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We consider d-dimensional stochastic continuum-armed bandits with
the expected reward function being additive β-Hölder with sparsity s for

0 < β < ∞ and 1 ≤ s ≤ d. The rate of convergence Õ(s · T
β+1
2β+1 ) for the

minimax regret is established where T is the number of rounds. In particular,
the minimax regret does not depend on d and is linear in s. A novel algorithm
is proposed and is shown to be rate-optimal, up to a logarithmic factor of T .

The problem of adaptivity is also studied. A lower bound on the cost of
adaptation to the smoothness is obtained and the result implies that adapta-
tion for free is impossible in general without further structural assumptions.
We then consider adaptive additive SCAB under an additional self-similarity
assumption. An adaptive procedure is constructed and is shown to simultane-
ously achieve the minimax regret for a range of smoothness levels.

1. Introduction. The multiarmed bandit problem, first formulated by Robbins (1952),
has been studied for more than sixty years. It is an online learning framework that captures the
trade-off between exploration of new information and exploitation of historical information.
This framework has since been widely used in many fields, including computer science such
as paging and cashing (e.g., Blum, Burch and Kalai (1999)) and recommendation systems
(e.g., Bresler, Chen and Shah (2014)); statistics such as sequential experimental design (e.g.,
Lai and Robbins (1985)); economics such as optimization of seller’s prices (e.g., den Boer
(2015)) and crowdsourcing platform design (e.g., Slivkins and Vaughan (2014)); medical
decision making such as clinical trial design (e.g., Pearson and Berry (1981)); and operation
research such as assortment selection (e.g., Agrawal et al. (2019)).

Among the bandit problems, the ones with exponentially or infinitely large action sets
have become the subject of intensive study in recent years, see Kleinberg (2004), Slivkins
(2011), Banks and Sundaram (1992), McMahan and Blum (2004), Auer et al. (2002), Hazan
and Megiddo (2007), Kakade, Kalai and Ligett (2009), Awerbuch and Kleinberg (2008),
and Hazan and Kale (2011). Such problems, known as continuum-armed bandits (Agrawal
(1995)), originate from applications such as online auctions, web advertising, and adaptive
routing, where one must make a decision among an infinite number of choices. In the case
where the outcomes are independent and identically distributed (i.i.d.) when the same arm is
pulled, the problem is known as stochastic continuum-armed bandits (SCAB).

1.1. Stochastic continuum-armed bandits (SCAB). In SCAB, nature draws a sequence of
independent random functions(

Yt (·) : [0,1]d →R
)
, t = 1,2, . . . ,

where Yt (x) denotes the random reward for arm x at round t . We assume for each x ∈ [0,1]d ,
Yt (x), t = 1,2, . . . , are i.i.d. random variables with the same expectation f (x). At each
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round t , the decision maker (algorithm) pulls an arm x ∈ [0,1]d based on the observations
strictly anterior to the round t and receives a reward Yt (x). In this problem, an algorithm
A = {A1, . . . ,AT } is a sequence of possibly randomized maps At : ([0,1]d)t−1 × R

t−1 →
[0,1]d , t = 2, . . . , T with the exception of A1 ∈ [0,1]d being a possibly random num-
ber. This algorithm creates a sequence of arms {X1, . . . ,XT } ∈ ([0,1]d)T and observations
{Y1(X1), . . . , YT (XT )} ∈R

T where X1 = A1 and

Xt =At

(
X1, . . . ,Xt−1, Y1(X1), . . . , Yt−1(Xt−1)

)
.

The goal of the decision maker is to maximize the expected total reward E
∑T

t=1 Yt (Xt)

where T is the time horizon. Let x∗ = arg maxx∈[0,1]d f (x) be any maximizer of f . Obvi-
ously, the optimal algorithm A∗ would be always pulling x∗ if the mean reward function
f (·) were known. However, A∗ is infeasible since f (·) is unknown in practice. Following
the convention, we use A∗ as the oracle rule to benchmark all feasible policies. Specifically,
the performance of an algorithm A is measured by its regret,

RT (A) = E

T∑
t=1

[
f (x∗) − Yt (Xt)

]
,

which is the difference between its and the oracle’s total expected rewards.
There is a body of literature on SCAB (Kleinberg (2004), Auer, Ortner and Szepesvári

(2007), Maillard and Munos (2010), Pandey et al. (2007)). One line of related literature
(Kleinberg (2004), Auer, Ortner and Szepesvári (2007), Kleinberg, Slivkins and Upfal (2008),
Bubeck et al. (2011), Locatelli and Carpentier (2018), Kleinberg, Slivkins and Upfal (2019),
Liu, Wang and Singh (2021), Singh (2021), Zhao and Lai (2021)) models nonparametrically
by making continuity assumptions on the mean reward function. Kleinberg (2004) focuses on
the case where the mean reward is a β-Hölder function with β ≤ 1 and obtains nearly tight

upper and lower bounds Õ(T
β+1

2β+1 ) and �̃(T
β+1
2β+1 −o(1)

), respectively for the minimax regret in
the one-dimensional setting. Kleinberg, Slivkins and Upfal (2008) considers the multidimen-
sional setting and assumes the mean reward to be Lipschitz. Liu, Wang and Singh (2021) ex-
tends Kleinberg (2004) and Kleinberg, Slivkins and Upfal (2008) to general Hölder smooth-

ness in the multidimensional setting and proposes an algorithm that achieves Õ(T
β+d

2β+d ) re-

gret. For the case of general Hölder smoothness, a lower bound �(T
β+d
2β+d ) for regret can be

deduced from Wang, Balakrishnan and Singh (2019), which studies a more general prob-
lem, as argued by Liu, Wang and Singh (2021). Another line of research (Auer (2002), Dani,
Hayes and Kakade (2008), Abbasi-Yadkori, Pál and Szepesvári (2011), Rusmevichientong
and Tsitsiklis (2010)) instead considers SCAB with mean reward being a linear function. In
this case, the minimax regret is shown to be �̃(d · √

T ) (Dani, Hayes and Kakade (2008)).
The above two lines of literature model the mean reward by a nonparametric regression and
a linear regression, respectively.

As seen from the rate T
β+d

2β+d , multidimensional SCAB suffers from the curse of dimen-
sionality and the optimal performance deteriorates significantly as the dimension d grows. As
known in the nonparametric function estimation literature, one effective approach to circum-
vent the curse of dimensionality is to use the additive model, which assumes the regression
function to be the sum of univariate functions of the individual variables (e.g., Stone (1985),
Linton and Nielsen (1995), Yuan and Zhou (2016)). A natural and popular extension of the
additive regression is the sparse additive regression, where the regression function is the sum
of s univariate functions of the individual variables for some s � d . Yuan and Zhou (2016)
considers the setting where each component function resides in a certain reproducing kernel
Hilbert space and shows that in some regime the optimal rate of convergence coincides with
that for estimating a univariate function.
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In this paper, we study minimax regrets and adaptivity for additive SCAB with the ex-
pected reward function being additive β-Hölder for 0 < β < ∞. That is, the expected reward
function

f (x) =
d∑

j=1

fj

(
x(j)), for all x ∈ [0,1]d,

where fj are univariate β-Hölder functions. Let s = Card({j : fj 	≡ 0}) be the number of
functions fj that are not identically zero. We shall call such a function additive β-Hölder
with sparsity s and the corresponding problem additive β-Hölder SCAB with sparsity s. We
will explore the full range of the smoothness level 0 < β < ∞ and the sparsity level 1 ≤ s ≤ d

with a particular interest in the high-dimensional sparse additive SCAB.

1.2. Main results and our contribution. A novel algorithm is proposed for the additive
β-Hölder SCAB with sparsity s and smoothness level β > 0. It is shown that the algorithm

achieves O(s · T β+1
2β+1 · ln3(T )) regret. A lower bound for the minimax regret of order �(s ·

T
β+1
2β+1 ) is also obtained. The two results together establish the minimax rate s · T β+1

2β+1 , up to
a logarithmic factor, and thus the proposed algorithm is nearly minimax optimal.

In comparison with the minimax regret �̃(T
β+d
2β+d ) for the nonparametric SCAB, the min-

imax rate s · T
β+1
2β+1 has two major distinctions. Firstly, the dimension d has no influence at

all. It thus avoids the curse of dimensionality. Secondly, the sparsity s does not affect the
exponent of T . Therefore, it significantly improves the minimax regret of the nonparamet-
ric SCAB, especially in the high-dimensional setting. On the other hand, the minimax rate

for sparse additive regression is �(s · n 2β
2β+1 + s·lnd

n
) (Raskutti, Wainwright and Yu (2012)),

where s is the sparsity, d is the dimension, and n is the sample size. There is a logarithmic de-
pendence on d . However, the minimax regret of the sparse additive SCAB is dimension-free.
This highlights the difference between the two problems. In addition, the linear SCAB can
be viewed as a special case of the additive SCAB with smoothness β = ∞. Plugging β = ∞
into the minimax regret �̃(d · T β+1

2β+1 ) of the additive SCAB formally recovers the minimax
regret �̃(d · √T ) of the linear SCAB. In all, our results (roughly) bridge the gap between the
nonparametric SCAB and the linear SCAB.

Besides establishing the minimax rate, we also consider adaptation to the two unknown
parameters: the sparsity s and smoothness β . It is shown that adaptation to the unknown

sparsity s is free in that an algorithm can achieve s · Õ(T
β+1
2β+1 ) regret without prior knowledge

of s. On the other hand, we prove that adaptation to the unknown smoothness is in general
impossible. It is shown that for any two smoothness levels α > β > 0, no algorithm can

achieve near minimax regrets s · Õ(T
α+1
2α+1 ) and s · Õ(T

β+1
2β+1 ) simultaneously over the α-

Hölder and β-Hölder additive classes. A significant penalty must be paid for not knowing the
smoothness level in the additive SCAB.

