
CONTRIBUTED RESEARCH ARTICLE 1

SIHR: Statistical Inference in
High-Dimensional Linear and Logistic
Regression Models
by Prabrisha Rakshit, Zhenyu Wang, T. Tony Cai, and Zijian Guo

Abstract We introduce the R package SIHR for statistical inference in high-dimensional general-
ized linear models with continuous and binary outcomes. The package provides functionalities for
constructing confidence intervals and performing hypothesis tests for low-dimensional objectives
in both one-sample and two-sample regression settings. We illustrate the usage of SIHR through
numerical examples and present real data applications to demonstrate the package’s performance and
practicality.

Introduction

In many applications, it is common to encounter regression problems where the number of covariates
p exceeds the sample size n. Much progress has been made in point estimation and support recovery
in high-dimensional generalized linear models (GLMs), as evidenced by works such as Bühlmann
and van de Geer (2011); Negahban et al. (2009); Huang and Zhang (2012); Tibshirani (1996); Fan and
Li (2011); Zhang (2010); Sun and Zhang (2012); Belloni et al. (2011); Meinshausen and Yu (2009). In
particular, van de Geer et al. (2014); Javanmard and Montanari (2014); Zhang and Zhang (2014) have
proposed methods to correct the bias of penalized regression estimators and construct confidence
intervals (CIs) for individual regression coefficients of the high-dimensional linear model. Furthermore,
Cai and Guo (2017) studied the minimaxity and adaptivity of CIs for linear functionals of the regression
vector in high-dimensional linear models, while Cai et al. (2021b) proposed CIs and simultaneous
hypothesis tests for individual regression coefficients in high-dimensional binary GLMs with general
link functions. This debiased approach has sparked a rapidly growing research area focused on CI
construction and hypothesis testing for low-dimensional objectives in high-dimensional GLMs.

In the current paper, we present the R package SIHR, which builds on the debiasing inference
method and targets a wide range of inference problems in high-dimensional GLMs for both continuous
and binary outcomes. We consider the high-dimensional GLMs: for 1 ≤ i ≤ n,

E(yi | Xi·) = f (X⊺
i·β), with f (z) =

{
z for linear model;
exp (z)/ [1 + exp (z)] for logistic model;

(1)

where β ∈ Rp denotes the high-dimensional regression vector, yi ∈ R and Xi· ∈ Rp denote respectively
the outcome and the measured covariates of the i-th observation. Throughout the paper, define
Σ = EXi·X

⊺
i· and assume β to be a sparse vector with its sparsity level denoted as ∥β∥0. In addition to

the one-sample setting, we examine the statistical inference methods for the two-sample regression
models. Particularly, we generalize the regression model in (1) and consider:

E(y(k)i | X(k)
i· ) = f (X(k)⊺

i· β(k)) with k = 1, 2 and 1 ≤ i ≤ nk (2)

where f (·) is the pre-specified link function defined as (1), β(k) ∈ Rp denotes the high-dimensional

regression vector in k-th sample, y(k)i ∈ R and X(k)
i· ∈ Rp denote respectively the outcome and the

measured covariates in the k-th sample.

The R package SIHR consists of five main functions LF(), QF(), CATE(), InnProd(), and Dist()
implementing the statistical inferences for five different quantities correspondingly, under the one-
sample model (1) or two-sample model (2).

1. LF(), abbreviated for linear functional, implements the inference approach for x⊺newβ proposed
in Cai et al. (2021a,b), with xnew ∈ Rp denoting a loading vector. With xnew = ej as a special
case, LF() infers the regression coefficient β j (van de Geer et al., 2014; Javanmard and Montanari,
2014; Zhang and Zhang, 2014, e.g.). When xnew denotes a future observation’s covariates, LF()
makes inferences for the conditional mean of the outcome for the individual. See the usage of
LF() in the section Linear functional.

2. QF(), abbreviated for quadratic functional, makes inferences for β⊺G AβG, following the proposal
in Guo et al. (2019, 2021b); Cai and Guo (2020). A ∈ R|G|×|G| is either a pre-specified submatrix
or the unknown ΣG,G and G ∈ {1, ..., p} denotes the index set of interest; β⊺G AβG can be viewed
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as a total measure of all effects of variables in the group G. See the section Quadratic functional
for the usage.

3. CATE(), abbreviated for conditional average treatment effect, is to make inference for f (x⊺newβ(2))−
f (x⊺newβ(1)), see Cai et al. (2021a) for detailed discussion. This difference measures the discrep-
ancy between conditional means, closely related to the conditional average treatment effect for
the new observation with covariates xnew. We demonstrate its usage in the section Conditional
average treatment effect.

4. InnProd(), abbreviated for inner products, implements the statistical inference for β
(1)⊺
G Aβ

(2)
G

with A ∈ R|G|×|G|, which was proposed in Guo et al. (2019); Ma et al. (2022). The inner products
measure the similarity between the high-dimensional vectors β(1) and β(2), which is useful in
capturing the genetic relatedness in the GWAS applications (Guo et al., 2019; Ma et al., 2022).
The usage is detailed in the section Inner Product.

5. Dist(), short-handed for distance, makes inferences for the weighted distances γ⊺
G AγG with

γ = β(2) − β(1). The distance measure is useful in comparing different high-dimensional
regression vectors and constructing a generalizable model in the multisource learning problem
Guo et al. (2023). See the section Distance for its usage.

There are a few other R packages for high-dimensional inference. The package hdi and the package
SSLASSO implement the coordinate debiased Lasso estimators proposed in van de Geer et al. (2014)
and Javanmard and Montanari (2014) respectively. These functions provide debiased estimators of β
along with their standard error estimators, enabling confidence interval construction and hypothesis
testing. However, these packages may suffer from heavy computational burden as multiple debiased
optimizations are needed for inference on the linear functional. In contrast, our R package SIHR is
computationally efficient as it performs debiasing only once. Additionally, SIHR targets a broader
range of inference targets, including the single regression coefficient as a special case. The DoubleML
package focuses on estimating low-dimensional parameters of interest, such as causal or treatment
effect parameters, in the presence of high-dimensional nuisance parameters that can be estimated
using machine learning methods, while our package aims to estimate arbitrary linear and weighted
quadratic combinations of the coefficient vector in high-dimensional regression. Selective inference is
implemented by the R package selectiveInference. They focus on parameters based on the selected
model, while we focus on fixed parameters independent of the selected models. The method proposes
a one-step estimator starting from the initial LASSO estimator based on the KKT conditions for the
submodel selected by LASSO.

