
The Annals of Statistics
2015, Vol. 43, No. 1, 102–138
DOI: 10.1214/14-AOS1267
© Institute of Mathematical Statistics, 2015

ROP: MATRIX RECOVERY VIA RANK-ONE PROJECTIONS1

BY T. TONY CAI AND ANRU ZHANG

University of Pennsylvania

Estimation of low-rank matrices is of significant interest in a range of
contemporary applications. In this paper, we introduce a rank-one projection
model for low-rank matrix recovery and propose a constrained nuclear norm
minimization method for stable recovery of low-rank matrices in the noisy
case. The procedure is adaptive to the rank and robust against small pertur-
bations. Both upper and lower bounds for the estimation accuracy under the
Frobenius norm loss are obtained. The proposed estimator is shown to be
rate-optimal under certain conditions. The estimator is easy to implement via
convex programming and performs well numerically.

The techniques and main results developed in the paper also have impli-
cations to other related statistical problems. An application to estimation of
spiked covariance matrices from one-dimensional random projections is con-
sidered. The results demonstrate that it is still possible to accurately estimate
the covariance matrix of a high-dimensional distribution based only on one-
dimensional projections.

1. Introduction. Accurate recovery of low-rank matrices has a wide range of
applications, including quantum state tomography [1, 24], face recognition [3, 12],
recommender systems [27] and linear system identification and control [36]. For
example, a key step in reconstructing the quantum states in low-rank quantum to-
mography is the estimation of a low-rank matrix based on Pauli measurements [24,
42]. And phase retrieval, a problem which arises in a range of signal and image pro-
cessing applications including X-ray crystallography, astronomical imaging and
diffraction imaging, can be reformulated as a low-rank matrix recovery problem
[12, 15]. See Recht et al. [36] and Candès and Plan [13] for further references and
discussions.

Motivated by these applications, low-rank matrix estimation based on a small
number of measurements has drawn much recent attention in several fields, includ-
ing statistics, electrical engineering, applied mathematics and computer science.
For example, Candès and Recht [14], Candès and Tao [16] and Recht [35] con-
sidered the exact recovery of a low-rank matrix based on a subset of uniformly
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sampled entries. Negahban and Wainwright [30] investigated matrix completion
under a row/column weighted random sampling scheme. Recht et al. [36], Candès
and Plan [13] and Cai and Zhang [8–10] studied matrix recovery based on a small
number of linear measurements in the framework of Restricted Isometry Property
(RIP), and Koltchinskii et al. [26] proposed the penalized nuclear norm minimiza-
tion method and derived a general sharp oracle inequality under the condition of
restrict isometry in expectation.

The basic model for low-rank matrix recovery can be written as

y =X (A) + z,(1.1)

where X :Rp1×p2 → R
n is a linear map, A ∈ R

p1×p2 is an unknown low-rank
matrix and z is a noise vector. The goal is to recover the low-rank matrix A based
on the measurements (X , y). The linear map X can be equivalently specified by n

p1 × p2 measurement matrices X1, . . . ,Xn with

X (A) = (〈X1,A〉, 〈X2,A〉, . . . , 〈Xn,A〉)ᵀ,(1.2)

where the inner product of two matrices of the same dimensions is defined as
〈X,Y 〉 = ∑

i,j XijYij . Since 〈X,Y 〉 = trace(XᵀY), (1.1) is also known as trace
regression.

A common approach to low-rank matrix recovery is the constrained nuclear
norm minimization method which estimates A by

Â = arg min
M

{‖M‖∗ :y −X (M) ∈ Z
}
.(1.3)

Here, ‖X‖∗ is the nuclear norm of the matrix X which is defined to be the sum
of its singular values, and Z is a bounded set determined by the noise structure.
For example, Z = {0} in the noiseless case and Z is the feasible set of the error
vector z in the case of bounded noise. This constrained nuclear norm minimization
method has been well studied. See, for example, [8–10, 13, 31, 36].

Two random design models for low-rank matrix recovery have been particu-
larly well studied in the literature. One is the so-called “Gaussian ensemble” [13,
36], where the measurement matrices X1, . . . ,Xn are random matrices with i.i.d.
Gaussian entries. By exploiting the low-dimensional structure, the number of lin-
ear measurements can be far smaller than the number of entries in the matrix to
ensure stable recovery. It has been shown that a matrix A of rank r can be sta-
bly recovered by nuclear norm minimization with high probability, provided that
n � r(p1 + p2) [13]. One major disadvantage of the Gaussian ensemble design
is that it requires O(np1p2) bytes of storage space for X , which can be exces-
sively large for the recovery of large matrices. For example, at least 45 TB of
space is need to store the measurement matrices Mi in order to ensure accurate
reconstruction of 10,000 × 10,000 matrices of rank 10. (See more discussion in
Section 5.) Another popular design is the “matrix completion” model [14, 16, 35],
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under which the individual entries of the matrix A are observed at randomly se-
lected positions. In terms of the measurement matrices Xi in (1.2), this can be
interpreted as

X (A) = (〈
ei1e

ᵀ
j1

,A
〉
,
〈
ei2e

ᵀ
j2

,A
〉
, . . . ,

〈
eine

ᵀ
jn

,A
〉)ᵀ

,(1.4)

where ei = (0, . . . ,0,

ith︷︸︸︷
1 ,0, . . . ,0) is the ith standard basis vector, and i1, . . . , in

and j1, . . . , jn are randomly and uniformly drawn with replacement from
{1, . . . , p1} and {1, . . . , p2}, respectively. However, as pointed out in [14, 35],
additional structural assumptions, which are not intuitive and difficult to check,
on the unknown matrix A are needed in order to ensure stable recovery under the
matrix completion model. For example, it is impossible to recover spiked matrices
under the matrix completion model. This can be easily seen from a simple example
where the matrix A has only one nonzero row. In this case, although the matrix is
only of rank one, it is not recoverable under the matrix completion model unless
all the elements on the nonzero row are observed.

In this paper, we introduce a “Rank-One Projection” (ROP) model for low-rank
matrix recovery and propose a constrained nuclear norm minimization method for
this model. Under the ROP model, we observe

yi = (
β(i))ᵀAγ (i) + zi, i = 1, . . . , n,(1.5)

where β(i) and γ (i) are random vectors with entries independently drawn from
some distribution P , and zi are random errors. In terms of the linear map
X :Rp1×p2 →R

n in (1.1), it can be defined as[
X (A)

]
i = (

β(i))ᵀAγ (i), i = 1, . . . , n.(1.6)

Since the measurement matrices Xi = β(i)(γ (i))ᵀ are of rank-one, we call the
model (1.5) a “Rank-One Projection” (ROP) model. It is easy to see that the storage
for the measurement vectors in the ROP model (1.5) is O(n(p1 +p2)) bytes which
is significantly smaller than O(np1p2) bytes required for the Gaussian ensemble.

We first establish a sufficient identifiability condition in Section 2 by consider-
ing the problem of exact recovery of low-rank matrices in the noiseless case. It is
shown that, with high probability, ROP with n� r(p1 +p2) random projections is
sufficient to ensure exact recovery of all rank-r matrices through the constrained
nuclear norm minimization. The required number of measurements O(r(p1 +p2))

is rate optimal for any linear measurement model since a rank-r matrix A ∈ R
p1+p2

has the degree of freedom r(p1 + p2 − r). The Gaussian noise case is of particu-
lar interest in statistics. We propose a new constrained nuclear norm minimization
estimator and investigate its theoretical and numerical properties in the Gaussian
noise case. Both upper and lower bounds for the estimation accuracy under the
Frobenius norm loss are obtained. The estimator is shown to be rate-optimal when
the number of rank-one projections satisfies either n � (p1 + p2) log(p1 + p2) or
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n ∼ r(p1 + p2). The lower bound also shows that if the number of measurements
n < r max(p1,p2), then no estimator can recover rank-r matrices consistently.
The general case where the matrix A is only approximately low-rank is also con-
sidered. The results show that the proposed estimator is adaptive to the rank r

and robust against small perturbations. Extensions to the sub-Gaussian design and
sub-Gaussian noise distribution are also considered.

The ROP model can be further simplified by taking β(i) = γ (i) if the low-rank
matrix A is known to be symmetric. This is the case in many applications, includ-
ing low-dimensional Euclidean embedding [36, 38], phase retrieval [12, 15] and
covariance matrix estimation [5, 6, 17]. In such a setting, the ROP design can be
simplified to Symmetric Rank-One Projections (SROP)[

X (A)
]
i = (

β(i))ᵀAβ(i).

We will show that the results for the general ROP model continue to hold for the
SROP model when A is known to be symmetric. Recovery of symmetric positive
definite matrices in the noiseless and �1-bounded noise settings has also been con-
sidered in a recent paper by Chen et al. [17] which was posted on arXiv at the
time of the writing of the present paper. Their results and techniques for symmet-
ric positive definite matrices are not applicable to the recovery of general low-rank
matrices. See Section 6 for more discussions.

The techniques and main results developed in the paper also have implica-
tions to other related statistical problems. In particular, the results imply that it
is possible to accurately estimate a spiked covariance matrix based only on one-
dimensional projections. Spiked covariance matrix model has been well studied in
the context of Principal Component Analysis (PCA) based on i.i.d. data where one

observes p-dimensional vectors X(1), . . . ,X(n) i.i.d.∼ N(0,�) with � = Ip + �0
and �0 being low-rank [4–6, 25]. This covariance structure and its variations have
been used in many applications including signal processing, financial economet-
rics, chemometrics and population genetics. See, for example, [21, 29, 33, 34,
43]. Suppose that the random vectors X(1), . . . ,X(n) are not directly observable.
Instead, we observe only one-dimensional random projections of X(i),

ξi = 〈
β(i),X(i)〉, i = 1, . . . , n,

where β(i) i.i.d.∼ N(0, Ip). It is somewhat surprising that it is still possible to accu-
rately estimate the spiked covariance matrix � based only on the one-dimensional
projections {ξi : i = 1, . . . , n}. This covariance matrix recovery problem is also
related to the recent literature on covariance sketching [18, 19], which aims to
recover a symmetric matrix A (or a general rectangular matrix B) from low-
dimensional projections of the form XᵀAX (or XᵀBY ). See Section 4 for further
discussions.