For applications, it is critical to have a data-driven adaptive procedure that does not rely
on the knowledge of the smoothness β . To this end, we consider the additive SCAB under an
additional self-similarity assumption, which has been used in the literature to enable the con-
struction of adaptive nonparametric confidence intervals (Giné and Nickl (2010), Picard and
Tribouley (2000)). It is shown that adding this condition does not make the problem easier in

the sense that the minimax regret is still s · �̃(T
β+1
2β+1 ). We then construct an adaptive proce-

dure that simultaneously achieves the minimax regret s · Õ(T
β+1
2β+1 ) for a range of smoothness

levels β .
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In related literature (Minsker (2013), Wang, Balakrishnan and Singh (2019), Locatelli and
Carpentier (2018), Zhao and Lai (2021)), additional assumptions that restrict the measure
of superlevel sets of f is often considered. These assumptions can describe the difficulty
of finding the maximum region of a function. We extend the current problem setting by
adding a new superlevel set assumption. Suppose the measure of superlevel set of depth ε1

is bounded by O(ε
γ
1 ) for each nonzero component and βγ ≤ 1. We prove that the minimax

regret with this additional assumption is �̃(s ·T β+1−βγ
2β+1−βγ ). This regret is again dimension-free,

which shows that the dimension-free phenomenon can be generalized to the setting under the
additional superlevel set assumption. We also consider the problem of adaptation to γ and
show that under mild conditions, adaptation to γ can be achieved without additional cost.

1.3. Related literature. SCAB has been studied under other structural assumptions be-
yond Hölder continuity. For example, Agarwal et al. (2013) assumes that the mean cost func-
tion is globally convex and views it as an online convex optimization problem. An upper

bound of Õ(T
1
2 ) is given in this case, which is clearly not improvable up to a logarithmic

factor. Cope (2009) proves an upper bound of O(T
1
2 ) for the asymptotic regret under the

assumptions that the mean reward is unimodal, three times continuously differentiable and
its derivative is well behaved at its maximizer. SCAB with additive models has been consid-
ered in the Bayesian setting with a given prior (Kandasamy, Schneider and Póczos (2015),
Rolland et al. (2018), Delbridge, Bindel and Wilson (2020)). However, minimax regrets for
the additive SCAB and the more general sparse additive SCAB are unknown.

A problem connected to SCAB is adversarial continuum-armed bandits where the payoff
distribution is allowed to vary during the game. Kleinberg (2004) proves that the minimax

regret is �̃(T
β+1

2β+1 ) for adversarial continuum-armed bandits under the β-Hölder continuity
assumption for β ≤ 1 with bandit feedback. Maillard and Munos (2010) further considers
this problem in the full-feedback setting and shows that the minimax regret for the Lipschitz
class (Hölder continuity with smoothness 1) is �̃(

√
T ).

Another related problem is SCAB with covariates, where in each round nature draws a
context U and the decision maker chooses an action X ∈ X not only based on the history but
also on this context. The reward Y(X,U) depends both on the action and context. Lu, Pál
and Pál (2009) and Slivkins (2011) consider the problem under the Lipschitz assumption and

prove a lower bound �(T
d1+d2+1
d1+d2+2 ) for the minimax regret where d1 and d2 are the packing

dimensions of the context and arms spaces. Lu, Pál and Pál (2009) also shows a nearly tight

upper bound of Õ(T
d̄1+d̄2+1
d̄1+d̄2+2 ) where d̄1 and d̄2 are covering dimensions of the context and

arms spaces.
In this paper, we prove that adaptation to smoothness is impossible. This phenomenon is

connected to many other nonadaptivity results in various nonparametric bandits problems
(Locatelli and Carpentier (2018), Liu, Wang and Singh (2021), Gur, Momeni and Wager
(2021)). When adaptation for free is impossible, a common approach is to consider additional
conditions that enable adaptivity (Combes and Proutiere (2014), Bull (2015), Locatelli and
Carpentier (2018), Gur, Momeni and Wager (2021)). A novel approach has been recently
proposed. Hadiji (2019) studies one-dimensional nonparametric SCAB, which is well known
to be nonadaptive, and considers admissibility in the minimax sense. A class of algorithms
are shown to be (minimax) admissible. Such (minimax) admissibility can be used as a general
criterion to study nonadaptivity without additional assumptions. We give a further discussion
on nonadaptivity in Section 6.
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1.4. Notation and definitions. For two functions g1(T ), g2(T ) > 0, we write g1(T ) =
O(g2(T )) if lim supT →∞

g1(T )
g2(T )

< ∞; g1(T ) = Õ(g2(T )) if there exists a constant C > 0

such that g1(T ) = O(g2(T ) · lnC(T )); g1(T ) = �(g2(T )) if lim infT →∞ g1(T )
g2(T )

> 0; g1(T ) =
�(g2(T )) if g1(T ) = O(g2(T )) and g2(T ) = O(g1(T )); and g1(T ) = �̃(g2(T )) if g1(T ) =
Õ(g2(T )) and g2(T ) = Õ(g1(T )). For any vector x ∈ R

d0 where d0 is some positive integer,
let ‖x‖ denote the L2 norm of x. For any matrix M , let ‖M‖ denote the L2 operator norm
of M , that is, ‖M‖ = supx 	=0

‖Mx‖
‖x‖ . For a positive number β > 0, w(β) denotes the largest

integer that is strictly smaller than β . For a finite-dimensional vector x, let x(j) denote the j th
element of x. For a function g and a nonnegative integer k, let g(k) denote the kth derivative
of g. For two vectors x and y of the same dimension, let 〈x, y〉 be the inner product of these
two vectors. Let Z+ and R

+ denote the collection of positive integers and the collection of
positive real numbers.

DEFINITION 1. The Hölder class of functions H0(β,L) is defined to be the set of w(β)

times continuously differentiable functions g : [0,1] → R such that for any x, x′ ∈ [0,1],∣∣g(w(β))(x) − g(w(β))(x′)∣∣≤ L · ∣∣x − x′∣∣β−w(β)
.

Let

(1) H(β,L) =
{
H0(β,L), β < 1,

H0(β,L) ∩H0(1,L), β ≥ 1.

DEFINITION 2. A family of random variables Y(x) ∈R indexed by x ∈ [0,1]d is defined
to be uniformly sub-Gaussian with positive constants u1, u2 if for any x ∈ [0,1]d and t > 0
the following inequality holds:

P
(∣∣Y(x)

∣∣≥ t
)≤ u1 · e−u2t

2
.

1.5. Organization. In Section 2, we consider the minimaxity of SCAB. A lower bound
is presented in Section 2.1. An algorithm is proposed in Section 2.2 and an upper bound for
the regret of this algorithm is obtained in Section 2.3. It is shown in Section 3 that adaptiv-
ity is in general impossible. In Section 4, we discuss the adaptivity under the self-similarity
assumption. Specifically, Section 4.1 introduces the self-similarity assumption, a new algo-
rithm is proposed in Section 4.2, and an upper bound is derived in Section 4.3 to show that
this algorithm is adaptive under the self-similarity condition. Section 5 considers the addi-
tive SCAB under an additional superlevel set assumption and establishes the corresponding
minimax regret. Adaptivity under this assumption is also considered. Finally, a discussion is
provided in Section 6. The proof of a main theorem is presented in Section 7. For reasons of
space, the proofs of other main and technical results are given in the Supplementary Material
Cai and Pu (2022).

2. Minimax optimal rates for the regret. We begin by introducing some assumptions.
The first is on the additive structure of the mean reward function.

ASSUMPTION 1. We assume the mean reward f can be represented as

f (x) =
d∑

j=1

fj

(
x(j)), for all x ∈ [0,1]d,

where only s of these d functions {f1, . . . , fd} are nonzero.
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Our second assumption addresses the hypothesis space containing fj (·), j = 1, . . . , d .
This paper aims to construct an algorithm achieving low regret without restricting each fj (·)
in a small parametric function space. Alternatively, we assume each fj (·) to be in a Hölder
class of functions.

ASSUMPTION 2. For any j ∈ {1, . . . , d}, fj belongs to the Hölder class H(β,L) for
some β > 0 and L > 0.

Recall the definition of H(β,L) in (1). When β ≥ 1, fj ∈ H(β,L) means it is Lipschitz
continuous.

The third assumption requires the conditional distribution of Y given X to be uniformly
sub-Gaussian.

ASSUMPTION 3. EY1(x) exists for all x ∈ [0,1]d and {Y1(x) − EY1(x) : x ∈ [0,1]d} is
uniformly sub-Gaussian with some constants u1 > 1, u2 > 0.

This assumption is strictly weaker than the usual assumption of bounded outcomes, which
is often made in the literature (Rigollet and Zeevi (2010), Hu, Kallus and Mao (2020), Dudik
et al. (2011)). It can also admit other common models such as outcomes being Gaussian with
bounded variances. The requirement of u1 > 1 is necessary. If u1 < 1, then no distribution
satisfies this condition.

With the above two assumptions we can formally define the minimax regret. Since the
regret of any algorithm depends on the specific instance of the problem, we write RT (A) as
RT (A;P) where

P = {
Px : x ∈ [0,1]d,Px is a distribution on R

}
denotes the distributions of Y1(x). We consider all instances that fit the assumptions. Let
P(s, d,β,L,u1, u2) denote all of P that satisfy Assumptions 1, 2 and 3. A fundamental
benchmark is the minimax regret defined by

inf
A

sup
P∈P(s,d,β,L,u1,u2)

RT (A;P).

