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We prove in this supplement the technical lemmas used in the proofs
of the main results.
Proof of Lemma 2.1. Suppose X' : RP1*P2 — R" is given by (1.6), we
consider rank-1 matrices:

(1)~(1)
R ) P
R 2T 18O o[y OT

Here egp 1),eép 2) are the p1- and po- dimensional vectors with first entry 1

and others 0, respectively. Then we have ||A||r = ||A2]|Fr = 1.

E|X (A3 = EZ 22 =n

i=1

n

Var| X (A1)} = Var Y7 (817)2(1")? = nVar (8242) = 8n
=1

By Chebyshev’s inequality, we have for all t > 1,

013) PRI 2 ) < P

On the other hand,
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By Lemma 1 in [28], we know
P (x*(p1) 2 p1/2) < exp(—p1/4), P (x*(p2) = p2/2) < exp(—p2/4)
Hence,
(0.14) P (| X(A2)l3 > pip2/4) < exp(—p1/4) + exp(—pa/4).

Combining (0.13) and (0.14), we can see

o)/l Al) _ [T o
015) /O 2 A o/ al Al — \ TR @R =

holds with probability at least 1 — e P1/4 — ¢=P2/4 W

Proof of Lemma 3.1. First, the common used definition for sub-Gaussian
distribution of random variable X include the following two.

(0.16) 3¢, C > 0, such that P(|X|>t) < Cexp(—ct?)

(0.17) Jc > 0, such that Ee'* < exp(c?t?/2)

Suppose ap is finite, then we have

0 2k
Y=Y G Y e 2k 1) -3 G = ei(ar?/2

k=0 ) k=0 k=0

namely X is sub-Gaussian. Now suppose X is sub-Gaussian, then

EX% = (Qk)/ P(|X] > t)t**tdt < QkC/ $2h—Le—ct® gy
0

_KC [ a1 e o KIC_ (max(C,1) F |
=, (ct*)" e " d(ct?) = &S : (2k — 1!
which implies that ap < y/max(C,1)/c is finite. O

Proof of Lemma 7.1. Without confusion, we simply use « to represent
ap in the proof. Note that we can multiply A by a scale without loss of
generality. So we assume throughout the proof that ||A||p = 1. We'll prove
this lemma by steps. First, we show an inequality on the even moments of
| BT A7y|; next, we give a bound on the moment generation function of |37 A~|.
Finally, we give the desired tail bound.



1. Step 1: Even moments of |37 Ay]|.
Assume that © = (z1, - ,2p,), ¥ = (Y1, , Yp,) are two random i.i.d.
standard normal distributed vectors. Based on the definition of ap in
(3.2), we know

BB = By < o® Ea* = o By2F,

(0.18) _ _ _ _
BBt :E'yjzk 1= a2kt :Ey?k 1_g

Consider the expansion of E(87 Ay)?*, where the non-zero terms can
be written as

2k p1 p2 5

2s; t;
I Aus - 11267 - 1] 977
=1 i=1 j=1

Here sy 4+ -+ 4+ sp, = t1 +---tp, = k. By (0.18), this term can be
bounded as

2k P1 p2 ) 2k P1 p2 5

o 2s; tj o 4k 2s; tj
[T 4w TTE87 - TT 77 | < IT 1wl - o - [T B2 - 11 By
=1 =1 7j=1 =1 =1 7j=1

The right hand side is exact the term in the expansion of a**F (xTAabSy)Qk ,
where Agps is the the element-wise absolute value of A. Therefore, we
have

(019) E[ﬁTA'Y]Qk < a4kE[xTAabsy]2k-

Now we suppose Agps has singular value decomposition

P
Agps = Z ajuv] = Udiag(a)V7
i=1
where U,V are orthogonal and a = (ay,--- ,a,) is the singular value
vector of Agps. A well-known fact is that >, a? = ||Auws|% = [|A]%.

Since z,y are standard normal distributed, we can see that 7 Ay
and z7diag(a)y has the same distribution. So

p
Ela" Awsy)™ = E[Y  aiwiyi]*
i=1

Next, we note



then z is standard normal distributed and independent of , / ?:1 a?y]z

since

2
g (e )
i1\ /251 95y
and z given y1,- -+ , ¥y, is always standard normal distributed.

For integer k > 1,

E[z" Ay =E |z -

iy

—((2k — 1)!
=((2k — 1)”)2(210: a;)* = ((2k — 1)1 A|[#
=1

Together with (0.19), we have
(0.20) E[BT A7) < o™ ((2k — 1)) A3

. Log-moment generation function of |57 Av|.
By the bound of the even moments of |37 Ay|, we can also give the
estimate of odd moments, for integer k > 1,

0<E ‘5TA7‘21¢+1 < \/E[BTA,Y]% - E[BT Ay)2k+2
< o™ 22k — 1)1 (2k + I < 22k + 1))

Also,
E[BT A9 < o®((2k — 1))2 < o (2k)!
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So for all k > 2, E|fTAv|* < o?*k!. Denote . = E|BT Ay|, then for
0<t< s,