The proposed methods can be efficiently implemented via convex program-
ming. A simulation study is carried out to investigate the numerical performance of



106 T. T. CAI AND A. ZHANG

the proposed nuclear norm minimization estimators. The numerical results indicate
that ROP with n ≥ 5r max(p1,p2) random projections is sufficient to ensure the
exact recovery of rank-r matrices through constrained nuclear norm minimization
and show that the procedure is robust against small perturbations, which confirm
the theoretical results developed in the paper. The proposed estimator outperforms
two other alternative procedures numerically in the noisy case. In addition, the
proposed method is illustrated through an image compression example.

The rest of the paper is organized as follows. In Section 2, after introducing ba-
sic notation and definitions, we consider exact recovery of low-rank matrices in the
noiseless case and establish a sufficient identifiability condition. A constrained nu-
clear norm minimization estimator is introduced for the Gaussian noise case. Both
upper and lower bounds are obtained for estimation under the Frobenius norm loss.
Section 3 considers extensions to sub-Gaussian design and sub-Gaussian noise
distributions. An application to estimation of spiked covariance matrices based on
one-dimensional projections is discussed in detail in Section 4. Section 5 investi-
gates the numerical performance of the proposed procedure through a simulation
study and an image compression example. A brief discussion is given in Section 6.
The main results are proved in Section 7 and the proofs of some technical lemmas
are given in the supplementary material [11].

2. Matrix recovery under Gaussian noise. In this section, we first establish
an identifiability condition for the ROP model by considering exact recovery in the
noiseless case, and then focus on low-rank matrix recovery in the Gaussian noise
case.

We begin with the basic notation and definitions. For a vector β ∈ R
n, we use

‖β‖q = q

√∑n
i=1 |βi |q to define its vector q-norm. For a matrix X ∈ R

p1×p2 , the

Frobenius norm is ‖X‖F =
√∑p1

i=1
∑p2

j=1 X2
ij and the spectral norm ‖ · ‖ is ‖X‖ =

sup‖β‖2≤1 ‖Xβ‖2. For a linear map X = (X1, . . . ,Xn) from R
p1×p2 to R

n given
by (1.2), its dual operator X ∗ :Rn → R

p1×p2 is defined as X ∗(z) = ∑n
i=1 ziXi .

For a matrix X ∈ R
p1×p2 , let X =∑

i aiuiv
ᵀ
i be the singular value decomposition

of X with the singular values a1 ≥ a2 ≥ · · · ≥ 0. We define Xmax(r) =∑r
i=1 aiuiv

ᵀ
i

and X−max(r) = X − Xmax(r) = ∑
i≥r+1 aiuiv

ᵀ
i . For any two sequences {an} and

{bn} of positive numbers, denote by an � bn when an ≥ Cbn for some uniform
constant C and denote by an ∼ bn if an � bn and bn � an.

We use the phrase “rank-r matrices” to refer to matrices of rank at most r and
denote by S

p the set of all p × p symmetric matrices. A linear map X :Rp1×p2 →
R

n is called ROP from distribution P if X is defined as in (1.6) with all the entries
of β(i) and γ (i) independently drawn from the distribution P .

2.1. RUB, identifiability, and exact recovery in the noiseless case. An impor-
tant step toward understanding the constrained nuclear norm minimization is the
study of exact recovery of low-rank matrices in the noiseless case which also leads



RANK-ONE PROJECTIONS 107

to a sufficient identifiability condition. A widely used framework in the low-rank
matrix recovery literature is the Restricted Isometry Property (RIP) in the matrix
setting. See [8–10, 13, 36, 37]. However, the RIP framework is not well suited for
the ROP model and would lead to suboptimal results. See Section 2.2 for more
discussions on the RIP and other conditions used in the literature. See also [15].
In this section, we introduce a Restricted Uniform Boundedness (RUB) condition
which will be shown to guarantee the exact recovery of low-rank matrices in the
noiseless case and stable recovery in the noisy case through the constrained nuclear
norm minimization. It will also be shown that the RUB condition are satisfied by
a range of random linear maps with high probability.

DEFINITION 2.1 (Restricted Uniform Boundedness). For a linear map
X :Rp1×p2 → R

n, if there exist uniform constants C1 and C2 such that for all
nonzero rank-r matrices A ∈ R

p1×p2

C1 ≤ ‖X (A)‖1/n

‖A‖F

≤ C2,

where ‖ · ‖1 means the vector �1 norm, then we say that X satisfies the Restricted
Uniform Boundedness (RUB) condition of order r and constants C1 and C2.

In the noiseless case, we observe y = X (A) and estimate the matrix A through
the constrained nuclear norm minimization

A∗ = arg min
M

{‖M‖∗ :X (M) = y
}
.(2.1)

The following theorem shows that the RUB condition guarantees the exact recov-
ery of all rank-r matrices.

THEOREM 2.1. Let k ≥ 2 be an integer. Suppose X satisfies RUB of order kr

with C2/C1 <
√

k, then the nuclear norm minimization method recovers all rank-r
matrices. That is, for all rank-r matrices A and y = X (A), we have A∗ = A, where
A∗ is given by (2.1).

Theorem 2.1 shows that RUB of order kr with C2/C1 <
√

k is a sufficient
identifiability condition for the low-rank matrix recovery model (1.1) in the noisy
case. The following result shows that the RUB condition is satisfied with high
probability under the ROP model with a sufficient number of measurements.

THEOREM 2.2. Suppose X :Rp1×p2 → R
n is ROP from the standard normal

distribution. For integer k ≥ 2, positive numbers C1 < 1
3 and C2 > 1, there exist

constants C and δ, not depending on p1,p2 and r , such that if

n ≥ Cr(p1 + p2),(2.2)

then with probability at least 1 − e−nδ , X satisfies RUB of order kr and constants
C1 and C2.
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REMARK 2.1. The condition n ≥ O(r(p1 + p2)) on the number of measure-
ments is indeed necessary for X to satisfy nontrivial RUB with C1 > 0. Note
that the degree of freedom of all rank-r matrices of Rp1×p2 is r(p1 + p2 − r) ≥
1
2r(p1 + p2). If n < 1

2r(p1 + p2), there must exist a nonzero rank-r matrix
A ∈ R

p1×p2 such that X (A) = 0, which leads to the failure of any nontrivial RUB
for X .

As a direct consequence of Theorems 2.1 and 2.2, ROP with the number of mea-
surements n ≥ Cr(p1 + p2) guarantees the exact recovery of all rank-r matrices
with high probability.

COROLLARY 2.1. Suppose X :Rp1×p2 → R
n is ROP from the standard nor-

mal distribution. There exist uniform constants C and δ such that, whenever
n ≥ Cr(p1 + p2), the nuclear norm minimization estimator A∗ given in (2.1) re-
covers all rank-r matrices A ∈ R

p1×p2 exactly with probability at least 1 − e−nδ .

Note that the required number of measurements O(r(p1 + p2)) above is rate
optimal, since the degree of freedom for a matrix A ∈ R

p1+p2 of rank r is r(p1 +
p2 − r), and thus at least r(p1 + p2 − r) measurements are needed in order to
recover A exactly using any method.

2.2. RUB, RIP and other conditions. We have shown that RUB implies ex-
act recovery in the noiseless and proved that the random rank-one projections
satisfy RUB with high probability whenever the number of measurements n ≥
Cr(p1 + p2). As mentioned earlier, other conditions, including the Restricted
Isometry Property (RIP), RIP in expectation and Spherical Section Property (SSP),
have been introduced for low-rank matrix recovery based on linear measurements.
Among them, RIP is perhaps the most widely used. A linear map X :Rp1×p2 →R

n

is said to satisfy RIP of order r with positive constants C1 and C2 if

C1 ≤ ‖X (A)‖2/
√

n

‖A‖F

≤ C2

for all rank-r matrices A. Many results have been given for low-rank matrices
under the RIP framework. For example, Recht et al. [36] showed that Gaussian
ensembles satisfy RIP with high probability under certain conditions on the di-
mensions. Candès and Plan [13] provided a lower bound and oracle inequality
under the RIP condition. Cai and Zhang [8–10] established the sharp bounds for
the RIP conditions that guarantee accurate recovery of low-rank matrices.

However, the RIP framework is not suitable for the ROP model considered in the
present paper. The following lemma is proved in the supplementary material [11].
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LEMMA 2.1. Suppose X :Rp1×p2 → R
n is ROP from the standard normal

distribution. Let

C1 = min
A : rank(A)=1

‖X (A)‖2/
√

n

‖A‖F

and C2 = max
A : rank(A)=1

‖X (A)‖2/
√

n

‖A‖F

.

Then for all t > 1, C2/C1 ≥ √
p1p2/(4tn) with probability at least 1 − e−p1/4 −

e−p2/4 − 8
n(t−1)2 .

Lemma 2.1 implies that at least O(p1p2) number of measurements are needed
in order to ensure that X satisfies the RIP condition that guarantees the recovery of
only rank-one matrices. Since O(p1p2) is the degree of freedom for all matrices
A ∈ R

p1×p2 and it is the number of measurements needed to recover all p1 × p2
matrices (not just the low-rank matrices), Lemma 2.1 shows that the RIP frame-
work is not suitable for the ROP model. In comparison, Theorem 2.2 shows that
if n ≥ O(r(p1 + p2)), then with high probability X satisfies the RUB condition
of order r with bounded C2/C1, which ensures the exact recovery of all rank-r
matrices.

The main technical reason for the failure of RIP under the ROP model is that
RIP requires an upper bound for

max
A∈C

∥∥X (A)
∥∥2

2/n = max
A∈C

(
n∑

j=1

((
β(j))ᵀAγ (j))2)/n,(2.3)

where C is a set containing low-rank matrices. The right-hand side of (2.3) involves
the 4th power of the Gaussian (or sub-Gaussian) variables β(j) and γ (j). A much
larger n than the bound given in (2.2) is needed in order for the linear map X to
satisfy the required RIP condition, which would lead to suboptimal result.

