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Supplemental materials to “Robust and Computationally
Feasible Community Detection in the Presence of Arbitrary

Outliers”

0.1. Proof of Lemma 6.6. The proof of inequalities (6.2), (6.3), (6.4) and
(6.5) are given as follows step by step.

proof of (6.2):.
The o↵-diagonal entries of each row of K

ii

are l
i

� 1 IID random variables
x
1

, . . . , x
li�1

obeying

P(x
k

= 1) = B
ii

, P(x
k

= 0) = 1�B
ii

.

By Cherno↵’s inequality (Lemma 6.3), we have
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By letting t = 2
p

(l
i

� 1)B
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log n, with probability at least 1� 1

n

2 ,

li�1

X
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x
j

� (l
i

� 1)B
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� 2
p

(l
i

� 1)B
ii

log n.

Then, with probability at least 1� 1

n

, for all i = 1, . . . , r, there holds

K
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1
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ii

� 2
p
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i
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ii

log n
⌘

1
li
.

Then the inequality (6.2) is proven.

proof of (6.3) and (6.4):.
The elements of each row of K

jk

have the same distribution as IID random
variables x

1

, . . . , x
lk

obeying

P(x
i

= 1) = B
jk

, P(x
i

= 0) = 1�B
jk

.

Cherno↵’s inequalities (Lemma 6.3) yields

P
 

lk
X
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i
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k

B
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!

� e
� t2

2(lkBjk+t/3) .

By letting t = 2 log n +
p

6B
jk

l
k

log n, with probability at least 1 � 1

n

3 , we
have

lk
X

i=1

x
i

 l
k
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+ 2 log n+
p

6B
jk

l
k

log n.
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By taking the uniform bound for all K
jk

, 1  j < k  r, with probability
at least 1� r

n

2 , for all 1  j < k  r,

K
jk

1
lk


⇣

l
k

B
jk

+ 2 log n+
p

6l
k

B
jk

log n
⌘

1
lj
.

The assumption (6.1) implies � > C
2 logn+

p
6lkBjk logn

lk
, and then the in-

equality (6.3) is proven.

Similarly, with probability at least 1 � r

n

2 , for all 1  j < k  r, the
inequality (6.4) holds.

proof of (6.5):.
The elements ofK

jk

have the same distribution as a collection of IID random
variables x

1

, . . . , x
lklj

obeying

P(x = 1) = B
jk

, P(x = 0) = 1�B
jk

.

Cherno↵’s inequalities (Lemma 6.3) implies

P
⇣

1T
lj
K

jk

1
lk
 l

k

l
j

B
jk

� t
⌘

 e
� t2

2lkljBjk .

Then, with probability at least 1� 1

n

, we have

1T
lj
K

jk

1
lk
� l

k

l
j

B
jk

�
p

2l
k

l
j

B
jk

log n.

By the assumption (6.1), there holds � > C
q

2Bjk logn

lklj
, which implies the

inequality (6.3).

0.2. Proof of Lemma 6.7. First we prove a fact about zero-mean Bernoulli
random variable. Suppose u is a zero-mean Bernoulli random variable which
satisfies P(u = �⇢) = 1�⇢ and P(u = 1�⇢) = ⇢. Then it is straightforward
to calculate that

Var(u) = ⇢2(1� ⇢) + (1� ⇢)2⇢ = ⇢(1� ⇢)  ⇢.

Now let us prove the lemma. By the calculation of the variances of zero-mean
Bernoulli random variables, B

ii

(J
li
� I

li
) � K

ii

satisfies the condition in
Corollary 6.5 with � =

p
B

ii

. Therefore, with probability at least 1�
P

r

i=1

c

l

4
i
,

we have

kB
ii

(J
li
� I

li
)�K

ii

k  C
0

⇣

p

l
i

B
ii

log l
i

+ log l
i

⌘

, 1  i  r,

The condition p� � C
⇣

logn

nmin

⌘

implies the inequalities (6.6).

Moreover,U satisfies the condition in Corollary 6.5 with � =
p

q+. There-
fore, with probability at least 1� c

n

4 , the inequality (6.7) holds.
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0.3. Proof of Lemma 6.8. Define A
1

=



K Z
ZT W

�

and A = PA
1

P T .