#187 An| "k ok 9k o’
Fe = 1+Z EE|B A’Y‘ < 1+t#+zt ot = 1+t#+1—725042
k=1 k=2
For —é <t <0, we have
#18T A| o ok 4k~ [t T poi2k+1
k=1 k=1 )
2.4 2,4
<1+t — <14t —_—
U T et = T T e
Hence, we have for all —1/a? <t < 1/a?,
t2at
EetlBT A <1 14 .
e < l+4+tu+ 1—Ji|o?
Note that log(1 +z) <14z for all —1 < x < co, we have
(0.21) .
"o
log Eexp(t(|87 Ay| — ) = log E exp(t[7 Av|) — tp < T a2

for all —1/a? <t < 1/a?.
. The tail bound of [|[X(A4)|/n.
Finally, we estimate the tail bound of ||X'(A)||1/n. Note that

[(A) 1 /n = | D2 [8DT 49D | /.
j=1

based on (0.21), the logarithm of moment generating function of || X (A)||1/n
satisfies

2.4
log B exp (X (A)]1/n ) =nlog Bexp ( L6701 = ) < 120 L

By the proof of Lemma 1 in [28], we know ||X(A)||1/n — p has the tail
bound,

PIX(A) |1 /n — > (@ /n+21//n)) < exp(—)

P(|X(A)[l/n - p < a®(z/n+ 2y/z/n)) < exp(—x)
Finally we set § = \/x/n, by Lemma 7.2, 1/(3a*) < u < 1, we finish
the proof of Lemma. ]



Proof of Lemma 7.2. Since P is symmetric and of variance 1, we have
Ep; = Evy; =0, EB? = E’yj2 =1, Eﬁf = E'y;-1 < 3a;§ for all 4,j. Then by
some expansions and calculations,

2
E (BTA7)2 =F Zﬁix‘liﬂj = ZE@‘QA%]%Q‘ = ZA?]‘ = ||l All%
4,3 2 2%
By the first part in the proof of Lemma 7.1, we have
B|BT A" < 905 Al
By Holder’s inequality,

B|BT Ay| < \/EIBTAn? = || Al

which gives the right of the original inequality. For the left, note that
2/3 1/3
BIS" 4P < (B8 A1) - (157 41"/
So
3
(Bl Ay?)”  [lAllR

T
B2\ TR = ot

O

Proof of Lemma 7.5.

e We first prove the sub-Gaussian part of the lemma. The moment gen-
erating function of || (¢t > 0) and 22 (0 <t < 1/(27)) satisfy

Eellsl = —/ exp(tA)dP(|X| > \) =1 +/ P(|X] > N)dexp(tA)
0 0
<1 +/ 2t exp(th — A%/(272))dA
0

<14 2 exp(42/2) /0 T exp(— (A~ 42)/(27%))dA
<14 2texp (t2’yz/2) V 2y
< exp(t?4?/2) (1 + Zt\/%'y)

< exp (t%Q /2 + 2\/27wt>

B = —/ exp(tA)dP(1X] > A) = 1 +/ P(X| > Ndexp(tA?)
0 0

<1+ /Oo dthexp (—A%(1/(29%) — 1)) dA
0
2t

e =



7

Then the moment generating function of ||z||1/n and ||z||3/n satisfies

Eetllzl/n — <EetHzi||/n>n < exp (t272/(2n) + 2V 27rt’y)

Hl3/n _ o2\ o
pe <1 @) —in) =\ @) i
Hence for C' > 0,

P(lz|i/n > ) < Eeplzlh/n)

< exp (t272/(2n) +1 (2\/%7 - C))

exp (tC)
2
2 ( n(2v2my — C’)) n(2v2ry — C)?
=exp | ;- |1+ ——F— | — 5
2n ¥ 27y
_ 72
For C > 2+/27y, we can set t = O T)” then
n(C — 2v/277)?
P(lzl/n > €) < exp (— o )
Now we consider the tail bound of ||z||3/n. For C' > 4~2,
E exp(t]|2[3/n) 20°9°C/n — t(C — 49?)
2 /0 > _ 2 = .
Pll=ll2/n = €) exp(tC) 1—2v%t/n

_ C—1y?
We set t = PToR Yt

n(C —4~*)? )) < exp (_n(C - 472)2>

2 > < _
P13/ 0) <o (i ga e

Finally we consider |z]|co,
P(||zllo < C\/logny) < 2nexp(—C?logny?/(297)) = 2n~ (/271

Next, we consider the Gaussian part of the lemma. The bound of ||z||2

is already given by Lemma 5.1 in [7]. For ||z||1, we can see E|z]|? = o2,

E|zi| = \/02?/0 ze /@y = o/ 2/m

Hence, E(||z||1/n) = o+/2/m, Var(||z|l1/n) = Var(|zi])/n = (1 —
2/m)o? /n. By Chebyshev’ inequality,
P(llzl/n = o) < P (|llzl11/n = ov/2]x| 2 o(1 = v/2/m))
Var(||z||1/n) 1+2/m

= 021 - V2imE (1= v2/mn




For the bound of ||z||o0, we have

P2l > 2v/logno) < 3 P(|z] < 2¢/logno)

i=1 O

1
<41
2\/277 logn exp( ogn) =

ny/2mlogn

Proof of Lemma 7.4. Again without confusion, we simply use « to rep-
resent ap in the proof. The proof also requires some knowledge of moment
generation function and e-net method. We’ll prove by steps.