Koltchinskii et al. [26] uses RIP in expectation, which is a weaker condition than
RIP. A random linear map X :Rp1×p2 → R

n is said to satisfy RIP in expectation
of order r with parameters 0 < μ < ∞ and 0 ≤ δr < 1 if

(1 − δr)‖A‖2
F ≤ μ

1

n
E
∥∥X (A)

∥∥2
2 ≤ (1 + δr)‖A‖2

F

for all rank-r matrices A ∈ R
p1×p2 . This condition was originally introduced by

Koltchinskii et al. [26] to prove an oracle inequality for the estimator they proposed
and a minimax lower bound. The condition is not sufficiently strong to guarantee
the exact recovery of rank-r matrices in the noiseless case. To be more specific, the
bounds in Theorems 1 and 2 in [26] depend on M = ‖ 1

n

∑n
i=1(yiXi − E(yiXi))‖,

which might be nonzero even in the noiseless case. In fact, in the ROP model
considered in the present paper, we have

1

n
E‖X‖2

2 = 1

n

n∑
i=1

E
(
β(i)T Aγ (i))2 = E

(
βᵀAγγ ᵀAᵀβ

)
= E tr

(
Aγγ ᵀAᵀββᵀ)= tr

(
AAᵀ)= ‖A‖2

F
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which means RIP in expectation is met for μ = 1 and δr = 0 for any number
of measurements n. However, as we discussed earlier in this section that at least
O(r(p1 +p2)) measurements are needed to guarantee the model identifiability for
recovery of all rank-r matrices, we can see that RIP in expectation cannot ensure
recovery.

Dvijotham and Fazel [20] and Oymak et al. [32] used a condition called the
Spherical Section Property (SSP) which focuses on the null space of X . Null(X )

is said to satisfy �-SSP if for all Z ∈ Null(X ) \ {0}, ‖Z‖∗/‖Z‖F ≥ √
�. Dvi-

jotham and Fazel [20] showed that if X satisfies �-SSP, p1 ≤ p2 and rank(A) <

min(3p1/4 −
√

9p2
1/16 − p1�/4,p1/2), the nuclear norm minimization (2.1) re-

covers A exactly in the noiseless case. However, the SSP condition is difficult
to utilize in the ROP framework since it is hard to characterize the matrices
Z ∈ Null(X ) when X is rank-one projections.

2.3. Gaussian noise case. We now turn to the Gaussian noise case where
zi

i.i.d.∼ N(0, σ 2) in (1.5). We begin by introducing a constrained nuclear norm min-
imization estimator. Define two sets

Z1 = {
z :‖z‖1/n ≤ σ

}
and Z2 = {

z :
∥∥X ∗(z)

∥∥≤ η
}
,(2.4)

where η = σ(12
√

logn(p1 + p2) + 6
√

2n(p1 + p2)), and let

ZG = Z1 ∩Z2.(2.5)

Note that both Z1 and Z2 are convex sets and so is ZG. Our estimator of A is
given by

Â = arg min
M

{‖M‖∗ :y −X (M) ∈ ZG

}
.(2.6)

The following theorem gives the rate of convergence for the estimator Â under
the squared Frobenius norm loss.

THEOREM 2.3 (Upper bound). Let X be ROP from the standard normal dis-

tribution and let z1, . . . , zn
i.i.d.∼ N(0, σ 2). Then there exist uniform constants C, W

and δ such that, whenever n ≥ Cr(p1 +p2), the estimator Â given in (2.6) satisfies

‖Â − A‖2
F ≤ Wσ 2 min

(
r logn(p1 + p2)

2

n2 + r(p1 + p2)

n
,1
)

(2.7)

for all rank-r matrices A, with probability at least 1−11/n−3 exp(−δ(p1 +p2)).

Moreover, we have the following lower bound result for ROP.
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THEOREM 2.4 (Lower bound). Assume that X is ROP from the standard nor-

mal distribution and that z1, . . . , zn
i.i.d.∼ N(0, σ 2). There exists a uniform constant

C such that, when n > Cr max(p1,p2), with probability at least 1 − 26n−1,

inf
Â

sup
A∈Rp1×p2 : rank(A)=r

Pz

(
‖Â − A‖2

F ≥ σ 2r(p1 + p2)

32n

)
(2.8)

≥ 1 − e−(p1+p2)r/64,

inf
Â

sup
A∈Rp1×p2 : rank(A)=r

Ez‖Â − A‖2
F ≥ σ 2r(p1 + p2)

4n
,(2.9)

where Ez, and Pz are the expectation and probability with respect to the distribu-
tion of z.

When n < r max(p1,p2), then

inf
Â

sup
A∈Rp1×p2 : rank(A)=r

Ez‖Â − A‖2
F = ∞.(2.10)

Comparing Theorems 2.3 and 2.4, our proposed estimator is rate optimal in
the Gaussian noise case when n � logn(p1 + p2) [which is equivalent to n �
(p1 + p2) log(p1 + p2)] or n ∼ r(p1 + p2). Since n � r(p1 + p2), this condition
is also implied by r � log(p1 + p2). Theorem 2.4 also shows that no method can
recover matrices of rank r consistently if the number of measurements n is smaller
than r max(p1,p2).

The result in Theorem 2.3 can also be extended to the more general case
where the matrix of interest A is only approximately low-rank. Let A = Amax(r) +
A−max(r).

PROPOSITION 2.1. Under the assumptions of Theorem 2.3, there exist uni-
form constants C, W1, W2 and δ such that, whenever n ≥ Cr(p1 + p2), the esti-
mator Â given in (2.6) satisfies

‖Â − A‖2
F ≤ W1σ

2 min
(

r logn(p1 + p2)
2

n2 + r(p1 + p2)

n
,1
)

(2.11)

+ W2
‖A−max(r)‖2∗

r

for all matrices A ∈ R
p1×p2 , with probability at least 1 − 11/n − 3 exp(−δ(p1 +

p2)).

If the matrix A is approximately of rank r , then ‖A−max(r)‖∗ is small, and
the estimator Â continues to perform well. This result shows that the constrained
nuclear norm minimization estimator is adaptive to the rank r and robust against
perturbations of small amplitude.
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REMARK 2.2. All the results remain true if the Gaussian design is replaced by
the Rademacher design where entries of β(i) and γ (i) are i.i.d. ±1 with probability
1
2 . More general sub-Gaussian design case will be discussed in Section 3.

REMARK 2.3. The estimator Â we propose here is the minimizer of the nu-
clear norm under the constraint of the intersection of two convex sets Z1 and Z2.
Nuclear norm minimization under either one of the two constraints, called “�1 con-
straint nuclear norm minimization” (Z = Z1) and “matrix Dantzig Selector”
(Z = Z2), has been studied before in various settings [8–10, 13, 17, 36]. Our anal-
ysis indicates the following:

1. The �1 constraint minimization performs better than the matrix Dantzig Se-
lector for small n (n ∼ r(p1 + p2)) when r � logn.

2. The matrix Dantzig Selector outperforms the �1 constraint minimization for
large n as the loss of the matrix Dantzig Selector decays at the rate O(n−1).

3. The proposed estimator Â combines the advantages of the two estimators.

See Section 5 for a comparison of numerical performances of the three methods.

2.4. Recovery of symmetric matrices. For applications such as low-dimen-
sional Euclidean embedding [36, 38], phase retrieval [12, 15] and covariance ma-
trix estimation [5, 6, 17], the low-rank matrix A of interest is known to be sym-
metric. Examples of such matrices include distance matrices, Gram matrices, and
covariance matrices. When the matrix A is known to be symmetric, the ROP design
can be further simplified by taking β(i) = γ (i).

Denote by S
p the set of all p × p symmetric matrices in R

p×p . Let β(1),
β(2), . . . , β(n) be independent p-dimensional random vectors with i.i.d. entries
generated from some distribution P . Define a linear map X :Sp →R

n by[
X (A)

]
i = (

β(i))ᵀAβ(i), i = 1, . . . , n.

We call such a linear map X “Symmetric Rank-One Projections” (SROP) from the
distribution P .

Suppose we observe

yi = (
β(i))ᵀAβ(i) + zi, i = 1, . . . , n(2.12)

and wish to recover the symmetric matrix A. As for the ROP model, in the noise-
less case we estimate A under the SROP model by

A∗ = arg min
M∈Sp

{‖M‖∗ :y = X (M)
}
.(2.13)

PROPOSITION 2.2. Let X be SROP from the standard normal distribution.
Similar to Corollary 2.1, there exist uniform constants C and δ such that, whenever
n ≥ Crp, the nuclear norm minimization estimator A∗ given by (2.13) recovers
exactly all rank-r symmetric matrices A ∈ S

p with probability at least 1 − e−nδ .
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For the noisy case, we propose a constraint nuclear norm minimization estima-
tor similar to (2.6). Define the linear map X̃ :Rp1×p2 →R

�n/2� by

[
X̃ (A)

]
i = [

X (A)
]
2i−1 − [

X (A)
]
2i , i = 1, . . . ,

⌊
n

2

⌋
(2.14)

and define ỹ ∈ R
�n/2� by

ỹi = y2i−1 − y2i , i = 1, . . . ,

⌊
n

2

⌋
.(2.15)

Based on the definition of X̃ , the dual map X̃ ∗ :R�n/2� → S
p is

X̃ ∗(z) =
�n/2�∑
i=1

zi

(
β(2i−1)β(2i−1)ᵀ − β(2i)β(2i)ᵀ).(2.16)

Let η = 24σ(
√

pn + 2p
√

2 logn). The estimator Â of the matrix A is given by

Â = arg min
M∈Sp

{‖M‖∗ :
∥∥y −X (M)

∥∥
1/n ≤ σ,

∥∥X̃ ∗(ỹ − X̃ (M)
)∥∥≤ η

}
.(2.17)

REMARK 2.4. An important property in the ROP model considered in Sec-
tion 2.3 is that EX = 0, that is, EXi = 0 for all the measurement matrices Xi .
However, under the SROP model Xi = β(i)(β(i))ᵀ and so EX �= 0. The step of
taking the pairwise differences in (2.14) and (2.15) is to ensure that EX̃ = 0.

The following result is similar to the upper bound given in Proposition 2.1
for ROP.

PROPOSITION 2.3. Let X be SROP from the standard normal distribution

and let z1, . . . , zn
i.i.d.∼ N(0, σ 2). There exist constants C,W1,W2 and δ such that,

whenever n ≥ Crp, the estimator Â given in (2.17) satisfies

‖Â − A‖2
F ≤ W1σ

2 min
(

rp2 logn

n2 + rp

n
,1
)

+ W2
‖A−max(r)‖2∗

r
(2.18)

for all matrices A ∈ S
p , with probability at least 1 − 15/n − 5 exp(−pδ).

In addition, we also have lower bounds for SROP, which show that the proposed
estimator is rate-optimal when n � p logn or n ∼ rp, and no estimator can recover
a rank-r matrix consistently if the number of measurements n < � r

2� · �p
2 �.