The rate of minimax regret is established in two steps. We first prove a lower bound for the
maximum regret of any algorithm and then develop an algorithm that attains this rate under
the three assumptions.

2.1. Minimax lower bound. We begin with the minimax lower bound for the minimax
regret over P(s, d,β,L,u1, u2).

THEOREM 1. For any positive parameters β , L, u1, u2, and the number of rounds T ,
there exists a constant C > 0 depending on β , L, u1, u2 only and not on T , s, d such that

inf
A

sup
P∈P(s,d,β,L,u1,u2)

RT (A;P) ≥ C · s · T β+1
2β+1 .

This theorem establishes a general lower bound for the worst-case performance of any
algorithm for the SCAB with additive models. Recall that the linear SCAB is a special case
of the SCAB with additive models. In the linear SCAB, each fj is a linear function and thus
belongs to H(β,L) for any β > 0. Therefore, intuitively the linear SCAB can be roughly
viewed as the additive SCAB with smoothness β = ∞. If we plug β = ∞ and s = d into

Theorem 1, then the sharp regret lower bound �(d · T 1
2 ) for the linear SCAB (Dani, Hayes
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and Kakade (2008)) is recovered. Therefore Theorem 1 generalizes the lower bound of the
regret for the linear SCAB to the additive SCAB.

We shall show this bound is nearly tight for all β by giving a novel algorithm and proving
a matched upper bound in the next section.

2.2. Algorithm. In this section, we develop an algorithm for arbitrary smoothness.
Specifically, we begin with a review of local polynomial regression in Section 2.2.1, which
is utilized in our algorithm to estimate f (·) and construct confidence intervals. The proposed
algorithm is then presented in detail in Section 2.2.2.

2.2.1. Local polynomial regression. Local polynomial regression is an offline nonpara-
metric regression method. A classical result of local polynomial regression is that it can
achieve minimax convergence rates in a Hölder ball with proper choices of tuning parame-
ters (Györfi et al. (2006)). We briefly review local polynomial regression in this section, and
present the details of how to use it in our algorithm in the next section.

Let O = {(X(1), Y(1)), . . . , (X(m), Y(m))} be i.i.d. samples, where X(1) has support ⊂ [0,1].
The goal is estimating E[Y(1)|X(1)] with these samples nonparametrically. Let S = [a, b] be a
subset of [0,1]. We consider the observations (X(i), Y(i)) such that X(i) ∈ S. Without loss of
generality, we let these observations be OS = {(X(1), Y(1)), . . . , (X(m0), Y(m0))}. We estimate
E[Y(1)|X(1)] on [a, b] by fitting a polynomial regression with observations in [a, b], that is,
OS , as follows.

Let tk(x) = (1
2 + x− a+b

2
b−a

)k and t (l)(x) = (t0(x), t1(x), . . . , tl(x))T for some integer l. Define

θ̂ = arg min
θ∈Rl+1

m0∑
k=1

(
Y(k) − 〈

t (X(k)), θ
〉)2

.

For concreteness, if the minimizer is not unique we define θ̂ = 0. The local polynomial re-
gression estimate on S is given by

f̂ (x;O, l, S) := 〈
t (l)(x), θ̂

〉
.

In our algorithm, we only use a special case of local polynomial regression, where S is taken
to be the support of X(1) and X(1)’s distribution is uniform on [a, b]. In this case, the following
proposition justifies the convergence of f̂ .

PROPOSITION 1. Let X be a uniform random variable in an interval [a, b] ⊂ [0,1]. Let
O = {(X(1), Y(1)), . . . , (X(n), Y(n))} be an i.i.d. sample of (X,Y (X)). If g(x) := E[Y |X =
x] ∈ H(β,L) and Y(x) is a constant CY plus a uniformly sub-Gaussian random variable
with constants u1 and u2. Suppose u1 ≤ exp(u′

1 · nν) for some positive constants ν and u′
1.

Then there exists positive constants C1, C2 and C3 that depend on l, u′
1, u2 but not on a, b,

n, u1, CY such that with probability at least 1 −O(e−C2 ln2(n)), for any x ∈ [a, b], n > C3 the
following inequality holds:∣∣E[Y |X = x] − f̂

(
x;O, l, [a, b])∣∣< (b − a)β ln(n) + ln3(n) · n− 1

2 (1−ν).

If we know the value of β and ν, by this proposition, we can further construct interval
estimates for E[Y |X = x] with high confidence. Let

f̂ ub(x;O, l, [a, b], β, ν
) := f̂

(
x;O, l, [a, b])+ (b − a)β ln(n) + ln3(n) · n− 1

2 (1−ν),

f̂ lb(x;O, l, [a, b], β, ν
) := f̂

(
x;O, l, [a, b])− (b − a)β ln(n) − ln3(n) · n− 1

2 (1−ν),

f̂ ub(x;O, l, [a, b], β) = f̂ ub(x;O, l, [a, b], β,0
)
,

f̂ lb(x;O, l, [a, b], β) = f̂ lb(x;O, l, [a, b], β,0
)
.
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By Proposition 1, [f̂ lb(x;O, l, [a, b], β, ν), f̂ ub(x;O, l, [a, b], β, ν)] is a 1 − O(e−C2 ln2(n))

confidence interval for E[Y |X = x] if n is large enough and ν is known. Especially,
if the conditional distribution of Y given X is fixed then we can let θ = 0 and use
[f̂ lb(x;O, l, [a, b], β), f̂ ub(x;O, l, [a, b], β)] as a 1 − O(e−C2 ln2(n)) confidence interval for
E[Y |X = x]. In our algorithm, the local polynomial regression as an offline regression
method is used as a basic tool to estimate and construct confidence intervals for the mean
reward function.

2.2.2. Our algorithm. In this section, we present our new procedure for the additive
SCAB, which is summarized in Algorithm 1 at the end of this section. The algorithm has
three input parameters: the total number of rounds T , Hölder smoothness level β0, and the
polynomial degree l. We begin by introducing the main ideas behind the construction.

The algorithm proceeds in epochs and maintains a feasible region ⊂ [0,1] for each j ∈
{1, . . . , d} where, with high confidence, the value of fj is close to the maximal mean reward

fj (x
(j)∗ ). Let Gi,j denote the feasible region in the ith epoch for the j th dimension. In each

epoch, the algorithm only pulls arms whose j th elements are in the current corresponding
feasible region Gi,j . Each feasible region begins with [0,1] and is narrowed down as more
data is collected and confidence intervals become narrower. In each epoch the algorithm
decomposes current feasible region into a set of nonoverlapping intervals. Then it pulls arms
from a distribution depending on the structure of these intervals and collects the observations.
After that, the algorithm fits local polynomial regression with these observations to construct
confidence intervals for each fj and utilizes them to narrow the feasible region.

Specifically, in each epoch the algorithm has four steps: reallocating, pulling, fitting, and
eliminating. In the reallocating step, the algorithm breaks each current feasible region into a
set of intervals; in the pulling step, the algorithm pulls arms from a distribution depending
on the structure of these intervals; in the fitting step, the algorithm fits a local polynomial
regression with samples obtained in the pulling step and constructs confidence intervals; in
the eliminating step, the algorithm eliminates the points with too small confidence upper
bounds in each current feasible region and makes the remaining ones the new feasible region.

The algorithm recursively does these four steps for

K =
⌊

ln2l+2

((
T

5

) 1
2β0+1

)⌋
−
⌊

ln2l+2

((
T

5

) β0+1
(2β0+1)(4β0+1)

)⌋

epochs. After K epochs, all the points in the final feasible region GK+1,j are “sufficiently
good” with high probability for each j ∈ {1, . . . , d}. Then it simply pulls arms randomly in
the product of the d final feasible regions recursively till the final round. We describe below
the four steps in detail.

Reallocating step. Note that each feasible region is always a union of intervals (see
Lemma 1). For a feasible region Gi,j , let the natural decomposition of Gi,j be Gi,j =⋃N0

k=1 Jk where {Jk : k = 1, . . . ,N0} denote intervals in the ascending order s.t.:

sup
x∈Jk

x < inf
x∈Jk+1

x, ∀1 ≤ k < k + 1 ≤ N0.

For example, if Gi,j = [0,0.1)∪[0.2,0.45)∪[0.5,0.55) then J1 = [0,0.1), J2 = [0.2,0.45),
J3 = [0.5,0.55) and N0 = 3.

For each Jk , the algorithm further decomposes it into shorter intervals. With a length pa-
rameter ci , each Jk is broken into a collection of intervals that all have length ci except for
the last one. Specifically, let xmin = infx∈Jk

x, xmax = supx∈Jk
x and m = �xmax−xmin

ci
�, then Jk

is decomposed into m intervals [xmin, xmin + ci), [xmin + ci, xmin + 2ci), . . . , [xmin + (m −
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2)ci, xmin + (m − 1)ci), [xmin + (m − 1)ci, xmax] ∩ Jk . For example, if Jk = [0.1,0.45) and
ci = 0.1 then Jk is decomposed into four intervals [0.1,0.2), [0.2,0.3), [0.3,0.4), [0.4,0.45).

Finally, we collect all these shorter intervals into a set as {Ii,j,1, . . . ,Ii,j,gi,j
} where gi,j is

the capacity of this set. Define F(·, ·) by

F(Gi,j , ci) = {Ii,j,1, . . . ,Ii,j,gi,j
}(2)

For example, if Gi,j = [0,0.1) ∪ [0.2,0.45) ∪ [0.5,0.55) and ci = 0.1 then Ii,j,1 = [0,0.1),
Ii,j,2 = [0.2,0.3), Ii,j,3 = [0.3,0.4), Ii,j,4 = [0.4,0.45), Ii,j,5 = [0.5,0.55) and gi,j = 5.

