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Summary. Copy number variants (CNVs) are alternations of DNA of a genome that result in
the cell having less or more than two copies of segments of the DNA. CNVs correspond to
relatively large regions of the genome, ranging from about one kilobase to several megabases,
that are deleted or duplicated. Motivated by CNV analysis based on next generation sequencing
data, we consider the problem of detecting and identifying sparse short segments hidden in a
long linear sequence of data with an unspecified noise distribution. We propose a computation-
ally efficient method that provides a robust and near optimal solution for segment identification
over a wide range of noise distributions. We theoretically quantify the conditions for detecting
the segment signals and show that the method near optimally estimates the signal segments
whenever it is possible to detect their existence. Simulation studies are carried out to demon-
strate the efficiency of the method under various noise distributions. We present results from a
CNV analysis of a HapMap Yoruban sample to illustrate the theory and the methods further.

Keywords: DNA copy number variant; Next generation sequencing data; Optimality; Robust
segment detector; Robust segment identifier

1. Introduction

Structural variants in the human genome (Sebat et al., 2004; Feuk et al., 2006), including
copy number variants (CNVs) and balanced rearrangements such as inversions and trans-
locations, play an important role in the genetics of complex disease. CNVs are alternations of
deoxyribonucleic acid (DNA) of a genome that result in the cell having less or more than two
copies of segments of the DNA. CNVs correspond to relatively large regions of the genome,
ranging from about one kilobase to several megabases, that are deleted or duplicated. Analy-
sis of CNVs in developmental and neuropsychiatric disorders (Feuk et al., 2006; Walsh et al.,
2008; Stefansson et al., 2008; Stone et al., 2008) and in cancer (Diskin et al., 2009) has led
to the identification of novel disease-causing mutations, thus contributing important new in-
sights into the genetics of these complex diseases. Changes in DNA copy number have also been
highly implicated in tumour genomes; most are due to somatic mutations that occur during
the clonal development of the tumour. The copy number changes in tumour genomes are often
referred to as copy number aberrations. In this paper, we focus on the CNVs from the germ line
constitutional genome where most of the CNVs are sparse and short (Zhang et al., 2009).

CNVs can be discovered by cytogenetic techniques, array comparative genomic hybridiza-
tion (Urban et al., 2006) and by single-nucleotide polymorphism arrays (Redon et al., 2006).
The emerging technologies of DNA sequencing have further enabled the identification of CNVs
by next generation sequencing (NGS) in high resolution. NGS can generate millions of short
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sequence reads along the whole human genome. When these short reads are mapped to the
reference genome, both distances of paired end data and read depth (RD) data can reveal
the possible structure variations of the target genome (for reviews, see Medvedev et al. (2009)
and Alkan et al. (2011)). The mapping distances between pair ends of reads provide better
power to detect small to medium-size insertions and deletions or CNVs (Medvedev et al., 2009;
Alkan et al., 2011). In this approach, two paired reads are generated at an approximately known
distance in the donor genome and pairs mapping at a distance that is substantially different from
the expected length, or with anomalous orientation, suggest structural variants. Methods based
on the mapping distances often involve finding the clusters of reads that show anomalous map-
ping (Chen et al., 2009). Instead of mapping the short reads onto the reference genome, one can
also perform whole genome de novo assembly and align the de novo assemblies of two genomes to
identify gaps and segmental rearrangements in pairwise alignments (Li et al., 2011). However,
this approach requires data from two genomes.

Another important source of information that is useful for inferring CNVs from reads align-
ment is the RD. The RD data are generated to count the number of reads that cover a genomic
location or a small bin along the genome which provide important information about the CNVs
that a given individual carries (Shendure and Ji, 2008; Medvedev et al., 2009). When the gen-
omic location or bin is within a deletion, we expect to observe a smaller number of read counts
or lower mapping density than the background RD. In contrast, when the genomic location or
bin is within an insertion or duplication, we expect to observe a larger number of read counts or
higher mapping density. Therefore, these RDs can be used to detect and identify the CNVs. The
RD data provide more reliable information for large CNVs and CNVs flanked by repeats, where
accurate mapping reads is difficult. The RD data also provide information on CNVs based on
the targeted sequences where only targeted regions of the genome are sequenced (Nord et al.,
2011).

In this paper, we consider the problem of CNV detection and identification based on the RD
data from NGS. Several methods have been developed for such RD data. Yoon et al. (2009)
developed an algorithm for RD data to detect CNVs, where they converted the read count of
a window into a Z-score by subtracting the mean of all windows and dividing by the standard
deviation and identified the CNVs by computing upper tail and lower tail probabilities by us-
ing a normality assumption on the RD data. The windows are then selected on the basis of
the extreme values of these probabilities controlling for the genomewide false positive rates.
Abyzov et al. (2011) developed an approach first to partition the genome into a set of regions
with different underlying copy numbers by using the mean shift technique and then to merge
signal and call CNVs by performing t-tests. Xie and Tammi (2009), Chiang et al. (2009) and
Kim et al. (2010) developed methods for CNV detection based on RD data when pairs of
samples are available. The basic idea underlying these two methods is to convert the counts
data into ratios and then to apply existing copy number analysis methods developed for array
comparative genomic hybridization data such as the circular binary segmentation (CBS)
(Olshen et al., 2004) for CNV detection. Methods have also been developed for CNV detections
in cancer cells (Ivakhno et al., 2010; Miller et al., 2011) based on the RD data.

One common feature of these existing methods is to make a certain parametric distribution
assumption on the RD data. However, the distribution of the RD data is in general unknown
owing to the complex process of sequencing. Some recent literature assumes a constant read
sampling rate across the genome and a Poisson distribution or negative binomial distribution
for the read counts data (Xie and Tammi, 2009; Cheung et al., 2011). However, owing to guan-
ine–cytosine content, mappability of sequencing reads and regional biases, genomic sequences
obtained through high throughput sequencing are not uniformly distributed across the genome
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and therefore the counts data are likely not to follow a Poisson distribution (Li et al., 2010; Miller
et al., 2011; Cheung et al., 2011). The feature of the NGS data also changes with advances in
sequencing technologies. To analyse such data, classical parametric methods do not work well.
It is crucial for these methods to specify the distribution of their test statistics, which depends
on the data distribution. A misspecified data distribution can lead to a complete failure of these
methods. Although some data distributions can be estimated by non-parametric methods, pop-
ular non-parametric methods such as permutation are often computationally expensive and
not feasible for ultrahigh dimensional data. Therefore, robust methods that are adaptive to
unknown data distributions and computationally efficient at the same time are greatly needed.
The goal of the present paper is to develop such a robust procedure for CNV identification
based on NGS data and to study its properties.

In this paper, we assume that a long linear sequence of noisy data {Y1, . . . , Yn} is modelled as

Yi =αi + ξi, αi =
{

μj, i∈ Ij for some j ∈{1, . . . , q},
0, otherwise,

1� i�n, .1/

where q = qn is the number of signal segments, possibly increasing with n, I1, . . . , Iq are dis-
joint intervals representing signal segments, μ1, . . . , μq are unknown constants and ξ1, . . . , ξn

are independent, identically distributed (IID) random errors with median 0. Here positive μi

implies duplication or insertion and a negative mean implies deletion. Let I={I1, . . . , Iq} denote
the set of all segment intervals. For the problem of CNV detection based on the NGS data, Yi

is the guanine–cytosine content-adjusted RD counts at genomic location or bin i, which can
be regarded as continuous when coverage of the genome is sufficiently high, e.g. greater than
20 (Yoon et al., 2009; Abyzov et al., 2011). This model describes the phenomenon that some
signal segments are hidden in the n noisy observations. The number, locations, mean values of
the segments and the distribution of the random errors are unknown.