PROPOSITION 2.4 (Lower bound). Assume that X is SROP from the stan-

dard normal distribution and that z1, . . . , zn
i.i.d.∼ N(0, σ 2). Then there exists a uni-

form constant C such that, when n > Crp and p, r ≥ 2, with probability at least
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1 − 26n−1,

inf
Â

sup
A∈Sp : rank(A)=r

Pz

(
‖Â − A‖2

F ≥ σ 2rp

192n

)
≥ 1 − e−pr/192,

inf
Â

sup
A∈Sp : rank(A)=r

Ez‖Â − A‖2
F ≥ σ 2rp

24n
,

where Â is any estimator of A, Ez,Pz are the expectation and probability with
respect to z.

When n < � r
2� · �p

2 � and p, r ≥ 2, then

inf
Â

sup
A∈Sp : rank(A)=r

Ez‖Â − A‖2
F = ∞.

3. Sub-Gaussian design and sub-Gaussian noise. We have focused on the
Gaussian design and Gaussian noise distribution in Section 2. These results can
be further extended to more general distributions. In this section, we consider the
case where the ROP design is from a symmetric sub-Gaussian distribution P and
the errors zi are also from a sub-Gaussian distribution. We say the distribution of
a random variable Z is sub-Gaussian with parameter τ if

P
(|Z| ≥ t

)≤ 2 exp
(−t2/

(
2τ 2)) for all t > 0.(3.1)

The following lemma provides a necessary and sufficient condition for symmetric
sub-Gaussian distributions.

LEMMA 3.1. Let P be a symmetric distribution and let the random variable
X ∼P . Define

αP = sup
k≥1

(
EX2k

(2k − 1)!!
)1/2k

.(3.2)

Then the distribution P is sub-Gaussian if and only if αP is finite.

For the sub-Gaussian ROP design and sub-Gaussian noise, we estimate the low-
rank matrix A by the estimator Â given in (1.3) with

ZG = {
z :‖z‖1/n ≤ 6τ

}
(3.3)

∩ {
z :
∥∥X ∗(z)

∥∥≤ 6α2
Pτ

(√
6n(p1 + p2) + 2

√
logn(p1 + p2)

)}
,

where αP is given in (3.2).

THEOREM 3.1. Suppose X :Rp1×p2 → R
n is ROP from a symmetric and

variance 1 sub-Gaussian distribution P . Assume that zi are i.i.d. sub-Gaussian
with parameter τ and Â is given by (1.3) with Z = ZG defined in (3.3). Then
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there exist constants C,W1,W2, δ which only depend on P , such that if n ≥
Cr(p1 + p2), we have

‖Â − A‖2
F ≤ W1τ

2 min
(

r logn(p1 + p2)
2

n2 + r(p1 + p2)

n
,1
)

(3.4)

+ W2
‖A−max(r)‖2∗

r

with probability at least 1 − 2/n − 5e−δ(p1+p2).

An exact recovery result in the noiseless case for the sub-Gaussian design fol-
lows directly from Theorem 3.1. If z = 0, then, with high probability, all rank-r
matrices A can be recovered exactly via the constrained nuclear minimization (2.1)
whenever n ≥ CPr(p1 + p2) for some constant CP > 0.

REMARK 3.1. For the SROP model considered in Section 2.4, we can simi-
larly extend the results to the case of sub-Gaussian design and sub-Gaussian noise.
Suppose X is SROP from a symmetric variance 1 sub-Gaussian distribution P
(other than the Rademacher ±1 distribution) and z satisfies (3.1). Define the esti-
mator of the low-rank matrix A by

Â = arg min
M∈Sp

{‖M‖∗ :
∥∥y −X (M)

∥∥
1/n ≤ 6τ,

∥∥X̃ ∗(ỹ − X̃ (M)
)∥∥≤ η

}
,(3.5)

where η = CP(
√

np + √
lognp) with CP some constant depending on P .

PROPOSITION 3.1. Suppose X :Rp×p → R
n is SROP from a symmetric

sub-Gaussian distribution P with variance 1. Also, assume that Var(P2) > 0
[i.e., Var(w2) > 0 where w ∼ P]. Let Â be given by (3.5). Then there exist con-
stants C,CP ,W1,W2 and δ which only depend on P , such that for n ≥ Crp,

‖Â − A‖2
F ≤ W1τ

2 min
(

rp2 logn

n2 + rp

n
,1
)

+ W2
‖A−max(r)‖2∗

r
(3.6)

with probability at least 1 − 2/n − 5e−δp .

By restricting Var(P2) > 0, Rademacher ±1 is the only symmetric and vari-
ance 1 distribution that has been excluded. The reason why the Rademacher ±1
distribution is an exception for the SROP design is as follows. If β(i) are i.i.d.
Rademacher ±1 distributed, then

[
X (A)

]
i = (

β(i))ᵀAβ(i) =
p∑

j=1

ajj + ∑
j �=k

β
(i)
j β

(i)
k ajk, i = 1, . . . , n.

So the only information contained in X (A) about diag(A) is trace(A), which
makes it impossible to recover the whole matrix A.
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4. Application to estimation of spiked covariance matrix. In this section,
we consider an interesting application of the methods and results developed in
the previous sections to estimation of a spiked covariance matrix based on one-
dimensional projections. As mentioned in the Introduction, spiked covariance ma-
trix model has been used in a wide range of applications and it has been well
studied in the context of PCA based on i.i.d. data where one observes i.i.d.
p-dimensional random vectors X(1), . . . ,X(n) with mean 0 and covariance matrix
�, where � = Ip + �0 and �0 being low-rank. See, for example, [4–6, 25]. Here,
we consider estimation of �0 (or equivalently �) based only on one-dimensional
random projections of X(i). More specifically, suppose that the random vectors
X(1), . . . ,X(n) are not directly observable and instead we observe

ξi = 〈
β(i),X(i)〉= p∑

j=1

β
(i)
j X

(i)
j , i = 1, . . . , n,(4.1)

where β(i) i.i.d.∼ N(0, Ip). The goal is to recover �0 from the projections {ξi, i =
1, . . . , n}.

Let y = (y1, . . . , yn)
ᵀ with yi = ξ2

i − β(i)ᵀβ(i). Note that

E
(
ξ2|β)= E

(∑
i,j

βiβjXiXj

∣∣∣β)=∑
i,j

βiβjσi,j = βᵀ�β

and so E(ξ2 − βᵀβ|β) = βᵀ�0β . Define a linear map X :Sp →R
n by[

X (A)
]
i = β(i)ᵀAβ(i).(4.2)

Then y can be formally written as

y = X (�0) + z,(4.3)

where z = y − X (�0). We define the corresponding X̃ and ỹ as in (2.14)
and (2.15), respectively, and apply the constraint nuclear norm minimization to
recover the low-rank matrix �0 by

�̂0 = arg min
M

{‖M‖∗ :
∥∥y −X (M)

∥∥≤ η1,
∥∥X̃ ∗(ỹ − X̃ (M)

)∥∥≤ η2
}
.(4.4)

The tuning parameters η1 and η2 are chosen as

η1 = c1

n∑
i=1

ξ2
i and η2 = 24c2

√√√√p

n∑
i=1

ξ4
i + 48c3p logn max

1≤i≤n
ξ2
i ,(4.5)

where c1 >
√

2, c2, c3 > 1 are constants.
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We have the following result on the estimator (4.4) for spiked covariance matrix
estimation.

THEOREM 4.1. Suppose n ≥ 3, we observe ξi, i = 1, . . . , n, as in (4.1), where

β(i) i.i.d.∼ N(0, Ip) and X(1), . . . ,X(n) i.i.d.∼ N(0,�) with � = Ip + �0 and �0 pos-
itive semidefinite and rank(�0) ≤ r . Let �̂0 be given by (4.4). Then there exist
uniform constants C, D, δ such that when n ≥ Drp,

‖�̂0 − �0‖2
F

(4.6)

≤ C min
(

rp

n
‖�‖2∗ + rp2 log4 n

n2

(‖�‖2∗ + log2 n‖�‖2),‖�‖2∗
)

with probability at least 1 − O(1/n) − 4 exp(−pδ) − 2√
2π logn

.

REMARK 4.1. We have focused estimation of spiked covariance matrices on
the setting where the random vectors X(i) are Gaussian. Similar to the discussion
in Section 3, the results given here can be extended to more general distributions
under certain moment conditions.

REMARK 4.2. The problem considered in this section is related to the so-
called covariance sketching problem considered in Dasarathy et al. [18]. In covari-
ance sketching, the goal is to estimate the covariance matrix of high-dimensional
random vectors X(1), . . . ,X(n) based on the low-dimensional projections

y(i) = QX(i), i = 1, . . . , n,

where Q is a fixed m × p projection matrix with m < p. The main differences
between the two settings are that the projection matrix in covariance sketch is the
same for all X(i) and the dimension m is still relatively large with m ≥ C

√
p log3 p

for some C > 0. In our setting, m = 1 and Q is random and varies with i. The
techniques for solving the two problems are very different. Comparing to [18], the
results in this section indicate that there is a significant advantage to have different
random projections for different random vectors X(i) as opposed to having the
same projection for all X(i).

5. Simulation results. The constrained nuclear norm minimization methods
can be efficiently implemented. The estimator Â proposed in Section 2.3 can be
implemented by the following convex programming:

minimize Tr(B1) + Tr(B2)

subject to
[

B1 A

AT B2

]
� 0,

∥∥y −X (A)
∥∥

1 ≤ λ1,(5.1)

∥∥X ∗(y −X (A)
)∥∥≤ λ2,



118 T. T. CAI AND A. ZHANG

with optimization variables B1 ∈ S
p1,B2 ∈ S

p2 , A ∈ R
p1×p2 . We use the CVX

package [22, 23] to implement the proposed procedures. In this section, a simula-
tion study is carried out to investigate the numerical performance of the proposed
procedures for low-rank matrix recovery in various settings.

We begin with the noiseless case. In this setting, Theorem 2.2 and Corollary 2.1
show that the nuclear norm minimization recovers a rank r matrix exactly when-
ever

n ≥ Cr max(p1,p2).(5.2)

A similar result holds for the Gaussian ensemble [13]. However, the minimum con-
stant C that guarantees the exact recovery with high probability is not specified in
either case. It is of practical interest to find the minimum constant C. For this
purpose, we randomly generate p1 × p2 rank-r matrices A as A = XᵀY , where
X ∈ R

r×p1 , Y ∈ R
r×p2 are i.i.d. Gaussian matrices. We compare ROP from the

standard Gaussian distribution and the Gaussian ensemble, with the number of
measurements n = Cr max(p1,p2) from a range of values of C using the con-
strained nuclear norm minimization (2.1). A recovery is considered successful if
‖Â − A‖F /‖A‖F ≤ 10−4. Figure 1 shows the rate of successful recovery when
p1 = p2 = 100 and r = 5.