In the remainder of this paper, we provide a review of the inference methods in Section Method-
ological Background, and introduce the main functions of the package in Section Usage of the package,
accompanied by illustrative examples. Finally, we demonstrate the application of our proposed
methods to real data in Section Applications.

Methodological Background

We briefly review the penalized maximum likelihood estimator of β in the high-dimensional GLM (1),
defined as:

β̂ = arg min
β∈Rp

ℓ(β) + λ0

p

∑
j=2

∥X·j∥2√
n

|β j| (3)

with X·j denoting the j-th column of X, the first column of X set as the constant 1, and

ℓ(β) =


1
n ∑i=1

(
yi − X⊺

i·β
)2 for linear model

− 1
n ∑n

i=1 yi log
[

f (X⊺
i·β)

1− f (X⊺
i·β)

]
− 1

n ∑n
i=1 log

(
1 − f (X⊺

i·β)
)

for GLM with binary outcome
.

(4)
The tuning parameter λ0 ≍

√
log p/n is chosen by cross-validation. In the penalized regression (3),

we do not penalize the intercept coefficient β1. The penalized estimators have been shown to achieve
the optimal convergence rates and satisfy desirable variable selection properties (Meinshausen and
Bühlmann, 2006; Bickel et al., 2009; Zhao and Yu, 2006; Wainwright, 2009). However, these estimators
are not ready for statistical inference due to the non-negligible estimation bias induced by the penalty
term (van de Geer et al., 2014; Javanmard and Montanari, 2014; Zhang and Zhang, 2014).

In section Linear functional for GLM, we propose a unified inference method for x⊺newβ under
linear and logistic outcome models. We also discuss inferences for quadratic functionals β⊺G AβG and
β⊺GΣG,GβG in section Quadratic functional for GLM. In the case of the two-sample high-dimensional
regression model (2), we develop the inference method for conditional treatment effect ∆(xnew) =
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f (x⊺newβ(2))− f (x⊺newβ(1)) in section Conditional average treatment effects; we consider inference for

β
(1)⊺
G Aβ

(2)
G and β

(1)⊺
G ΣG,Gβ

(2)
G in section Inner product of regression vectors and γ⊺

G AγG and γ⊺
GΣG,GγG

with γ = β(2) − β(1) in section Distance of regression vectors.

Linear functional for linear model

To illustrate the idea of constructing the inference method, we start with the linear functional for the
linear model, which will be extended to a unified version in the section Linear functional for GLM. For
the linear model in (1), we define ϵi = yi − X⊺

i·β and rewrite the model as yi = X⊺
i·β + ϵi for 1 ≤ i ≤ n.

Given the vector xnew ∈ Rp, we construct the point estimator and the CI for x⊺newβ.

A natural idea for the point estimator is to use the plug-in estimator x⊺new β̂ with the penalized
estimator β̂ defined in (3). However, the bias x⊺new(β̂ − β) is not negligible. The work Cai et al. (2021a)
proposed the bias-corrected estimator as,

x̂⊺newβ = x⊺new β̂ + û⊺
1
n

n

∑
i=1

Xi·
(

yi − X⊺
i· β̂

)
(5)

where the second term on the right hand side in (5) is the estimate of negative bias −x⊺new(β̂ − β), and
the projection direction û is defined as

û = arg min
u∈Rp

u⊺Σ̂u subject to: ∥Σ̂u − xnew∥∞ ≤ ∥xnew∥2λ (6)∣∣∣x⊺newΣ̂u − ∥xnew∥2
2

∣∣∣ ≤ ∥xnew∥2
2λ (7)

where Σ̂ = 1
n ∑n

i=1 Xi·X
⊺
i· and λ ≍

√
log p/n. The bias-corrected estimator x̂⊺newβ satisfies the following

error decomposition,

x̂⊺newβ − x⊺newβ = û⊺
1
n

n

∑
i=1

X⊺
i·ϵi︸ ︷︷ ︸

asymp. normal

+
(

Σ̂û − xnew

)⊺
(β − β̂)︸ ︷︷ ︸

remaining bias

The first constraint in (6) controls the remaining bias term in the above equation while the second

constraint in (7) is crucial to ensuring the asymptotic normality of x̂⊺newβ − x⊺newβ for any vector xnew
such that the variance of the “asymp. normal” term always dominates the “remaining bias” term.
Based on the asymptotic normality, we construct the CI for x⊺newβ as

CI =
(

x̂⊺newβ − zα/2

√
V̂, x̂⊺newβ + zα/2

√
V̂
)

with V̂ =
σ̂2

n
û⊺Σ̂û

where σ̂2 = 1
n ∑n

i=1(yi − X⊺
i· β̂)

2 and zα/2 denotes the upper α/2 quantile for the standard normal
distribution.

Linear functional for GLM

In this subsection, we generalize the inference method specifically for the linear model in Linear
functional for linear model to GLM in (1). Given the initial estimator β̂, the key step is to estimate the
bias x⊺new(β̂ − β). We can propose a unified version of the bias-corrected estimator for x⊺newβ as

x̂⊺newβ = x⊺new β̂ + û⊺
1
n

n

∑
i=1

ω(X⊺
i· β̂)

(
yi − f (X⊺

i· β̂)
)

Xi· (8)

with the second term on the right hand side of (8) being the estimate of −x⊺new(β̂ − β). In consideration
of different link functions f (·) in (1), we shall specify in the following how to construct the projection
direction û and the weight function ω : R 7→ R in (8). In Table 1, we consider different GLM models
and present the corresponding functions f (·) and ω(·), together with the derivative f ′(·). Note that
there are two ways of specifying the weights w(z) for logistic regression. The linearization weighting
is proposed in Guo et al. (2021b) specifically for logistic regression; while Cai et al. (2021b) constructed
the link-specific weighting method for general link function f (·). The projection direction û ∈ Rp in
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Model Outcome Type f (z) f ′(z) ω(z) Weighting

linear Continuous z 1 1

logistic Binary ez

1+ez
ez

(1+ez)2
(1+ez)2

ez Linearization

logistic_alter Binary ez

1+ez
ez

(1+ez)2 1 Link-specific

Table 1: Definitions of the functions ω and f for different GLMs.