e Moment Generation Function of a’ X*(2)b. Suppose a € RP,
b € RP2 are fixed unit vectors. In order to handle the operator norm
of X*(z), we first consider a’ X*(2)b. Note that

n
(0.22) al X*(2)b = Z zia” BT

i=1
Denote X; = a” B0, Y; = bTy® then {X;}PL, {V;}P2, are two inde-
pendent sets of i.i.d. sub Gau551an samples. Moreover by A4, () are

i.i.d. from symmetric distribution P, one can show

E( 2k: 1_ Zajﬁj 2k 1_ ’

:E(iajﬁj)2k: > g (Ha%E B2y )
j=1

ky+---kp, =k

S (HE )

Fyle k!
ey +- kpl_k; v

anE(Z aixi)% < a%(2k -l
i=1



Here z; * N(0,1). Similarly, E(Y;)?*~! =0, E(Y;)?* < o?¢(2k — 1)I1.
Then for [t| < 1/a?,

(0.23)
— t"E(X,;Y;)" XY > 2k:—1)”)

Eexp(tX;Y;) =

M
M

i
o

k=0

o2k 0k — 1)1 & _
. )253,5 1”=Z<m2>2’“-<—1>k< )
) k=0
1
- V1—t2a4

Now for fixed z € R™, the logarithm of the moment generating function
of aT X*(2)b satisfies

tnqg

b
Il
o

log E exp(ta® X*(z) ZlogEexp(tle Y;) < Z —= log t222a%)
=1 i=1
Zn: t2]|2)13a*
- 2(1 - t222a4 — 2(1 — #2)|2]| %)
2|20
—2(1 = [tfllz]l0c®)

for any [t| < 1/(]|z]|cc®). Here we used the fact that

S 0
—log(1—xz) = Z%SZx’:
i=1 i=1

for0 <z <1.

Tail Bound of a” X*(2)b

By the proof of Lemma 1 in [28], we know for fixed z € R", al X*(2)b
has tail bound: for z > 0 and fixed a, b, we have

P (aTX*(z)b > o2 <||z||ooa: + 2[5 @)) < exp(—x);
P (72" (2)b < —0? (|2 o+ 2], V22) ) < exp(-2).

Set x = C(p1 + p2), we have
(0.24)
P (a7 X (28] = 0 (|2l C (o1 + p2) + 122v/2C(1 +12) ))
<2exp(—C(p1 +p2))-
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For convenience, We denote

(025) T =a?(|lzlle(Clpr +p2) + 1 212v/2C (1 +12) )

e-net and the upper bound of ||[X*(z)].
In this step, we still fix z. We use the e-net method to derive the upper
bound of [|X*(2)||2, which is given by

[X*(2)lla = sup @' A*(2)b

a€RP1 beRP2

From Lemma 2.5 in [39], we can find an e-net A in the unit sphere of
RP1, i.e. for all @ in the unit sphere of RP!, there exists a’ € A such
that ||’ — alla < €. Besides, |A| < (1 + 2/¢)P*. Similarly, there exists
e-net B of the unit ball of RP? such that |B| < (1 + 2/¢)P2.
By (0.24), we have
(0.26)
P (‘aTX*(z)b‘ >T,3a € A,b€ B) <2(1+2/e)"" 72 exp(—C(p1+p2))

Now we consider under the event that ‘aTX*(z)b‘ <T,Va € Ab €
B. Suppose = [[X*(2)]2 = max|q),=p|,=1a" X*(2)b, (a*,b*) =

arg max, , al X*(2)b, then we can find a’ € A, b € B such that ||’ — a*|| <

g, ||b/ = b*|| < e. Then,
o= ‘a*TX*(Zﬂ)*‘
= }a’TX*(z)b" + |(d - a*)TX*(z)b" + ‘a*TX*(z)(b* — )|
<T + ([l = a™[l2 + b = 0"l2) - 1A ()| < T + 2ep

This means p < T/(1 — 2¢). Therefore, when |a” X*(2)b| < T,Va €
A,b € B, we have ||X*(2)|| <T/(1 — 2¢).
Finally, we set ¢ = 1/3, under the event that

la"x*(2)b| < T
—? (HzHOO(C(pl +p2)) + [|2ll2v/2C (o1 —l—pz)) Nac AbeB
we have
() < T/(1 = 2¢) < 302 (|12l Cp1 + p2) + [12]l2/2C (b1 + p2))
By (0.26), the probability that all the event happen is at least
1= 2exp (—(C —log7)(p1 + p2))

This finished the proof of the lemma. ]
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Proof of Proposition 7.1.. In the proof, we will use o to represent ap
without any confusion. The ideas of the proof of Proposition 7.1 follows
from [36], [13].

