, the region {(�, ✏, b) : 0 < ✏ <

�
2 , 0 < � <

1
2 , b >

✏
2} is included in Case 1 and Case 3, hence �n(�, ✏, b) �

max{n2✏+4b�2(log n)2, n✏+6b�2} = n

✏+6b�2.
To establish the desired lower bounds, for each case, we construct two priors

f and g that have small chi-square distance but a large di↵erence in the expected
values of the resulting quadratic functionals, and then applying the Constrained
Risk Inequality (CRI) in Brown and Low (1996). The choice of priors f and g

are crucial in deriving sharp lower bound for the estimation problem. In fact,
the fundamental di↵erence between di↵erent phases in the sparse regime for the
estimation of Q(µ, ✓) can be seen from the choice f and g. For some background
on lower bound technique, see supplement S2.
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Proof of Case 1. Our proof builds on arguments similar to that used in Cai and
Low (2004) and Baraud (2002), who considered the one-sequence estimation
problem. We first follow the lines of the proof of Theorem 7 in Cai and Low
(2004), and then apply a result from Aldous (1985) as was done in Baraud (2002).
Let

f(x1, . . . , xn, y1, . . . , yn) =
k
Y

i=1

 s(xi)
n
Y

i=k+1

 0(xi)
n
Y

i=1

 0(yi).

For I 2 `(k, q), let

gI(x1, . . . , xn, y1, . . . , yn) =
k
Y

i=1

 s(xi)
n
Y

i=k+1

 0(xi)
k
Y

i=1

 ✓i(yi)
n
Y

i=k+1

 0(yi),

where ✓i = ⇢ (i 2 I) with ⇢ > 0, and let

g =
1
�k
q

�

X

I2`(k,q)

gI .

In both f and g, the sequence µ = (s, . . . , s, 0, . . . , 0) is taken to be the same.
However, ✓ is taken to be all zeros in f but is taken as a mixture in g. The
nonzero coordinates of ✓ is mixed uniformly over the support of µ at a common
magnitude ⇢, whose value is yet to be determined. Our choice of f and g es-
sentially reduces the two-sequence problem to the case where we only have one
Gaussian mean sequence of length k with q nonzero coordinates, hence explains
the correspondence between the sparse regime in the two-sequence case (q ⌧

p
k)

and the sparse regime in the one-sequence case (k ⌧
p
n).

We now compute the chi-square a�nity between f and g, which bears the
expression

Z

g

2

f

=
1

�k
q

�2

X

I2`(k,q)

X

J2`(k,q)

Z

gIgJ

f

. (5.2)

For I, J 2 `(k, q), let m = Card(I \ J). Then

Z

gIgJ

f

=
k
Y

i=1

Z

 ⇢ (i2I)(yi) ·  ⇢ (i2J)(yi)

 0(yi)
dyi

=



Z

 0(y) dy

�k�2q+m

Z

 ⇢(y) dy

�2q�2m

Z

 

2
⇢(y)

 0(y)
dy

�m

= exp

✓

m⇢

2

�

2

◆

.
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It follows that
Z

g

2

f

= E



exp

✓

M⇢

2

�

2

◆�

,

where M has a hypergeometric distribution

P (M = m) =

� q
m

�� k�q
q�m

�

�k
q

�

. (5.3)

As shown in Aldous (1985), M has the same distribution as the conditional
expectation E(M̃ |B), where M̃ is a Binomial(q, q

k ) random variable and B is a
suitable �-algebra. Coupled with Jensen’s inequality, this implies that

Z

g

2

f

 E



exp

✓

M̃⇢

2

�

2

◆�

=

✓

1� q

k

+
q

k

e

⇢2/�2

◆q

.

Taking ⇢ = �

p

(� � 2✏) log n gives

e

⇢2/�2
= n

��2✏ =
k

q

2
,

hence
Z

g

2

f


✓

1 +
1

q

◆q

 e.

Since Q(µ, ✓) = 0 under f and Q(µ, ✓) = 1
nqs

2
⇢

2 under g, it follows from CRI
that

R

⇤(n,⌦(�, ✏, b)) � c

✓

1

n

qs

2
⇢

2

◆2

= cn

2✏+4b�2(log n)2.

Proof of Case 2. Let

f(x1, . . . , xn, y1, . . . , yn) =
n
Y

i=1

 0(xi)
n
Y

i=1

 0(yi)

For I 2 `(n, q), let

gI(x1, . . . , xn, y1, . . . , yn) =
n
Y

i=1

 µi(xi)
n
Y

i=1

 ✓i(yi),

where µi = ✓i = ⇢ (i 2 I) with ⇢ > 0, and let

g =
1
�n
q

�

X

I2`(n,q)

gI .
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Contrast the choice of f an g here with that used in the proof of Case 1. Rather
than fixing µ and mixing nonzero coordinates of ✓ over the support of µ, in this
case mixing is done over all n positions using nonzero coordinates of µ and ✓

simultaneously.
Similar calculation as that used in the proof of Case 1 yields

Z

g

2

f


✓

1� q

n

+
q

n

e

2⇢2/�2

◆q

. (5.4)

Now take ⇢ = s = n

b. Since b < 0, it follows that when n is su�ciently large,

e

2⇢2/�2  n

1�2✏ =
n

q

2
,

hence
Z

g

2

f


✓

1 +
1

q

◆q

 e.

Since Q(µ, ✓) = 0 under f , and Q(µ, ✓) = 1
nq⇢

4 under g, it follows from CRI that

R

⇤(n,⌦(�, ✏, b)) � c

✓

1

n

q⇢

4

◆2

= cn

2✏+8b�2
.

Proof of Case 3. The priors used in this case is very di↵erent from that consid-
ered in the proofs of Case 1 and Case 2. Let

f(x1, . . . , xn, y1, . . . , yn) =
q
Y

i=1

 s(xi)
n
Y

i=q+1

 0(xi)
q
Y

i=1

 s(yi)
n
Y

i=q+1

 0(yi),

and

g(x1, . . . , xn, y1, . . . , yn) =
q
Y

i=1

 s(xi)
n
Y

i=q+1

 0(xi)
q
Y

i=1

 s��(yi)
n
Y

i=q+1

 0(yi),

where 0 < � < s. Note that no mixing is performed in this case. Instead, we fix
the sequence µ = (s, . . . , s, 0, . . . , 0) in both f and g, and perturb the nonzero
entries of ✓ by a small amount � in g. This set of priors provides the sharpest rate
for the case when signal is strong, i.e., s = n

b is large. The intuition is that when
s is large, estimation of Q(µ, ✓) is most di�cult due to the indistinguishability
between ✓i = s and ✓i = s� �, where � ⇡ 0.

The chi-square a�nity between f and g is given by
Z

g

2

f

= e

q�2/�2
.
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Let � = �/

p
q = �n

�✏/2. Then we have

Z

g

2

f

= e < 1.

Since Q(µ, ✓) = 1
nqs

4 under f and Q(µ, ✓) = 1
nqs

2(s��)2 under g, it follows from
CRI that

R

⇤(n,⌦(�, ✏, b)) � c

✓

1

n

qs

2
�

s

2 � (s� �)2
�

◆2

= c

✓

1

n

p
qs

3

◆2

(1 + o(1)) = cn

✏+6b�2(1 + o(1)).

Supplementary Materials
Supplement S1 contains the estimation results for Q(µ, ✓) when µ and ✓ have

di↵erent signal strengths, while supplement S2 contains the proofs for Theorems 3
and 4.
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