(8) is constructed as follows:

û = arg min
u∈Rp

u⊺
[

1
n

n

∑
i=1

ω(X⊺
i· β̂) f ′(X⊺

i· β̂)Xi·X
⊺
i·

]
u subject to:∥∥∥∥∥ 1

n

n

∑
i=1

ω(X⊺
i· β̂) f ′(X⊺

i· β̂)Xi·X
⊺
i·u − xnew

∥∥∥∥∥
∞

≤ ∥xnew∥2λ∣∣∣∣∣x⊺new
1
n

n

∑
i=1

ω(X⊺
i· β̂) f ′(X⊺

i· β̂)Xi·X
⊺
i·u − ∥xnew∥2

2

∣∣∣∣∣ ≤ ∥xnew∥2
2λ.

(9)

It has been established that x̂⊺newβ in (8) is asymptotically unbiased and normal for the linear model
(Cai et al., 2021a), the logistic model (Guo et al., 2021a; Cai et al., 2021b), and the probit model (Cai

et al., 2021b). The variance of x̂⊺newβ can be estimated by V̂, defined as

V̂ = û⊺
[

1
n2

n

∑
i=1

(
ω(X⊺

i· β̂)
)2

σ̂2
i Xi·X

⊺
i·

]
û with : (10)

σ̂2
i =


1
n ∑n

j=1

(
yj − X⊺

j· β̂
)2

, for linear model

f (X⊺
i· β̂)(1 − f (X⊺

i· β̂)), for GLM with binary outcome
. (11)

Based on the asymptotic normality, the CI for x⊺newβ is:

CI =
(

x̂⊺newβ − zα/2

√
V̂, x̂⊺newβ + zα/2

√
V̂
)

.

Subsequently, for the binary outcome case, we estimate the case probability P(yi = 1 | Xi· = xnew) by

f (x̂⊺newβ) and construct the CI for f (x⊺newβ) as:

CI =
(

f
(

x̂⊺newβ − zα/2

√
V̂
)

, f
(

x̂⊺newβ + zα/2

√
V̂
))

.

Quadratic functional for GLM

We now move our focus to inference for the quadratic functional QA = β⊺G AβG, where G ⊂ {1, ..., p}
and A ∈ R|G|×|G| denotes a pre-specified matrix of interest. Without loss of generality, we set
G = {1, 2, · · · , |G|}. In the following, we propose a unified version of the point estimator and CI
under the GLM (1). With the initial estimator β̂ defined in (3), the plug-in estimator β̂⊺G Aβ̂G suffers
from the following error,

β̂⊺G Aβ̂G − β⊺G AβG = 2β̂⊺G A(β̂G − βG)− (β̂G − βG)
⊺A(β̂G − βG).

The last term in the above decomposition (β̂G − βG)
⊺A(β̂G − βG) is the higher-order approximation

error under regular conditions; thus the bias mainly comes from the term 2β̂⊺G A(β̂G − βG), which can
be expressed as 2 x⊺new(β̂ − β) with xnew = (β̂⊺G A, 0)⊺. Hence the term can be estimated directly by
applying the linear functional approach in section Linear functional for GLM. Utilizing this idea, Guo
et al. (2021b, 2019) proposed the following estimator of QA,

Q̂A = β̂⊺G Aβ̂G + 2 û⊺A

[
1
n

n

∑
i=1

ω(X⊺
i· β̂)

(
yi − f (X⊺

i· β̂)
)

Xi·

]

with the second term being the estimate of −2β̂⊺G A(β̂G − βG), where ûA is the projection direction
defined in (9) with xnew = (β̂⊺G A, 0⊺)⊺. Since QA is non-negative if A is positive semi-definite, we
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truncate Q̂A at 0 and define Q̂A = max
(

Q̂A, 0
)

We further estimate the variance of the Q̂A by

V̂A(τ) = 4û⊺
[

1
n2

n

∑
i=1

ω2(X⊺
i· β̂)σ̂

2
i Xi·X

⊺
i·

]
û +

τ

n
(12)

where the term τ/n with τ > 0 (default value τ = 1) is introduced as an upper bound for the term
(β̂G − βG)

⊺A(β̂G − βG), and σ̂2
i is defined in (11). Then given a fixed value of τ, we construct the CI

as CI(τ) =
(

max
(

Q̂A − zα/2

√
V̂A(τ), 0

)
, Q̂A + zα/2

√
V̂A(τ)

)
.

Now we turn to the estimation of QΣ = β⊺GΣG,GβG where the matrix ΣG,G is unknown and
estimated by Σ̂G,G = 1

n ∑n
i=1 XiGX⊺

iG. Decompose the error of the plug-in estimator β̂⊺GΣ̂G,G β̂:

β̂⊺GΣ̂G,G β̂ − βGΣG,GβG = 2 β̂⊺GΣ̂G,G(β̂G − βG) + β⊺G(Σ̂G,G − ΣG,G)βG − (β̂G − βG)
⊺Σ̂G,G(β̂G − βG).

The first term β̂⊺GΣ̂G,G(β̂G − βG) is estimated by applying linear functional approach in Linear func-
tional for GLM with xnew = (β̂⊺GΣ̂G,G, 0)⊺; the second term β⊺G(Σ̂G,G − ΣG,G)βG can be controlled
asymptotically by central limit theorem; and the last term (β̂G − βG)

⊺Σ̂G,G(β̂G − βG) is negligible due
to high-order bias. Guo et al. (2021b) proposed the following estimator of QΣ

Q̂Σ = β̂⊺GΣ̂G,G β̂G + 2 û⊺Σ

[
1
n

n

∑
i=1

ω(X⊺
i· β̂)

(
yi − f (X⊺

i· β̂)
)

Xi·

]

where ûΣ is the projection direction constructed in (9) with xnew = (β̂⊺GΣ̂G,G, 0)⊺. We introduce the
estimator Q̂Σ = max(Q̂Σ, 0) and estimate its variance as

V̂Σ(τ) = 4û⊺
[

1
n2

n

∑
i=1

ω2(X⊺
i· β̂)σ̂

2
i Xi·X

⊺
i·

]
û +

1
n2

n

∑
i=1

(
β̂⊺GXi,GX⊺

i,G β̂G − β̂⊺GΣ̂G,G β̂G

)2
+

τ

n
(13)

where τ > 0, the term τ/n is introduced as an upper bound for the term (β̂G − βG)
⊺Σ̂G,G(β̂G − βG),

and σ̂2
i is defined in (11). Then, thanks to the asymptotic normality, for a fixed value of τ, we can

construct the CI as

CI(τ) =
(

max
(

Q̂Σ − zα/2

√
V̂Σ(τ), 0

)
, Q̂Σ + zα/2

√
V̂Σ(τ)

)

Conditional average treatment effects

The inference methods proposed for one sample can be generalized to make inferences for conditional
average treatment effects, which can be expressed as the difference between two linear functionals. Let
Ai ∈ {1, 2} denote the treatment assignment for i-th observation. Consider the two-sample GLMs as

E(yi|Xi·, Ai = 1) = f (X⊺
i·β

(1)) and E(yi|Xi·, Ai = 2) = f (X⊺
i·β

(2))

where f is the link function listed in table 1 Then, for a future individual Xi· = xnew, we define
∆(xnew) = E(yi|Xi·, Ai = 2)− E(yi|Xi·, Ai = 1), that measures the difference of the conditional mean
of assignment of treatment for the individual with covariates xnew.