Moreover, define

E
1

= ↵I
N

� (1� �)A
1

+ �(J
N

� I
N

�A
1

),

and E = PE
1

P T . Since PI
N

P T = I
N

and PJ
N

P T = J
N

, we have

E = ↵I
N

� (1� �)A+ �(J
N

� I
N

�A)

which is in accordance with the definition (2.4). For any N ⇥N Hermitian

matrix fX, it is feasible to (2.3) if and only if P T

fXP is feasible to (2.3).
Moreover, we have

hfX,Ei = hP T

fXP ,P TEP i = hP T

fXP ,E
1

i.

This implies that cX is a solution to (2.3) if and only if P T

cXP is a solution to
(2.3) by replacing E with E

1

, or equivalently, replacing A with A
1

. Suppose

Theorem 3.1 is true for P = I
n

, which means P T

cXP must be of the form

P T

cXP =

2

6

6

6

4

J
l1
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1

. . .
...

J
lr

bZ
r

bZT

1

· · · bZT

r

cW

3

7

7

7

5

which implies

cX = P

2

6

6

6

4

J
l1

bZ
1

. . .
...

J
lr

bZ
r

bZT

1

· · · bZT

r

cW

3

7

7

7

5

P T .

Our proof is therefore done.

0.4. Proof of Lemma 6.9 . Since 0 < � < 1, we have

k�(1��)W+�(J
m

�I
m

�W )k
op

 k�(1��)W+�(J
m

�I
m

�W )k
F

 m,

and by the assumption ↵ � 2m,

(0.19) fW = ↵I
m

� (1� �)W + �(J
m

� I
m

�W ) ⌫ (↵�m)I
m

� 0.

This implies that the objective function of (6.10) is strongly convex. The
constraint of (6.10) is evidently convex and compact, so the solution exists
uniquely.
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Obviously, there are feasible points to (6.10) with all inequalities holding
strictly. Therefore, by the constraints qualification under the Slater’s con-
dition, x

1

, . . . ,x
r

satisfy the KKT condition, which are (6.11), (6.12) and

(6.13). By equality (6.11) fWx
i

+ eZT

i

1
li
= �

i

�⌅x
i

and the inequality (6.13)
hx

i

,�
i

i = 0, we have

xT

i

(fW +⌅)x
i

= �xT

i

eZT

i

1
li
 ml

i

.

Since the matrix ⌅ is a diagonal matrix whose diagonal entries are all non-
negative, fW +⌅ is positive definite. By Cauchy-Schwarz inequality, for all
1  j, k  r, we have

xT

j

(fW +⌅)x
k


⇣

xT

k

(fW +⌅)x
k

⌘

1
2
⇣

xT

j

(fW +⌅)x
j

⌘

1
2  m

p

l
j

l
k

.

Notice that the equation (6.11) is equivalent to

(↵I
m

+ �(J
m

� I
m

)�W +⌅)x
i

= �
i

� (�l
i

)1
m

+ZT

i

1
li
.

Taking its jth row yields

(↵� �)x
ij + �

m

X

k=1

x
ik
+ ⇠

j

x
ij + �l

i

=
m

X

i=1

W
jk

x
ik
+ �

ij + eTZT

i

1
li
.

The non-negativity of W implies (6.15). Finally, since x
ij�ij = 0, from the

above equality, we know once �
ij > 0, there holds �

ij  (m�1+ l
i

)�, which
implies (6.16).

0.5. Proof of Lemma 6.10. Here we provide some intuition why X is
a solution to (2.3). There are two objects to notice. One is the objective

function f(fX) = hX,Ei, and the other one is the constraint set M :=
n

fX : 0  fX  J , fX ⌫ 0
o

. To guarantee that X is the solution of (2.3), we

need to show that at the point X, the level set of f(fX) is tangent to the

boundary of M. In other words, the normal vector of f(fX), i.e., �E, lies
in the normal cone of the boundary of M at point X.

Now let us investigate the normal vectors of M at point X. Write M =

M
1

\ M
2

, where M
1

:=
n

fX : 0  fX  J
o

and M
2

:=
n

fX : fX ⌫ 0
o

.

