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ABSTRACT

In the picture archiving and communication systems (PACS) used in modern hospitals, the current practice is
to retrieve images based on keyword search which returns a complete set of images from the same scan. Both
diagnostically useful and negligible images in the image databases are retrieved and browsed by the physicians. In
addition to the text-based search query method, queries based on image contents and image examples have been
developed and integrated into existing PACS systems. Most of the content-based image retrieval (CBIR) systems
for medical image databases are designed to retrieve images individually. But in a database of tomographic images,
it is often diagnostically more useful to simultaneously retrieve multiple images that are closely related for various
reasons, such as physiological contiguousness, etc. For example, high resolution computed tomography (HRCT)
images are taken in a series of cross-sectional slices of human body. Typically, several slices are relevant for making
a diagnosis, requiring a PACS system that can retrieve a contiguous sequence of slices. In this paper, we present
an extension to our physician-in-the-loop CBIR system that allows our algorithms to automatically determine the
number of adjoining images to retain after certain key images are identi�ed by the physician. Only the key images,
so identi�ed by the physician, and the other adjoining images that cohere with the key images are kept on-line for
fast retrieval; the rest of the images can be discarded if so desired. This results in large reduction in the amount of
storage needed for fast retrieval.
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1. INTRODUCTION

A high-resolution computerized tomographic (HRCT) scan of a patient with lung disease consists of between 40 to
50 cross-sectional images. Each of these images is usually a 512x512 matrix of pixels and each pixel is represented
by a 2-byte word. Therefore, each image typically requires 0.5 MByte of storage, necessitating a total of 25 MBytes
for a single patient scan. A typical facility in a research hospital may examine around 40 patients a day. That calls
for 1 Gigabyte of storage per day. While the �nancial cost of this much storage may not be daunting any longer {
since the prices of disks have dropped precipitously during the last few years { the huge size of the storage needed
for, say, a year's worth (or, in some cases, several years' worth) of patient records can considerably slow down any
attempts at automated retrieval.

In this paper we will present a scheme that reduces the needed storage considerably without reducing the retrieval
e�ectiveness of a CBIR system such as ASSERT.10 An additional advantage of the method presented here is that, for
a given query image, in addition to retrieving the most similar physician-marked key images from the other patients,
ASSERT can now also retrieve those adjacent images that cohere with the key images. With the method presented
here, when a new patient scan becomes available for archiving, the physician chooses a small number, usually one or
two, of key images as representing the entire scan. The wavelet based algorithm that we present here then selects
from all of the patient images that cohere with the key images. Only the key images and the other images that
cohere with the key images are retained for archival purposes. In contrast to some promising medical image database
retrieval systems,6{8 our approach no longer limits the CBIR system to extract image features from a single image
and retrieve only individual images without including the adjacent images.
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Figure 1. The hierarchy of sequence-segment-slice structure and its integration of a content-based image retrieval
system and a hospital information system.

In this paper, in what follows we will �rst introduce the notion of a key segment, which is a sequence of contiguous
images from a patient scan that cohere with the key images. The coherence will be established using two criteria,
one sensitive to di�erences between the adjoining images in a scan and the other to the overall dissimilarity between
a given image and a key image. In Section 3, experimental results are presented and we conclude in Section 4 with
discussions and feature work.

2. KSDS: KEY SEGMENT DETECTION SCHEMA

The scanning process produces a sequence of contiguous cross-sectional medical images. Each image is called a slice
in the sequence. Because an individual slice cannot capture the information from the third dimension, we would like
to extract the key segments from the scanning process. A key segment contains a key slice, manually selected by a
physician, and a certain number of contiguous slices adjacent to the key slice. Figure 1 shows the sequence-segment-
slice structure. The scan sequence contains slices from the beginning to the end of the scan. As mentioned before, the
number of slices in a scan is forty to �fty on average. A physician will typically identify one or two of these images
as key images, these images are the most signi�cant exemplars of the pathology. Since an automatic detection of key
images would be an impossibly di�cult task at this time, we let the physician make that determination. Using the
algorithm described shortly, our system then automatically selects those images from the scan that best cohere with
the key images. A key image together with the cohering images from the scan form a key segment. A key segment
can be characterized by its segment boundaries, these being the farthest cohering images from a given key image in
a scan. Note that only the key slices are given to the system for image database archiving and retrieval. During a
query, when a key slice is retrieved as one of the best matching images, the physician is given the option of viewing
the corresponding key segment.