Pulling step. In this step, the algorithm pulls arm independently Ti times from a distribution
Di . Let Di be the distribution of a d-dimensional random variable Z = (Z1, . . . ,Zd) that is
sampled as follows. Let Z1, . . . ,Zd be independent. Each Zj is sampled by first randomly
picking m from {1, . . . , gi,j } with equal probability and then taking a random number from
the uniform distribution on Ii,j,m. After pulling arms, the algorithm logs the samples ob-
served. This process is separate for different elements of the covariates and different intervals
in the feasible regions. That is for each j = 1, . . . , d and m = 1, . . . , gi,j , the algorithm cre-
ates a set of observations Oi,j,m, which only logs the samples whose j th covariates are in
Ii,j,m and only stores the information of outcomes and the j th covariates. The algorithm will
fit one-dimensional local polynomial regression on each Oi,j,m separately.

Fitting step. Recall the algorithm collects observations Oi,j,m in the ith epoch, for each j =
1, . . . , d and m = 1, . . . , gi,j . With these observations, we use local polynomial regression
with order l to construct confidence lower and upper bounds of fj for x ∈ Ii,j,m:

f̂ lb
i,j (x;β0, l) =

⎧⎨
⎩

f̂ lb(x;Oi,j,m, l,Ii,j,m,β0), i > 1,

f̂ lb

(
x;Oi,j,m, l,Ii,j,m,β0,

1

2

)
, i = 1,

⎫⎬
⎭ ,(3)

f̂ ub
i,j (x;β0, l) =

⎧⎨
⎩

f̂ ub(x;Oi,j,m, l,Ii,j,m,β0), i > 1,

f̂ ub

(
x;Oi,j,m, l,Ii,j,m,β0,

1

2

)
, i = 1.

⎫⎬
⎭ .(4)

Eliminating step. The algorithm already obtains upper and lower bounds of fj for each
j = 1, . . . , d on the j th feasible region Gi,j in the last step. In this step, the algorithm narrows
the feasible region for each covariate by simply eliminating the points x such that the upper
bound estimate of fj (x) is smaller than the largest lower bound of fj .

The whole algorithm is summarized in Algorithm 1 below.
We should note that it is not obvious that each Gi,j can always be decomposed into inter-

vals in the reallocating step. The following lemma ensures this is the case with probability
one.

LEMMA 1. In Algorithm 1, for all 1 ≤ i ≤ K we have with probability 1:

1. The Lebesgue measure of Gi,j is strictly greater than 0,
2. the feasible region Gi,j is a union of nonoverlapping intervals.

The number of rounds in each epoch is predetermined by the algorithm. Therefore, by
simple calculations we can prove that after all the K epochs the total number of rounds is
smaller than T .

LEMMA 2. In Algorithm 1, we have rK < T with probability 1.

Hence, with probability 1 the algorithms does not stop after all K epochs. The points left
in each final feasible region GK+1,j are sufficiently good. The algorithm then randomly pulls
arms in

∏d
j=1 GK+1,j for another T − rK rounds till the game ends.
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Algorithm 1: A1(T ,β0, l)

Input: Total number of rounds T , Hölder smoothness β0, and polynomial degree l.

0 Initialize round counter r0 = 0, feasible regions G1,j = [0,1], ∀j = 1, . . . , d .

0 Set K0 = �ln2l+2((
T
5 )

β0+1
(2β0+1)·(4β0+1) )� and epoch number K = �ln2l+2((

T
5 )

1
2β0+1 )� − K0,

ζ = 2β0(β0+1)
(2β0+1)·(4β0+1)

.

for i ∈ {1, . . . ,K} do

0 Set ci = (2l + 2)−(i+K0), bi = �(2l + 2)2β0(i+K0)�
0 Reallocating Step:

Break Gi,j into a set of intervals: {Ii,j,1, . . . ,Ii,j,gi,j
} = F(Gi,j , ci) for

j = 1, . . . , d , where F(·, ·) is defined in (2) and gi,j is defined in Section 2.2.2.

0 Pulling Step:
Set constant Ti = 2 · bi · 1

ci
· 1{i > 1} + 2 · bi · 1

ci
· T ζ1{i = 1}.

Pull arms Ti times independently from a distribution Di , where Di is defined in
Section 2.2.2.
For each j = 1, . . . , d and m = 1, . . . , gi,j , let the samples where the j th element of

covariates is in Ii,j,m be Oi,j,m,0 = {(Xt , Yt ) : ri−1 < t ≤ ri−1 + Ti,X
(j)
t ∈ Ii,j,m}.

Log these samples with outcomes and only the j th elements of covariates
Oi,j,m = {(X(j)

t , Yt ) : (Xt , Yt ) ∈ Oi,j,m,0}.
Update the round counter ri = ri−1 + Ti .

0 Fitting Step:
For j = 1, . . . , d , and m = 1, . . . , gi,j , fit local polynomial regression on Ii,j,m with
Oi,j,m and construct confidence lower bound f̂ lb

i,j (x;β0, l) and confidence upper

bound f̂ ub
i,j (x;β0, l) of fj (x) for each x ∈ Ii,j,m as in (3) and (4).

0 Eliminating Step:
Set f̂

max,lb
i,j = supx∈Gi,j

f̂ lb
i,j (x) for each j = 1, . . . , d .

Update Gi+1,j = {x ∈ Gi,j : f̂ ub
i,j (x) > f̂

max,lb
i,j } for each j = 1, . . . , d .

0 Pull arms T − rK times uniformly at random in
∏d

j=1 GK+1,j .

2.3. Minimax upper bound. We now show that with proper choice of parameters, Algo-
rithm 1 achieves the optimal rate of regret.

THEOREM 2. Let β0 = β , l ≥ �β� and s < T
β(β+1)

(4β+1)2 , then there exists a constant C > 0
such that for any P ∈ P(s, d,β,L,u1, u2),

RT

(
A1;P)≤ C · s · ln3(T ) · T β+1

2β+1 ,

where the constant C depends on parameters β , L, u1, u2 and not on P, d , s, T .

Together with the lower bound given in Theorem 1, this result establishes the minimax

optimal rate s · �̃(T
β+1

2β+1 ), where the poly-logarithmic terms in �̃(·) here depends on T and

not on s or d , under the condition s < T
β(β+1)

(4β+1)2 . It shows Algorithm 1 is rate-optimal up to a
logarithmic factor if the Hölder smoothness level β0 is correctly chosen as β . Recall that the
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minimax regret of the nonparametric SCAB is �̃(T
β+d
2β+d ) (Liu, Wang and Singh (2021)). In

comparison, the minimax regret of the additive SCAB is much improved in that the sparsity
s does not affect the exponent of T and the dimension d has no influence on the regret. When

s ≥ T
β(β+1)

(4β+1)2 , it remains unknown whether the general lower bound �(s · T β+1
2β+1 ) is (nearly)

tight. In this case, searching for the maximizer can be difficult since not only the natural
dimension but also the effective dimension is large compared to T .

2.4. Discussion of minimax regret under the additive model. In the current problem, the
minimax regret is a function of β , s, d , T and can have different forms if the relative mag-
nitudes of these four parameters vary. In this paper, we consider β to be an arbitrary fixed

number and allow s, d , T to vary. We prove the minimax regret is always s · �̃(T
β+1

2β+1 ) as

long as s < T
β(β+1)

(4β+1)2 . This general setting covers several different detailed settings including:
low-dimensional setting, where s equals d and does not vary with T ; nonsparse mild high-
dimensional setting, where s equals d and tends to infinity as T grows but is much smaller
than T ; sparse ultra high-dimensional setting, where s � d and d � T .

Compared with the sparse additive regression, the minimax optimal rate s · �̃(T
β+1

2β+1 ) for
the additive SCAB sheds new insights. The minimax rate of the L2 risk in the sparse additive

regression is �̃(s ·n− 2β
2β+1 + s · ln(d)/n) (Raskutti, Wainwright and Yu (2012)). Therefore, in

the sparse additive regression, the estimation risk has an inevitable logarithmic dependence
on the dimension d while in the sparse additive SCAB the regret has no dependence on d .
Specifically, if ln(d) � n then no consistent estimator exists in the sparse additive regression
but in the sparse additive SCAB one can still achieve low regret no matter how high the
dimension is. This highlights the difference between the sparse additive regression and the
sparse additive SCAB.

In fact, in high-dimensional estimation problems, at least a ln(d) dependence in the risk
is generally unavoidable (Raskutti, Wainwright and Yu (2011), Cai, Zhang and Zhou (2010),
Cai and Guo (2017)). The dimension-free phenomenon here shows the intrinsic difference
between high-dimensional bandits and high-dimensional estimation problems. The key rea-
son for the dimension-free phenomenon here is that in the current setting, the overall regret
can be decomposed as the sum of regrets in individual components. This gives a possibility
of decomposing the whole task as d independent tasks. The algorithm here treats each di-
mension independently and find the maximizer of each fj independently. To be free of ln(d),
our Algorithm 1 neither tries to estimate f as a whole nor tries to estimate the effective
dimensions. As a result, the algorithm does not learn which s of them are really effective.
However this does not matter, since the remaning d − s tasks yield no regret no matter how
the algorithm does in them.

A related problem is sparse high-dimensional linear bandits. In this problem, the mean
payoff f is modeled as a sparse linear function on the action Xt . In this case the problem can
be reduced to a discrete problem since the maximizer of the mean payoff must be located in
the vertex set {0,1}d by linearity. Lattimore and Szepesvári (2020) shows a Õ(s ·√T ) regret
upper bound in this case. Our results can be viewed as extending this problem to the general
additive case. Although both results show a dimension-free upper bound, our results give
a deeper insight. This dimension-free phenomenon only depends on the additivity structure
and not on linearity. With additivity, even though the problem cannot be reduced to a discrete
problem and the maximizer can be intrinsically hard to find, one can still have a low regret
algorithm no matter how large the dimension is.