The problem of segment detection and identification can be separated into two steps. The
first step is to detect the existence of such signal segments, i.e. to test

H0: I=∅ against H1: I �=∅,

and the second step is to identify the locations of the segments if there are any. A procedure
called likelihood ratio selection (LRS) (Jeng et al., 2010) has recently been developed to treat the
above problem in the case of Gaussian noise. Under the Gaussian and certain sparsity assump-
tions, LRS has been shown to be optimal in the sense that it can separate the signal segments
from noise whenever the segments are identifiable. However, when the noise distribution is heavy
tailed, LRS may fail and provide a large number of misidentifications. To tackle this difficulty,
in the present paper we introduce a computationally efficient method called the robust segment
identifier (RSI), which provides a robust and near optimal solution for segment identification
over a wide range of noise distributions. As an illustration, we generate 1000 observations based
on a Cauchy .0, 1/ distribution and set the signal segment at [457 : 556] with a positive mean.
Fig. 1 compares LRS with the RSI. In this example, LRS fails to work at all by identifying
too many false segments, whereas the RSI, in contrast, provides a good estimate of the signal
segment even when the noise distribution is unknown and heavy tailed.

A key step of the RSI is a local median transformation, where the original observations are
first divided into T small bins with m observations in each bin and then the median values of
the data in these bins are taken as a new data set. The central idea is that the new data set can
be well approximated by Gaussian random variables for a wide collection of error distributions.
After the local median transformation, existing detection and identification methods that are
designed for Gaussian noise can then be applied to the new data set. Brown et al. (2008) and
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Fig. 1. Effects of long-tailed error distribution on segment identification: (a) data with Cauchy noise and
a signal segment at [457 : 556]; (b) intervals identified and estimated interval means by LRS; (c) interval
identified and estimated means by the RSI

Cai and Zhou (2009) used local medians to turn the problem of non-parametric regression
with unknown noise distribution into a standard Gaussian regression. Here we use the local
median transformation for signal detection and identification that is robust over a large collec-
tion of error distributions, including those that are heavy tailed. Local median transformations
or other local smoothing procedures have been applied in analysis of microarray data for data
normalization (Quackenbush, 2002).

To elucidate the effect of data transformation in the simplest and cleanest way, we begin by
considering the detection part of our problem, which is to test H0 against H1. We propose a
robust segment detector (RSD), which applies the generalized likelihood ratio test (GLRT) to
the transformed data. Arias-Castro et al. (2005) showed that the GLRT is an optimal procedure
for detecting a single segment with constant length in the Gaussian noise setting. We find here
that the RSD is an near optimal procedure for the transformed data when the bin size m is
properly chosen. The key condition for the RSD to be successful is that some segment Ij has its
mean and length roughly satisfying μj

√|Ij|>√
log.n/={h.0/

√
2} and the noise density satisfies

the Lipschitz condition, where h.0/ is the noise density at 0. Clearly, a larger value of h.0/, which
corresponds to a more concentrated noise distribution, results in a more relaxed condition. This
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result agrees with our intuition that detection of signal segments should be easier if the noise
distribution is more concentrated.

The RSD can detect the existence of signal segments with unknown noise distribution. How-
ever, it does not tell where the signal segments are. For segment identification, we propose a
procedure called the RSI, which first transforms the data by binning and taking local medians,
and then applies the LRS procedure on the transformed data. Unlike the RSD, which searches
through all possible intervals after the data transformation, the RSI utilizes the short segment
structure and considers only short intervals with length less than or equal to L, where L is some
number that is much smaller than T. Furthermore, the data transformation step significantly
reduces the dimension from n to T. These together make the RSI a computationally efficient
method to handle ultrahigh dimensional data. It is shown that the RSI provides robust identi-
fication results for a large collection of noise distributions, and it is a near optimal procedure
for the transformed data when m and L are properly chosen.

The rest of the paper is organized as follows. Section 2 introduces the data transformation
technique and the RSD. The robust segment identification procedure RSI is proposed and its
theoretical properties are studied in Section 3. The numerical performance of the RSI is inves-
tigated in Section 4 by using simulations and is compared with the performances of LRS and
CBS. We then present results in Section 5 from an analysis of sequence data of one individual
from the 1000 genomes project (http://www.1000genomes.org/). We conclude with a
discussion in Section 6. The proofs are detailed in Appendix A.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://www.blackwellpublishing.com/rss

2. Data transformation and robust detection

In this section, we first introduce the local median transformation to tackle the problem of
an unknown and possibly heavy-tailed noise distribution. After the transformation the data
can be well approximated by Gaussian random variables. A robust segment detection proce-
dure is then developed to separate H0 from H1 reliably over a wide range of noise distribu-
tions.

2.1. Local median transformation
Let Y1, . . . , Yn be a sequence of observed data generated from model (1) with an unknown noise
distribution. We assume that there are q sparse and short signal segments in the observed data
and that the number of observations n is very large. The goal is to detect and identify these q seg-
ments. To do so, we first equally divide the n observations into T =Tn groups with m=mn obser-
vations in each group. Define the set of indices in the kth group as Jk ={i : .k−1/m+1� i�km}
and generate the transformed data set as

Xk =median{Yi : i∈Jk}, 1�k �T: .2/

Set

ηk =median{ξi : i∈Jk}, 1�k �T ; .3/

then the medians Xk can be written as

Xk =θk +ηk, 1�k �T , .4/
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where

θk =
{

μj, Jk ⊆ Ij for some Ij,
μÅ

k ∈ [0, μj], Jk ∩ Ij �=∅ for some Ij and Jk � Ij,
0, otherwise.

After the local median transformation, the errors ξi in the original observations are re-repre-
sented by ηk. The main idea is that ηk can be well approximated by Gaussian random variables
for a wide range of noise distributions. Specifically, we assume that the distribution of ξi is
symmetric about 0 with density function h satisfying h.0/> 0 and

|h.y/−h.0/|�Cy2 .5/

in an open neighbourhood of 0. This assumption is satisfied, for example, by the Cauchy dis-
tribution, the Laplace distribution and the t-distributions, as well as the Gaussian distribution.
A similar assumption was introduced in Cai and Zhou (2009) in the context of non-parametric
function estimation. The distributions of ηk are approximately normal. This can be precisely
stated in the following lemma.

Lemma 1. Assume expressions (1) and (5), and transformation (4); then ηk can be written as

ηk = 1
2h.0/

√
m

Zk + 1√
m

ζk, .6/

where Zk ∼IID N.0, 1/ and ζk are independent and stochastically small random variables sat-
isfying E.ζk/=0, and can be written as

ζk = ζk1 + ζk2

with

E.ζk1/=0 and E.|ζk1|l/�Clm
−l, .7/

P.ζk2 =0/�1−C exp.−am/ .8/

for some a> 0 and C> 0, and all l> 0.

The proof of this lemma is similar to that of proposition 1 in Brown et al. (2008) and that of
proposition 2 in Cai and Zhou (2009), and is thus omitted. The key fact is that ηk can be well
approximated by Zk={2h.0/

√
m}, which follows N[0, 1={4h2.0/m}], so, after the data transfor-

mation in expression (4), existing methods for Gaussian noise can be applied to Xk, 1�k �T . It
will be shown that, by properly choosing the bin size m, a robust procedure can be constructed
to detect the signal segments reliably. We note that the noise variance for the transformed data,
1={4h2.0/m}, can be easily estimated and the estimation error does not affect the theoretical
results. So we shall assume that h.0/ is known in the next section. Estimation of h.0/ is discussed
in Section 3.

2.2. Robust segment detection
Our first goal is signal detection, i.e. we wish to test H0 : I=∅ against H1 : I �=∅. When the noise
distribution is Gaussian, the GLRT, which applies a thresholding procedure on the extreme
value of the likelihood ratio statistics of all possible intervals, has been proved to be an optim-
al procedure in Arias-Castro et al. (2005). However, the threshold that is used by the GLRT
may perform poorly on non-Gaussian data. We propose the RSD, which applies a similar
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procedure to the transformed data, and we show that the RSD provides robust results over a
wide range of noise distributions satisfying inequality (5). For simplicity of presentation, we
assume that μi > 0, for i = 1, . . . , q. When both positive and negative signal segments exist, a
simple modification is to replace the relevant quantities by their absolute values.