Following (8), we construct the bias-corrected point estimators of ̂x⊺newβ(1) and ̂x⊺newβ(2), together
with their corresponding variance V̂(1) and V̂(2) as (10). The paper Cai et al. (2021a) proposed to

estimate ∆(xnew) by ∆̂(xnew) as:

∆̂(xnew) = f ( ̂x⊺newβ(2))− f ( ̂x⊺newβ(1))

Its variance can be estimated with delta method by:

V̂∆ =

(
f ′( ̂x⊺newβ(1))

)2
V̂(1) +

(
f ′( ̂x⊺newβ(2))

)2
V̂(2)

Then we construct the CI as CI =
(

∆̂(xnew)− zα/2

√
V̂∆, ∆̂(xnew) + zα/2

√
V̂∆

)
.
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Inner product of regression vectors

The paper Guo et al. (2019); Ma et al. (2022) have carefully investigated the CI construction for

β
(1)⊺
G Aβ

(2)
G , provided with a pre-specified submatrix A ∈ R|G|×|G| and the set of indices G ∈ {1, ..., p}.

Let β̂(1) and β̂(2) respectively be the initial estimators for their corresponding sample in (2), the plug-in

but biased estimator is β̂
(1)⊺
G Aβ̂

(2)
G . Its bias can be decomposed as:

β̂
(1)⊺
G Aβ̂

(2)
G − β

(1)⊺
G Aβ

(2)
G = β̂

(2)⊺
G A

(
β̂
(1)
G − β

(1)
G

)
+ β̂

(1)⊺
G A

(
β̂
(2)
G − β

(2)
G

)
−

(
β̂
(1)
G − β

(1)
G

)⊺
A
(

β̂
(2)
G − β

(2)
G

)
.

The key step is to estimate the error components β̂
(2)⊺
G A

(
β̂
(1)
G − β

(1)
G

)
and β̂

(1)⊺
G A

(
β̂
(2)
G − β

(2)
G

)
. Then

the following procedures can be interpreted as applying Linear Functional twice on two independent

samples. To be specific, we propose the following bias-corrected estimator for β
(1)⊺
G Aβ

(2)
G

̂
β
(1)⊺
G Aβ

(2)
G = β̂

(1)⊺
G Aβ̂

(2)
G +û⊺1

1
n1

n1

∑
i=1

ω(X(1)⊺
i· β̂(1))

(
y(1)i − f (X(1)⊺

i· β̂(1))
)

X(1)
i·

+ û⊺2
1

n2

n2

∑
i=1

ω(X(2)⊺
i· β̂(2))

(
y(2)i − f (X(2)⊺

i· β̂(2))
)

X(2)
i·

(14)

with the second term and the third term in right-hand-side of (14) estimating −β̂
(2)⊺
G A

(
β̂
(1)
G − β

(1)
G

)
and −β̂

(1)⊺
G A

(
β̂
(2)
G − β

(2)
G

)
respectively, where û1 is the projection direction defined in (9) with

xnew = (β̂
(2)⊺
G A, 0)⊺ and û2 is the projection direction defined in (9) with xnew = (β̂

(1)⊺
G A, 0)⊺.

The corresponding variance of
̂

β
(1)⊺
G Aβ

(2)
G , when A is a known positive definite matrix, is estimated as

V̂A(τ) = V̂(1) + V̂(2) +
τ

min(n1, n2)

where V̂(k) is computed as (10) for the k−th regression model (k = 1, 2) in (2) and τ > 0, the term

τ/ min(n1, n2) is introduced as an upper bound for the term (β̂
(1)
G − β

(1)
G )⊺A(β̂

(2)
G − β

(2)
G ).

When A is not specified, we treat A = ΣG,G, which is unknown. As a natural generalization,

the quantity β
(1)⊺
G ΣG,Gβ

(2)
G is well defined if the two regression models in (2) share the design co-

variance matrix Σ = EX(1)
i· X(1)⊺

i· = EX(2)
i· X(2)⊺

i· . We follow the above procedures replacing A by
Σ̂G,G = 1

n1+n2
∑n1+n2

i=1 Xi,GX⊺
i,G where X is the row-combined matrix of X(1) and X(2). The variance of

̂
β
(1)⊺
G ΣG,Gβ

(2)
G is now estimated as

V̂Σ(τ) = V̂(1) + V̂(2) +
1

(n1 + n2)2

n1+n2

∑
i=1

(
β̂
(1)⊺
G Xi,GX⊺

i,G β̂
(2)
G − β̂

(1)⊺
G Σ̂G,G β̂

(2)
G

)2
+

τ

min(n1, n2)

Depending on whether the submatrix A is specified or not, the CI is

CI(τ) =


(

̂
β
(1)⊺
G Aβ

(2)
G − zα/2V̂A(τ),

̂
β
(1)⊺
G Aβ

(2)
G + zα/2V̂A(τ)

)
if A is specified(

̂
β
(1)⊺
G ΣG,Gβ

(2)
G − zα/2V̂Σ(τ),

̂
β
(1)⊺
G ΣG,Gβ

(2)
G + zα/2V̂Σ(τ)

)
otherwise

Distance of regression vectors

We denote γ = β(2) − β(1) and its initial estimator γ̂ = β̂(2) − β̂(1). The quantity of interest is the
distance between two regression vectors γ⊺

G AγG, given a pre-specified submatrix A ∈ R|G|×|G| and
the set of indices G ∈ {1, ..., p}. The bias of the plug-in estimator γ̂⊺

G Aγ̂G is:

γ̂⊺
G Aγ̂G − γ⊺

G AγG = 2 γ̂⊺
G A

(
β̂
(2)
G − β

(2)
G

)
− 2 γ̂⊺

G A
(

β̂
(1)
G − β

(1)
G

)
− (γ̂G − γG)