Denote Si, = {X € RP*P2 : rank(X) < kr, || X||r = 1}. By Lemma 3.1 in
[13], for any € > 0, there exists e-net S}, such that | S} | < (9/e)PrHrz+Dhr,

For given C1, Cy such that C; < 1/(3a%), Cy > 1, we set Cf = %@Ml),
Cl = % We can choose Jp small enough such that

4y _ _
o 2 ) < i (LD =C1 Co=1)

2 T2

then by Lemma 7.1, for any given A € RP**P2 we have C] < ||X(A)||1/n <
C! with probability at least 1 — 2exp(—d3n). Hence,

P (C7 < || X(A)||1/n < C4, for all A€ L) > 1-2(9/e)kr®1P2tD) exp(—53n)

Next, we'll estimate the bound of ||X'(A)[[1/n on the whole set Sk, pro-
vided that C] < ||X(A)|1/n < Cf for all A € S},.. Define

k1= inf [|X(A)|l1/n and ky = sup [|X(A)[|1/n.
A€ Sk E€Skr

For any A € Sy, there exists A" € S}, such that [|[A — A'||r <e. So
[X(A)11/n < XA/t X(A=A) 1/ < Co|All+r2| A=Al p < Cotrne
1X(A)ll1/n > [|X (A1 /n=|X(A=A) |1/ > CL[|All—r2]| A= A"l > C1—kae
which mean

kg = sup ||X(A)||r < Ch+era, k1= inf ||X(A)||r > C]—cka
AESg, A€ Sk,

namely, ko < C4/(1 —¢), k1 > C} — eka. We choose

. (Cy—1 1/(3a*) — 4
<
° = ( 20y ' 20, ’

by some calculations we can see k1 > C1, ko < Cs.
To sum up, we can choose dg, € only depending on C7,Cs, «, to ensure

Cy <k1= inf [|[X(A)|1/n< sup ||X(A)|1/n = kK2 < Co
Aesk’r A

Eskr
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with probability at least 1 — 2(9/e)F(Pr+P2+1) exp(—62n). The last step is
to estimate the probability above. We choose D > 8klog(9/¢)/d3, then for
n > Dr(p1 + p2), we have

05n/2 > 4log(9/)kr(p1 + p2) > log 2 + 2log(9/e)kr(p1 + p2 + 1),
1-— 2(9/5)kr(p1+p2+1)e_53” =1 —exp(—d3n + log2 + kr(p1 + pa + 1) log(9/¢))
>1 — exp(—63n/2).
Finally, we finish the proof of the Theorem by choosing § < §3/2. O

Proof of Lemma 7.7.. The idea of the proof is originated from [41, 31].
We provide the proof here for the completeness of the paper. Note p =
min(py, p2), suppose for any matrix B, o;(B) is the i-th largest singular
value of B. By Lemma 2 in [31], we have

||Amax(r)||* + ||A— max(r)”*

=l Al = | Al = |14 = (=R)[l = ) los(A) — oi(~R)]
i=1

> (0i(A) —oi(R)) + > (0i(R) — 04(A))
i=1 i=r+1

=[| Amax(r) 1+ = 1A= max(e) 1« + 1B maxr) I« = [ Rmax(r ll«
which implies (7.3). O
Proof of Lemma 7.8.. Suppose R = A, — A, then we have
(0.27) [X(R)[1/n <\

Since [|[A4ll« < ||A]l«. By Lemma 7.7, we must have (7.3). Suppose p =
min(py, p2) and R has the singular value decomposition, R = Y?_, o;u;v] =
Udiag(#)V7T, then &_ max(kr) Satisfies

H‘}L max(kr) Hoo < Okr,

Hg— max(k’r‘)”l :|’5—max(r)|’1 - (Ur+1 + -+ Ukr)
SHO_:maX(T)Hl + 2‘|A—max(r)”* - (k/’ - 1)T0kr
Set

¢ = max (UkTv (‘|5max(r)||1 + 2||A—max(r)||* — (k- 1)7’0’kr)/(kT)) )
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then [|G_ max(kr)loe < 0, |G- max(kr)|l1 < kr6. Similarly to the proof of The-
orem 2.1, apply Lemma 7.6, we can get b e R", \; >0,i=1,---,N such
that 0_ pax(kr) = ZZ]\LI Ab® and (7.2). Hence,

Hb(l)HZ < \/Hb(l)Hl ’ Hb(l)HOO < \/0("5max(r)“1 + 2“‘4— max(r)H* - (k - l)rakr>

If 6 = o},., we can optimize over oy, in the inequality,

Hb(Z)H2 S\/0-167‘(||O_:max(r)”1 + 2‘|A—max(r)”* - (k - 1)TO‘]W)

< Ho_:max(r)Hl + 2||A— max(r)”* .
- 2y/r(k — 1) ’

if = (H&max(r)Hl + 2||A7rnax(r)H* - (k - 1)7’0kr)/(k7’), we have

NFmaxryll1 + 201 A max(r [+ = (k = 1)rogr
Ver
< H&max(r)”l + QHA— max(r) H* .