The RSD procedure can be described as follows. After the local median transformation, define
for any interval Ĩ

X.Ĩ/= ∑
k∈Ĩ

Xk=
√|Ĩ|, .9/

and threshold

λn =√{2 log.n/}={2h.0/
√

m}: .10/

The RSD rejects H0 when maxĨ∈JT
{X.Ĩ/}>λn, where JT is the collection of all possible intervals

in {1, . . . , T}.
Note that the threshold λn is chosen by analysing the distribution of X.Ĩ/ under the null

hypothesis H0. By equation (6), we have

X.Ĩ/= Z.Ĩ/

2h.0/
√

m
+ ζ.Ĩ/√

m
.11/

under hypothesis H0, where

Z.Ĩ/= ∑
k∈Ĩ

Zk=
√|Ĩ|

and

ζ.Ĩ/= ∑
k∈Ĩ

ζk=
√|Ĩ|:

Since ζk are stochastically small random variables according to lemma 1, maxĨ∈JT
{ζ.Ĩ/} should

be much smaller than maxĨ∈JT
{Z.Ĩ/} for large m. The following lemma provides the asymptotic

bounds for both maxĨ∈JT
{ζ.Ĩ/} and maxĨ∈JT

{Z.Ĩ/}.

Lemma 2. Assume expressions (1) and (5), and transformation (4) with m = log1+b.n/ for
some b> 0. For the collection JT of all the possible intervals in {1, . . . , T}, we have

P

[
max
Ĩ∈JT

{ζ.Ĩ/}>
a
√

log.T/

m

]
� C√

log.T/
T −C, .12/

for some a> 4 and C> 0, and

P [max
Ĩ∈JT

{Z.Ĩ/}>
√{2 log.T/}]� C√

log.T/
: .13/

Lemma 2 and equation (11) imply that the threshold on maxĨ∈JT
{X.Ĩ/} should be approximately

that of maxĨ∈JT
{Z.Ĩ/}={2h.0/

√
m}, which is

√{2 log.T/}={2h.0/
√

m}. We set the threshold
slightly more conservatively. The following theorem shows the control of familywise type I error.

Theorem 1. Assume expressions (1) and (5), and transformation (4) with m = log1+b.n/ for
some b> 0. For the collection JT of all the possible intervals in {1, . . . , T},

PH0 [max
Ĩ∈JT

{X.Ĩ/}>λn]� C√
log.T/

→0, T →∞:
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The bound C=
√

log.T/ converges to 0 quite slowly. To control the familywise type I error better,
we can increase λn a little to

√{2.1+ "n/ log.n/}={2h.0/
√

m} for some "n = o.1/. This small
increase does not change the theoretical results in this paper.

When there are segmental signals that are sufficiently strong, the RSD with threshold λn can
successfully detect their existence while controlling the familywise type I error. This is shown in
the following theorem.

Theorem 2. Assume expressions (1) and (5), and transformation (4) with m = log1+b.n/ for
some b> 0. If there is some segment Ij ∈ I that satisfies

|Ij|=m→∞ .14/

and

μj
√|Ij|�√{2.1+ "/ log.n/}={2h.0/} .15/

for some " > 0, then the RSD has the sum of the probabilities of type I and type II errors
going to 0.

Condition (14) guarantees that the difference between |Ij|=m and the cardinality of {Jk :Jk ⊆
Ij} is negligible. Condition (15) shows the requirement for the signal strength of some segment
Ij, which is a combined effect of μj and |Ij|. This condition is easier to satisfy for a bigger
h.0/, which corresponds to a more concentrated noise distribution. This agrees with our intu-
ition that the detection of signal segments should be easier if the observation noises are more
concentrated.

Next we characterize the situation when the RSD cannot have asymptotically vanishing type
I and type II errors. In fact, in this situation, no testing procedure works.

Theorem 3. Assume expressions (1) and (5), and transformation (4) with m = log1+b.n/ for
some b> 0. If log |I|=o{log.n/}, and for all segments Ij ∈ I,

log |Ij|=o{log.n/}, .16/

μj
√|Ij|�√{2.1− "/ log.n/}={2h.0/} .17/

for some " > 0, then no testing procedure constructed on the transformed data X1, . . . , XT

has the sum of the probabilities of type I and type II errors going to 0.

The results in theorems 2 and 3 imply that the RSD is a near optimal procedure to detect
short signal segments based on X1, . . . , XT . It can successfully separate H0 and H1 on the basis
of the transformed data whenever there is some testing procedure that can do so.

The RSD is robust over a wide range of noise distributions when assumption (5) is satisfied.
However, in the special case when the Gaussian assumption holds for the noise distribution, the
GLRT procedure that is specifically designed for this case is more efficient. The GLRT rejects H0
if maxĨ∈Jn

{Y.Ĩ/}>
√{2 log.n/}, where Jn is the collection of all possible intervals in {1, . . . , n}

and Y.Ĩ/=Σi∈ĨYi=
√|Ĩ|. We have the following proposition.

Proposition 1. Assume expression (1) and ξi ∼ N.0, 1/. If there is some segment Ij ∈ I that
satisfies

μj
√|Ij|�√{2.1+ "/ log.n/} .18/

for all " > 0, then the GLRT built on the original Yi has the sum of the probabilities of type I
and type II errors going to 0. However, if log.q/=o{log.n/}, and, for all segments Ij ∈ I,
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log |Ij|=o{log.n/}, .19/

μj
√|Ij|�√{2.1− "/ log.n/}, .20/

for some " > 0, then no testing procedure has the sum of the probabilities of type I and type II
errors going to 0.

This proposition generalizes theorems 2.1 and 2.2 in Arias-Castro et al. (2005). By
comparing proposition 1 with theorems 2 and 3, we can see the exact power loss due to
the local median transformation if the noise distribution is known to be Gaussian. When
ξi ∼N.0, 1/, condition (5) is satisfied with h.0/=1=

√
2.π/≈0:4. If we use the transformed data,

the detection bound of μj
√

Ij is
√{2 log.n/}={2 h.0/}≈1:25

√{2 log.n/}, where
√{2 log.n/} is

the corresponding bound for the original data. Therefore, the power loss is due to the stron-
ger condition on μj

√
Ij. However, a significant advantage of the RSD is that it automatically

adapts to a wide range of unknown noise distributions, whereas the GLRT procedure spe-
cifically designed for the Gaussian case may fail completely if the noise distribution is heavy
tailed.

3. Robust segment identification

In this section we turn to segment identification, which is to locate each Ij ∈I when the alternative
hypothesis is true. Recall the model yi =αi +ξi, where αi =μj 1{i∈Ij} for some Ij ∈ I. In this sec-
tion, we define s= minIj∈I |Ij|, s̄= maxIj∈I |Ij| and d = minIj∈I{distance between Ij and Ij+1},
and assume

s� log2.n/,

log.s̄/=o{log.n/},
.21/

which means that the lengths of the signal segments are neither too long nor too short. Examples
of such segments include those that have |Ij|= loga.n/, a�2. Further, assume that

log.q/=o{log.n/}, .22/

which implies that the number of signal segments is less than nb for any b> 0.
To identify each Ij ∈ I, a computationally efficient method, called the RSI, is proposed.

The RSI first transforms data by expression (4) and then applies a similar procedure to LRS
to the transformed data. The selected intervals have their statistics X.Ĩ/ defined in expres-
sion (9) pass certain thresholds and achieve local maxima. The RSI is computationally
efficient even for ultrahigh dimensional data. The transformation step significantly reduces
the dimension by a factor of m. Further, the second step utilizes the short segment struc-
ture and considers only intervals with length less than or equal to L=m, where L is some number
much smaller than n.