In the current approach, the dimension-free phenomenon relies on the fact that the overall
regret can be decomposed as the sum of regret of each component. Unfortunately, this de-
pends not only on the additivity structure of f but also on the shape of the action set. The
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action set here [0,1]d can be written as a product of sets on each dimension. This enables the
decomposition of the whole task as independent tasks in each dimension. It is easy to see that
the dimension-free phenomenon here can be generalized to any hyperrectangle action sets but
can hardly be generalized to all action sets. In sparse high-dimensional linear bandits, it has
been shown that action sets can play an important role in the regret (Lattimore and Szepesvári
(2020), Hao, Lattimore and Wang (2020)). For example, although in high-dimensional lin-
ear bandits with hypercube action sets one can get a dimension-free regret, Lattimore and
Szepesvári (2020) proves a �(

√
sdT ) regret lower bound on some specific action set, which

implies a polynomial dependence on the dimension is generally not avoidable. Such results
imply in high-dimensional SCAB, the regret is heavily affected by the action set and on a
general action set dimension-free regret is typically impossible. However, a complete theory
of how the action sets affect the regret remains to be developed.

The proposed algorithm requires no information on s and achieves the minimax optimal

regret for all s < T
β(β+1)

(4β+1)2 . Therefore, this algorithm is adaptive to the sparsity s with no
additional cost.

3. Impossibility of adaptation to smoothness. In this section, we turn to the important
question of adaptation to the smoothness β . Although the proposed Algorithm 1 achieves the
optimal rate of regret, the method relies on the value of the smoothness β , which is typically
unknown in practice. This naturally raises the question whether it is possible to construct
an algorithm that achieves the minimax optimal regret adaptively over a range of degrees of
smoothness without prior knowledge of the true degree β .

Formally, an adaptive algorithm A satisfies

sup
P∈P(s,d,β,L,u1,u2)

RT (A;P) = Õ
(
s · T β+1

2β+1
)
,

simultaneously for all β ∈ �0, where �0 ⊂ R
+ denotes the range of smoothness to which A

can adapt. The following theorem shows adaptivity is impossible to achieve even if �0 only
contains two elements.

THEOREM 3. Fix any two positive Hölder smoothness parameters α > β > 0, param-
eters Lα,Lβ,u1(α), u1(β), u2(α), u2(β) > 0 and any T that is larger than some constant

and s such that s < T
α−β

8(2α+1)(2β+1) / ln(T ). Suppose an algorithm A achieves the near opti-

mal regret Õ(s · T α+1
2α+1 ) over P(s, d,α,Lα,u1(α), u2(α)), then there exists a constant C > 0

independent of T , s and A such that

sup
P∈P(s,d,β,Lβ,u1(β),u2(β))

RT (A;P) ≥ C · s · T
β+1
2β+1 + β(α−β)

2(2β+1)2(2α+1) .

For an algorithm that can nearly achieve the minimax optimal regret over a class of
smoother functions, this theorem establishes a lower bound on the maximum regret over
a class of less smooth payoff functions. This lower bound can be decomposed as a product

of two terms �(s · T
β+1

2β+1 ) and �(T
β(α−β)

2(2β+1)2(2α+1) ). The first term �(s · T
β+1
2β+1 ) is the mini-

max regret over β-Hölder payoff functions and the second term can be viewed as the cost of

smoothness misspecification. This cost is at least �(T
β(α−β)

2(2β+1)2(2α+1) ), where the power of T

is alway positive for α > β > 0. Therefore this theorem implies that without further restric-
tions on the function class, adaptivity is impossible to achieve over any range of smoothness
parameters. This phenomenon is connected to the lack of adaptivity for the construction of
confidence intervals in nonparametric regression (Cai and Low (2004)).
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The proof of Theorem 3 follows the nonadaptivity theory for nonparametric SCAB
(Locatelli and Carpentier (2018), Liu, Wang and Singh (2021)). Such a proof is generally
based on proving two functions f of different smoothness can hardly be distinguished. In the
additive setting, one cannot directly use the same calculations for the one-dimensional case
as in Locatelli and Carpentier (2018) and Liu, Wang and Singh (2021). This is because for
two different additive functions, even though each component of these two functions cannot
be distinguished, these two functions themselves may still be distinguished, since they are
the sum of s different component functions. In all, our proof follows the idea of Locatelli
and Carpentier (2018) and generalizes its technique to the additive setting. Adaptivity in ban-
dits has attracted much recent attention (Locatelli and Carpentier (2018), Hadiji (2019), Gur,
Momeni and Wager (2021)). We shall give a more detailed review in the discussion section.

4. Adaptivity under self-similarity. The fact that the smoothness parameter is typically
unknown makes adaptivity critically important for an algorithm to be practically useful. We
now consider adaptivity under an additional structural assumption – self-similarity. We first
introduce the concept of self-similarity in Section 4.1 and then present a new data-driven
algorithm in Section 4.2 and show in Section 4.3 that, under the self-similar assumption, it
adapts to smoothness with considerable generality.

4.1. Self-similarity. Before formally introducing the self-similarity assumption, we first
introduce some notations. For any positive integer p and a function g(·), let Poly(p) denote
the set of all polynomials of degree less than or equal to p and define �U

p g(·) to be the
L2-projection of the function g(·) onto Poly(p) over some interval U :

�U
p g(x) := q(x), s.t. q = arg min

q∈Poly(p)

∫
U

∣∣g(u) − q(u)
∣∣2 du.

For any positive integer c, let Vc = {[ i
2c ,

i+1
2c ] : i = 0,1, . . . ,2c − 1}. We introduce the self-

similarity definition as follows.

DEFINITION 3. A function g : [0,1] → R is self-similar with parameters β , p ∈ Z+,
M1 ∈ R+, M2 ∈R

+ if for any integer c > M1,

max
V ∈Vc

sup
x∈V

∣∣�V
p g(x) − g(x)

∣∣≥ M22−cβ .

Self-similar condition gives a lower bound on the maximum error for the approximation
of a function g by piecewise polynomial functions. Recall that the Hölder condition requires
a function to be well approximated by piecewise polynomial functions. Hence, self-similar
condition can be viewed as a dual condition of the Hölder condition.

The following is an example of self-similar functions. Let C1, ,C2 > 0 and 0 < β < 1 be
three constants. Define S0 = {a · xβ + g : a ∈ R, |a| ≥ C1, g ∈ C1,‖g′‖∞ ≤ C2}. Then S0 is
the function class of a nondiminishing β-Hölder function a · xβ plus an arbitrary smoother
function g. The following lemma proves that S0 is a class of self-similar functions.

LEMMA 3. S0 is self-similar with parameters β , p = 0 and some constants M1,M2 > 0.

ASSUMPTION 4. We assume there exists j ∈ {1, . . . , d} such that fj , the j th component
of mean reward function, is a self-similar function with some parameters β , p, M1, M2.

Self-similarity has been used in nonparametric regression to enable adaptivity for the con-
struction of confidence intervals (Picard and Tribouley (2000), Giné and Nickl (2010)). Here
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we assume at least one of the component of the mean payoff is self-similar and do not require
it to be known. We shall show that this assumption enables adaptivity with considerable gen-
erality. Let P0(β,L, s, d,u1, u2,p,M1,M2) denote all of P that satisfy assumptions 1, 2, 3
and 4. The minimax regret over this function class is then defined as

inf
A

sup
P∈P0(β,L,s,d,u1,u2,p,M1,M2)

RT (A;P),

where A denotes an arbitrary algorithm.

4.2. Adaptive algorithm. We now present a new algorithm devised for self-similar payoff
functions. The algorithm has three input parameters: the total number of rounds T , the lower
bound βmin and upper bound βmax for the Hölder smoothness so (βmin, βmax) is the range for
β . This procedure can be divided into two steps. The first step estimates the true smoothness
β and then the second step simply calls Algorithm 1 with the estimated Hölder smoothness
β̂ . The procedure is summarized in Algorithm 2.

In the first step, Algorithm 2 aims at estimating β with the help of self-similarity con-
dition. Note the self-similarity condition together with the Hölder assumption gives a tight
lower bound and upper bound for the bias of the local polynomial regression. To utilize this
property, in Algorithm 2 we fit local polynomial regressions to estimate each fj two times.
In both times we divide [0,1] into many intervals and use local polynomial regression to esti-
mate each fj in each interval separately. The first step of Algorithm 2 thus has two epochs. In
the first epoch, [0,1] is partitioned into more intervals and the estimation bias is thus smaller.
In the second epoch, [0,1] is partitioned into much fewer intervals and the estimation bias
is thus much larger. We pull arms enough times so that the standard deviation is dominated

Algorithm 2: A2(T ,βmin, βmax)

Input: Total number of rounds T , minimal Hölder smoothness βmin and maximal
Hölder smoothness βmax

0 Set local polynomial regression degree l = w(βmax).

0 Set k1 = 1
10βmax+5 , K1 = 2�k1·lnT

2 �, k2 = 1
10βmax+10 , K2 = 2�k2·lnT

2 �, r0 = 0.

for i ∈ {1,2} do

0 Set constant Ti = �T 1
2 +ki�.

Pull arms Ti times independently from the uniform distribution on [0,1]d .
For each j = 1, . . . , d and m = 1, . . . ,Ki , let the samples where the j th element of
covariates is in [m−1

Ki
, m

Ki
) be

O
′
i,j,m,0 = {(Xt , Yt ) : ri−1 < t ≤ ri−1 + T ′

i ,X
(j)
t ∈ [m−1

Ki
, m

Ki
)}. Log these samples

with outcomes and only the j th elements of covariates
O

′
i,j,m = {(X(j)

t , Yt ) : (Xt , Yt ) ∈ Oi,j,m,0}.
Update the round counter ri = ri−1 + T ′

i .