Suppose ⇤
1

is a normal vector of M
1

at X, then ⇤
1

must have the following
property: ⇤

1ij  0 ifX
ij

= 0, ⇤
1ij = 0 if 0 < X

ij

< 1 and ⇤
1ij � 0 ifX

ij

= 1.
As to M

2

, suppose ⇤
2

is a normal vector of M
2

at X. Then ⇤
2

� 0 and
⇤

2

X = 0. The normal vectors of M at point X is of the form ⇤
1

+⇤
2

.
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Then we have the equation �E = ⇤
1

+⇤
2

, or equivalently �⇤
2

= E+⇤
1

.
It is obvious that if (6.17) holds, ⇤

2

= �⇤ satisfies the required equation.
The only thing to check is that �

i

j

= 0 when x
i

j

> 0 and ⇠
i

= 0 when the

ith diagonal entry of
P

r

i=1

x
i

xT

i

is less than one. If so, we know that ⇤�E
lies in the normal cone of M

1

at the point X. As desired, these requirements
are assured by (6.12) and (6.13).

Proof. Suppose cX is solution to (2.3). We define an N ⇥N matrix H
as follows:

cX = X+H =

2

6

6

6

4

J
l1 +H

11

. . . H
1r

1
l1x

T

1

+H
1

...
. . .

...
...

HT

1r

. . . J
lr +H

rr

1
lrx

T

r

+H
r

x
1

1T
l1
+HT

1

· · · x
r

1T
lr
+HT

r

x
1

xT

1

+ · · ·+ x
r

xT

r

+H
0

3

7

7

7

5

.

As discussed in Section 6.4.1, X is feasible to (2.3). By definition we know
X + H is also feasible to (2.3). This implies H

ii

 0 for i = 1, . . . , r and
H

jk

� 0 for 1  j < k  r.
By the feasibility of both X and X +H, and the optimality of X +H

to (2.3), we have hX +H,Ei  hX,Ei, which implies

(0.20) hH,Ei  0.

Define

⌥ :=

2

6

6

6

4

� 
11

. . . �
1r

0
...

. . .
...

...
�T

1r

. . . � 
rr

0
0 . . . 0 0

3

7

7

7

5

, � :=

2

6

6

6

4

0 . . . 0 1

l1
1
l1�

T

1

...
. . .

...
...

0 . . . 0 1

lr
1
lr�

T

r

1

l1
�
1

1T
l1

. . . 1

lr
�
r

1T
lr

�⌅

3

7

7

7

5

.

Then we have
E = ⇤+⌥+ �.

The inequality (0.20) is equivalent to

hH,⇤+⌥+ �i  0.

In the sequel we intend to prove that hH,�i � 0, hH,⇤i � 0 and
hH,⌥i � 0:
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Proof of hH,�i � 0:.
By the feasibility of X+H and the non-negativity of �

i

, 1  i  r, we have
⌧

1
li
xT

i

+H
i

,
1

l
i

1
li
�T

i

�

� 0.

By (6.13), i.e., hx
i

,�
i

i = 0, we have

⌧

H
i

,
1

l
i

1
li
�T

i

�

� 0.

On the other hand, by the feasibility of X + H and the non-negativity of
⌅, we have

⌦

J
m

�
�

x
1

xT

1

+ · · ·+ x
r

xT

r

+H
0

�

,⌅
↵

� 0.

By (6.12), i.e.
⌦

J
m

�
�

x
1

xT

1

+ · · ·+ x
r

xT

r

�

,⌅
↵

= 0,

we have
hH

0

,�⌅i � 0.

In summary, we have
hH,�i � 0.

Proof of hH,⇤i � 0:.
By the feasibility condition X +H ⌫ 0 and ⇤V = 0, we have

0  hX +H,⇤i  hV V T +H,⇤i = hH,⇤i.

Proof of hH,⌥i � 0:.
By the facts H

ii

 0 and  
ii

> 0 for i = 1, . . . , r, we have

hH
ii

,� 
ii

i � 0.

Moreover, by the facts H
jk

� 0 and �
jk

> 0 for i = 1  j < k  r, we have

hH
jk

,�
jk

i � 0.

Consequently, we have
hH,⌥i � 0.

In conclusion, we have proven hH,�i � 0, hH,⇤i � 0 and hH,⌥i �
0. Since we also have proven hH,⇤+⌥+ �i  0, we know equalities
hold in all these inequalities. In particular, we have hH

ii

,� 
ii

i = 0 and
hH

jk

,�
jk

i = 0. The nonpositivity of H
ii

and the strict positivity of  
ii

imply that H
ii

= 0. Similarly, the nonnegativity of H
jk

, j < k and the
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strict positivity of �
jk

imply that H
jk

= 0. Therefore, cX is of the form
(3.3).