KSDS is best explained with the help of the ow chart in Figure 3. The �gure shows two phases: magnitude
extraction phase and location extraction phase. A key step in KSDS is the detection of key segment boundaries.
As explained in the next section, these boundaries are determined by �nding two scanning transitions: abrupt and
gradual. Patient scan images that are within the boundaries are said to cohere with the key images.

2.1. Important Information Extracted from Wavelet Coe�cients

Wavelet bases o�er a degree of localization both in space and in frequency and provide e�cient representation for a
wide range of images. The wavelet transform of an image provides a tool for time-frequency description of the image.

A one-dimensional orthonormal wavelet basis is generated from dyadic dilation and integer translation of two
basic functions, a \father" wavelet � and a \mother" wavelet  . The functions � and  can be chosen to be compactly
supported.
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An orthonormal wavelet basis of L2(R2) can be constructed from a one-dimensional orthonormal wavelet basis
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of L2(R2). A wavelet basis for L2([0; 1]2) is obtained in the same fashion with some minor modi�cations (see
Daubechies3 and Cohen, et al.1).

An orthonormal wavelet basis has an associated exact orthogonal discrete wavelet transform (DWT) that is
norm-preserving and transforms an image into the wavelet coe�cient domain in O(n) steps. The interested reader
is referred to Daubechies2 and Strang11 for further details about the wavelets and the discrete wavelet transform.
Wavelet bases are well localized and the wavelet transform can compact the energy of an image into a small number
of large wavelet coe�cients and thus achieves data compression (see DeVore, et al.5 and Meyer9).

The detail information in an image I can be extracted by applying a two-dimensional discrete wavelet transform
with the scaling function � and a wavelet function 	. The wavelet transform yields coe�cients that characterize the
rate of gray level changes in an image at di�erent resolutions and in three principal directions: diagonal, horizontal
and vertical with di�erent weightings � for each pixel. Using the index j to denote a resolution level, the relationship
between the image and its wavelet coe�cients is thus given by

I(x; y) �
X
m;n

sJ;m;n�J;m;n(x; y) +
X

�2fv;d;hg

JX
j=1

X
m;n

d�j;m;n	
�
j;m;n(x; y) (1)

In this equation, sJ;m;n are the coe�cients representing the smooth part of the image at resolution level J and d�j;m;n

are the coe�cients representing details along three directions, vertical, horizontal, and diagonal at resolution level j.
These coe�cients can be naturally organized as a matrix. In this paper, we will use Mh

j;k, M
d
j;k, and M

v
j;k to denote

the three detail coe�cient matrices at level j for slice k.

There are two important relationships between a coe�cient matrix and its corresponding image: 1. the location
of a coe�cient in a matrix is related to the location of the corresponding pixel-block in an image. 2. the deeper the
resolution level, the bigger the pixel-block. For example, shown in Figure 2, a coe�cient in the �rst-level coe�cient
matrix \covers" an 8 � by � 8 � pixel block in the corresponding image if the applied wavelet has �lter length
8. At level 2, a coe�cient in the matrix \covers" a 16 � by � 16 � pixel block. Furthermore, it is well-known to
use the leading coe�cients to represent images in image compression. It has been proved that small coe�cients
are negligible in representing images.4 Therefore, the space translation of the leading coe�cients that show the
signi�cant magnitudes on gray-scale changes will capture the changes of detail information from two consecutive
slices.

The wavelet-based information extraction process is depicted in Figure 3. In this �gure, slice k is fed into KSDS.
Its J-level two-dimensional discrete wavelet transform generates J coe�cient matrices for each detail part. The
scheme then sorts the coe�cients for all coe�cient matrices and picks up the Nc leading coe�cients. All coe�cients
in the set of Nc leading coe�cients are called signi�cant coe�cients. The leading Nc coe�cients are then used to
threshold the coe�cient matrices. All coe�cients less than the N th

c leading coe�cients are set to 0. The model
then records the locations, (x; y) lists, for those non-zero coe�cients in each decomposition level as shown in Figure
3. Since the positions of coe�cients are highly related to the related positions of the pixels on the images, without
applying inverse discrete wavelet transform, the system therefore will compute the distances related to the locations
as well as the magnitude di�erences of leading coe�cients between two slices.