⊺ A (γ̂G − γG)

The key step is to estimate the error components γ̂⊺
G A

(
β̂
(1)
G − β

(1)
G

)
and γ̂⊺

G A
(

β̂
(2)
G − β

(2)
G

)
in the

above decomposition. We apply linear functional techniques twice here, and propose the bias-corrected
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estimator:

γ̂⊺
G AγG = γ̂⊺

G Aγ̂G − 2 û⊺1
1

n1

n1

∑
i=1

ω(X(1)⊺
i· β̂(1))

(
y(1)i − f (X(1)⊺

i· β̂(1))
)

X(1)
i·

+ 2 û⊺2
1

n2

n2

∑
i=1

ω(X(2)⊺
i· β̂(2))

(
y(2)i − f (X(2)⊺

i· β̂(2))
)

X(2)
i·

(15)

Then by non-negative distance, we define γ̂⊺
G AγG = max

{
γ̂⊺

G AγG, 0
}

. The second term on right-

hand-side of (15) is to estimate −2 x⊺new(β̂
(1)
G − β

(1)
G ) with xnew =

(
γ̂⊺

G A, 0
)⊺; and the third term

on right-hand-side of (15) is to estimate −2 x⊺new(β̂
(2)
G − β

(2)
G ) with xnew =

(
γ̂⊺

G A, 0
)⊺ as well. The

corresponding asymptotic variance for the bias-corrected estimator is

V̂A(τ) = 4 V̂(1) + 4 V̂(2) +
τ

min(n1, n2)

where V̂(k) is computed as (10) for the k-th regression model (k = 1, 2) and τ > 0, the term
τ/ min(n1, n2) is introduced as an upper bound for the term (γ̂G − γG)

⊺A(γ̂G − γG). With asymptotic
normality, we construct the CI

CI(τ) =
(

max
(

γ̂⊺
G AγG − zα/2

√
V̂A(τ), 0

)
, γ̂⊺

G AγG + zα/2

√
V̂A(τ)

)
.

When the submatrix A is not specified, we treat A = ΣG,G, which is unknown. The point estimator
̂γ⊤

G ΣG,GγG can be computed similarly as outlined in (15). In this case, the submatrix A is substituted
with Σ̂G,G and the resulting value is truncated at 0, where Σ̂G,G = 1

n1+n2
∑n1+n2

i=1 Xi,GX⊺
i,G with X as the

row-combined matrix of X(1) and X(2). Its corresponding asymptotic variance is

V̂Σ = 4 V̂(1) + 4 V̂(2) +
1

(n1 + n2)2

n1+n2

∑
i=1

(
γ̂⊺

GXi,GX⊺
i,Gγ̂G − γ̂⊺

GΣ̂G,Gγ̂G

)2
+

τ

min(n1, n2)

Next we present its CI

CI(τ) =
(

max
(

γ̂⊺
GΣγG − zα/2

√
V̂Σ(τ), 0

)
, γ̂⊺

GΣγG + zα/2

√
V̂Σ(τ)

)

Usage of the package

The SIHR package contains a set of functions for inference methods of various low-dimensional objec-
tives, such as linear and quadratic functions. See the table 2 for each function and its corresponding
objective.

Function Objective Description

LF() x⊺newβ Generate an LF object.

QF() β⊺G AβG Generate a QF object.

CATE() f (x⊺newβ(2))− f (x⊺newβ(1)) Generate a CATE object.

InnProd() β
(1)⊺
G Aβ

(2)
G Generate an InnProd object.

Dist() γ⊺
G AγG with γ = β(1) − β(0) Generate a Dist object.

ci() Input object, return CIs.

summary()
Input object, compute and return a list of summary statis-
tics, including bias-corrected point estimators, standard
error and so on.

Table 2: Functions of SIHR

Linear functional

The function LF(), shorthanded for Linear Functional, performs inference for x⊺newβ under the high-
dimensional model (1). A typical LF() code snippet looks like:
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LF(X,y,loading.mat,model=c("linear","logistic","logistic_alter"),intercept=TRUE,
intercept.loading=FALSE,beta.init=NULL,lambda=NULL,mu=NULL,prob.filter=0.05,
rescale=1.1,alpha=0.05,verbose=FALSE)

The argument loading.mat takes values of xnew as a matrix, which allows for multiple xnew as
the input, with each column representing a new future observation xnew ∈ Rp. The argument model
specifies what regression model the algorithm is working on, which can take “linear”, “logistic”,
“logistic_alter”, corresponding to the Table 1. The argument intercept.loading is logical, specifying
whether the intercept term should be included or not for defining the objective x⊺newβ and the default
value is FALSE. More detailed descriptions of each input argument in LF() function can be found in
Table 3. In the following code, we make inference for x⊺newβ with simulated data when the outcome yi
is continuous.

Argument Description Default

X Design matrix, of dimension n × p

y Outcome vector, of length n

loading.mat Loading matrix each column corresponds to a loading of interest xnew

model The regression model to fit, one of “linear”, “logistic” and “logistic_alter” “linear”

intercept Should intercept be fitted for the initial estimator TRUE

intercept.loading Should intercept term be included for the inference of objective. FALSE

beta.init The initial estimator of the regression vector NULL

lambda The tuning parameter in fitting initial model. If not specified, it will be
picked by cross-validation. NULL

mu The dual tuning parameter used in the construction of the projection
direction. If not specified, it will be searched automatically. NULL

prob.filter The threshold of estimated probabilities for filtering observations for
binary outcome. 0.05

rescale The factor to enlarge the standard error to account for the finite sample
bias. 1.1

alpha Level of significance to construct two-sided CI 0.05

verbose Should intermediate message(s) be printed, the projection direction be
returned. FALSE

Table 3: Arguments for function LF()

Example 1. For 1 ≤ i ≤ n, the covariates Xi are independently generated from the multivariate normal
distribution with mean µ = 0p and covariance Σ = Ip. The outcome is generated as yi = a0 + X⊺

i·β + ϵi

with standard normal noise. Given two further observations x(1)new, x(2)new, we’re going to make inference

for x(1)⊺new β and x(2)⊺new β simultaneously.