There is a byproduct: hH,⇤+⌥+ �i = hH,Ei = 0 implies hcX,Ei =
hX,Ei. By the optimality of cX and feasibility of X in (2.3), X is also a
solution to this optimization problem.

0.6. Proof of Lemma 6.11. We first give candidates of  
ii

for 1  i  r
and �

jk

for 1  j < k  r and hence ⇤, such that ⇤ is a particular
solution to ⇤V = 0. After that, we prove our constructed ⇤ satisfies other
inequalities required in Lemma 6.10.

The equality ⇤V = 0 amounts to

⇤v
i

= 0, i = 1, . . . , r;

that is, for all i = 1, . . . , r and 1  j < k  r,
8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

✓

eZT

i

� 1

l
i

�
i

1T
li

◆

1
li
+
⇣

fW +⌅
⌘

x
i

= 0,(0.21)

((↵� �)I
li
+ �J

li
�K

ii

+ 
ii

)1
li
+

✓

eZ
i

� 1

l
i

1
li
�T

i

◆

x
i

= 0,(0.22)

⇣

�J
(lj ,lk)

�K
jk

��
jk

⌘

1
lk
+

✓

eZ
j

� 1

l
j

1
lj
�T

j

◆

x
k

= 0,(0.23)

⇣

�J
(lk,lj)

�KT

jk

��T

jk

⌘

1
lj
+

✓

eZ
k

� 1

l
k

1
lk
�T

k

◆

x
j

= 0.(0.24)

Obviously, (0.21) is equivalent to the equation (6.11). In the following, we
will construct 

ii

satisfying (0.22) and�
jk

satisfying both (0.23) and (0.24).
First, let us give  

ii

explicitly for i = 1, . . . , r. The equality (0.22) is
equivalent to

 
ii

1
li
= � ((↵� �)I

li
+ �J

li
�K

ii

)1
li
�
✓

eZ
i

� 1

l
i

1
li
�T

i

◆

x
i

= (�(↵� �)� �l
i

)1
li
+K

ii

1
li
� eZ

i

x
i

= (�(↵� �)� �l
i

)1
li
+K

ii

1
li
� (�J

(li,m)

�Z
i

)x
i

,

where the second equality is due to (6.13), i.e., xT

i

�
i

= 0. Since we need to
construct an  

ii

> 0, we propose a candidate of the form  
ii

= ⌧J
ii

+D
ii

,
where D

ii

is a diagonal matrix. It is easy to verify that
(0.25)

 
ii

:= Diag(K
ii

1
li
+Z

i

x
i

)+
�

16l
i

J
li
�
✓

�(xT

i

1
m

) + (l
i

� 1)�+ ↵+
�

16

◆

I
li
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satisfies the above equality constraint.
Next, let us construct �

jk

satisfying both (0.23) and (0.24). The equality
(0.23) is equivalent to

�
jk

1
lk
=

 

�l
k

�
�T

j

x
k

l
j

!

1
lj
�K

jk

1
lk
+ eZ

j

x
k

=

0

@�l
k

�
(1T

lj
eZ
j

+ xT

j

(⌅+ fW ))x
k

l
j

1

A1
lj
�K

jk

1
lk
+ eZ

j

x
k

:= a

where the second equality is due to (6.11). Similarly, the equality (0.24) is
equivalent to

�T

jk

1
lj
=

✓

�l
j

�
�T

k

x
j

l
k

◆

1
lk
�KT

jk

1
lj
+ eZ

k

x
j

=

 

�l
j

�
(1T

lk

eZ
k

+ xT

k

(⌅+ fW ))x
j

l
k

!

1
lk
�KT

jk

1
lj
+ eZ

k

x
j

:= b

A necessary condition of the existence of such matrix �
jk

is that

1T
lj
a = 1T

lk
b.

This is easy to check. In fact, by the above formulas of a and b, we have

1T
lj
a = �l

k

l
j

� xT

k

(⌅+ fW ))x
j

� 1T
lj
K

jk

1
lk
= 1T

lk
b.