Now we are ready to utilize both magnitude and location information to detect the segment transition.

�The QMF (quadrature-mirror-�lter) corresponding to the wavelet determines di�erent weights for pixels in computing the magnitude
of gray-scale changes in detail parts of the image.
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Figure 2. The relationship between the coe�cient matrices and the corresponding image when the applied wavelet
has �lter length 8.
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Figure 3. The ow chart for distance measurements in KSDS.

2.2. Segment Transition Detection

We refer to the process of human-assisted detection of transitions from one key segment to other insigni�cant segments
as segment transition detection. The detection process can be categorized into two approaches: abrupt transition and
gradual transition. The former can be detected by comparing the distance between two consecutive slices while the
latter can be detected by accumulating the distances from one key slice to the slice in the segment boundary.

The concept of the distance measurement is illustrated in Figure 4. This �gure shows an example of two-level
decomposition for the horizontal details from slices k and k � 1. The system starts from slice k and extracts the
information on Nc leading coe�cients. If there are Nj;k leading coe�cients in Mh

j;k, 3Nj;k leading coe�cients are

extracted from the corresponding coe�cient matrix,Mh
j;k�1. For each leading coe�cient in M

h
j;k, (xi; yi), the system

picks up the nearest neighboring coe�cient of (xi; yi) in M
h
j;k�1 among the 3Nj;k leading coe�cients. The selected

coe�cient in Mh
j;k�1 has index q(i) with the corresponding index i in slice k.

The distance between two consecutive slices is determined by the di�erences in location, (xi; yi) and (x
0

q(i); y
0

q(i))

as well as the di�erences in magnitude, A(i) and A(q(i)). We de�ne the distance in the horizontal direction by the
following equation:

Dh
k =

JX
l=1

Nl;kX
i=1

2l=2
�
wlocation

�
jxi � xq(i)j

p + jyi � yq(i)j
p
�
+ wmagnitude jA(i) � A(p(i))jp

� 1
p (2)

where Nl;k is the number of signi�cant coe�cients at level l, 2l=2 is a normalization factor, and wlocation, wmagnitude

are weights for location and magnitude distances, respectively. The overall distance is the summation of three
distances contributed by three detail parts. In our experiment, we use both L1 and L2 distances.
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Figure 5. Distances for transition detection.

Therefore, the distances contributed by three detail parts can be obtained as follows:

DK = whD
h
j + wdD

d
j +wvD

v
j (3)

where h, d, and v stand for horizontal, diagonal, and vertical parts, respectively. wh, wd, and wv are elements of the
weighting vector.

The detection schema is established using two criteria, one sensitive to the di�erences between the adjoining
images in a scan and the other sensitive to the overall dissimilarity between a given image and a key image. The
former is called abrupt transition detection and the latter is gradual transition detection. Assuming the key slice has
index K, the distance between slices K and K � 1 is denoted by DK as shown in Figure 5.

The base distance is de�ned as follows:

Dbase =
DK +DK+1

2
(4)

The distance computation will be operated in forward and backward directions until either of the following stop
criteria is met.

Dj � (1 + r1)Dbase (5)

1

jmj

mX
j=0

DK+j � (1 + r2)Dbase (6)

In our experiment, we pick 0:3 for both r1 and r2 from the training results of current image database.
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Figure 6. Three sets of images: (a) the whole image (b) lung extracted image (c) PBR image.