Vir

Since k > 2, we always have (0.28). Next, we define B; = Udiag(b”)V7, then
the rank of B; are at most kr, Zfil AiBi = R_ ax(kry and || Bi||F = 16 |2.
Then

1@ <
(0.28)

A 2| X(R)[1/n 2 X (Riaxer)) 11 /1 = [ X (B mas(er) ) ll1/72

N
>C || Ry |7 = D I1X(AB3) 11/

=1
N
(0.29) ZClHRmaLx(kr)HF - Z)\zC2HBzHF
=1
HRm xr ||*+2HA—m ||*
>Ci | Runaxier | — 2x{r) N xlr
CQHA—max(r)H*
ZC'luRmax(kr)HF \/>‘|Rmax kr)”F \/H )

where the last inequality is due to || Riax(kr) | F > [ Rmax() |7 = V7l Biax(r) [l -
Therefore,

)\1 2HA—max H
C2/f f(\fCﬁ/CQ*l)

(030) HRmax(lcr) ”F >
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Finally,

IR mac(in 17 =17 mastir)ll2 < /1 macqen 11 - 1 macqen oo

<\ Ok - (10— max(r)llt — 7(k — 1) o)

||E—max(r)H1 < ‘|6max(w)||1 +2||A—max(7‘)||*
o rk-1) 2 /r(k — 1)

< ||Rmax(r) HF + ||A— max(r)”*

SovE—1 | ko)

Therefore,

1Rl =/ Ruaon [+ | R o I

2
HRmax(r) ||F ||A— max(r) H *
<[ FRmax(r) I3 + +
J (k)”F ( Qm T(/{:—l)
1 HA—max(r)H*
(0.31) S B [ E——|  * - 4 ——
< 4(/@—1)" (k) 17 D)

1 ||A— max(r)H*
< 1 —"_ Rmax T +
‘( 8(k—1)> Waxienlle + =755
2 3 1 HA—maX(r)H*
SO W +
= - Co/VE <\/E01/02—1 k-—l) NG

Proof of Lemma 7.9.. The proof of this theorem is similar to the proof
of Lemma 7.8. Suppose R = A, — A. In this case we have

(0.32) XX (R)[| < Az

instead of (0.27). Besides, since ||A.||« < ||Al|« and Lemma 7.7, we still have
(7.3). With the similar argument as (0.29), we have

(0.33)
ol BRIl = (R, X*X(R)) = |X(R)[l5 > | X(R)|{ /n
Co 2C2||A— max(r)|*>2
>nCRmxr _7Rmxr -
2 1 (Ol Rl = W Rl = 2O )

Here (x)4+ means max(x,0). Besides,

A2 HR”* < Az (HRmax(r)”* + (HRmax(r)”* + 2”"47 max(r)”*))
< 2)\ (\/;HRmax(r)HF + ||A— max(r)”*)
<2X (\/;HRmax(kr)HF + ||A— max(r)H*)
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Suppose = = || Riax(kr) |7, ¥ = [[A— max(r)|l+/+/7- Based on the previous two
inequalities, we have

20, \?
n ((Cl — Cy/Vk)x — 2y> <2V (x + y) A2
VET) 4
When z > m, the inequality above leads to
(0.34)
20,

n(Cy — C’g/\/%)Qa:2 — (2n(C’1 — Cg/\/E) Y+ 2\/?A2> x — 2v/rhoy < 0.

Vk

Note that for second order inequality az? —bx —c¢ < 0, a > 0, b,c > 0, we

have 2 < bEvbtdac ”3?‘4‘“ < b/a+ \/c/a. Hence we can get an upper bound of x
from (0.34).

b W AGNky 2Py
T (G = Co/VE)? (CL—Ca/VE)  /n(Cr— Ca/VE)
_ 2/T Az N 4Cy )V ky N VT A
~ (G- Co/VE)?E (CL—Ca/VE)  n(Cr - Ca/VE)

2C%y
VE(C1—C2/Vk)

—_

> T ¥

Hence whenever x > or not,

(0.35)
| Runax(kr)|| 7 = @
<max{ 2C2y VT A + ( 402/@ + 1) y}
- VE(C1 — Co/VE) n(Cy — Ca/VE)? (Cy — Ca/VE) 2
o 3Pe ( 1C/VE 1) 1A s 1+
“n(Cy — Ca/VE)? (CL—Co/VE) 2 VT

Finally, similarly to (0.31) in Lemma 7.8, we can get the upper bound of
[pasivas

IRl < (1 ¥ ) ool + VA=l
8k —8 r(k—1)
4 \/;(8 + ’I’}) < ) 1 ) HA— max(r)H*
< : + + +1) =0
T (C1 — C2/Vk)? n VEC1/Cy—1  VE—1 NG

which finished the proof of lemma 7.9. [
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0.7. Proof of Propositions 2.2, 2.8 and 2.4.. We first show Proposition
2.2. Denote X, Xy : RP*P — RL2) such that

(2i—1) (24) (2i—1) _ a(2i)
(0.36) [é’ﬁ]i(B):(ﬂ \/;rﬂ Tp B ﬂﬂ L oi=1,-- J%J
B ,8 (26—1) IB(QZ ﬁ(2i71) +5(2i) . n
0.37)  [%](B) - (T) e SR TR

Note that - (5(22 D4 B(QZ)) and —= (5(22 1 B(Qi)) are independent i.i.d.
standard normal samples, so both Xl and X, are ROP design (see (1.6)). By

Corollary 2.1, we know there exists uniform constant C' such that whenever
|5] > Cr-2p, X1 satisfies the following property with probability at least

1 — exp(—nd),
(0.38)