We denote s = �l
k

l
j

� xT

k

(⌅ + fW ))x
j

� 1T
lj
K

jk

1
lk

= 1T
lj
�

jk

1
lk
. It is easy

to check that one particular solution to the linear system �
jk

1
lk

= a and
�T

jk

1
lj
= b is

�
jk

=
1

l
k

a1T
lk
+

1

l
j

1
lj
bT � s

l
j

l
k

J
(lj ,lk)

.

After simplification, we have

�
jk

:=

✓

1

l
j

1
lj
xT

j

eZT

k

+
1

l
k

eZ
j

x
k

1T
lk

◆

�
✓

1

l
j

J
lj
K

jk

+
1

l
k

K
jk

J
lk

◆

+
1

l
k

l
j

(l
k

l
j

�+ 1T
lj
K

jk

1
lk
� 1T

lk
eZ
k

x
j

� 1T
lj
eZ
j

x
k

� xT

j

(⌅+ fW )x
k

)J
(lj ,lk)

.

(0.26)
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It su�ces to prove that  
ii

> 0, �
jk

> 0, and ⇤ ⌫ 0. We will prove these

constraints one by one. By the assumption p� � C
⇣

logn

nmin

⌘

and p� > q+, we

have the

� > C

s

p� log n

n
min

� C

0

@

s

q+ log n

n
min

+
log n

n
min

1

A .

Therefore, with probability at least 1� 1

n

� 2r

n

2 � cr

n

4
min

, the inequalities (6.2),

(6.3), (6.4) and (6.5) in Lemma 6.6, as well as the inequality (6.7) in Lemma
6.7 hold. Next, we prove the inequalities  

ii

> 0, �
jk

> 0, and ⇤ ⌫ 0 in
the following three steps.

Step 1:  
ii

> 0 .

By the inequality (6.2)K
ii

1
li
�

⇣

(l
i

� 1)B
ii

� 2
p

(l
i

� 1)B
ii

log n
⌘

1
li
,Z

i

�
0, x

i

� 0 and ↵ > m > �m, we have

 
ii

� �

16l
i

J
li

= Diag(K
ii

1
li
+Z

i

x
i

)�
✓

�(xT

i

1
lm) + (l

i

� 1)�+ ↵+
�

16

◆

I
li

� and ⌫
✓

⇣

(l
i

� 1)B
ii

� 2
p

(l
i

� 1)B
ii

log n
⌘

�
✓

(l
i

� 1)�+ 2↵+
�

16

◆◆

I
li

=

✓

⇣

(l
i

� 1)(B
ii

� �)� 2
p

(l
i

� 1)B
ii

log n
⌘

�
✓

2↵+
�

16

◆◆

I
li

:= f(
p

B
ii

)I
li
,

where f is a quadratic function. By the basic properties of quadratic func-

tions, the fact B
ii

� p� � C
⇣

logn

nmin

⌘

implies f(
p
B

ii

) � f(
p

p�). Then

 
ii

� �

16l
i

J
li

� and ⌫
✓

⇣

(l
i

� 1)(p� � �)� 2
p

(l
i

� 1)p� log n
⌘

�
✓

2↵+
�

16

◆◆

I
li

� and ⌫
✓✓

(l
i

� 1)
�

4
� 2

p

(l
i

� 1)p� log n

◆

�
✓

2↵+
�

16

◆◆

I
li
.

The assumption � > C

✓

q

p

�
logn

nmin
+ ↵

nmin

◆

implies  
ii

� �

16li
J
li
� and ⌫ 0,

and hence we have  
ii

> 0. As a byproduct, we have

 
ii

⌫
✓

⇣

(l
i

� 1)(B
ii

� �)� 2
p

(l
i

� 1)B
ii

log n
⌘

�
✓

2↵+
�

16

◆◆

I
li
.
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Step 2:. �
jk

> 0

Recall the definition eZ
i

= �J
(li,m)

�Z
i

. Since Z
i

comes from the adjacency

matrix, and 0 < � < 1, we have k eZ
i

k1  1. Notice that �
jk

can be
represented as a sum of four terms as follows:

�
jk

:=

✓

�+
1

l
k

l
j

1T
lj
K

jk

1
lk

◆

J
(lj ,lk)

+

✓

1

l
j

1
lj
xT

j

eZT

k

+
1

l
k

eZ
j

x
k

1T
lk

◆

�
✓

1

l
j

J
lj
K

jk

+
1

l
k

K
jk

J
lk

◆

� 1

l
k

l
j

(1T
lk
eZ
k

x
j

+ 1T
lj
eZ
j

x
k

+ xT

j

(⌅+ fW )x
k

)J
(lj ,lk)

.