0 For j = 1, . . . , d , and m = 1, . . . ,Ki , fit local polynomial regression on [m−1
Ki

, m
Ki

)

with O
′
i,j,m and construct estimate f̂i,j (x) of fj (x) for each x ∈ [m−1

Ki
, m

Ki
) as in (5).

0 Let β̂ = − ln(max1≤j≤d ‖f̂2,j−f̂1,j‖∞)

k2·ln(T )
− ln(ln(T ))

ln(T )
.

0 Call A1(T − T ′
1 − T ′

2, β̂, l).
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by the bias. Then the maximal difference between the two polynomial regression estimates
should be roughly of the same order as the larger bias. Then we can compare this difference
with the bound provided by the self-similarity condition to estimate the smoothness parame-
ter β .

Specifically, let k1 = 1
10βmax+5 , K1 = 2�k1·lnT

2 �, k2 = 1
10βmax+10 , K2 = 2�k2·lnT

2 �, and T ′
i =

�T 1
2 +ki�, i = 1,2. For each i ∈ {1,2}, the algorithm pulls arms independently T ′

i times from
the uniform distribution on [0,1]d in the ith epoch. Then the algorithm records the observa-
tions whose j th covariates falling into [m−1

Ki
, m

Ki
) in the ith epoch as O′

i,j,m,0. Let the dataset
only containing the outcomes and the j th covariates of O′

i,j,m,0 be O
′
i,j,m. Then each com-

ponent f̂j can be estimated by local polynomial regression:

f̂i,j (x) = f̂

(
x;O′

i,j,m,w(βmax),

[
m − 1

Ki

,
m

Ki

])
,(5)

for each i ∈ {1,2}, j ∈ {1, . . . , d}, m ∈ {1, . . . ,Ki} and x ∈ [m−1
Ki

, m
Ki

). Finally, we estimate
the smoothness by

β̂ = −(10βmax + 10) · ln(max1≤j≤d ‖f̂2,j − f̂1,j‖∞)

ln(T )
− ln(ln(T ))

ln(T )
.

The following proposition shows β̂ converges to β with the rate Op( ln(ln(T ))
ln(T )

).

PROPOSITION 2. Suppose s ≤ T
1
20 and ln8(d) < C · T for some sufficiently small

constant C > 0. There exists a constant C3 > 0 such that with probability at least 1 −
O(e−C3 ln2 T ),

β̂ ∈
[
β − (10βmax + 12) ln(ln(T ))

ln(T )
,β

]
.

4.3. Theoretical results. We now turn to the theoretical properties of the adaptive algo-
rithm given in Section 4.2. Note that the function class with the self-similarity assumption
P0(β,L, s, d,u1, u2,p,M1,M2) is a subset of P(s, d,β,L,u1, u2), therefore the minimax
regret under the self-similar condition is smaller than or equal to the general minimax regret.

LEMMA 4. If s < T
β(β+1)

(4β+1)2 ,

inf
A

sup
P∈P0(β,L,s,d,u1,u2,p,M1,M2)

RT (A;P) ≤ inf
A

sup
P∈P(s,d,β,L,u1,u2)

RT (A;P)

≤ O
(
s · ln3(T ) · T β+1

2β+1
)
.

The following lower bound shows that restricting the payoff function class by the self-
similarity condition does not make the problem easier.

THEOREM 4. For any positive parameters β,u1, u2,p = w(β),M1, L > 0, there exists
a constant M2 > 0 that only depends on β , u1, u2, L satisfying

inf
A

sup
P∈P0(β,L,s,d,u1,u2,p,M1,M2)

RT (A;P) ≥ C · s · T β+1
2β+1 ,

where C > 0 is a constant depending only on the parameters of the class P0 and not on A,
T , d .
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This lower bound together with Lemma 4 shows that the minimax regret with the self-

similar assumption is �̃(s ·T β+1
2β+1 ), the same as the general minimax regret. This lower bound

only applies to the case when M2 is sufficiently small. This is unavoidable because this func-
tion class is empty if L is too small compared to M2.

THEOREM 5. Let 0 < βmin < βmax, s ≤ T
1
20 ∧T

β(β+1)

(4β+2)2 and ln8(d) < C ·T for some small
enough constant C > 0. Algorithm 2 satisfies, for all β ∈ (βmin, βmax), there exist constants
C1,C2 > 0 only depending on the parameters of P0 such that

sup
P∈P0(β,L,s,d,u1,u2,w(βmax),M1,M2)

RT

(
A2;P)≤ C1 · s · ln3+C2(T ) · T β+1

2β+1 .

This theorem shows that Algorithm 2 adaptively achieves the minimax regret Õ(s ·T β+1
2β+1 )

simultaneously for all β ∈ (βmin, βmax), where the poly-logarithmic terms in �̃(·) here de-
pends on T and not on s, d . Compared to Theorem 2, the upper bound of the regret for
Algorithm 2 is further multiplied by a poly-logarithmic term lnC2(T ). This extra term comes
from using estimated smoothness β̂ instead of the true β and thus can be viewed as the cost
of smoothness adaptation.

5. Minimax regret under additional superlevel-set assumption. In the related litera-
ture, additional assumptions that restrict the measure of superlevel sets of f (or equivalently
the sublevel set in optimization) is often considered (Minsker (2013), Wang, Balakrishnan
and Singh (2019), Locatelli and Carpentier (2018), Zhao and Lai (2021)). These assumptions
capture the difficulty of finding the maximizer of a function. If the superlevel set is restricted
to be smaller, then the maximizer should have less potential competitors and one can expect
a good algorithm to perform better. In this section, we study the problem under an additional
superlevel-set assumption.

We first introduce some notation. For any measurable set V ⊂ [0,1], let m(V ) be the
Lebesgue measure of V . For a set V ⊂ [0,1] that equals a union of intervals and any ε >

0, define the “interval packing number” of V to be N (V , ε) = minK such that there exist
intervals V(1), . . . , V(K) with

V =
K⋃

i=1

V(i) and m(V(i)) ≤ ε, i = 1, . . . ,K.

For any function g and its maximizer x∗, The ε-superlevel set of g is {x ∈ [0,1] : g(x∗) −
g(x) ≤ ε}. We denote this set by L(f, ε).

ASSUMPTION 5. There exists a constant Cl > 0 such that for any nonzero fj , any
ε1, ε2 ∈ (0,1)

N
(
L(fj , ε1), ε2

)≤ Cl · εγ
1 /ε2 + 1.

Let P(s, d,β, γ,L,Cl, u1, u2) denote all of P that satisfy Assumptions 1, 2, 3 and 5. Then
the minimax regret is defined by

inf
A

sup
P∈P(s,d,β,γ,L,Cl,u1,u2)

RT (A;P).

The following two theorems establish the lower and the upper bounds for the minimax regret
under the new assumption.
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THEOREM 6. For any positive parameters β , L, u1, u2, γ , Cl that satisfy γβ ≤ 1 and Cl

is greater than some constant that is only determined by β , L, γ , and the number of rounds
T , there exists a constant C > 0 depending on β , L, u1, u2, γ , Cl only and not on T , s, d

such that

inf
A

sup
P∈P(s,d,β,γ,L,Cl,u1,u2)

RT (A;P) ≥ C · s · T β+1−βγ
2β+1−βγ .

This theorem establishes a lower bound for the minimax regret. It requires Cl to
be greater than a constant. Such requirement is unavoidable because the function space
P(s, d,β, γ,L,Cl, u1, u2) is empty if Cl is too small.

We develop an algorithm that achieves (near) minimax optimal regret. Similar to Algo-
rithm 1, this algorithm also has four steps in each epoch: reallocating, pulling, fitting, and
eliminating, and maintains feasible regions recursively. The main difference is in the design
of Ti , the number of rounds pulled in each epoch. In Algorithm 1, Ti is proportion to the
upper bound of gi,j , the number of intervals in each feasible region. Under the additional
assumption the upper bound of gi,j is reduced. Therefore, Ti is changed correspondingly. For
reasons of space, the details of this algorithm are given in the Supplementary Material (Cai
and Pu (2022))

THEOREM 7. Suppose βγ ≤ 1. Then there exists an algorithm A such that for any s ≤
T

β(β+1−βγ )
(4β+1−βγ )(4β+2) and any P ∈ P(s, d,β, γ,L,Cl, u1, u2),

RT (A;P) ≤ C · s · ln3+ 3βγ
2β+1−βγ (T ) · T β+1−βγ

2β+1−βγ ,

where the constant C depends on β , L, u1, u2, l, γ , Cl but not on P, d , s, T .

These two theorems together yield the minimax regret �̃(s · T β+1−βγ
2β+1−βγ ). If γ = 0, then the

superlevel-set assumption is almost a null assumption and in this case the regret here recovers

the minimax regret �̃(s · T β+1
2β+1 ) given in Section 2. The theorems also show that the larger

the γ the smaller the regret. This is due to the fact that larger γ corresponds to smaller
superlevel sets and consequently it is easier for an algorithm to find the maximum region.
The minimax regret here is also dimension-free. So the dimension-free phenomenon only
relies on the additive structure and the action set and remains true for the function classes
satisfying Assumption 5.

In both theorems, we only consider the case where βγ ≤ 1. However the full possible range
of β , γ should be {βγ ≤ 1} ∪ {β > 1, 1

β
< γ ≤ 1} (Audibert and Tsybakov (2007)). It would

be interesting to explore the problem in the case where β > 1, 1
β

< γ ≤ 1. Unfortunately, the
technique we use in the lower bound can not be easily extended to this case due the difficulty
of constructing examples that satisfy the assumptions. We leave this interesting problem for
future study.