VA € {AeRPP :rank(A) <r}, A=arg min |B|. subjectto Xi(B)=

BERPXP

Now we consider the event that (0.38) holds. We note that for any symmetric
matrix B,

A)i(B) = AT BRI L gEITBEE = (] (B) ~ [X]i(B))

l\D\H

So X(B) = X(A) implies X;(B) = X1(A) for symmetric A and B. Also,
since A is feasible in programming (2.13), we have

IA|l« > min ||Bl|« subject to X(B)= X(A)
> min |[|Bll« subject to AXj(B) = X1(A)

BeRpxpP

=[lAll,

So we can conclude that A can be exactly recovered by (2.13) given (0.38)
holds. In summary, for n > 6Crp, with probability at least 1 —exp(—nd), X
satisfies (0.38), then programming (2.13) can recover all A € SP of rank at
most r. U

Next, we consider Proposition 2.3. The idea of the proof is similar to
Proposition 2.1. Define z € RL2) such that

(0.39) Zi = 22i—1 — %21, 1=1,--+, LgJ-

X1(A).
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Then 2 % N N(0,2). We shall also point out two facts, 7 = § — X(A) and

X* = X + X5 (defined as (0.36), (0.37)). By Lemma 7.3, we know
9

P(lzla/n > o) < 2

P(||Z]l2 > oV2n) <
P(|le > 20v/2Togn) <

1
[n 2J
[n/2] / 2]
Hence,
P (A is NOT in the feasible set of programming (2.17))
—PHHMn>aoﬂMﬂ>n>@

(||z||1/n >0, or |X*(2)| > 24aw/pn+48ap\/210gn>
<P(||z]1/n > o) + Px(||Z]]2 > oV2n) + P(||Z]|cc > 20+/2logn)
+ Py (122 > 24p|1Zljoc + 12/2p] 2] )
9
P X 12 00
+ gy + P (16O > 120120 + 6v/551212)

44%@%@W>wm%m+&@Mﬂﬁ

15
<— + 4exp(—2p(2 —log7))

When A is in the feasible set of programming (2.17), we have [|A]l. < ||A|l.
and
15]
|Z(A = Al = Y |[¥]ai-(A = 4) = [X]ai(A - 4)
(0.40) = )
< [|X(A = Al <ly = X (Al + | X(A) = ylh
< ly = X(A)|1 + |1z]1 < 2n0

[+ X (A = A)|| < [|X*(G — X(A)] + [|X*(X(A) - §)|
=[[X*(F = X(A)| + [ X*(2)] < 2n
Similarly as the proof to Proposition 2.1, by Theorem 2.2, there exists con-
stant D, ¢’ such that if n > Drp, X satisfies RUB of order 10r with constants

(4, Cy such that Cy/Cy < +/10 with probability at least 1 —exp(—nd’). Now
we suppose the following two events happen,

(0.41)
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1. X satisfies RUB of order 10r and constants C1, Cs satisfying Cy/C; <
V10,

2. A is feasible in the programming (2.17).
Since X(B) = 2X(B) for any symmetric matrix B, by X; satisfies RUB

condition, we have X satisfies RUB for symmetric matrices of order 10r
and constants 2C1,2C, satisfying (2C2)/(2C1) < v/10. We note that the
proof of Lemmas 7.8 and 7.9 still apply for X in the symmetric matrices
class, so we can get (2.18) based on (0.40) and (0.41) under those two events
happen. Finally the probability that these events happen is at least 1 —
15/n — 4 exp(—pd) — exp(—nd) for § < min(2(2 — log7),d’), which finished

the proof of Proposition 2.3. [

Finally we consider Proposition 2.4. Denote p’ = |p/2], v’ = |r/2]. By
r,p > 2, we have ' > r/3,p' > p/3. Define a sub-class of the class rank-r
symmetric matrices,

G=RAeSP: A= [0 B } P . , B e RP*(P=P) rank(B) < ¢/
B 0 p—0p

we can see VA € G,

() = BT A0 = 25", BBy, BT,
so in G the SROP model becomes

vi . . . , 2% 2 id
52 = (By)v T 761(77;))B(611(;)+1’ e )BISZ))T + 517 5 ~ N(0,02/4)
which is an ROP model which we already discussed in section 2. We omit
the rest of the proof as it can be followed by the proof of Theorem 2.4. [J

Proof of Proposition 3.1.. The proof can follow from the proof of Propo-
sition 2.3 and Theorem 3.1 once we can prove that in high probability, X;
(defined in (0.36)) satisfies RUB condition with C7,Cs such that Co/Cy is
bounded. This can be proved similarly as Proposition 7.1, where we only
need to edit the proof that we use the following Lemma 0.11 instead of
Lemma 7.1.

LEMMA 0.11.  Suppose A € RP*P s a fixred matriz (not necessarily sym-
metric) and Xy is given by (0.36). 8% is a set of p-dimensional vectors such
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that *2 P, where P is some symmetric variance 1 sub-Gausstan distribution
except Rademacher +1 distribution. Then for § > 0, we have

. 3/2 2
<mm (Var(P2)/2.1) o5 yon 52> 1Al < 1A
(0.42)

3(2ap)? |n/2]
< (\/3/2(1% +8a20 + 404%52) s

with probability at least 1 — 2 exp(—d2%|n/2]).