## Data Preparation ##
set.seed(0)
n = 100; p = 120
mu = rep(0,p); Cov = diag(p)
a0 = -0.5
beta = rep(0,p); beta[c(1,2)] = c(0.5, 1)
X = MASS::mvrnorm(n, mu, Cov)
y = a0 + X %*% beta + rnorm(n)

## two further observations ##
loading1 = c(1, 1, rep(0, p-2))
loading2 = c(-0.5, -1, rep(0, p-2))
loading.mat = cbind(loading1, loading2)

## Linear Functional ##
Est = LF(X, y, loading.mat, model='linear')

Having fitted the model, we have two following functions ci() and summary().

ci(Est)
#> loading lower upper
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#>1 1 1.167873 1.8753934
#>2 2 -1.544138 -0.7995375

In the above result, we can find the 95% CI for x(1)⊺new β and x(2)⊺new β. Both true values x(1)⊺new β = 1.5 and

x(2)⊺new β = −1.25 lie in the corresponding CIs.

summary(Est)
#>Call:
#>Inference for Linear Functional
#>
#>Estimators:
#> loading est.plugin est.debias Std. Error z value Pr(>|z|)
#> 1 1.268 1.522 0.1805 8.430 0.000e+00 ***
#> 2 -1.033 -1.172 0.1900 -6.169 6.868e-10 ***

summary() returns a list of the summary statistics, in which we can find the plugin estimator, bias-
corrected estimator, and the standard error for the bias-corrected estimator. The bias-corrected
estimators are closer to the true values.

As a second example, we consider the logistic regression where the argument model is set as
"logistic" or "logistic_alter". To boost computation efficiency, we may specify the argument
beta.init as the common initial coefficients estimators for all further observations.

Example 2. For 1 ≤ i ≤ n, the covariates Xi are independently generated from the multivariate normal
distribution with mean µ = 0p and covariance Σ = Ip. We generate the outcome following the model
Yi ∼ Bernoulli

(
f
(
a0 + X⊺

i β
))

with f (z) = exp(z)/[1 + exp(z)].

## Data Preparation ##
set.seed(0)
n = 300; p = 120
mu = rep(0,p); Cov = diag(p)
a0 = -1
beta = rep(0,p); beta[c(1,2)] = c(1, 1)
X = MASS::mvrnorm(n, mu, Cov)
val = a0 + X %*% beta
y = rbinom(n, 1, exp(val)/(1+exp(val)))

## two further observations ##
loading1 = c(1, 1, rep(0, p-2))
loading2 = c(-0.5, -2, rep(0, p-2))
loading.mat = cbind(loading1, loading2)

## obtain initial estimators ##
cv.fit = glmnet::cv.glmnet(X, y, family='binomial', alpha=1, standardize=TRUE)
beta.init = as.vector(coef(cv.fit, s=cv.fit[['lambda.min']]))
Est = LF(X, y, loading.mat, model='logistic', beta.init=beta.init)

The corresponding CIs and summary statistics are given below:

ci(Est)
#> loading lower upper
#>1 1 1.257559 2.492327
#>2 2 -3.186513 -1.605671

Consequently, we have two objective values x(1)⊺new β = 2 and x(2)⊺new β = −2.5. Both of these values lie
within their corresponding 95% CIs.

summary(Est)
#> Call:
#> Inference for Linear Functional
#>
#> Estimators:
#> loading est.plugin est.debias Std. Error z value Pr(>|z|)
#> 1 1.340 1.875 0.3150 5.952 2.645e-09 ***
#> 2 -1.741 -2.396 0.4033 -5.941 2.825e-09 ***

Note that the plugin estimators x(1)⊺new β̂ and x(2)⊺new β̂ are severely biased in such setting, the proposed

bias-correction approach significantly saves the bias with x̂(1)⊺new β and x̂(2)⊺new β.
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Quadratic functional

The function QF(), abbreviated for Quadratic Functional, conducts inference for β⊺G AβG if A is the
submatrix pre-specified or β⊺GΣG,GβG under the high-dimensional regression model (1). The function
QF() can be called with the following arguments.

QF(X,y,G,A=NULL,model=c("linear","logistic","logistic_alter"),intercept=TRUE,
beta.init=NULL,split=TRUE,lambda=NULL,mu=NULL,prob.filter=0.05,rescale=1.1,
tau=c(0.25,0.5,1),alpha=0.05,verbose=FALSE)

The argument G is the set of indices of interest. If the argument A is specified, it will conduct infer-
ence for β⊺G AβG; otherwise, it will turn to β⊺GΣG,GβG. The argument model specifies what regression
model the algorithm is working on, which can take “linear”, “logistic”, “logistic_alter”, corresponding
to Table 1. The argument split indicates whether we conduct the sample splitting for computing
the initial estimator of regression coefficients. When split=TRUE, the initial estimator of regression
coefficients is computed using half of the available observations while the remaining half is used
for bias correction. The option of using sampling splitting might require a larger sample size. The
argument tau.vec allows the user to supply a vector of possible values for τ in (12) and (13). Table 4
presents the arguments for QF() while excluding those that are repeated in Table 3.

Argument Description Default

X Design matrix, of dimension n × p

y Outcome vector, of length n

G The set of indices in the quadratic form

A
The matrix A in the quadratic form, of dimension |G| × |G|. If not speci-
fied, A would be set as the |G| × |G| submatrix of the population covari-
ance matrix corresponding to the index set G

NULL

model The regression model to fit, one of “linear”, “logistic” and “logistic_alter” “linear”

intercept Should intercept be fitted for the initial estimator TRUE

split Sampling splitting or not for computing the initial estimator. It takes
effect only when beta.init = NULL. TRUE

tau The enlargement factor for asymptotic variance of the bias-corrected
estimator to handle super-efficiency. It allows for a scalar or vector. c(0.25, 0.5, 1)

Table 4: Arguments for function QF(), others are repeated in Table 3

In the third example, we illustrate the usage of QF() in linear regression model,

Example 3. For 1 ≤ i ≤ n, the covariates Xi· is generated from multivariate normal distribution with
mean µ = 0p and covariance Σ ∈ Rp×p where Σj,k = 0.5|j−k|. We generate the outcome following
the model yi = Xi·β + ϵi with standard normal distributed noise. We’re going to make inference for
β⊺GΣG,GβG with G = {40, . . . , 60}.