5.1. Adaptivity to γ . The algorithm considered in Theorem 7 requires the value of γ ,
which is typically unknown in practice. We now turn to the question of adaptivity under
Assumption 5. The following theorem considers the nonsparse setting (s = d) and justifies
the adaptivity to γ in this case.

THEOREM 8. Let s = d ≤ T
β

4(4β+2) and γ ≤ 1
β

. Then there exists an adaptive algorithm
A that does not depend on γ and a constant C > 0 depending on β , L, u1, u2, l, γ , Cl but
not on d , s, T such that

sup
P∈P(s,d,β,γ,L,Cl,u1,u2)

RT (A;P) ≤ C · s · ln3+ 3βγ
2β+1−βγ (T ) · T β+1−βγ

2β+1−βγ .
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We now consider the sparse case s ≤ d . Note that even with the knowledge of β , there are
two intrinsic adaptivity problems: adaptivity to s and to γ . The following theorem shows the
simultaneous adaptivity to both parameters is possible under mild conditions.

THEOREM 9. Let s ≤ 1
2(T

1
14 ∧T

β
4(4β+2) ) and ln(d) ≤ T

1
5

ln(T )
. Then there exists an adaptive

algorithm A that depends on β and not on γ , s such that for any γ ∈ (0, 1
β
],

sup
P∈P(s,d,β,γ,L,Cl,u1,u2)

RT (A;P) ≤ C · s · ln3+ 3βγ
2β+1−βγ (T ) · T β+1−βγ

2β+1−βγ ,

where C > 0 is a constant depending on β , L, u1, u2, l, γ , γ0, Cl and not on d , s, T .

This theorem shows one can adapt to s and γ simultaneously under the additional restric-

tion of ln(d) ≤ T
1
5

ln(T )
. This restriction comes from the step for estimating the effective dimen-

sions in the adaptive algorithm, which is needed for choosing the correct number of rounds
to pull in each epoch. Although we have this restriction on d , the regret is still dimension-
free. This still highlights the substantial difference between high-dimensional bandits and
high-dimensional regression problems.

Theorem 8 shows that it is possible to adapt to all values of γ except 0. This is because
for any γ > 0, Assumption 5 requires the superlevel set of each nonzero component to shrink
as the depth of the superlevel set goes to zero, which helps estimate the effective dimen-
sions. When γ = 0, the superlevel set does not shrink, which fails to enable the estimation of
effective dimensions.

6. Discussion. We studied in the present paper the minimax optimality for the d-
dimensional additive β-Hölder SCAB with sparsity s for the full range of smoothness levels

0 < β < ∞ and sparsity levels 1 ≤ s ≤ d . We establish the minimax regret to be �̃(s ·T β+1
2β+1 ).

The problem of adaptivity is also investigated. It is shown that adaptation to the sparsity is free
but adaptation to the smoothness is in general impossible. Under the additional self-similarity
assumption, a data-driven algorithm is introduced and shown to achieve the minimax rate
adaptively up to a logarithmic factor over a range of smoothness levels.

In this paper it is shown that adaptivity to smoothness is general impossible. Such nonadap-
tivity phenomenon is common in related literature. For example, Locatelli and Carpentier
(2018) and Liu, Wang and Singh (2021) show nonadaptivity in nonparametric continuum-
armed bandits. Gur, Momeni and Wager (2021) proves nonadaptivity in nonparametric con-
textual bandits. Our proof is related to Locatelli and Carpentier (2018) but is different. The
proof of Locatelli and Carpentier (2018) for the one-dimensional case cannot be directly ap-
plied here. This is because compared to two one-dimensional functions with different smooth-
ness, in the current setting, two additive functions with different smoothness are harder to
distinguish.

In this paper, we show adaptivity can be achieved under self-similarity. Some other condi-
tions have also been considered in continuum-armed bandits. Combes and Proutiere (2014)
consider one-dimensional nonparametric SCAB and prove adaptivity is possible if βγ = 1
and the functions is unimodal. In general d-dimensional SCAB, the case βγ = d , which can
be thought of as an additional condition, has been partially treated in Bull (2015) for the spe-
cial class of zooming continuous functions. In this setting, Bull (2015) introduced an adaptive
strategy such that its expected cumulative regret is parametric regret.

Some other structural conditions such as monotonicity, convexity, and concavity also seem
to be worth considering since each of them can enable the construction of adaptive con-
fidence intervals in one-dimensional nonparametric regression (Cai, Low and Xia (2013)).
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However, imposing either one of these three structural assumptions in the current SCAB
problem changes the minimax regret completely and significantly reduces the complexity of
the problem. Under either the monotonicity or convexity assumption in the one-dimensional
case, the maximizer must be 0 or 1, which reduces the problem into a two-armed bandit prob-
lem. In this case the minimax regret is known to be �̃(

√
T ) (Audibert and Bubeck (2010);

Auer et al. (2002); Auer, Cesa-Bianchi and Fischer (2002)). On the other hand, under the
concavity assumption, Agarwal et al. (2013) shows that the minimax regret is also reduced
to �̃(

√
T ). Therefore, under either one of these three assumptions the minimax regret is the

parametric rate and thus independent of smoothness.
A novel approach to deal with nonadaptive bandit problems has been proposed by Hadiji

(2019). Instead of imposing stronger conditions, Hadiji (2019) considers admissibility in the
minimax sense for one-dimensional nonparametric SCAB. For each algorithm A, suppose the
maximum regret of this algorithm over all β-Hölder functions is bounded by O(T θ(β)), then
θ(·) can be viewed as its rate function. A rate function is admissible if it does not dominate
any other different rate functions. Hadiji (2019) not only provides an admissible algorithm but
also determines the set of all admissible rate functions. Based on our knowledge this is the
first time one considers (minimax) admissibility in nonadaptive problems. This (minimax)
admissibility approach has obvious advantages in weaker assumptions. It is interesting to
generalize this new criterion to other nonadaptive problems.

Finally, we outline several future directions. First and foremost, it would be interesting to
consider the problem in the adversarial setting. Whether it is possible to construct a nontrivial
algorithm in the adversarial additive SCAB is still an open question. Second, it is also inter-
esting to consider the contextual additive SCAB. For the nonparametric SCAB, the results
in Lu, Pál and Pál (2009) and Slivkins (2011) show that in the nonsmooth case the minimax
regret heavily depends on the dimensions of the context and action spaces and it can be close
to linear if both dimensions are high. The rate of minimax regret may be improved under
the additive models. Third, the additive SCAB under general smoothness assumptions can be
interesting. In this paper we consider the setting that all the components of the mean reward
have the same smoothness β . This can be extended to the case where different components
have different smoothness levels. Suppose the j th component fj is a βj -Hölder function. We
conjecture that with a modification of the techniques developed in the present paper it can be

shown that the minimax regret in that more general setting is �̃(
∑d

j=1 T

βj +1
2βj +1 ).

7. Proofs. In this section, we present the proof for Theorem 4. Note that Theorem 1 is
strictly weaker than Theorem 4 and so it follows from Theorem 4. For reasons of space, the
proofs of other main and technical results are given in the Supplementary Material Cai and
Pu (2022).

We first consider the case where s = d and then prove the general case (d ≥ s) is at least
as hard as this special case.

First Step: In this step, we only consider the case where s = d . Before giving the proof,
we first state three useful lemmas.

LEMMA 5. Let Y[1], Y[2] be two random variables with distributions N(μ1, σ
2) and

N(μ2, σ
2). Then the KL divergence of Y1, Y2 is (μ1−μ2)

2

2σ 2 .

LEMMA 6. Let Q1 and Q2 be two probability measures on the same σ -algebra . Then
for any event A ∈ , we have

KL(Q1‖Q2) ≥ 2
(
Q1(A) −Q2(A)

)2
.
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LEMMA 7. For each L,β > 0, there exists a function g : [0,1] → [0,1] satisfying that
g ∈ H(β,L); g is self-similar with constants β , p = w(β), M1 = 0 and some positive number
M2 > 0; g has a unique maximizer at 1

2 ; and for any x ∈ {0,1}, t ∈ {0,1, . . . ,w(β)} it holds
that g(t)(x) = 0.

Let

Yx = f1
(
x(1))+ · · · + fd

(
x(d))+ N

(
0, σ 2).(6)

where N(0, σ 2) denotes a zero-mean normal random variable with variance σ 2. Let σ be
small enough such that assumption 3 holds. We introduce some notations and definitions. Let

φ(x) :=
{
Cσ · g, x ∈ [0,1],

0, otherwise,

}
,

where Cσ = σ
4 ∧ 1

2 is a constant and g is a function given by Lemma 7. Let positive integer

k = �10 · T
1

2β+1 �. Let φk,−1(x) = −φ(2x − 1). Define a function φk,i(·) : [0,1] → [−1,1]
by φk,i(x) = (2k)−βφ(2kx − i) + φk,−1(x) ∈ H(β,L), ∀x ∈ [0,1] for each i = 0, . . . , k − 1.
Then φk,i is self-similar with parameters β , p = w(β), M1 = 1 and some constant M2 > 0.