The proof of Lemma 0.11 is in the Appendix right after this paragraph.
Note that provided P is symmetric and with variance 1, Var(P?) = 0 if and
only P is Rademacher £1 and A is diagonal, in which the lower bound of
(0.42) becomes meaningless. So we only exclude Rademacher 1 distribution
from the result. [

Proof of Lemma 0.11.. The proof of Lemma 0.11 is basically the same
to Lemma 7.1. We only need to redo two parts of the proof, where there are
major differences.

1. Part 1. “Step 1. Even moments of |%(ﬁ(1) + BT A(BD) — 2|7,
First, based on P is symmetric and with variance 1, we have EP2+1 =
0, EP? < o Ex? = o?#(2k — 1)!l.Then we can calculate that

BB + 87 = BB - ) =0

B(5" + )"

Mok (1)\21 (2) 2(k—1) 2k . (2 I

— (21>E(ﬁ ) E(B; ) <a Z( >2l—1 2(k—1) — 1)
=0 =0
2% — 1 "2’%' i

Similarly, E(Bi - ﬂi@))% < 28a2k(2k — 1)!1. Next, we can similarly
consider the expansion of £ (%(5(1) + 8@ A(BM — ﬂ(2)))2k, where the

non-zero terms can be written as

p

92k H Aiy gy HE 5(1 + B 251 H 5(1) 5(2

=1 i=1 j=1
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Here sy +---+ s, =t1 +--- +t, = k. This term can be bounded as

7 HAn i HE 232 (ﬂ(l /87:(2))2151
_2% H | Aiy | - H ( (5(1 5}2)>2si+2ti N SlitlE (ﬂi(l) B 6§2))25¢+2ti>
g% H i H gsiti g2+ (95 1 1) — 1)
o Tl T2 <o Tl 1:1 G
o i T2 e 07 < i ] 2

=1

=1 i=1 =1

2k p P
4k od 2s; 2t;
=02 pH|Aiz7jz|HExz' ’ HE?/Z '
=1 i=1 i=1

/4

Here we assume that x;, y; u N(0,1). The right hand side of the in-
equality above is exactly the term in the expansion of (20)* E(x7 A4psy)%*
where Agps is the element-wise absolute value of A. Therefore, we have

2k
I (é (50 + mz))T A (B - 5(2))) < (20)* Bla” Agpey]*

Now we follow the same argument of the rest part of Step 1 in the
proof of Lemma 7.1, we can prove that
(0.43)

2k
> <; (5(1) +5(2))TA (5(1) _ 3(2))) < (2a)*((2k — 1)1N)2|| A||3¥

. Part 2. The upper and lower bound of u = F ‘% (5(1) + ,6'(2))T A (6(1) — ﬁ@)) ‘

To follow the argument of the proof of Step 3 in Lemma 7.1, we need to
derive a new bound for p = E|% (6(1) + ﬂ(Q))TA (/6’(1) — 5(2)) |. First,



21

we denote M = \% (5(1) + 6(2))TA (ﬁ(l) - 5(2)) |, then
u=EM < VEM?

:\/E (;(ﬂ(l) + BT A(BM) — 5(2))>2

ZE ,3(2) 2A2 (5(1 552))2

\/ZA2+ ~Var(P?) ZA? \/ZA + aPZA

i#] i#]

3
<231

On the other hand,

1 2
2 g 2(BM £ g@NT 403D _ 52
EM E<2(6 +B85) AP - B )>
_ZAQ + Var (P?) ZA > min( Var(P2),1)||AH%,
i#]

By (0.43), we also have EM* < 9(2a)8||A||%. By Holder’s inequality,
EM? < (EM)?*3(EM*)"/3. Hence,
(EM?)5 _ min®?(Var(P?)/2,1)|| Al

EM* ~ 3(2a)2

To sum up, instead of Lemma 7.2, we have the bound of u as follows,

=

min®/2(Var(P?)/2,1)||A
(0.44) CotP A2 DIAE < b < v/azalale

The rest of the proof follows the proof of Lemma 7.1 with modifications
of constants, which we do not go into details. [

Proof of Lemma 7.10.. Note that &|8(®) ~ N(O,ﬁ(i)TEﬁ(i)), we can as-
sume that

(0.45) & = piTyp0 . 7,

where Z; ~ u & (N(0,1))% and Z;, 8 are independent. Based on the definition
of z in (4.3), we have
(0.46)

2=y — [X(D0)) = & — BITERY = 0TS0 (- 1), i=1,-- ,n.
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We also denote

C’ C?
12517 Q - 225@7 Q3 C310gn1121;3<}’(n€l2

e We'll first consider the former part of (7.8), (7.9) and (7.10). Suppose

Z ~ (N(0,1))2. Tt is well known that the non-central m-th moment of
Z is (2m — 1)!!] so we have