The numerical results show that for ROP from the Gaussian distribution, the
minimum constant C to ensure exact recovery with high probability is slightly less
than 5 in the small scale problems (p1,p2 ≤ 100) we tested. The corresponding
minimum constant C for the Gaussian ensemble is about 4.5. Matrix completion
requires much larger number of measurements. Based on the theoretical analy-
ses given in [14, 35], the required number of measurements for matrix comple-
tion is O(μr(p1 + p2) log2(p1 + p2)), where μ ≥ 1 is some coherence constant
describing the “spikedness” of the matrix A. Hence, for matrix completion, the
factor C in (5.2) needs to grow with the dimensions p1 and p2 and it requires

FIG. 1. Rates of successful recovery for the ROP and Gaussian ensemble with p1 = p2 = 100,
r = 5, and n = Cr max(p1,p2) for C ranging from 3 to 6.
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C � μ log2(p1 + p2), which is much larger than what is needed for the ROP or
Gaussian ensemble. The required storage space for the Gaussian ensemble is much
greater than that for the ROP. In order to ensure accurate recovery of p × p ma-
trices of rank r , one needs at least 4.5rp3 bytes of space to store the measurement
matrices, which could be prohibitively large for the recovery of high-dimensional
matrices. In contrast, the storage space for the projection vectors in ROP is only
10rp2 bytes, which is far smaller than what is required by the Gaussian ensemble
in the high-dimensional case.

We then consider the recovery of approximately low-rank matrices to investi-
gate the robustness of the method against small perturbations. To this end, we ran-
domly draw 100 × 100 matrix A as A = U · diag(1,2−1/2, . . . , r−1/2) · V ᵀ, where
U ∈ R

100×r and V ∈ R
100×r are random matrices with orthonormal columns. We

then observe n = 2000 random rank-one projections with the measurement vectors
being i.i.d. Gaussian. Based on the observations, the nuclear minimization proce-
dure (2.1) is applied to estimate A. The results for different values of r are shown
in Figure 2. It can be seen from the plot that in this setting one can exactly recover
a matrix of rank at most 4 with 2000 measurements. However, when the rank r

of the true matrix A exceeds 4, the estimate is still stable. The theoretical result
in Proposition 2.1 bounds the loss (solid line) at O(‖A−max(4)‖2∗/4) (shown in the
dashed line) with high probability, which corresponds to Figure 2.

We now turn to the noisy case. The low-rank matrices A are generated by A =
XᵀY , where X ∈ R

r×p1 and Y ∈ R
r×p2 are i.i.d. Gaussian matrices. The ROP

X is from the standard Gaussian distribution and the noise vector z ∼ Nn(0, σ 2).
Based on (X , y) with y = X (A) + z, we compare our proposed estimator Â with

FIG. 2. Recovery accuracy (solid line) for approximately low-rank matrices with different values
of r , where p1 = p2 = 100, n = 2000, σ(A) = (1,1/

√
2, . . . ,1/

√
r). The dashed line is the theoret-

ical upper bound.
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the �1 constraint minimization estimator Â�1 [17] and the matrix Dantzig Selector
ÂDS [13], where

Â = arg min
M

{‖M‖∗ :y −X (M) ∈ Z1 ∩Z2
}
,

Â�1 = arg min
M

{‖M‖∗ :y −X (M) ∈ Z1
}
,

ÂDS = arg min
M

{‖M‖∗ :y −X (M) ∈ Z2
}
,

with Z1 = {z :‖z‖1/n ≤ σ } and Z2 = {z :‖X (z)‖ ≤ σ(
√

logn(p1 + p2) +√
n(p1 + p2))}. Note that Â�1 is similar to the estimator proposed in Chen et al.

[17], except their estimator is for symmetric matrices under the SROP but ours
is for general low-rank matrices under the ROP. Figure 3 compares the perfor-
mance of the three estimators. It can be seen from the left panel that for small n,
�1 constrained minimization outperforms the matrix Dantzig Selector, while our
estimator outperforms both Â�1 and ÂDS. When n is large, our estimator and ÂDS

are essentially the same and both outperforms Â�1 . The right panel of Figure 3
plots the ratio of the squared Frobenius norm loss of Â�1 to that of our estima-
tor. The ratio increases with n. These numerical results are consistent with the
observations made in Remark 2.3.

We now turn to the recovery of symmetric low-rank matrices under the SROP
model (2.12). Let X be SROP from the standard normal distribution. We consider
the setting where p = 40, n varies from 50 to 600, zi ∼ σ · U[−1,1] with σ =
0.1, 0.01, 0.001 or 0.0001, and A is randomly generated as rank-5 matrix by the
same procedure discussed above. The setting is identical to the one considered in

FIG. 3. Left panel: Comparison of the proposed estimator with Â�1 and ÂDS for p1 = p2 = 50,
r = 4, σ = 0.01, and n ranging from 850 to 1200. Right panel: Ratio of the squared Frobenius norm
loss of Â�1 to that of the proposed estimator for p1 = p2 = 50, r = 4, and n varying from 2000
to 15,000.
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Section 5.1 of [17]. Although we cannot exactly repeat the simulation study in [17]
as they did not specify the choice of the tuning parameter, we can implement both
our procedure

Â = arg min
M

{
‖M‖∗ :

∥∥y −X (M)
∥∥

1 ≤ nσ

2
,

∥∥X̃ ∗(ỹ − X̃ (M)
)∥∥≤ σ(

√
lognp + √

np)

3

}
and the estimator Â�1 with only the �1 constraint which was proposed by Chen
et al. [17]

Â�1 = arg min
M

{
‖M‖∗ :

∥∥y −X (M)
∥∥

1 ≤ nσ

2

}
.

The results are given in Figure 4. It can be seen that our estimator Â outperforms
the estimator Â�1 .

5.1. Data driven selection of tuning parameters. We have so far considered
the estimators

Â = arg min
B

{‖B‖∗ :
∥∥y −X (B)

∥∥
1/n ≤ λ,

∥∥X ∗(y −X (B)
)∥∥≤ η

}
,(5.3)

Â = arg min
M

{‖M‖∗ :
∥∥y −X (M)

∥∥
1/n ≤ λ,

∥∥X̃ ∗(ỹ − X̃ (M)
)∥∥≤ η

}
(5.4)

for the ROP and SROP, respectively. The theoretical choice of the tuning param-
eters λ and η depends on the knowledge of the error distribution such as the vari-
ance. In real applications, such information may not be available and/or the theo-

FIG. 4. Comparison of the proposed estimator Â with the Â�1 . Here p = 40, r = 5,
σ = 0.1,0.01,0.001,0.0001 and n ranges from 50 to 800.
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retical choice may not be the best. It is thus desirable to have a data driven choice
of the tuning parameters. We now introduce a practical method for selecting the
tuning parameters using K-fold cross-validation.

Let (X , y) = {(Xi, yi), i = 1, . . . , n} be the observed sample and let T be a grid
of positive real values. For each t ∈ T , set

(λ, η) = (
λ(t), η(t)

)
(5.5)

=
{(

t, t
(√

logn(p1 + p2) + √
n(p1 + p2)

))
, for ROP;(

t, t (
√

lognp + √
np)

)
, for SROP.

Randomly split the n samples (Xi, yi), i = 1, . . . , n into two groups of sizes
n1 ∼ (K−1)n

K
and n2 ∼ n

K
for I times. Denote by J i

1, J i
2 ⊆ {1, . . . , n} the index

sets for Groups 1 and 2, respectively, for the ith split. Apply our procedure [(5.3)
for ROP and (5.4) for SROP, resp.] to the sub-samples in Group 1 with the tuning
parameters (λ(t), η(t)) and denote the estimators by Âi(t), i = 1, . . . , I . Evaluate
the prediction error of Âi(t) over the subsample in Group 2 and set

R̂(t) =
I∑

i=1

∑
j∈J i

2

∣∣yj − 〈
Ai(t),Xj

〉∣∣2, t ∈ T .

We select

t∗ = arg min
T

R̂(t)

and choose the tuning parameters (λ(t∗), η(t∗)) as in (5.5) with t = t∗ and the final
estimator Â based on (5.3) or (5.4) with the chosen tuning parameters.

We compare the numerical result by 5-fold cross-validation with the result based
on the known σ by simulation in Figure 5. Both the ROP and SROP are consid-

FIG. 5. Comparison of the performance with cross validation and without cross-validation in both
ROP and SROP. Left panel: ROP, p1 = p2 = 30, r = 4, n varies from 750 to 1400. Right panel:
SROP, p = 40, r = 5, n varies from 50 to 800.
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FIG. 6. Original grayscale MIT logo.

ered. It can be seen that the estimator with the tuning parameters chosen through
5-fold cross-validation has the same performance as or outperforms the one with
the theoretical choice of the tuning parameters.

5.2. Image compression. Since a two-dimensional image can be considered
as a matrix, one approach to image compression is by using low-rank matrix ap-
proximation via the singular value decomposition. See, for example, [2, 36, 40].
Here, we use an image recovery example to further illustrate the nuclear norm
minimization method under the ROP model.

For a grayscale image, let A = (ai,j ) ∈ R
m×n be the intensity matrix associated

with the image, where aij is the grayscale intensity of the (i, j) pixel. When the
matrix A is approximately low-rank, the ROP model and nuclear norm minimiza-
tion method can be used for image compression and recovery. To illustrate this
point, let us consider the following grayscale MIT Logo image (Figure 6).

The matrix associated with MIT logo is of the size 50 × 80 and of rank 6.
We take rank-one random projections X (A) as the observed sample, with various
sample sizes. Then the constrained nuclear norm minimization method is applied
to reconstruct the original low-rank matrix. The recovery results are shown in Fig-
ure 7. The results show that the original image can be compressed and recovered
well via the ROP model and the nuclear norm minimization.