For functions f1, . . . , fd , constant σ , and algorithm A, let the P(A;f1, . . . , fd, σ 2) denote
the probability measure of {(Xt , Yt ), t = 1, . . . , T }, provided Yx is given by (6). We consider
two cases P(A;f1, . . . , fj−1, φk,−1, fj+1, . . . , fd, σ 2) and P(A;f1, . . . , fj−1, φk,i, fj+1,

. . . , fd, σ 2) where all component functions are the same except for fj for any j =
1, . . . , d and i = 0, . . . , k − 1. Let EPZ denote the expectation of Z where the proba-
bility measure is given by P. For simplicity, we let P1 = P(A;f1, . . . , fj−1,−φ(2x −
1), fj+1, . . . , fd, σ 2) and P2 = P(A;f1, . . . , fj−1, φk,i, fj+1, . . . , fd, σ 2). Define Zk,i,j =∑T

t=1 1{X(j)
t ∈ [ i

2k
, i+1

2k
)}. We first prove for each i = 0, . . . , k − 1 and j = 1, . . . , d ,

EP2

T∑
t=1

[
fj

(
x(j)∗

)− fj

(
X

(j)
t

)]≥ Cσ · g
(

1

2

)
· T

β+1
2β+1

20β+1 · 1{EP1Zk,i,j ≤ 2T/k},(7)

where fj = φk,i under P2.
The inequality (7) obviously holds if EP1Zk,i,j > 2T/k. Therefore, we only need to con-

sider the case where EP1Zk,i,j ≤ 2T/k.
The KL divergence between P1 and P2 can be decomposed as

KL(P1‖P2) =EP1

T∑
t=1

KL
(
P1(Yt |Xt)‖P2(Yt |Xt)

)
,

where P1(Yt |Xt) and P2(Yt |Xt) denote the conditional distribution of Yt given Xt under
P1 and P2, respectively. Note P1(Yt |Xt) and P2(Yt |Xt) are normal distributions with the

same variance. Therefore, we have KL(P1(Yt |Xt)‖P2(Yt |Xt)) = [φk,i (X
(j)
t )−φk,−1(X

(j)
t )]2

2σ 2 by
Lemma 5.

Then we have

KL(P1‖P2) = EP1

T∑
t=1

KL
(
P1(Yt |Xt)‖P2(Yt |Xt)

)

= EP1

{
T∑

t=1

KL
(
P1(Yt |Xt)‖P2(Yt |Xt)

)
1
{
X

(j)
t ∈ [ i

2k
,
i + 1

2k
)

}
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+
T∑

t=1

KL
(
P1(Yt |Xt)‖P2(Yt |Xt)

)
1
{
X

(j)
t /∈ [ i

2k
,
i + 1

2k
)

}}

≤ EP1

T∑
t=1

C2
σ · k−2β

2σ 2 · 1
{
X

(j)
t ∈ [ i

2k
,
i + 1

2k
)

}

= EP1

C2
σ · k−2β

2σ 2 ·EP1Zk,i,j

≤ EP1

C2
σ · k−(2β+1) · T

σ 2 <
1

5
.

By Lemma 6, we have for any event A: 2(P1(A) − P2(A))2 ≤ 1
5 , which further implies

|P1(A) − P2(A)| ≤ 1
3 . Let A = {Zk,i,j > 4T/k}. Since EP1Zk,i,j ≤ 2T/k, we have P1(A) ≤

1
2 . If follows that P2(A) ≤ 1

2 + 1
3 = 5

6 . We have

EP2

T∑
t=1

[
fj

(
x(j)∗

)− fj

(
X

(j)
t

)]≥ EP2

T∑
t=1

[
fj

(
x(j)∗

)− fj

(
X

(j)
t

)]
1
{
X

(j)
t /∈ [ i

2k
,
i + 1

2k
)

}

≥ EP2

T∑
t=1

fj

(
x(j)∗

)
1
{
X

(j)
t /∈ [ i

2k
,
i + 1

2k
)

}

= Cσ · g
(

1

2

)
· (2k)−β ·EP2(T − Zk,i,j )

≥ EP2Cσ · g
(

1

2

)
· (T − Zk,i,j )

T
− β

2β+1

20β

≥ EP2Cσ · g
(

1

2

)
· (T − Zk,i,j )

T
− β

2β+1

20β
1Ac

≥ Cσ · g
(

1

2

)
T

β+1
2β+1

2 · 20β
P2
(
Ac)

≥ Cσ · g
(

1

2

)
· T

β+1
2β+1

20β+1 .

This proves inequality (7).
With inequality (7), we are ready to prove the lower bound. Specifically, we define a prior

of f1, . . . , fd and then prove a lower bound for the average performance of any algorithm
under this prior. After that, the worst-case lower bound naturally follows. The prior is defined
as follows.

Let the prior of fj for each j = 1, . . . , d be

fj :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φk,0 with probability
1

k
. . . . . .

φk,k−1 with probability
1

k

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

and the joint prior of {f1, . . . , fd} be the product of each fj ’s prior. Let Dd denote this prior.
For simplicity, let Ev1,...,vd

denote taking expectation with respect to the probability mea-
sure P(A;φk,v1, . . . , φk,vd

, σ 2) for any (v1, . . . , vd) ∈ {0, . . . , k − 1}d . For each j = 1, . . . , d ,
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vj = −1 and vi ∈ {0, . . . , k − 1} for i 	= j , let Ev1,...,vd
denote taking expectation with respect

to the probability measure P(A;φk,v1, . . . , φk,vj−1, φk,−1, φj+1, . . . , φk,vd
, σ 2). The expected

regret of A on the prior Dd is then given by

EP∼Dd
RT (A;P) = 1

kd

k−1∑
v1=0

· · ·
k−1∑
vd=0

T∑
t=1

d∑
j=1

Ev1,...,vd

[
fj

(
x(j)∗

)− fj

(
X

(j)
t

)]

≥ 1

kd

k−1∑
v1=0

· · ·
k−1∑
vd=0

d∑
j=1

Cσ · g
(

1

2

)
· T

β+1
2β+1

20β+1

· 1{Ev1,...,vj−1,−1,vj+1,...,vd
Zk,vj ,j ≤ 2T/k},

(8)

where the last inequality follows from (7). Note for each v1, . . . , vj−1, vj+1, . . . , vd , we have

T ≥
k−1∑
vj=0

Ev1,...,vj−1,−1,vj+1,...,vd
Zk,vj ,j

≥ 2T

k

k−1∑
vj=0

1
{
Ev1,...,vj−1,−1,vj+1,...,vd

Zk,vj ,j >
2T

k

}
.

It follows that

k−1∑
vj=0

1
{
Ev1,...,vj−1,−1,vj+1,...,vd

Zk,vj ,j >
2T

k

}
≤ k

2
,

which further implies

k−1∑
vj=0

1
{
Ev1,...,vj−1,−1,vj+1,...,vd

Zk,vj ,j ≤ 2T

k

}
≥ k

2
.

Plugging this into (8) yields

EP∼Dd
RT (A;P) ≥ 1

kd

d∑
j=1

{
k−1∑
v1=0

· · ·
k−1∑

vj−1=0

k−1∑
vj+1=0

k−1∑
vd=0

Cσ · g
(

1

2

)
· T

β+1
2β+1

20β+1 · k

2

}

= 1

kd
· d · kd−1 · Cσ · g

(
1

2

)
· T

β+1
2β+1

20β+1 · k

2

= d · Cσ · g
(

1

2

)
· T

β+1
2β+1

2 · 20β+1 .

Note in this case s = d , therefore we have EP∼Dd
RT (A;P) ≥ s · T

β+1
2β+1 . By definition we

have

sup
P∈P(s,d,β,L,u1,u2)

RT (A;P) ≥ EP∼Dd
RT (A;P).

Therefore, we complete the proof by combining the above two inequalities.
Second Step: Now we consider the general case. We shall prove for any d ≥ s, we have

inf
A

sup
P∈P(s,d,β,L,u1,u2)

RT (A;P) ≥ inf
A

sup
P∈P(s,s,β,L,u1,u2)

RT (A;P).
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For any algorithm Ad for the d-dimensional case, we construct a corresponding algorithm As

for the s-dimensional case. Note in each round, Ad outputs a d-dimensional vector. As takes
the first s-dimensional vector as the arm to be pulled and keeps the whole vector as a fake
“arm.” As pulls the s-dimensional arm and observes Yt . Then As uses the d-dimensional
fake arms and the observed outcomes as the input of Ad in the next round to get a new
d-dimensional vector as an output. Intuitively, As is constructed by restricting Ad to the s-
dimensional space. For each Ps ∈ P(s, s, β,L,u1, u2), we construct a corresponding exam-
ple Pd in P(s, d,β,L,u1, u2) as follows. In Pd , let the distribution of the outcome Y1 given
the arm X only depends on the first s elements of X, X[s] = (X(1), . . . ,X(s)), and is the same
as the distribution of Y1(X

[s]) in Ps . This means only the first s components fj , j = 1, . . . , s

are nonzero. Then we have the joint distribution of X
[s]
1 , . . . ,X

[s]
T , Y1, . . . , YT created by Ad

and Pd is the same as that of X1, . . . ,XT ,Y1, . . . , YT created by As and Ps . We then have

RT (Ad;Pd) = RT (As;Ps).

Therefore, we have

sup
P∈P(s,d,β,L,u1,u2)

RT (Ad;P) ≥ sup
P∈P(s,s,β,L,u1,u2)

RT (As;P).

Since for each Ad we can have such a As , it follows that

inf
A

sup
P∈P(s,d,β,L,u1,u2)

RT (A;P) ≥ inf
A

sup
P∈P(s,s,β,L,u1,u2)

RT (A;P).

Recall in the first step we prove that for any algorithm A,

sup
P∈P(s,s,β,L,u1,u2)

RT (A;P) ≥ �
(
s · T β+1

2β+1
)
.

Therefore, we conclude that

inf
A

sup
P∈P(s,d,β,L,u1,u2)

RT (A;P) ≥ �
(
s · T β+1

2β+1
)
.
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superlevel-set assumption.
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