(0.47) E(CiZ—|Z-1))>Ci—\E|Z-1*=C-V2

(048)  E(CiZ—|Z—1))*<E(C12)*+ E(Z—1)>=3C? +2

(0.49) E (02222 —(z- 1)2) =302-2

2
(0.50) E (C%Z2 —(z- 1)2) < CYE(2)*+E(Z - 1)* = 10502 +60

Next we consider the random quadratic form of . Suppose 8 =

By, B8) X N(0,1), X1, N(0,1), A(S),---, \p(E) are the

eigenvalues of 3. Since X is positive definite, we have

(0.51) EFTES = tr(%) = |2l
E(8T5p)? Z BiSi+2)  %iiBiB;)?
1<J
- Z S2E6 42 SN EREE + > ASLES26?
i<j i<j

:2(2 £5) + Q5" = 20I=)F + |ISII2
irj i

Hence,
(0.52) IZ)2 < E(BTE8)* < 3|ZI2
P
E(BTSp) = EQQ (D)X
i=1
(0.53) = > AMONEAEMED)EXIXIXIX]

1<4,5,8,t<p
< D AENEA(E)M(E)T! = 105] %3

1<i,j,8,t<p
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Then we consider C1€2 — |z;| and C3¢} — 22. By (0.45) and (0.46), we
have

C162 — |z = BITSBD  (01Z; — |2 - 1)),

Cjet— 22 = (997580 (G322 — (2 1)),

while ) and Z; are independent in the equation above. By (0.47)-
(0.53), we obtain an estimation of the first and second moment of these
two quantities as

(0.54) E(Ci& — |zi]) = (C1 = V2)|IZ]l

Var (€167 = |=1]) < E (G167~ |=1])°
(0:55) 2 (g0Ts 50 2 2
—E (17~ |2 = 1) E (89T289) < (97 +6) |22

(0.56) E (03¢ —27) > (3¢5 —2) - |1Z)2
(0.57)  Var (C3¢} — 22) < E (C3¢} — 22)* < 105(105C4 + 60) |||
We note that Q1 — ||z||1/n and Q2 — ||z||3/n are the average of n i.i.d.
copy of C1€2—|z;| and C3¢1—22. We can immediately get an estimation
of the mean and variance of Q1 — ||z||1/n and Q2 — ||z]|3/n based on
(0.54)-(0.57). Finally, by Chebyshev’s inequality,
Var(Q1 — |lzll1/n) _  9CF+6
(E(Q1 = zll1/n)* ~ n(C1 = v2)?
2 _ 2 1 1 4
P <Q2 < HzHQ) < Var (Q2 ||:<:||2/n)2 < 05 ( 05202 +260)
n (E(Q2— ||2]13/n)) n(3C; —2)
Since C'5 > 1 and n > 3, we know CslognZ > Z — 1 with probability
1. Suppose ig = arg max; 3OTEA0) | then

P (Q3 < |12[loo)

<P (max (03 log n(ﬁ‘“Tm(”)Zi) < max ((/BWTE/B(”)(Zi - 1)))

-

P(Q1 < |zlli/n) <

+P (max <03 log n(ﬁ(")TZﬁ("))Zi) < max ((B(i)TEB(“)(l - Zﬁ))
<0+ P (max (Cg log n(ﬁ(i)TEﬁ(i))Zl) < max (ﬁ(i)TZB(i))>

<P (CylognBTEp0 7, < g0 B0)

1 1 2
<p(z, < — P(|N(0,1)| < <
- ( 0 Cglogn> (’ (0.1) \/Cglogn> V27Cslogn
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e Then we consider the latter part of (7.8)-(7.10). We can do similar
calculations as the first part of the proof and get

EQ, = C1E¢] = CLE(BYTEBY) = ¢y 3.
Var(Q1) :CfVargf < C—%Eéf = CiE (ﬁ“)TEﬁ(i))QEZQ < QS%HE\E
EQs = C2EZ2 . (5 )Ty 5( l>> < 902|132
Var(@2) = ~var (c3¢!) < C e

- 2EZ4 ( RIS )4 105051

So by Chebyshev’s 1nequahty,

I

9

P(Q1 > MiCi|Z]) € P(Q1— EQ1 > (M — 1)C1[[Z]]s) < L —1)n

P (Q2 > MyCE[[BIf7) < P (Q2 = EQy > (M = 9)C3|32)
Var(Q2) < 1052
T (My = 92C|IZ[|E T n(My —9)?
which provide the latter part of (7.8) and (7.9). Finally we note that
¢ = (BOTLE1)Z;. By Lemma 1 in [28] and the fact that |3, =

22 2i(3), 2] = max; \i(2), [1Z]lp = /22 X (E), [IZ1r < VXl - 121,

we have

(0.58)

(/3 > (VIET: + va¥siogal=) )

n
—p (Z N(Z)X2 > S|, +24/2Ms log n[ SIS + 2Ms lognmn)
i=1
n
Ai(2 X2—1) > 2 2M510gn2)\2 ) + 2M3log n max \;(X)
=1 =1 !
—Ms3
and

P(Z > 2Mslogn) < exp(—2Mslogn/2) = n~Ms.



25

Hence,

2
P (03 logng? > 2CsMylog? n (V/[SI]. + v/2Ms log n[>] ) ) < on~ M,

and consequently

2
P ((13 logn max €7 > 2CyMylog? n (\/qu* +\/2M; lognHEH) ) < op~Ms+1
<i<n

which gives the right side of (7.10). O
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