The ideal threshold for the RSI should be the same as that of the RSD, which is λn defined
in expression (10). However, h.0/ is usually unknown in practice and needs to be estimated.
By lemma 1, 1={2 h.0/

√
m} is approximately the standard deviation σ of the transformed noise

ηk, which can be estimated accurately when signals are sparse. One such robust estimator is the
median absolute deviation estimator:

σ̂ = median|Xk −median.Xk/|
0:6745

: .23/
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Therefore, we can set the data-driven threshold for the RSI at

λÅ
n = σ̂

√{2 log.n/}: .24/

The algorithm for the RSI for a fixed L can be stated as follows.

Step 1: transform the data by expression (4). Let JT .L/ be the collection of all possible
subintervals in {1, . . . , T} with interval length L=m or less.
Step 2: let j = 1. Define I.j/ = {Ĩ ∈ JT .L/ : X.Ĩ/ > λÅ

n}, where X.Ĩ/ and λÅ
n are defined as in

equations (9) and (24).
Step 3: let IÅ

j =arg max
Ĩ∈I.j/ X.Ĩ/ and update I.j+1/ = I.j/\{Ĩ ∈ I.j/ : Ĩ ∩ IÅ

j �=∅}.
Step 4: repeat step 3 with j = j +1 until I.j/ is empty.
Step 5: for each IÅ

j generated above, let lj be the (first element in IÅ
j − 1/ × m + 1 and rj be

the last element in IÅ
j ×m, and denote Îj ={lj, . . . , rj}.

Denote the collection of selected intervals as Î={Î1, Î2, . . .}. If Î �=∅, we reject the null hypoth-
esis and identify the signal segments by all the elements in Î. Note that the above RSI procedure is
designed for positive signal segments (μj >0). When both positive and negative signal segments
exist, a simple modification is to replace the X.Ĩ/ in steps 2 and 3 with |X.Ĩ/|.

We now show that, with m and L chosen properly, the RSI consistently estimates the segmen-
tal signals if they are sufficiently strong. Define the dissimilarity between any pair of Î ∈ Î and
I ∈ I as

D.Î, I/=1−|Î ∩ I|=√.|Î||I|/: .25/

It is clear that 0 �D.Î, I/� 1 with D.Î, I/= 1 indicating disjointedness and D.Î, I/= 0 indi-
cating complete identity. The following theorem presents estimation consistency of the RSI
for I.

Theorem 4. Assume expressions (1), (5), (21) and (22), and transformation (4) with m =
log1+b.n/ for 0 < b < 1. Suppose that σ̂ is an nγ-consistent estimator of the standard devia-
tion of ηk for some γ > 0, and L satisfies

s̄�L<d,
(26)

log.L/=o{log.n/}:

If condition (15) is satisfied for all Ij ∈ I, then the RSI is consistent for I in the sense that

PH0.|Î|> 0/+PH1 [max
Ij∈I

min
Îj∈Î

{D.Îj, Ij/}> δn]→0 .27/

for some δn =o.1/.

The asymptotic result (27) essentially says that both the probability of having at least one
false positive result and the probability of some signal segments not being matched well by any
of the selected intervals are asymptotically small. Condition (26) provides some insights on the
selection of L. The range [s̄, d/ is very large when signal segments are relatively short and rare
as in the applications that we are interested in. The second part log.L/=o{log.T/} is satisfied,
if, for instance, L= loga.T/ for a�0. More discussions and some sensitivity study on L for the
original LRS procedure in the Gaussian case can be found in Jeng et al. (2010).

Recall theorem 3, which shows that, when signals are very sparse, no testing procedure based
on the transformed data can separate H0 and H1 if, for all Ij ∈ I,

μj
√|Ij|�√{2.1− "/log.n/}={2h.0/}:
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This implies that the RSI is a near optimal identification procedure for the transformed data
when m and L are properly chosen. In other words, the RSI consistently estimates the signal
segments whenever it is possible to detect their existence on the basis of the transformed data.

4. Simulation studies

We evaluate the finite sample behaviour of the RSI through simulation studies and compare
its performance with the performances of LRS and another popular procedure: CBS (Olshen
et al., 2004).

4.1. Performance of robust segment identifier under various noise distributions
We generate ξi from a set of t-distributions with degrees of freedom 1, 3 and 30, where t.1/ is
the standard Cauchy distribution, which has heavy tails. As the degree of freedom increases,
the tails become thinner, and the t-distribution approaches the standard normal distribution.
Nevertheless, the t-distributions satisfy the general assumption in expression (5). We set the
sample size at n = 5 × 104, the number of segments at |I| = 3, the lengths of the segments at
|I1|= 100, |I2|= 40 and |I3|= 20, and the signal mean for all segments at μ= 1:0, 1:5, 2.0. We
randomly select three locations for the segments and generate the data from

Yi =α+ ξi,

i=1, . . . , n, where α=μ if i is in some signal segment, and α=0 otherwise.
We apply the RSI on Yi with m=20, L=120 and λn = σ̂

√{2 log.T/}, where σ̂ is calculated as
in equation (23). Fig. 2 shows the histograms of the original data Yi ∈ [−60, 60] with t.1/ noise
and μ=1, and that of the transformed data Xk. Clearly, even though the original distribution is
far from being Gaussian, the transformed data are close to being normally distributed. In this
case, m=20 is sufficiently large to stabilize the noise. More discussions on the choice of m are
given in Section 4.3.
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Fig. 2. Simulated data: (a) histogram of the original data Yi with t.1/ noise and μD 1; (b) histogram of the
transformed data Xk
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Table 1. Simulation results: medians of Dj and #O for the RSI with mD20 and LD6†

Distribution μ D1.|I1|=100/ D2.|I2|=40/ D3.|I3|=20/ #O

t.1/ 1.0 0.080 (0.015) 1.000 (0.026) 1.000 (0.000) 2.000 (0.330)
1.5 0.087 (0.003) 0.184 (0.017) 1.000 (0.000) 2.000 (0.260)
2.0 0.087 (0.009) 0.150 (0.020) 0.423 (0.220) 2.000 (0.140)

t.3/ 1.0 0.087 (0.005) 1.000 (0.270) 1.000 (0.000) 0.000 (0.000)
1.5 0.060 (0.009) 0.175 (0.029) 1.000 (0.000) 0.000 (0.000)
2.0 0.050 (0.008) 0.150 (0.016) 0.293 (0.019) 0.000 (0.000)

t.30/ 1.0 0.070 (0.014) 1.000 (0.32) 1.000 (0.000) 0.000 (0.000)
1.5 0.065 (0.012) 0.175 (0.021) 1.000 (0.245) 0.000 (0.000)
2.0 0.050 (0.010) 0.175 (0.019) 0.250 (0.028) 0.000 (0.000)

†In Tables 1–3, the estimated standard errors based on the bootstrap appear in parentheses.

As used in Jeng et al. (2010), the accuracy of identification of the RSI is measured by two
quantities, Dj and #O, where Dj measures how well the signal segment Ij is estimated, and #O

counts the number of overselections. In detail, for each signal segment Ij, define

Dj =min
Î∈Î

{D.Î, Ij/},

where D.Î, Ij/ is defined in equation (25). Obviously, smaller Dj represents better matching
between Ij and some estimate Î ∈ Î, and Dj =0 if and only if Ij = Î. Define

#O=#{Î ∈ Î : Î ∩ Ij =∅, ∀j =1, . . . , q}:

So #O is a non-negative integer, and #O = 0 if there are no overselected intervals. Accord-
ing to theorem 4, μj

√|Ij| should be at least
√

log.n/={√
2 h.0/}≈ 7:307 for segment Ij to be

consistently estimated by the RSI in this example.
We repeat the simulations 50 times to calculate Dj and #O. The medians of D1, . . . , Dq and

#O are reported in Table 1 with estimated standard errors. To estimate the standard errors of the
medians, we generate 500 bootstrap samples out of the 50 replication results, and then calculate
a median for each bootstrap sample. The estimated standard error is the standard deviation of
the 500 bootstrap medians. Table 1 shows that the RSI provides quite accurate estimates for
any of the signal segments when μ is sufficiently large. In all the cases, the overselection error
is controlled very well. It also shows that larger μ is needed for shorter segments, which agrees
with our theoretical results. More importantly, the results are very stable over different noise
distributions.