We will give the lower bound of the first term and give upper bounds
to the infinity norms of the later three terms. By (6.5), i.e. 1T

lj
K

jk

1
lk

�
�

B
jk

� �

16

�

l
k

l
j

, and the assumption � � B
jk

+ �

4

, we have
✓

�+
1

l
k

l
j

1T
lj
K

jk

1
lk

◆

J
(lj ,lk)

�
✓

2B
jk

+
3�

16

◆

J
(lj ,lk)

.

Since k eZ
i

k1  1 and kx
i

k1  1, we have
�

�

�

�

1

l
j

1
lj
xT

j

eZT

k

+
1

l
k

eZ
j

x
k

1T
lk

�

�

�

�

1
 2m

n
min

.

By inequality (6.3) K
jk

1
lk


�

B
jk

+ �

16

�

l
k

1
lj
and inequality (6.4) KT

jk

1
lj


�

B
jk

+ �

16

�

l
j

1
lk
, we have

1

l
j

J
lj
K

jk

+
1

l
k

K
jk

J
lk


✓

2B
jk

+
�

8

◆

J
(lj ,lk)

.

By inequality (6.14), i.e., xT

j

(fW +⌅)x
k

 m
p

l
j

l
k

, we have

�

�

�

�

1

l
k

l
j

(1T
lk
eZ
k

x
j

+ 1T
lj
eZ
j

x
k

+ xT

j

(⌅+ fW )x
k

)J
(lj ,lk)

�

�

�

�

1


ml

k

+ml
j

+m
p

l
k

l
j

l
k

l
j

 3m

n
min

.

By adding these four terms together, we have

�
jk

�
✓

�

16
� 5m

n
min

◆

J
(lj ,lk)

.

By the assumption � � C ↵

nmin
> C m

nmin
, we have �

jk

> 0.
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Step 3:. ⇤ ⌫ 0
Suppose the eigenvalues of ⇤ are �

1

(⇤) � . . . � �
N

(⇤). The condition
⇤V = 0 implies rank(⇤)  n � r. Assuming �

N�r

(⇤) > 0, we must have
�
N�r+1

= . . . = �
N

= 0, and hence ⇤ ⌫ 0. Therefore, it su�ces to prove
�
N�r

(⇤) > 0. We first define

bV =

2

6

6

6

6

6

6

4

1p
l1
1
l1 0 . . . 0

0 1p
l2
1
l2 . . . 0

...
...

. . .
...

0 0 . . . 1p
lr
1
lr

0 0 . . . 0

3

7

7

7

7

7

7

5

2 RN⇥r.

Obviously, bV is a basis matrix, i.e., the columns of bV are a orthonormal basis
of the column space of bV . Define bV? 2 RN⇥(N�r), such that U = [ bV?, bV ]
is an orthogonal matrix. Define

e⇤ :=

"

e⇤
1

e⇤
2

e⇤T

2

fW +⌅

#

:=

2

6

6

4

(↵� �)Il1 +B11Jl1 �K11 + 11 . . . B1rJ(l1,lr) �K1r eZ1 � 1
l1
1l1�

T
1

.

.

.

.

.

.

.

.

.

.

.

.

B1rJ(lr,l1) �KT
1r . . . (↵� �)Ilr +BrrJlr �Krr + rr

eZr � 1
lr
1lr�

T
r

eZT
1 � 1

l1
�11T

l1
. . .

eZT
r � 1

lr
�r1T

lr
fW +⌅

3

7

7

5

.

The matrix e⇤ is closely tied up with ⇤ in the sense that

e⇤�⇤ =

2

6

6

6

4

(B
11

� �)J
l1 . . . (B

1r

� �)J
(l1,lr)

+�
1r

0
...

. . .
...

...
(B

1r

� �)J
(lr,l1)

+�T

1r

. . . (B
rr

� �)J
lr 0

0 . . . 0 0

3

7

7

7

5

.

By the construction of �
jk

, it can be written as �
jk

= 1
lj
aT + b1T

lk
.