6. Discussions. This paper introduces the ROP model for the recovery of
general low-rank matrices. A constrained nuclear norm minimization method is
proposed and its theoretical and numerical properties are studied. The proposed
estimator is shown to be rate-optimal when the number of rank-one projections
n � logn(p1 + p2) or n ∼ r(p1 + p2). It is also shown that the procedure is adap-
tive to the rank and robust against small perturbations. The method and results are

FIG. 7. Recovery of MIT logo based on different number of measurements. Left: 900; Middle: 1000;
Right: 1080.
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applied to estimation of a spiked covariance matrix. It is somewhat unexpected
that it is possible to accurately recover a spiked covariance matrix from only one-
dimensional projections. An interesting open problem is to estimate the principal
components/subspace based on the one-dimensional random projections. We leave
this as future work.

In a recent paper, Chen et al. [17] considered quadratic measurements for the
recovery of symmetric positive definite matrices, which is similar to the special
case of SROP that we studied here. The paper was posted on arXiv as we finish
writing the present paper. They considered the noiseless and �1 bounded noise
cases and introduced the so-called “RIP-�2/�1” condition. The “RIP-�2/�1” con-
dition is similar to RUB in our work. But these two conditions are not identical
as the RIP-�2/�1 condition can only be applied to symmetric low-rank matrices as
only symmetric operators are considered in the paper. In contrast, RUB applies to
all low-rank matrices.

Chen et al. ([17] version 4) considered �1-bounded noise case under the SROP
model and gave an upper bound in their Theorem 3 (after a slight change of nota-
tion)

‖�̂ − �‖F ≤ C1
‖� − ��‖∗√

r
+ C2

ε

n
.(6.1)

This result for �1 bounded noise case is not applicable to the i.i.d. random noise
setting. When the entries of the noise term η ∈ R

n are of constant order, which is
the typical case for i.i.d. noise with constant variance, one has ‖η‖1 ∼ Cn with
high probability. In such a case, the term C2

ε1
n

on the right-hand side of (6.1) does
not even converge to 0 as the sample size n → ∞.

In comparison, the bound (3.6) in Proposition 3.1 can be equivalently rewrit-
ten as

‖Â − A‖F ≤ W2
‖A−max(r)‖∗√

r
+ W1τ min

(√
r lognp

n
+
√

rp

n
,1
)
,(6.2)

where the first term W2
‖A−max(r)‖∗√

r
is of the same order as C1

‖�−��‖∗√
r

in (6.1)
while the second term decays to 0 as n → ∞. Hence, for the recovery of rank-r
matrices, as the sample size n increases our bound decays to 0 but the bound (6.1)
given in Chen et al. [17] does not. The main reason of this phenomenon lies in
the difference in the two methods: we use nuclear norm minimization under two
convex constraints (see Remark 2.3), but Chen et al. [17] used only the �1 con-
straint. Both theoretical results (see Remark 2.3) and numerical results (Figure 3
in Section 5) show that the additional constraint Z2 improves the performance of
the estimator.

Moreover, the results and techniques in [17] for symmetric positive definite
matrices are not applicable to the recovery of general nonsymmetric matrices. This
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is due to the fact that for a nonsymmetric square matrix A = (aij ), the quadratic
measurements (β(i))ᵀAβ(i) satisfy(

β(i))ᵀAβ(i) = (
β(i))ᵀAsβ(i),

where As = 1
2(A + Aᵀ). Hence, for a nonsymmetric matrix A, only its sym-

metrized version As can be possibly identified and estimated based on the
quadratic measurements, the matrix A itself is neither identifiable nor estimable.

7. Proofs. We prove the main results in this section. We begin by collecting a
few important technical lemmas that will be used in the proofs of the main results.
The proofs of some of these technical lemmas are involved and are postponed to
the supplementary material [11].

7.1. Technical tools. Lemmas 7.1 and 7.2 below are used for deriving the RUB
condition (see Definition 2.1) from the ROP design.

LEMMA 7.1. Suppose A ∈ R
p1×p2 is a fixed matrix and X is ROP from a

symmetric sub-Gaussian distribution P , that is,[
X (A)

]
j = β(j)T Aγ (j), j = 1, . . . , n,

where β(j) = (β
(j)
1 , . . . , β

(j)
p1 )T , γ (j) = (γ

(j)
1 , . . . , γ

(j)
p2 )T are random vectors with

entries i.i.d. generated from P . Then for δ > 0, we have(
1

3α4
P

− 2α2
Pδ − α2

Pδ2
)
‖A‖F ≤ ∥∥X (A)

∥∥
1/n ≤ (

1 + 2α2
Pδ + α2

Pδ2)‖A‖F

with probability at least 1 − 2 exp(−δ2n). Here, αP is defined by (3.2).

LEMMA 7.2. Suppose A ∈ R
p1×p2 is a fixed matrix. β = (β1, . . . , βp1)

T , γ =
(γ1, . . . , γp2)

T are random vectors such that β1, . . . , βp1, γ1, . . . , γp2

i.i.d.∼ P , where
P is some symmetric variance 1 sub-Gaussian distribution, then we have

‖A‖F

3α4
P

≤ E
∣∣βT Aγ

∣∣≤ ‖A‖F ,

where αP is given by (3.2).

Let z ∈ R
n be i.i.d. sub-Gaussian distributed. By measure concentration theory,

‖z‖p
p/n, 1 ≤ p ≤ ∞, are essentially bounded; specifically, we have the following

lemma.
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LEMMA 7.3. Suppose z ∈ R
n and zi

i.i.d.∼ N(0, σ 2), we have

P
(‖z‖1 ≥ σn

)≤ 9

n
,

P
(‖z‖2 ≥ σ

√
n + 2

√
n logn

)≤ 1

n
,

P
(‖z‖∞ ≥ 2σ

√
logn

)≤ 1

n
√

2π logn
.

More general, when zi are i.i.d. sub-Gaussian distributed such that (3.1) holds,
then

P
(‖z‖1 ≥ Cn

)≤ exp
(
−n(C − 2

√
2πγ )2

2γ 2

)
∀C > 2

√
2πγ,

P
(‖z‖2 ≥ √

Cn
)≤ exp

(
−n(C − 4γ 2)2

8γ 2C

)
∀C > 4γ 2,

P
(‖z‖∞ ≥ Cγ

√
logn

)≤ 2n−C2/2−1 ∀C > 0.

Lemma 7.4 below presents an upper bound for the spectral norm of X (z) for a
fixed vector z.

LEMMA 7.4. Suppose X is ROP from some symmetric sub-Gaussian distri-
bution P and z ∈ R

n is some fixed vector, then for C > log 7, we have∥∥X ∗(z)
∥∥≤ 3α2

P
(
C(p1 + p2)‖z‖∞ +

√
2C(p1 + p2)‖z‖2

)
with probability at least 1 − 2 exp(−(C − log 7)(p1 + p2)). Here, αP is defined
by (3.2).

We are now ready to prove the main results of the paper.

7.2. Proof of Theorem 2.1. We introduce the following two technical lemmas
that will be used in the proof of theorem.

The null space property below is a well-known result in affine rank minimiza-
tion problem (see [32]). It provides a necessary, sufficient and easier-to-check con-
dition for exact recovery in the noiseless setting.

LEMMA 7.5 (Null space property). Using (2.1), one can recover all matrices
A of rank at most r if and only if for all R ∈ N (X ) \ {0},

‖Rmax(r)‖∗ < ‖R−max(r)‖∗.

The following lemma is given in [10], which provides a way to decompose the
general vectors to sparse ones.
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LEMMA 7.6 (Sparse representation of a polytope). Suppose s is a nonnegative
integer, v ∈ R

p and θ ≥ 0. Then ‖v‖∞ ≤ θ,‖v‖1 ≤ sθ , if and only if v can be
expressed as a weighted mean,

v =
N∑

i=1

λiui, 0 ≤ λi ≤ 1,

N∑
i=1

λi = 1,

where ui satisfies

ui is s-sparse, supp(ui) ⊆ supp(v),
(7.1)

‖ui‖1 = ‖v‖1, ‖ui‖∞ ≤ θ.

For the proof of Theorem 2.1, by null space property (Lemma 7.5), we only
need to show for all nonzero R with X (R) = 0, we must have ‖Rmax(r)‖∗ <

‖R−max(r)‖∗.
If this does not hold, suppose there exists nonzero R with X (R) = 0 and

‖Rmax(r)‖∗ ≥ ‖R−max(r)‖∗. We denote p = min(p1,p2) and assume the singular
value decomposition of R is

R =
p∑

i=1

σiuiv
ᵀ
i = U diag(�σ)V ᵀ,

where ui , vi are orthogonal basis in R
p1 , Rp2 , respectively, and �σ is the singular

value vector such that σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. Without loss of generality, we can
assume p ≥ kr , otherwise we can set the undefined entries of σ as 0.

Consider the singular value vector �σ = (σ1, σ2, . . . , σp), we note that �σ−max(kr)

satisfies

‖�σ−max(kr)‖∞ ≤ σkr,

‖�σ−max(kr)‖1 = ‖�σ−max(r)‖1 − (σr+1 + · · · + σkr)

≤ ‖�σ−max(r)‖1 − (k − 1)rσkr

≤ ‖�σmax(r)‖1 − (k − 1)rσkr .

Denote θ = max{σkr, (‖�σmax(r)‖1 − r(k − 1)σkr)/(kr)}, by the two inequali-
ties above we have ‖�σ−max(kr)‖∞ ≤ θ and ‖�σ−max(kr)‖1 ≤ krθ . Now apply
Lemma 7.6, we can get b(i) ∈ R

p,λi ≥ 0, i = 1, . . . ,N such that
∑N

i=1 λi = 1,
�σ−max(kr) =∑N

i=1 λib
(i) and

supp
(
b(i))⊆ supp(�σ−max(kr)),

∥∥b(i)
∥∥

0 ≤ kr,
(7.2) ∥∥b(i)

∥∥
1 = ‖�σ−max(kr)‖1,

∥∥b(i)
∥∥∞ ≤ θ,

which leads to∥∥b(i)
∥∥

2 ≤
√∥∥b(i)

∥∥
1 · ∥∥b(i)

∥∥∞ ≤
√(‖�σmax(r)‖1 − r(k − 1)σkr

) · θ.
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If θ = σkr , we have∥∥b(i)
∥∥

2 ≤
√(‖�σmax(r)‖1 − r(k − 1)σkr

)
σkr

≤
√(

‖�σmax(r)‖1 − r(k − 1)
‖�σmax(r)‖1

2r(k − 1)

)‖�σmax(r)‖1

2r(k − 1)

≤ ‖�σmax(r)‖1√
4r(k − 1)

≤ ‖�σmax(r)‖2√
4(k − 1)

.