3. EXPERIMENTAL RESULTS

In the �eld of medical image database retrieval systems, such as ASSERT, the clinical useful information consists
of gray level variations in highly localized regions of the image. As shown in Figure 6(a), the artifacts outside the
lung regions will a�ect the accuracy of key segment detection because those pixels are not diagnostically meaningful.
Therefore, we discard the background pixels and keep only the lung regions shown in Figure 6(b). However, the
pathology bearing regions (PBRs) in medical images tend to be not well-de�ned and present great di�culties in any
attempts at automatic segmentation. It is for this reason that we have had to implement a physician-in-the-loop
system to ask the physician to delineate the PBRs. Shown in Figure 6(c) are two PBRs marked by a physician with
paraseptal emphysema.12 In this section, we present three sets of experiments designed to test the utility of KSDS.
These three sets of images are as follows:

1. Whole image: image includes all pixels in a 512x512 matrix.

2. Lung extracted image: image includes only the pixels inside the lung region(s).

3. PBR image: image includes only the pixels inside the minimum bounding rectangles (MBRs) of PBRs.

In each experiment set, two measurements are computed: 1. the accuracy of key segment detection and 2. the
storage saving achieved by keeping only the slices in the key segment. Our evaluation uses a testbed containing 3; 516
HRCT lung images from 78 patients' scans, producing 117 key segments for each set.

Our goal is to �nd accurate segment boundaries for each key segment. To measure KSDS's accuracy we compare
its boundaries to those marked by a physician. The physician �rst selects key slices that provide pathological
information for the diagnosis by looking at a display of all scans. The physician then scans backwards to mark the
left boundary PL and then right to mark the right boundary, PR, of the key segment surrounding the key slice.
To compute the accuracy we compare the system's boundaries, SL and SR to the physicians' using the following
formula:

Accuracy =

�
1�

jPL � SLj+ jPR � SRj

jPR � PLj

�
� 100% (7)

The purpose of storing key segments is to radically reduce the storage requirements over storing all slices from
the scan, while still providing physicians with the required three-dimensional view. To evaluate how well our method
achieves this goal we present the storage reduction of each �lter length of Symlets y. The percentage of savings is
de�ned as follows:

Storage =

�
1�

jSR � SLj

Total number of slices in one scan

�
� 100% (8)

Figure 7(a) presents the accuracy results. Our accuracy metric does not tell us whether our method underestimates
or overestimates the boundaries. We analyzed the results and found that approximately 80% of the times our method
overestimates the boundaries, including more slices than the physician. This result is invariant of which �lter length,

yIn our experiments, we use Symlets to have consistency with human's perception system. To capture the performance di�erences in
coarseness of image variation, we also compare the results with di�erent �lter lengths of Symlets.
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Figure 7. (a) Accuracy rates for detecting key segments. (b) Storage saving. (In both �gures, labels of x-axes stand
for the �lter length of Symlets 4, 6, 8 with leading coe�cient number 500 and 1000.)

how many coe�cients used, and the parameter settings. From the chart, the average accuracy rates range from 77%
to 82%. Most of times, the PBR image set gives better results than the other two image sets. The accuracy of whole
image set is relatively lower than the other two sets. This also supports the empirical observation of our previous
work10 which presented localized approaches are superior to global approaches. Figure 7(b) shows the rate of storage
saving. On average, the rate ranges from 74% to 76%. The best performance our KSDS can achieve is the upper
bound depicted in the chart. The upper bound is equivalent to the storage saving when a physician manually selects
all boundaries of key segments. In the testbed, there are 18 di�erent lung diseases. Since the lung pathologies have
so many visual patterns, the �lter lengths of Symlets do not give much information for us. However, experiments
with 1; 000 coe�cients perform slightly better than the experiments with 500 coe�cients.

4. CONCLUSIONS AND FUTURE WORK

This paper has focussed on the wavelet-based transition detection methods for extracting key segments in a series
of cross-sectional HRCT images. Our evaluation was performed in the context of ASSERT, our CBIR system for
retrieving medical images. A discussion of retrieval and archival in ASSERT are presented in10 . Our results obtained
an average accuracy of 81%, typically o� by only one or two slices from the boundaries selected by the physician.
Because the key segments are used to present a three-dimensional view, the absence or addition of one or few slices
has minimal impact on their ability to interpret the pathology information. In the immediate future we plan to
apply learning algorithms to select the weights for location and magnitude di�erences in Equation 2 and the values
of r-parameters for thresholding the distance measurement for transition detection in Equations 5 and 6. We are also
exploring the possibility of incorporating KSDS in the attribute space of our CBIR system to improve the retrieval
accuracy.
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Figure 8. The adjacent images of the best matched image are displayed in the right column of the main window.
There are 5 slices in the key segment that coheres the retrieved image pathologically.
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