Therefore, straightforward calculation yields bV T

? (⇤� e⇤) bV? = 0, which im-
plies that

bV T

? ⇤ bV? = bV T

?
e⇤ bV?.

Since UT⇤U =

"

bV T

? ⇤ bV? bV T

? ⇤ bV
bV T⇤ bV? bV T⇤ bV

#

has the same spectrum as ⇤ does, by

Lemma 6.2, there holds

(0.27) �
N�r

(⇤) = �
N�r

(UT⇤U) � �
N�r

( bV T

? ⇤ bV?) = �
N�r

( bV T

?
e⇤ bV?).
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Since UT

e⇤U =

"

bV T

?
e⇤ bV? bV T

?
e⇤ bV

bV T

e⇤ bV? bV T

e⇤ bV

#

, by Lemma 6.2 again, we have

(0.28) �
N�r

( bV T

?
e⇤ bV?) � �

N

(UT

e⇤U) = �
N

(e⇤).

By considering the above inequalities (0.27) and (0.28), in order to prove
⇤ ⌫ 0, it su�ces to prove �

N

(e⇤) > 0, i.e., e⇤ � 0.
Define

e⇤
1

:= F
1

+ F
2

=

2

4

(↵� �)Il1 +B11Jl1 �K11 + 11 . . . 0
.

.

.

.

.

.

.

.

.

0 . . . (↵� �)Ilr +B11Jlr �Krr + rr

3

5

+

2

6

4

0 . . . B
1r

J
(l1,lr)

�K
1r

...
. . .

...
B

1r

J
(l1,lr)

�KT

1r

. . . 0

3

7

5

.

In the first step, we proved

 
ii

⌫
✓

⇣

(l
i

� 1)(B
ii

� �)� 2
p

(l
i

� 1)B
ii

log n
⌘

�
✓

2↵+
�

16

◆◆

I
li
.

By Lemma 6.7, we have

kB
ii

(J
li
� I

li
)�K

ii

k  C
0

p

l
i

B
ii

log l
i

.

This implies that

(↵� �)I
li
+B

ii

J
li
�K

ii

+ 
ii

⌫
✓

⇣

l
i

(B
ii

� �)� (C
0

+ 2)
p

l
i

B
ii

log n
⌘

�
✓

↵+
�

16

◆◆

I
li

:= h(
p

B
ii

)I
li

where h is a quadratic function. By basic properties of quadratic functions,

the condition B
ii

� p� � (C
0

+ 2)
⇣

logn

nmin

⌘

implies h(
p
B

ii

) � h(
p

p�).

Therefore,

(↵� �)I
li
+B

ii

J
li
�K

ii

+ 
ii

⌫
✓

⇣

l
i

(p� � �)� (C
0

+ 2)
p

l
i

p� log n
⌘

�
✓

↵+
�

16

◆◆

I
li

⌫
✓✓

l
i

�

4
� (C

0

+ 2)
p

l
i

p� log n

◆

�
✓

↵+
�

16

◆◆

I
li
:= g(

p

l
i

)I
li
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where g is a quadratic function. By basic properties of quadratic functions,
p
l
i

� p
n
min

> C

p
p

�
logn

�

implies g(
p
l
i

) � g(
p
n
min

). Therefore,

F
1

⌫
✓✓

n
min

�

4
� (C

0

+ 2)
p

n
min

p� log n

◆

�
✓

↵+
�

16

◆◆

I
n

.

On the other hand, by Lemma 6.7, we have kF
2

k
op

 C
0

⇣

p

nq+ log n+ log n
⌘

,

which implies

e⇤
1

= F
1

+ F
2

⌫
✓

�

✓

n
min

4
� 1

16

◆

� (C
0

+ 2)
p

n
min

p� log n� ↵� C
0

⇣

p

nq+ log n+ log n
⌘

◆

I
n

.

By the assumption p� � C logn

nmin
and

� > C

0

@

s

p� log n

n
min

+
↵

n
min

+

p

nq+ log n

n
min

1

A ,

when C is large enough, we have

e⇤
1

⌫ n
min

�

8
I
n

.

Therefore, in order to guarantee e⇤ =

"

e⇤
1

e⇤
2

e⇤T

2

fW +⌅

#

� 0, it su�ces to

prove
"

nmin�

8

I
n

e⇤
2

e⇤T

2

fW +⌅

#

� 0.