If θ = (‖�σmax(r)‖1 − r(k − 1)σkr)/(kr), we have

∥∥b(i)
∥∥

2 ≤
√

1

kr

(‖�σmax(r)‖1 − r(k − 1)σkr

)≤
√

1

kr
‖�σmax(r)‖1 ≤ ‖�σmax(r)‖2√

k
.

Since k ≥ 2, we always have ‖b(i)‖2 ≤ ‖�σmax(r)‖2/
√

k. Finally, we define Bi =
U diag(b(i))V ᵀ, then the rank of Bi are all at most kr and

∑N
i=1 λiBi = R−max(kr)

and

‖Bi‖F = ∥∥b(i)
∥∥

2 ≤ ‖�σmax(r)‖2/
√

k = ‖Rmax(r)‖F /
√

k.

Hence,

0 = ∥∥X (R)
∥∥

1 ≥ ∥∥X (Rmax(kr))
∥∥

1 − ∥∥X (R−max(kr))
∥∥

1

≥ C1‖Rmax(kr)‖F −
N∑

i=1

∥∥X (λiBi)
∥∥

1

≥ C1‖Rmax(r)‖F −
N∑

i=1

λiC2‖Bi‖F

≥ C1‖Rmax(r)‖F − C2‖Rmax(r)‖F /
√

k > 0.

Here, we used the RUB condition. The last inequality is due to C2/C1 <
√

k and
R �= 0 (so Rmax(r) �= 0). This is a contradiction, which completes the proof of the
theorem.

7.3. Proof of Theorem 2.2. Notice that for P as standard Gaussian distribu-
tion, the constant αP [defined as (3.2)] equals 1. We will prove the following more
general result than Theorem 2.2 instead. The proof is provided in the supplemen-
tary material [11].

PROPOSITION 7.1. Suppose X :Rp1×p2 → R
n is ROP from some variance

1 symmetric sub-Gaussian distribution P . For integer k ≥ 2, positive C1 < 1
3α4

P
[αP is defined as (3.2)] and C2 > 1, there exists constants C and δ, only depending
on P,C1,C2 but not on p1,p2, r , such that if n ≥ Cr(p1 + p2), then with proba-
bility at least 1 − e−nδ , X satisfies RUB of order kr and constants C1 and C2.
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7.4. Proof of Theorems 2.3 and 3.1, Proposition 2.1. In order to prove the
result, we introduce the following technical lemma as an extension of null space
property (Lemma 7.5) from exact low-rank into the approximate low-rank setting.

LEMMA 7.7. Suppose A∗,A ∈ R
p1×p2 , R = A∗ − A. If ‖A∗‖∗ ≤ ‖A‖∗, we

have

‖R−max(r)‖∗ ≤ ‖Rmax(r)‖∗ + 2‖A−max(r)‖∗.(7.3)

The following two lemmas described the separate effect of constraint Z1 =
{z :‖z‖1/n ≤ λ1} and Z2 = {z :‖X ∗(z)‖ ≤ λ2} on the estimator.

LEMMA 7.8. Suppose X satisfies RUB condition of order kr with constants
C1,C2 such that C1 > C2/

√
k. Assume that A∗,A ∈ R

p1×p2 satisfy ‖A∗‖∗ ≤
‖A‖∗, ‖X (A∗ − A)‖1/n ≤ λ1. Then we have

‖A∗ − A‖F ≤ 2

C1 − C2/
√

k
λ1 +

(
3√

kC1/C2 − 1
+ 1√

k − 1

)‖A−max(r)‖∗√
r

.

LEMMA 7.9. Suppose X satisfies RUB condition of order kr with constants
C1,C2 such that C1 > C2/

√
k. Assume that ÂDS satisfies ‖X ∗X (A∗ − A)‖ ≤ λ2.

Then we have

‖A∗ − A‖F ≤ 4

(C1 − C2/
√

k)2
·
√

rλ2

n

+
(

5√
kC1/C2 − 1

+ 1√
k − 1

+ 1
)‖A−max(r)‖∗√

r
.

The proof of Lemmas 7.7, 7.8 and 7.9 are listed in the supplementary material
[11]. Now we prove Theorem 2.3 and Proposition 2.1. We only need to prove
Proposition 2.1 since Theorem 2.3 is a special case of Proposition 2.1. By Lemmas
7.3 and 7.4, we have

Pz

(‖z‖1 ≤ σn
)≤ 9

n
,

PX ,z

(∥∥X ∗(z)
∥∥≥ σ

(
12(p1 + p2)

√
logn + 6

√
2(p1 + p2)n

))
≤ PX

(∥∥X ∗(z)
∥∥≥ (

6(p1 + p2)‖z‖∞ + 6
√

p1 + p2‖z‖2
))

+ Pz

(‖z‖∞ ≥ 2σ
√

logn
)+ Pz

(‖z‖2 ≥ σ
√

2n
)

≤ 2 exp
(−(2 − log 7)(p1 + p2)

)+ 1

n
√

2π logn
+ 1

n
.
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Here, PX (Pz or PX ,z) means the probability with respect to X [z or (X , z)].
Hence, we have

P(z ∈ Z1 ∩Z2) ≥ 1 − 2 exp
(−(2 − log 7)(p1 + p2)

)− 11

n
.

Under the event that z ∈Z1 ∩Z2, A is in the feasible set of the programming (2.6),
which implies ‖Â‖∗ ≤ ‖A‖∗ by the definition of Â. Moreover, we have∥∥X (Â − A)

∥∥
1/n ≤ ∥∥y −X (A)

∥∥
1/n + ∥∥y −X (Â)

∥∥
1/n

≤ ‖z‖1/n + ∥∥y −X (Â)
∥∥

1/n ≤ 2σ,∥∥X ∗X (Â − A)
∥∥≤ ∥∥X ∗(y −X (Â)

)∥∥+ ∥∥X ∗(y −X (A)
)∥∥

≤ ∥∥X ∗(y −X (Â)
)∥∥+ ∥∥X ∗(z)

∥∥≤ 2η.

On the other hand, suppose k = 10, by Theorem 2.2, we can have find a uniform
constant C and δ such that if n ≥ Crk(p1 + p2), X satisfies RUB of order 10r

and constants C1 = 0.32,C2 = 1.02 with probability at least 1 − e−nδ′
. Hence, we

have D(= Ck) and δ′ such that if n ≥ Dr(p1 + p2), X satisfies RUB of order 10r

and constants C1,C2 satisfying C2/C1 <
√

10 with probability at least 1 − e−nδ′
.

Now under the event that:

1. X satisfies RUB of order 10r and constants C1,C2 satisfying C2/C1 <
√

10,
2. z ∈ Z1 ∩Z2,

apply Lemmas 7.8 and 7.9 with A∗ = Â, we can get (2.11). The probability that
these two events both happen is at least 1 − 2 exp(−(2 − log 7)(p1 + p2)) − 11

n
−

exp(−δ′n). Set δ = min(2 − log 7, δ′), we finished the proof of Proposition 2.1.
For Theorem 3.1, the proof is similar. We apply the latter part of Lem-

mas 7.3 and 7.4 and get

P(z /∈ Z1 ∩Z2)

≤ P
(‖z‖1/n > 6τ

)
+ P

(∥∥X (z)
∥∥> τα2

P
(
6
√

6n(p1 + p2) + 12
√

logn(p1 + p2)
))

≤ P
(‖z‖/n > 6τ

)+ P
(‖z‖2 >

√
6nτ

)+ P
(‖z‖∞ > 2

√
lognτ

)
+ PX

(∥∥X (z)
∥∥> α2

P
(
6(p1 + p2)‖z‖∞ + 6

√
p1 + p2‖z‖2

))
≤ exp

(−n(6 − 2
√

2π)2/2
)+ exp(−n/12)

+ 2

n
+ 2 exp

(−(2 − log 7)(p1 + p2)
)
.

Besides, we choose k > (3α4
P)2, then we can find C1 < 1/(3α4

P) and C2 > 1 such
that C2/C1 <

√
k. Apply Proposition 7.1, there exists C,δ′ only depending on P ,
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C1,C2 such that if n ≥ Ckr(p1 + p2), X satisfies RUB of order kr with constants
C1 and C2 with probability at least 1 − exp(−δ′(p1 + p2)). Note that C1,C2 only
depends on P , we can conclude that there exist constants D(= Ck), δ′ only de-
pending on P such that if n ≥ Dr(p1 + p2), X satisfies RUB of order kr with
constants C1,C2 satisfying C2/C1 ≤ √

k.
Similarly, to the proof of Proposition 2.1, under the event that:

1. X satisfies RUB of order kr and constants C1,C2 satisfying C2/C1 <
√

k,
2. z ∈Z1 ∩Z2,

we can get (3.4) (we shall note that W1 depends on P , so its value can also
depend on αP ). The probability that those events happen is at least 1 − 2/n −
5 exp(−δ(p1 + p2)) for δ ≤ min((6 − 2

√
2π)2/2,1/12,2 − log 7, δ′).

7.5. Proof of Theorem 2.4. Without loss of generality, we assume that
p1 ≤ p2. We consider the class of rank-r matrices

Fc = {
A ∈ R

p1×p2 :Aij = 0, whenever i ≥ r + 1
}

namely the matrices with all nonzero entries in the first r rows. The model (1.1)
become

yi = β
(i)T
1 : r Arγ

(i) + zi, i = 1, . . . , n,

where β
(i)
1 : r is the vector of the first to the r th entries of β(i). Note that this is

a linear regression model with variable Ar ∈ R
r×p2 , by Lemma 3.11 in [13], we

have

inf
Â

sup
A∈Fc

E
∥∥Â(y) − A

∥∥2
F = σ 2 trace

[(
X ∗

r Xr

)−1]
,(7.4)

inf
Â

sup
A∈Fc

E
∥∥Â(y) − A

∥∥2
F = ∞ when X ∗

r Xr is singular,(7.5)

where Xr :Rr×p2 → R
n is the X constrained on Fc, Then Xr sends Ar to

(β
(1)
1 : rArγ

(1), . . . , β
(n)
1 : rArγ

(n))ᵀ. When n < p2r , Xr is singular, hence we
have (2.10).

When n ≥ p2r , we can see in order to show (2.9), we only need to show
trace(X ∗

r Xr ) ≥ p2r
2n

with probability at least 1−26n−1. Suppose the singular value
of Xr are σi(Xr ), i = 1, . . . , rp2, then trace(X ∗

r Xr ) =∑p2r
i=1 σ−2(Xr ).