4.2. Comparison with likelihood ratio selection and circular binary segmentation
In the second set of simulations, we compare the performance of the RSI with that of the original
LRS and CBS under various noise distributions. All the parameters are chosen the same as in
the previous simulations except that μ is fixed at 2:0. Further, the maximum interval length L
for the original LRS is set at 45. Table 2 shows that, in the cases of t.1/ and t.3/, LRS has lower
power and a large number of overselections, whereas the RSI remains very stable. In contrast,
CBS fails to select any true intervals. When the noise distribution is t.30/, which is very close to
Gaussian, both LRS and CBS outperform the RSI with better power and better identification of
the signal segments. However, the RSI still performs reasonably well and has no overselection.
This agrees with our theoretical results in Section 2.2.
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Table 2. Simulation comparisons of the RSI, LRS and CBS, where both homogeneous and
heterogeneous noises are considered†

Results for RSI Results for LRS Results for CBS

D2.|I2|=40/ #O D2.|I2|=40/ #O D2.|I2|=40/ #O

t.1/ 0.163 (0.024) 2 (0.2) 0.340 (0.054) 3882 (6.6) 1.000 (0.000) 0 (0.0)
t.3/ 0.125 (0.028) 0 (0.0) 0.025 (0.006) 467 (4.4) 1.000 (0.000) 0 (0.0)
t.30/ 0.125 (0.018) 0 (0.0) 0.000 (0.001) 2 (0.0) 0.006 (0.006) 0 (0.0)
τ =0:5 0.125 (0.015) 2 (0.4) 0.013 (0.005) 37 (3.1) 0.180 (0.006) 4 (0.6)
τ =1:0 0.113 (0.022) 12 (0.6) 0.000 (0.006) 227 (6.1) 1.000 (0.010) 10 (1.1)
τ =1:5 0.125 (0.016) 26 (0.8) 0.000 (0.006) 461 (10.9) 1.000 (0.000) 8 (1.1)

†Homogeneous noise is generated from the t-distribution with degrees of freedom 1, 3 and 30.
Heterogeneous noise is generated from a mixture of N.0, 1/ and N.0, σ2/, where σ ∼gamma.2, τ /.
μ is fixed at 2.0.

We next consider the case when the errors have heterogeneous variances along the genome.
The baseline noise is generated from N.0, 1/. We randomly select 100 intervals with length 50
and generate heterogeneous noise in these intervals. In each interval, the noises follow N.0, σ2/,
where σ is generated from gamma.2, τ / with τ = 0:5, 1,1.5. Note that the noise variances are
constant within an interval but different for different intervals. The bottom half of Table 2 shows
a comparison of the three procedures. The RSI still has the best overall performance. It results
in smaller numbers of overselections than LRS and better power than CBS. However, as the
noise variance increases, the RSI can result in more overselections.

Computation is more expensive for LRS, especially for the t.1/ and t.3/ cases, because a large
number of intervals pass the threshold of LRS. In contrast, the RSI is computationally much
more efficient because the data transformation step regularizes the noise and also reduces the
dimension from n to T.

4.3. Choice of m
The third set of simulations evaluates the effect of the bin size m on the performance of the RSI.
We use the same simulation setting as in the first set of simulations except that μ is fixed at 2.0;
m takes values of 10, 20 and 40.

Table 3 shows that there is a trade-off between the power and overselection when m varies.

Table 3. Simulation results: effect of bin size m on the performance of the RSI†

Distribution D1.|I1|=100/ D2.|I2|=40/ D3.|I3|=20/ #O

t.1/ 10 0.035 (0.009) 0.10 (0.018) 0.184 (0.033) 19.000 (0.850)
20 0.087 (0.009) 0.15 (0.020) 0.423 (0.220) 2.000 (0.140)
40 0.101 (0.006) 0.25 (0.056) 1.000 (0.024) 0.000 (0.000)

t.3/ 10 0.030 (0.004) 0.088 (0.015) 0.150 (0.033) 1.000 (0.220)
20 0.050 (0.008) 0.150 (0.016) 0.293 (0.019) 0.000 (0.000)
40 0.087 (0.006) 0.293 (0.041) 1.000 (0.250) 0.000 (0.000)

t.30/ 10 0.020 (0.007) 0.075 (0.008) 0.150 (0.018) 0.000 (0.000)
20 0.050 (0.010) 0.175 (0.019) 0.250 (0.028) 0.000 (0.000)
40 0.105 (0.008) 0.293 (0.035) 1.000 (0.094) 0.000 (0.000)

†μ is fixed at 2.
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Smaller m results in better power but more overselections, especially when the noise distribution
has a heavy tail. The greater power is due to finer binning, which preserves the signal informa-
tion better. In contrast, when m is large, it is possible that none of the original observations
in segments with length less than m is kept in the transformed data, such as the case when
m=40 and I3 =20. However, if m is too small, the Gaussian approximation of the transformed
noise is not sufficiently accurate to overcome the effect of the heavy-tailed noise on segment
selection, which in turn leads to more overselections in the case of the t.1/ distribution and
m=10.

5. Application to identification of copy number variants based on the next
generation sequencing data

To demonstrate our proposed methods, we analyse the short reads data on chromosome 19 of a
HapMap Yoruban female sample (NA19240) from the 1000 genomes project. Let Yi denote the
guanine–cytosine content adjusted number of short reads that cover the base pair position i in
the genome, for i=1, . . . , n where n is very large. After the short reads have been mapped to the
reference human DNA sequences, we obtain the RD data at n= 54361060 genomic locations.
Fig. 3(a) shows the RD for the first 10000 observations of the data set. The median of the count
number over all n sites is 30.
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Fig. 3. Analysis of the chromosome 19 data of individual NA19240 from the 1000 genomes project: (a)
scatter plot of the first 10000 observations; (b) histogram of the sizes of the CNVs identified in base pairs
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The statistical challenges for CNV detection based on NGS data include both ultrahigh
dimensionality of the data that requires fast computation and the unknown distribution of the
RDs data. A close examination of our data shows that the variance of the data is much larger
than its mean, indicating that the standard Poisson distribution cannot be used for modelling
these RD data.

We apply the proposed RSI with m = 400 and L = 60000, which assumes that the CNVs
based on our preprocessed data are less than 60000 base pairs (BPs). This is sensible since
typical CNVs include multikilobase deletions and duplications (McCarroll and Altshuler, 2007;
Medvedev et al., 2009). We chose L = 60000 partially because of computational considera-
tions. If the true CNVs are longer than the maximum allowable interval length, these intervals
are often divided into several contiguous segments; we can then simply perform some post-
processing to merge these segments into longer ones. The RSI selected 115 CNV segments,
ranging from 400 to 75991 BPs in sizes; among these 24 are contiguous segments. After merg-
ing these contiguous segments, we obtained 101 CNVs, ranging from 400 to 125440 BPs in
size with a median size of 38860 BPs. See Fig. 3(b) for the distributions of the sizes of CNVs
identified. There are eight CNVs of size 400 BPs, four CNVs of size 800 BPs and four CNVs of
size 1200 BPs. These small CNVs are identified since we did not set a lower limit on the sizes of
the CNVs.

To visualize the CNVs that are identified by the RSI, Fig. 4 shows six CNVs identified,
including two duplications, two deletions and two regions with the shortest CNVs. It is clear
that these identified regions indeed represent the regions with different RDs from their neigh-
bouring regions. Examinations of the other CNV regions that were identified also show that
these regions contain more or fewer reads than their neighbouring regions, further indicating
the effectiveness of the RSI procedure in identifying the CNVs.