## Data Preparation ##
set.seed(0)
n = 200; p = 150
mu = rep(0,p)
Cov = matrix(0, p, p); for(j in 1:p) for(k in 1:p) Cov[j,k] = 0.5^{abs(j-k)}
beta = rep(0, p); beta[25:50] = 0.2
X = MASS::mvrnorm(n,mu,Cov)
y = X%*%beta + rnorm(n)

## set G ##
test.set =c(40:60)

## Quadratic Functional ##
Est = QF(X, y, G = test.set, A = NULL, model = "linear", split=FALSE)

Continuing running two functions ci() and summary():

ci(Est)
#> tau lower upper
#>1 0.25 0.8118792 1.466422
#>2 0.50 0.8046235 1.473677
#>3 1.00 0.7905648 1.487736
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With the default τ = c(0.25, 0.5, 1), we obtain three different CIs for β⊺GΣG,GβG. Note that the true
value β⊺GΣG,GβG = 1.16 belongs to all of these constructed CIs.

summary(Est)
#> Call:
#> Inference for Quadratic Functional
#>
#> tau est.plugin est.debias Std. Error z value Pr(>|z|)
#> 0.25 0.904 1.139 0.1670 6.822 8.969e-12 ***
#> 0.50 0.904 1.139 0.1707 6.674 2.486e-11 ***
#> 1.00 0.904 1.139 0.1779 6.405 1.504e-10 ***

Similarly to the LF() case, our proposed bias-corrected estimator is effective in correcting the bias of
plugin estimator.

Conditional average treatment effect

The function CATE(), shorthanded for Conditional Average Treatment Effect, conducts inference for
∆(xnew) = f (x⊺newβ(2))− f (x⊺newβ(1)) under the high-dimensional regression model (2). This function
can be implemented as follows:

CATE(X1,y1,X2,y2,loading.mat,model=c("linear","logistic","logistic_alter"),
intercept=TRUE,intercept.loading=FALSE,beta.init1=NULL,beta.init2=NULL,
lambda=NULL,mu=NULL,prob.filter=0.05,rescale=1.1,alpha=0.05,verbose=FALSE)

Here, X1 and y1 denote the design matrix and the response vector for the first sample of data
respectively, while X2 and y2 denote those for the second sample of data. beta.init1 and beta.init2
are the initial estimator of the regression vector for the first and second samples. All other arguments
are similarly defined as for the function LF().

For the fourth example, we consider the logistic regression case to illustrate CATE() with the
argument model='logistic_alter'.

Example 4. In the first group of data, the covariates X(1)
i· follows multivariate normal distribution with

µ = 0p and covariance Σ = Ip; in the second group of data, the covariates X(2)
i· follows multivariate

normal distribution with µ = 0p and covariance Σ ∈ Rp×p with Σj,k = 0.5|j−k|. We generate following

the model y(k)i ∼ Bernoulli( f (X(k)⊺
i· β(k)) with f (z) = exp(z)/[1 + exp(z)] for k = 1, 2. See the

following code for details of β(1), β(2) and the further observation xnew.

## Data Preparation ##
set.seed(0)
n1 = 100; n2 = 180; p = 120
mu1 = mu2 = rep(0,p)
Cov1 = diag(p)
Cov2 = matrix(0, p, p); for(j in 1:p) for(k in 1:p) Cov2[j,k] = 0.5^{abs(j-k)}
beta1 = rep(0, p); beta1[c(1,2)] = c(0.5, 0.5)
beta2 = rep(0, p); beta2[c(1,2)] = c(1.8, 1.8)
X1 = MASS::mvrnorm(n1,mu1,Cov1); val1 = X1%*%beta1
X2 = MASS::mvrnorm(n2,mu2,Cov2); val2 = X2%*%beta2
y1 = rbinom(n1, 1, exp(val1)/(1+exp(val1)))
y2 = rbinom(n2, 1, exp(val2)/(1+exp(val2)))

## further observation ##
loading.mat = c(1, 1, rep(0, p-2))

## CATE ##
Est <- CATE(X1, y1, X2, y2,loading.mat, model="logistic_alter")

Having fitted the model, it allows for method ci() and summary() as LF() does.

ci(Est)
#> loading lower upper
#>1 1 1.614269 4.514703

The true value x⊺new(β(2) − β(1)) = 2.6 is included in the above 95% CI.
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ci(Est, probability = TRUE)
#> loading lower upper
#>1 1 0.1531872 0.5086421

If we specify probability as TRUE, for the logistic regression, ci() yields the CI for f (x⊺newβ(2))−
f (x⊺newβ(1)) whose true value is 0.2423.

Inner Product

The function InnProd(), shorthanded for Inner Product, conducts inference for β
(1)⊺
G Aβ

(2)
G if A is the

submatrix pre-specified or β
(1)⊺
G ΣG,Gβ

(2)
G under the high-dimensional regression models. Here, X1 and

y1 denote the design matrix and the response vector for the first sample of data respectively, while X2
and y2 denote those for the second sample of data. All other arguments are similarly defined as for
the function QF().

InnProd(X1,y1,X2,y2,G,A = NULL,model=c("linear","logistic","logistic_alter"),intercept=TRUE,
beta.init1=NULL,beta.init2=NULL,split = TRUE,lambda=NULL,mu=NULL,prob.filter=0.05,
rescale=1.1,tau = c(0.25,0.5,1),alpha=0.05,verbose=FALSE)

In the following code, we demonstrate the use of InnProd() in linear regression.

Example 5. See the following code for generating two samples of data and inference for β
(1)⊺
G Aβ

(2)
G .

set.seed(0)
n1 = 200; n2 = 260; p = 120
mu1 = mu2 = rep(0,p)
Cov1 = diag(p)
Cov2 = matrix(0, p, p); for(j in 1:p) for(k in 1:p) Cov2[j,k] = 0.5^{abs(j-k)}
beta1 = rep(0, p); beta1[1:10] = 0.5
beta2 = rep(0, p); beta2[3:12] = 0.4
X1 <- MASS::mvrnorm(n1,mu1,Cov1)
X2 <- MASS::mvrnorm(n2,mu2,Cov2)
y1 <- X1%*%beta1 + rnorm(n1)
y2 <- X2%*%beta2 + rnorm(n2)

## Specify G and A ##
test.set = c(1:20)
A = diag(length(test.set))

## Inner Product ##
Est <- InnProd(X1, y1, X2, y2, G=test.set, A, model="linear")

Having fitted the model, it allows for method ci() and summary() as QF() does.

ci(Est)
#> tau lower upper
#> 1 0.25 0.7432061 2.490451
#> 2 0.50 0.7128181 2.520839
#> 3 1.00 0.6520422 2.581615

The true value β(1)⊺Aβ(2) = 1.6 is included in the above CIs with all default τ values.