By multiplying



wI
n

0
0 I

m

�

with some w > 0 on both sides, it is su�ces to

prove

e

e⇤ :=

"

nmin�w
2

8

I
n

we⇤
2

we⇤T

2

fW +⌅

#

� 0.

Here we choose w = 33m

nmin�
. We would like to prove the positive definiteness of

e

e⇤ by the well known Gershgorin Theorem, that is, for each row of
e

e⇤, the sum
of absolute values of the o↵-diagonal entries is less than the corresponding

diagonal entry. Let us first investigate the first n rows of
e

e⇤. Recall that

we⇤
2

= w

2

6

4

�J
(l1,m)

�Z
1

� 1

l

1

1
l1�

T

1

...
�J

(lr,m)

�Z
r

� 1

l

r

1
lr�

T

r

3

7

5

.
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Since 0  Z
i

 J
(li,m)

and (6.16), i.e., 0  �
i

 (m + l
i

� 1)�1
m

, the sum

of absolute values of each row of we⇤
2

is no larger than

w

✓

�m+m+
m(m+ l

i

� 1)�

l
i

◆

 4wm.

The above inequality is due to 1 � � � C
p
rm

nmin
with su�ciently large C.

Since all the diagonal entries are w2

nmin�

8

. Then the Gershgorin condition

holds by w2

nmin�

8

> 4wm, which is guaranteed by the definition of w.

Now let us study the bottom m rows of
e

e⇤. Notice that

we⇤
2

= w
⇥

�J
(m,l1)

�ZT

1

� 1

l1
�
1

1T
l1
, . . . ,�J

(m,lr)
�ZT

r

� 1

lr
�
r

1T
lr

⇤

.

By (6.15), i.e.,

�
ij + eT

j

ZT

i

1
li
 (↵� �+ ⇠

j

)x
ij + �l

i

+ �
m

X

k=1

x
ik
,

the sum of absolute values of the jth row is no larger than

w

 

n�+
r

X

i=1

�

eT
j

ZT

i

1
li
+ �

ij

�

!

 w

 

n�+ (↵� �+ ⇠
j

)
r

X

i=1

x
ij + �n+ �

m

X

k=1

r

X

i=1

x
ik

!

 w

0

@n�+ (↵� �+ ⇠
j

)
p
r

v

u

u

t

r

X

i=1

x2
ij
+ �n+ �

m

X

k=1

p
r

v

u

u

t

r

X

i=1

x2
ik

1

A

 33m

n
min

�

�

(2n+ (m� 1)
p
r)�+ (↵+ ⇠

j

)
p
r
�

,

where the final inequality is due to
P

r

i=1

x2
ik

 1 for all k = 1, . . . ,m. This
is the constraint in the optimization (6.10). On the other hand, since

fX +⌅ = ↵I
m

+ � (J
m

� I
m

)�W +⌅,

its diagonal entry in the jth row is ↵+ ⇠
j

while the sum of absolute values
of the o↵-diagonal entries in the jth row is no larger than m � 1. Back to

the (n+ j)th row of
e

e⇤, the Gershgorin condition holds if

↵+ ⇠
j

> m� 1 +
33m

n
min

�

�

(2n+ (m� 1)
p
r)�+ (↵+ ⇠

j

)
p
r
�
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i.e.
✓

1� 33m
p
r

n
min

�

◆

(↵+ ⇠
j

) > m� 1 +
33m

n
min �

(2n+ (m� 1)
p
r)�.

By the condition � > Cm

p
r

nmin
with su�ciently large C, and the fact ⇠

j

� 0,
the above inequality can be guaranteed by

↵ > 2m+
66m

n
min �

(2n+ (m� 1)
p
r)�.

This can be guaranteed by � > C nmp

�

(↵�2m)nmin
> C nm�

(↵�2m)nmin
, since m

p
r <

nmin�

C

< n when C � 1.

In a word, when � satisfies (6.18),
e

e⇤ � 0, and then e⇤ � 0, and hence
⇤ ⌫ 0.

400 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6340,
E-mail: tcai@wharton.upenn.edu; xiaodli@wharton.upenn.edu

mailto:tcai@wharton.upenn.edu
mailto:xiaodli@wharton.upenn.edu