Mills et al. (2011) recently reported a map of CNVs based on whole genome DNA sequencing
data from 185 human genomes from the 1000 genomes project, where both the RDs and the
pair end mapping distances were used for CNV identifications. Among the methods that are
applied in Mills et al. (2011), three were based on the RDs data as we used in our data set.
These three methods identified a total of 438, 332 and 615 CNVs on chromosome 19, on the
basis of the data from all 185 samples. Out of the 101 CNVs we identified for one single sample
NA19240, 76 of them overlap with the CNVs that were reported in the CNV map of Mills et al.
(2011), indicating high sensitivity of our method in detecting the CNVs on the basis of the RD
data since our CNVs calls are based on data from only a single sample (NA19240). We cannot
make a direct comparison on CNV calls for this particular sample since the sample level CNV
calls are not available from Mills et al. (2011).

6. Conclusion and further discussion

Motivated by CNV analysis based on the RD data generated by the NGS technology, we have
studied the problem of segment detection and identification from an ultralong linear sequence
of data with an unknown noise distribution. We have developed the robust detection procedure
RSD and the robust segment identification procedure RSI, which are adaptive over a wide range
of noise distributions and are near optimal for the transformed data. The RSI procedure has
been applied to identify the CNVs based on the NGS data of a Yoruban female sample from
the 1000 genomes project. The CNV regions identified all show deviated RDs when compared
with the neighbouring regions. The key ingredient of our approaches is a local median transfor-
mation of the original data. This not only provides the basis for our algorithm and theoretical
development but also saves a large amount of computational cost by greatly reducing the data
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Fig. 4. Examples of CNVs identified on chromosome 19 of individual NA19240 from the 1000 genomes
project (for each plot, the x -axis is the genome location in BPs per 10000) (- - - - - - -, median count of 30; ,
estimated CNV boundaries): (a), (b) duplications, regions with the highest scores; (c), (d) deletions, regions
with the smallest scores; (e), (f) the two shortest CNVs identified

dimension, which makes it particularly appealing for analysing the ultrahigh dimensional NGS
data. As increasingly more NGS data are becoming available, we expect to see more applications
of the RSI procedure in CNV identifications.

Model (1) does not require a specification of the noise distribution. However, we assume that
the noise is IID, which can be violated for the RD data. The noise distribution of the RD data
is directly related to the uncertainty and errors that are inherent in the sequencing process and
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is the result of complex processing of noisy continuous fluorescence intensity measurements
known as base calling. Bravo and Irizarry (2010) showed that the complexity of the base calling
discretization process results in reads of widely varying quality within sequence samples and
this variation in processing quality results in infrequent but systematic errors. Such errors can
lead to violation of the assumption of IID data for the RD data. Although such errors can
have a great effect on analysis of single-nucleotide polymorphisms and rare genetic variants,
their effect on the RD data distribution and CNV identification is not clear. Our simulations
(Table 2) showed that, when the noise has heterogeneous variances, the RSI can still identify
the correct CNVs unless the variance is very large.

The methods that are presented in this paper can be extended to more general settings, where
one only needs to assume that the density function h of the noise satisfies∫ 0

−∞
h.y/= 1

2 , h.0/> 0 and h.y/ is Lipschitz at y =0:

Obviously, this assumption is more general than expression (5) (Brown et al., 2008). To accom-
modate this more general assumption, a larger m is needed for the robust methods that are
developed in this paper. Our methods can also be extended to detect and identify general geo-
metric objects in two-dimensional settings (Arias-Castro et al., 2005; Walther, 2010). Other
interesting extensions include identification of CNVs shared between multiple individuals based
on the NGS data and to test for CNV associations. Our methods provide the basic tools for
these extensions to consider structured signals with unknown and possibly heavy-tailed noise
distributions.
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Appendix A: Proofs

In this appendix we present the proofs for lemma 2 and theorems 1–4.

A.1. Proof of lemma 2
Condition (13) has been proved in Arias-Castro et al. (2005). We only need to show result (12).

Decompose ζ.Ĩ/ as ζ.Ĩ/= ζ1.Ĩ/+ ζ2.Ĩ/, where ζ1.Ĩ/=Σk∈Ĩ ζk1=
√|Ĩ| and ζ2.Ĩ/=Σk∈Ĩ ζk2=

√|Ĩ|. Then

P{|ζ.Ĩ/|>x}�P{|ζ1.Ĩ/|>x=2}+P{|ζ2.Ĩ/|>x=2}: .28/

Let Ak =mζk1; then, by expression (7) in lemma 1, E.Ak/=0 and E.|Ak|l/�Cl for any l> 0. According to
lemma 2 in Zhou (2006), there is some positive constant "′ such that, for any 0�x� "′ and interval Ĩ,

P.|∑
k∈Ĩ

Ak=
√|Ĩ||>x/� Φ̄.x/exp{O.1=

√|Ĩ|/},

where Φ̄ is the survival function of a standard normal random variable. Then we have

P

{
|ζ1.Ĩ/|> x

2

}
�P

(∣∣∣∣∑
k∈Ĩ

Ak√|Ĩ|

∣∣∣∣> xm

2

)
�C Φ̄

(
xm

2

)
� C

xm
exp
(

− x2m2

8

)
, .29/
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where the last step is by Miller’s inequality. In contrast, |ζ2.Ĩ/| > x=2 implies that there is some ζk2 such
that |ζk2|>x=.2

√|Ĩ|/; then

P{|ζ2.Ĩ/|>x=2}�T P{|ζk2|>x=.2
√|Ĩ|/}�CT exp.−am/�Cn−C logb.n/, .30/

where the second inequality is by expression (8) and the last inequality is by the choice of m. Combining
expressions (28)–(30) we have

P{|ζ.Ĩ/|>x}� C

xm
exp
(

− x2m2

8

)
+Cn−C logb.n/, .31/

and consequently

P [max
Ĩ∈JT

{ζ.Ĩ/}>x]�T 2 P{|ζ.Ĩ/|>x}� C

xm
exp
{

2 log.T/− x2m2

8

}
+Cn−C logb.n/:

Therefore, result (12) follows by letting x=a
√

log.T/=m for some a> 4.

A.2. Proof of theorem 1
Decompose PH0 [maxĨ∈JT

{X.Ĩ/}>λn] into two terms:

PH0 [max
Ĩ∈JT

{X.Ĩ/}>λn]=PH0 [max
Ĩ∈JT

{X.Ĩ/}>λn, max
Ĩ∈JT

{ζ.Ĩ/}�5
√

log.T/=m]

+PH0 [max
Ĩ∈JT

{X.Ĩ/}>λn, max
Ĩ∈JT

{ζ.Ĩ/}> 5
√

log.T/=m]:

By expressions (11) and (13), the first term

PH0

[
max
Ĩ∈JT

{X.Ĩ/}>λn, max
Ĩ∈JT

{ζ.Ĩ/}� 5
√

log.T/

m

]
�P

[
max
Ĩ∈JT

{Z.Ĩ/}>
√{2 log.n/}− 10h.0/

m

√
log.T/

]

�P [max
Ĩ∈JT

{Z.Ĩ/}>
√{2 log.T/}]� C√

log.T/
:

In contrast, it is easy to show that the second term is bounded by CT −C=
√

log.T/ by using result (12). The
result follows by combining the upper bounds of the two terms.

A.3. Proof of theorem 2
Since theorem 1 implies that the type I error of the RSD goes to 0, all we need to show is that

PH1 [max
Ĩ∈JT

{X.Ĩ/}�λn]→0: .32/

Suppose that under hypothesis H1 segment Ij ∈ I satisfies conditions (14) and (15). Define Ĩj to be the
collection of the index of Jk such that Jk ⊆ Ij , i.e.