Distance

The function Dist(), shorthanded for Distance, conducts inference for γ⊺
G AγG, where γ = β(1) − β(0),

if A is the submatrix pre-specified or γ⊺
GΣG,GγG under the high-dimensional regression models. All

arguments are similarly defined as for the function InnProd().

Dist(X1,y1,X2,y2,G,A = NULL,model=c("linear","logistic","logistic_alter"),intercept=TRUE,
beta.init1=NULL,beta.init2=NULL,split = TRUE,lambda=NULL,mu=NULL,prob.filter=0.05,
rescale=1.1,tau = c(0.25,0.50,1),alpha=0.05,verbose=FALSE)

In Example 6 we illustrate the use of Dist() in linear regression.

Example 6. See the following code for generating two samples of data and inference for γ
(1)⊺
G ΣG,Gγ

(2)
G .

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 13

## Data Preparation ##
set.seed(0)
n1 = 220; n2 = 180; p = 100
mu = rep(0,p); Cov = diag(p)
beta1 = rep(0, p); beta1[1:2] = c(0.5, 1)
beta2 = rep(0, p); beta2[1:10] = c(0.3, 1.5, rep(0.08, 8))
X1 <- MASS::mvrnorm(n1,mu,Cov)
X2 <- MASS::mvrnorm(n2,mu,Cov)
y1 = X1%*%beta1 + rnorm(n1)
y2 = X2%*%beta2 + rnorm(n2)

## G ##
test.set = c(1:10)

## A is not specified $$$$
Est <- Dist(X1, y1, X2, y2, G=test.set, A=NULL, model="linear", split=FALSE)

Having fitted the model, it allows for method ci() and summary() as LF() does.

ci(Est)
#> tau lower upper
#>1 0.25 0.028202 0.6831165
#>2 0.50 0.000000 0.7196383
#>3 1.00 0.000000 0.7926819

summary(Est)
#> Call:
#> Inference for Distance
#>
#> tau est.plugin est.debias Std. Error z value Pr(>|z|)
#> 0.25 0.4265 0.3557 0.1671 2.129 0.03327 *
#> 0.50 0.4265 0.3557 0.1857 1.915 0.05547 .
#> 1.00 0.4265 0.3557 0.2230 1.595 0.11070

The true value γ⊺
GΣG,GγG = 0.3412. Similar to the previous instances, we note that the bias-corrected

estimator effectively correct the bias of the plugin estimator. Depending on the τ values, we obtain
various CIs, all of which encompass the true value. It is important to mention that in case of negative
lower boundaries, they will be truncated at 0 for τ = 0.5 and τ = 1.

Applications

Motif Regression

We demonstrate the use of LF() function on a motif regression problem for predicting transcription
factor binding sites (TFBS, also called ‘motifs’) in DNA sequences. The data set consists of a univariate
response variable y measuring the binding intensity of the transcription factor on coarse DNA segments
for n = 2587 genes. Moreover, for each of the n genes, a score describing the abundance of occurrence,
is available for each of the p = 666 candidate motifs. This data set has been previously explored in
Yuan et al. (2007). To summarize, we have the following data:

yi :the binding intensity of the transcription factor on coarse DNA segment i
Xi,j :the abundance score of candidate motif j in DNA segment i

i =1, · · · , n; j = 1, · · · , p

Given the real data, we run the following code:

p = ncol(X)
loading.mat = diag(p)
## apply LF ##
Est = LF(X, y, loading.mat, model='linear')
## CI for each regression coef ##
ci(Est)

We apply the package function LF() and obtain 95% CIs for the 666 regression coefficients. The
constructed CIs are illustrated in Figure 1. Among the 666 CIs, 25 are marked in red and lie completely
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above 0, suggesting a positive relationship between the Motif and the binding intensity. Conversely,
23 of the CIs highlighted in blue lie completely below 0, indicating that the corresponding motif has a
negative impact on the binding intensity of the transcription factor. In other words, many genes may
be targeted by the transcription factors that bind to these 48 motifs.
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Figure 1: Constructed CIs for the 666 regression coefficients.

Fasting Glucose Level Data

The aim is to analyze the effect of polymorphic genetic markers on the glucose level in a stock
mice population using the LF() with the argument model="logistic". The data set is available
at https://wp.cs.ucl.ac.uk/outbredmice/heterogeneous-stock-mice/. Since fasting glucose level
is an important indicator of type−2 diabetes, the fasting glucose level dichotomized at 11.1 (unit:
mmol/L) is taken as the response variable. Specifically, glucose level below 11.1 is considered normal
and above 11.1 high (pre-diabetic and diabetic). The covariates consist of 10, 346 polymorphic genetic
markers, and the sample size is 1, 269. We include “gender" and “age" as baseline covariates. The
polymorphic markers and baseline covariates are standardized before analysis. However, the number
of polymorphic markers is large, and there exists a high correlation among some of them. To address
this issue, we select a subset of polymorphic markers such that the maximum of absolute correlation
among the markers is below 0.75. Eventually, we select a subset of 2, 341 polymorphic markers. To
sum up, we have the following data, for i = 1, · · · , 1269:

yi : whether the fasting glucose level is above 11.1 mmol/L for uniti
Xi,j : polymorphic marker j for unit i with j = 1, 2, ..., 2341

Xi,2342 :gender of unit i
Xi,2343 : age of unit i

Given the real data, we run the following code:

p = ncol(X)
loading.mat = diag(p)[,-c(2342,2343)]
## apply LF ##
Est = LF(X, y, loading.mat, model='logistic')
## CI for each regression coef ##
ci(Est)

Once more, we utilize the package function LF() with model = "logistic" to generate CIs for the
first 2341 regression coefficients (corresponding to all polymorphic markers). In Figure 2, we observe
that 13 genes have CIs that lie entirely above 0 (highlighted in red), while 16 genes have CIs below 0
(highlighted in blue). This indicates their respective associations with the fasting glucose level.

Conclusion

There has been significant recent progress in debiasing inference methods for high-dimensional GLMs.
This paper highlights the application of advanced debiasing techniques in high-dimensional GLMs
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Figure 2: Constructed CIs for the 2341 regression coefficients.

using the R package SIHR. The package provides tools for estimating bias-corrected point estimators
and constructing CIs for various low-dimensional objectives in both one- and two-sample regression
settings. Through extensive simulations and real-data analyses, we demonstrate the practicality and
versatility of the package across diverse fields of study, making it an essential addition to the literature.
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