Suppose X is ROP while B ∈ R
r×p2 is i.i.d. standard Gaussian random matrix

(both X and Br are random). Then by some calculation, we can see

EB,Xr

∥∥Xr (B)
∥∥2

2 = nEB,β,γ

(
β
ᵀ
1 : rBγ

)2 = n

r∑
j=1

p2∑
k=1

E(βjBjkγk)
2 = np2r.
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Note (0.20) in the proof of Lemma 7.1 in the supplementary material [11], we
know E(β

(i)T
1 : r Bγ (i)‖4

2|B) ≤ 9‖B‖4
F . Hence,

E
∥∥Xr (B)

∥∥4
2 =

n∑
i=1

E
(
β

(i)T
1 : r Bγ (i))4

+ 2
∑

1≤i<l≤n

E

n∑
j=1

(
β

(i)T
1 : r Bγ (i))2 · E

n∑
j=1

(
β

(l)T
1 : r Bγ (l))2

= n · 9E‖B‖4
F + n(n − 1)(p2r)

2

= 9nE
(
χ2(p2r)

)2 + n(n − 1)p2
2r

2

= 9n
(
p2

2r
2 + 2p2r

)+ n(n − 1)p2
2r

2

= n2p2
2r

2 + 2np2r(4p2r + 9) ≤ n2p2
2r

2 + 26np2
2r

2
2 .

Besides,

E
∥∥Xr (Br)

∥∥2
2 = E

(
E
(∥∥Xr (Br)

∥∥2
2|Xr

))= E

(rp2∑
i=1

σ 2
i (Xr )

)
,

E
∥∥Xr (Br)

∥∥4
2 = E

(
E
(∥∥Xr (Br)

∥∥4
2|Xr

))
= E

(rp2∑
i=1

3σ 4
i (Xr ) + 2

∑
1≤i<j≤rp2

σ 2
i (Xr )σ

2
j (Xr )

)

≥ E

(rp2∑
i=1

σ 2
i (Xr )

2

)2

.

Hence,

E

(rp2∑
i=1

σ 2
i (Xr )

2

)
= np2r,

Var

(rp2∑
i=1

σ 2
i (Xr )

2

)
= E

(rp2∑
i=1

σ 2
i (Xr )

2

)2

−
(
E

rp2∑
i=1

σ 2
i (Xr )

2

)2

≤ 26np2
2r

2.

Then by Chebyshev’s inequality, we have

rp2∑
i=1

σ 2
i (Xr ) ≤ 2np2r(7.6)
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with probability at least 1 − 26np2
2r2

(npr)2 = 1 − 26
n

. By Cauchy–Schwarz’s inequality,
we have

trace
((
X ∗

r Xr

)−1)=
rp2∑
i=1

σ−2
i (Xr ) ≥ (p2r)

2∑rp2
i=1 σ 2

i (Xr )
.

Therefore, we have

trace
((
X ∗

r Xr

)−1)≥ p2r

2n

with probability at least 1 − 26/n, which shows (2.9).
Finally, we consider (2.8). Suppose inequality (7.6) holds, then∣∣{i :σ 2

i (Xr) ≥ 4n
}∣∣≤ p2r

2

⇒
∣∣∣∣
{
i :σ−2

i (Xr) ≤ 1

4n

}∣∣∣∣≥ p2r

2
(7.7)

⇒
∣∣∣∣
{
i :σ−2

i (Xr) ≥ 1

4n

}∣∣∣∣≥ p2r

2
.

By Lemma 3.12 in [13], we know

inf
Â

sup
A∈Fc

Pz

(
‖Â − A‖2

F ≥ p2rσ
2

16n

)

= inf
Â

sup
A∈Fc

Ez1{x≥p2rσ
2/16n}

(‖Â − A‖2
F

)
= Ez1{x≥p2rσ

2/16n}
(∥∥(X ∗

r Xr

)−1X ∗
r (z)

∥∥2
F

)
= Pz

(∥∥(X ∗
r Xr

)−1X ∗
r (z)

∥∥2
F ≥ p2rσ

2

16n

)
,

where 1{x≥p2rσ
2/16n}(·) is the indicator function. Note that when z

i.i.d.∼ N(0, σ 2),

‖(X ∗
r Xr )

−1X ∗
r (z)‖2

F is identical distributed as
∑rp2

i=1
y2
i

σ 2
i (Xr )

, where y1, . . . ,

yrp2

i.i.d.∼ N(0, σ 2), hence,

P

(∥∥(X ∗
r Xr

)−1X ∗
r (z)

∥∥2
F ≤ p2rσ

2

16n

)

= P

(rp2∑
i=1

y2
i

σ 2
i (Xr )

≤ p2rσ
2

16n

)

≤ P

( ∑
i : σ−2

i (Xr )≥1/(4n)

y2
i σ−2

i (Xr ) ≤ p2rσ
2

16n

)
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≤ P

( ∑
i : σ−2

i (Xr )≥1/(4n)

y2
i

4n
≤ p2rσ

2

16n

)
≤ P

(
χ2

(⌈
rp2

2

⌉)
≤ p2r

4

)

≤ exp
(
−rp2

32

)
.

The last inequality is due to the tail bound of χ2 distribution given by Lemma 1
in [28]; the second last inequality is due to (7.7). In summary, when (7.6) holds,
we have

inf
Â

sup
A∈Fc

Pz

(
‖Â − A‖2

F ≥ p2rσ
2

16n

)
≤ exp

(
−rp2

32

)
.

Finally, since p2 ≥ (p1 + p2)/2, we showed that with probability at least 1 −
26n−1, X satisfies (2.8).

7.6. Proof of Theorem 4.1. We first introduce the following lemma about the
upper bound of ‖z‖1,‖z‖2,‖z‖∞.

LEMMA 7.10. Suppose z is defined as (4.3), then for constants C1 >
√

2,
M1 > 1, we have

P

(
‖z‖1/n ≤ C1

n

n∑
i=1

ξ2
i

)
≥ 1 − 9C2

1 + 6

n(C1 − √
2)2

,

(7.8)

P

(
C1

n

n∑
i=1

ξ2
i ≤ M1C1‖�‖∗

)
≥ 1 − 9

n(M1 − 1)2 ;

for constants C2 > 1, M2 > 9,

P

(
‖z‖2

2/n ≤ C2
2
∑n

i=1 ξ4
i

n

)
≥ 1 − 105(105C4

2 + 60)

n(3C2
2 − 2)2

,

(7.9)

P

(
C2

2
∑n

i=1 ξ4
i

n
≤ M2C

2
2‖�‖2∗

)
≥ 1 − 1052

n(M1 − 9)2 ;

for constants C3 > 1, M3 > 1,

P
(
‖z‖∞ ≤ C3 logn max

1≤i≤n
ξ2
i

)
≥ 1 − 2√

2πC3 logn
,

P
(
C3 logn max

1≤i≤n
ξ2
i ≤ 2C3M3 log2 n

(√‖�‖∗ +
√

2M3 logn‖�‖)2)(7.10)

≥ 1 − 2n−M3+1.
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The proof of Lemma 7.10 is listed in the supplementary material [11]. The rest
of the proof is basically the same as Proposition 2.3. Suppose X1,X2 and z̃ are
given by (0.36), (0.37) and (0.39) in the supplementary material [11], then X1, X2

are ROP. By Lemma 7.4,

∥∥X ∗
1 (z̃)

∥∥≤ 6
(
2p‖z̃‖∞ +

√
2p‖z̃‖2

)
,(7.11)

∥∥X ∗
2 (z̃)

∥∥≤ 6
(
2p‖z̃‖∞ +

√
2p‖z̃‖2

)
(7.12)

with probability at least 1 − 4 exp(−2(2 − log 7)p). Hence, there exists δ > 0 such
that

P
(
�0 is NOT in the feasible set of (4.4)

)
= P

(‖z‖1/n > η1 or
∥∥X̃ ∗(z̃)

∥∥> η2
)

≤ P

(
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n

n∑
i=1

ξ2
i

)
+ P

(
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1≤i≤n
ξ2
i

)

+ P

(
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√√√√2
n∑
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ξ4
i

)

+ P
(∥∥X̃ ∗(z)

∥∥> 24p‖z̃‖∞ + 12
√

2p‖z̃‖2
)

≤ P

(
‖z‖1/n >

c1

n

n∑
i=1

ξ2
i

)
+ P

(
‖z‖∞ > c3 logn max

1≤i≤n
ξ2
i

)

+ P

(
‖z‖2 > c2

√√√√ n∑
i=1

ξ4
i

)

+ P
(∥∥X ∗

1 (z̃)
∥∥> 12p‖z̃‖∞ + 6

√
2p‖z̃‖2

)
+ P

(∥∥X ∗
2 (z)

∥∥> 12p‖z̃‖∞ + 6
√

2p‖z̃‖2
)

≤ O(1/n) + 4 exp
(−2(2 − log 7)p

)+ 2√
2πc3 logn

.

Here, we used the fact that X̃ ∗ = X ∗
1 +X ∗

2 ,

‖z̃‖2 =
√√√√√�n/2�∑

i=1

(z2i−1 − z2i )2 ≤
√√√√√�n/2�∑

i=1

2
(
z2

2i−1 + z2
2i

)≤ √
2‖z‖2,

‖z̃‖∞ = max
i

|z2i−1 − z2i | ≤ 2 max
i

|zi | ≤ 2‖z‖∞.
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Similarly to the proof of Proposition 2.3, since X1 is ROP, there exists constants D

and δ′ such that if n ≥ Drp, X1 satisfies RUB of order 10k with constants C1,C2
satisfying C2/C1 <

√
10 with probability at least 1 − e−nδ′

.
Now under the event that:

1. A is feasible in (4.4),
2. X1 satisfies RUB of order 10k with constants C1,C2 satisfying C2/C1 <√
10,
3. the latter part of (7.8), (7.9) and (7.10) hold for some M1 > 1, M2 > 9,

M3 > 2,

we can prove (4.6) similarly as the proof of Proposition 2.3, which we omit the
proof here.
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SUPPLEMENTARY MATERIAL

Supplement to “ROP: Matrix recovery via rank-one projections”: (DOI:
10.1214/14-AOS1267SUPP; .pdf). We prove the technical lemmas used in the
proofs of the main results in this supplement. The proofs rely on results in
[7, 13, 28, 36, 39, 41] and [31].
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