Ĩj ={k : Jk ⊆ Ij}; .33/

then

|Ĩj|� �|Ij|=m−1�> |Ij|=m−2, .34/

and, for each k ∈ Ĩj , θk =μj . This combined with equations (4) and (6) implies that

Xk =μj + Zk

2h.0/
√

m
+ ζk√

m
, k ∈ Ĩj ,

which further implies that

X.Ĩj/=μj

√|Ĩj|+ Z.Ĩj/

2h.0/
√

m
+ ζ.Ĩj/√

m
:
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By expressions (34), (14) and (15), we have

μj

√|Ĩj|� μj

√|Ij|√
m

√(
1− 2m

|Ij|
)

� μj

√|Ij|√
m

√{
1− "

2.1+ "/

}
�

√{2.1+ "=2/ log.n/}
2h.0/

√
m

:

Then

PH1{X.Ĩj/�λn}�P [Z.Ĩj/�√{2 log.n/}−√{2.1+ "=2/ log.n/}−2h.0/ζ.Ĩj/]

�P

[
N.0, 1/�−√{2 log.n/}

{√
.1+ "=2/−1− h.0/"

√
2

m

}]
+P

{
ζ.Ĩj/<−"

√
log.n/

m

}

�Cn−C"2
, .35/

where the last inequality is by Miller’s inequality and inequality (31). Expression (32) follows directly.

A.4. Proof of theorem 3
Let s̄=maxIj∈I�|Ij|=m� and Īj ={k :Jk ∩ Ij �=∅}. Assume that each Īj is in {lj s̄+1, . . . , .lj +1/s̄} for some
lj , where Ĩj is defined in equation (33). We show that no testing procedure has both type I and type II
errors going to 0 under this situation. This is enough to show that no procedure has both type I and type
II errors going to 0 without this assumption. Let

Wl = .Xls̄+1 + . . .+X.l+1/s̄/=
√

s̄, l=0, . . . , �T=s̄�−1;

then Wl can be rewritten as

2h.0/Wl

√
m=θ′

l +Z′
l +2h.0/ζ ′

l ,

where Z′
l ∼IID N.0, 1/, ζ ′

l = .ζls̄+1 + . . . + ζ.l+1/s̄/=
√

s̄, and θ′
l = 0 at all except at most |I| positions where

θ′
l �

√{2.1− "/ log.n/} by expression (17).
By the well-known relationship between the L1-distance and the Hellinger distance, it is enough to

show that the Hellinger affinity between the distribution of 2h.0/Wl

√
m under the null and that under the

alternative tends to 1−o.1=n/, i.e. define

g.x/= fZ′
l
+2h.0/ζ ′

l
[x−√{2.1− "/ log.n/}]

fZ′
l
+2h.0/ζ ′

l
.x/

,

where fZ′
l
+2h.0/ζ ′

l
represents the density function of Z′

l +2h.0/ζ ′
l , and it is enough to show that

E[
√{1−ν +ν g.X/}]=1−o.1=n/,

whereν =|I|=�T=s̄�� |I|maxj |Ij|=n andL.X/=L{Z′
l +2h.0/ζ ′

l}. Further, define Dn ={|X|�√{2log.n/}}.
Then E[

√{1−ν +ν g.X/1Dn}]�E[
√{1−ν +ν g.X/}]�1. Applying Taylor’s expansion gives

E[
√{1−ν +ν g.X/1Dn}]=1− ν

2
E{g.X/1Dc

n
}+ err,

where, by the Cauchy–Schwarz inequality,

|err|�Cν2 E{g.X/1Dn −1}2 �Cν2[E{g2.X/1Dn}+1]:

Now, by the range of ν and the conditions on |I| and maxj |Ij|, it is sufficient to show that

E{g.X/1Dc
n
}=o.1/

and

E{g2.X/1Dn}=o.n/:

The following lemma is implied by lemma 1 in Cai et al. (2011).

Lemma 3. ∫
Dc

n

φ[x−√{2.1− "/ log.n/}]dx=o.1/
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and ∫
Dn

φ2[x−√{2.1− "/ log.n/}]
φ.x/

dx=o.n/,

where φ is the density function of a standard normal random variable.

Then it is enough to show that

E{g.X/1Dc
n
}=
∫

Dc
n

φ[x−√{2.1− "/ log.n/}]dx{1+o.1/}+o.1/ .36/

and

E{g2.X/1Dn}=
∫

Dn

φ2[x−√{2.1− "/ log.n/}]
φ.x/

dx{1+o.1/}: .37/

Consider equation (36) first. By convolution,

E{g.X/1Dc
n
}=
∫

Dc
n

fZ′
l
+2h.0/ζ ′

l
[x−√{2.1− "/ log.n/}]dx

=
∫

Dc
n

(∫ ∞

−∞
fζ ′

l
.w/φ[x−√{2.1− "/ log.n/}−2h.0/w]dw

)
dx

=
∫ ∞

−∞
fζ ′

l
.w/

(∫
Dc

n

φ[x−√
2.1− "/ log.n/−2h.0/w]dx

)
dw = I+ II,

where

I=
∫

|w|>4
√

log.n/=m

fζ ′
l
.w/

(∫
Dc

n

φ[x−√{2.1− "/ log.n/}−2h.0/w]dx

)
dw

�P{|ζ ′
l |> 4

√
log.n/=m}→0

by inequality (31), and

II=
∫

|w|�4
√

log.n/=m

fζ ′
l
.w/

(∫
Dc

n

φ[x−√{2.1− "/ log.n/}−2h.0/w]dx

)
dw

=
∫

|w|�4
√

log.n/=m

fζ ′
l
.w/dw

∫
Dc

n

φ[x−√{2.1− "/ log.n/}]dx+ err

=
∫

Dc
n

φ[x−√{2.1− "/ log.n/}]dx{1+o.1/}+ err

where the last step is by inequality (31) again, and

|err|�C

√
log.n/

m

∣∣∣∣
∫

Dc
n

φ′[x−√{2.1− "/ log.n/}]dx

∣∣∣∣
∫

|w|�4
√

log.n/=m

fζ ′
l
.w/dw

�C

√
log.n/

m
n−{1−√

.1−"/}2 →0:

Summing up above gives equation (36).
Next, consider equation (37). By convolution again,

fZ′
l
+2h.0/ζ ′

l
.x/=

∫ ∞

−∞
fζ ′

l
.w/φ{x−2h.0/w}dw = III+ IV
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where

III=
∫

|w|>4
√

log.n/=m

fζ ′
l
.w/φ{x−2h.0/w}dw �C

∫
|w|>4

√
log.n/=m

fζ ′
l
.w/dw � Cm√

log.n/
n−2

by inequality (31). Note that, in Dn, φ.x/�Cn−1; then III=o{φ.x/}. Further, we have

IV=
∫

|w|�4
√

log.n/=m

fζ ′
l
.w/φ{x−2h.0/w}dw =φ.x/{1+o.1/}+ err1,

where

|err1|�C

√
log.n/

m
|φ′.x/|

∫
|w|�4

√
log.n/=m

fζ ′
l
.w/dw =o{φ.x/}

by the choice of m and the fact that |φ′.x/|�Cφ.x/ for all x. Summing up above gives

fZ′
l
+2h.0/ζ ′

l
.x/=φ.x/{1+o.1/} .38/

in Dn. Similarly,

fZ′
l
+2h.0/ζ ′

l
[x−√{2.1− "/ log.n/}]=φ[x−√{2.1− "/ log.n/}]{1+o.1/} .39/

in Dn. Substituting equations (38) and (39) into the definition of E{g2.X/1Dn} gives equation (37).

A.5. Proof of theorem 4
It is sufficient to show that the set Î of the RSI satisfies

PH0 .|Î|> 0/� C√
log.T/

.40/

and

PH1 [max
Ij∈I

min
Îj∈Î

{D.Îj , Ij/}> δn]�Cqn−C"2 +C q.s̄=m/.L=m/n−Cδ2
n .41/

for any δn such that
√{log.q/+ log.s̄=m/+ log.L=m/}=

√
log.n/�δn �1. Note that

√{log.q/+ log.s̄=m/+
log.L=m/}=

√
log.n/=o.1/ under conditions (21), (22) and (26), and the choice of m. Consider inequality

(40) first. Since

PH0 .|Î|> 0/�PH0 [ max
Ĩ∈JT .L/

{X.Ĩ/}>λÅ
n ]�PH0 [max

Ĩ∈JT

{X.Ĩ/}>λÅ
n ]

and λÅ
n converges to λn at the order of nγ=

√
log.n/, then, by theorem 1 and some routine calculation,

inequality (40) follows.
Next, we show inequality (41). Since all the elements in JT .L/ cannot reach more than one signal seg-

ment, the accuracy of estimating any Ij ∈ I by some element in Î is not influenced by the estimation of
other segments in I. This means that the accuracy of estimating any Ij ∈ I is equivalent to the case when
only segment Ij exists. Define the following events:

Aj ={I.1/ �=∅ when only Ij exists}, Bj ={D.Î1, Ij/� δn}, j =1, . . . , q:

We have

PH1 [max
Ij∈I

min
Îj∈Î

{D.Îj , Ij/}> δn]�P{∃Ij ∈ I : Ac
j ∪ .Aj ∩Bc

j/}

�
q∑

j=1
P.Ac

j/+
q∑

j=1
P.Bc

j|Aj/,

and it is sufficient to show that, for any j ∈{1, . . . , q},

P.Ac
j/�Cn−C"2

.42/
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and

P.Bc
j|Aj/�Cn−C +C.|Ij|=m/.L=m/n−Cδ2

n : .43/

Consider inequality (42) first. By the construction of I.1/,

P.Ac
j/=P [ max

Ĩ∈JT .L/

{X.Ĩ/}�λÅ
n , only Ij exists]�P{X.Ĩj/�λÅ

n , only Ij exists},

where Ĩj is defined in equation (33). By inequality (35), the fact that λÅ
n converges to λn at the order of

nγ=
√{2 log.n/}, and some routine calculation, inequality (42) follows.

Now consider inequality (43). Define

KT .L/={Ĩ ∈ I.1/ : D.Ĩ, Ĩj/>Cδn}
for some C>0. Since, for an interval I , D.I, Ij/>δn implies D.Ĩ, Ĩj/>Cδn, where Ĩ is the collection of the
index of Jk such that Jk ⊆ I, then Bc

j implies IÅ
1 ∈KT .L/, where IÅ

1 is defined in step 3 of the RSI algorithm.
This further implies the existence of some Ĩ ∈KT .L/ such that X.Ĩ/�X.Ĩj/. Denote

K0 ={Ĩ ∈KT .L/ : Ĩ ∩ Ĩj =∅},
K1 ={Ĩ ∈KT .L/ : Ĩ ∩ Ĩj �=∅}:

We have

P.Bc
j|Aj/�P{∃Ĩ ∈K0 : X.Ĩ/�X.Ĩj/, |K0|�CL=m+ log.n/}+P{|K0|>CL=m+ log.n/}

+P{∃Ĩ ∈K1 : X.Ĩ/�X.Ĩj/}
�{CL=m+ log.n/}P{X.Ĩ/−X.Ĩj/�0, Ĩ ∈K0}+P{|K0|>CL=m+ log.n/}

+ .|Ij|=m/.L=m/P{X.Ĩ/−X.Ĩj/�0, Ĩ ∈K1}:

Since |K0| = ΣĨ∈JT .L/:Ĩ∩Ĩj=∅1{X.Ĩ/ > λÅ
n }, which converges to ΣĨ∈JT .L/:Ĩ∩Ĩj=∅P{X.Ĩ/ > λÅ

n } exponentially
fast, and ΣĨ∈JT .L/:Ĩ∩Ĩj=∅P{X.Ĩ/>λÅ

n }�CT.L=m/P [Z.Ĩ/>
√{2 log.T/}]�CL=m, then we have

P{|K0|>CL=m+ log.n/}�Cn−C:

It is left to show that

P{X.Ĩ/−X.Ĩj/�0, Ĩ ∈K0}�Cn−C .44/

and

P{X.Ĩ/−X.Ĩj/�0, Ĩ ∈K1}�Cn−Cδ2
n : .45/

For inequality (44), since Ĩ ∩ Ĩj =∅, then

X.Ĩ/�μj + Z.Ĩ/

2h.0/
√

m
+ ζ.Ĩ/√

m
,

where the first term on the right-hand side shows up because there is at most one position in Ĩ that can
possibly have mean μj , and other positions have mean 0. In contrast,

X.Ĩj/=μj

√|Ĩj|+ Z.Ĩj/

2h.0/
√

m
+ ζ.Ĩj/√

m
:

So

P{X.Ĩ/−X.Ĩj/�0, Ĩ ∈K0}�P

{
Z.Ĩ/

2h.0/
√

m
− Z.Ĩj/

2h.0/
√

m
�μj

√|Ĩj|−μj + ζ.Ĩj/√
m

− ζ.Ĩ/√
m

}

�P [Z.Ĩ/−Z.Ĩj/�√{2.1+ "=2/ log.n/}−√
log.n/=m]+Cn−C

�P [N.0, 2/�√{2.1+C/ log.n/}]+Cn−C,
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where the second inequality is because

μj

√|Ĩj|−μj �μj

√|Ĩj|
√{

1− "

2.1+ "/

}
by conditions (21) and (15) and the choice of m, and

P

{
ζ.Ĩj/− ζ.Ĩ/<−

√
log.n * */

m

}
�Cn−C .46/

by inequality (31). Therefore, inequality (44) follows.
For inequality (45), since Ĩ ∩ Ĩj �=∅, we can write

X.Ĩ/−X.I/=LR1 +LR2 +LR3,

LR1 =
(

1√|Ĩ| − 1√|Ĩj|

) ∑
k∈Ĩ∩Ĩj

Xk =
(

1√|Ĩ| − 1√|Ĩj|

){
μj|Ĩ ∩ Ĩj|+

∑
k∈Ĩ∩Ĩj

Zk

2h.0/
√

m
+

∑
k∈Ĩ∩Ĩj

ζk

√
m

}
,

LR2 = 1√|Ĩ|
∑

k∈Ĩ\Ĩ∩Ĩj

Xk � 1√|Ĩ|

{
μj +

∑
k∈Ĩ\Ĩ∩Ĩj

Zk

2h.0/
√

m
+

∑
k∈Ĩ\Ĩ∩Ĩj

ζk

√
m

}

LR3 =− 1√|Ĩj|
∑

k∈Ĩj\Ĩ∩Ĩj

Xk = 1√|Ĩj|

{
−μj|Ĩj\Ĩ ∩ Ĩj|−

∑
k∈Ĩj\Ĩ∩Ĩj

Zk

2h.0/
√

m
−

∑
k∈Ĩj\Ĩ∩Ĩj

ζk

√
m

}

Note that LR1, LR2 and LR3 are independent, and

(
1√|Ĩ| − 1√|Ĩj|

) ∑
k∈Ĩ∩Ĩj

Zk

2h.0/
√

m
+ 1√|Ĩ|

∑
k∈Ĩ\Ĩ∩I

Zk

2h.0/
√

m
− 1√|Ĩj|

∑
k∈Ĩj\Ĩ∩Ĩj

Zk

2h.0/
√

m
∼ 1√

m
N.0, τ /

for some τ > 0. In contrast, D.Ĩ, Ĩj/�Cδn implies that(
|Ĩ ∩ Ĩj|√|Ĩ| −√|Ĩj|

)
μj <−Cδn

√|Ĩj|μj:

Combining this with inequality (46) we have

P{X.Ĩ/−X.Ĩj/�0, Ĩ ∈K1}�P

{
N.0, τ /�Cδnμj

√|Ij|−
√

log.n/

m

}
+Cn−C:

Given expression (15) and the choice of m, inequality (45) follows for δn satisfying
√{log.q/+ log.s̄=m/+

log.L=m/}=
√

log.n/� δn �1.
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