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In this paper, we study high-dimensional sparse Quadratic Discriminant
Analysis (QDA) and aim to establish the optimal convergence rates for the
classification error. Minimax lower bounds are established to demonstrate
the necessity of structural assumptions such as sparsity conditions on the dis-
criminating direction and differential graph for the possible construction of
consistent high-dimensional QDA rules.

We then propose a classification algorithm called SDAR using constrained
convex optimization under the sparsity assumptions. Both minimax upper and
lower bounds are obtained and this classification rule is shown to be simulta-
neously rate optimal over a collection of parameter spaces, up to a logarith-
mic factor. Simulation studies demonstrate that SDAR performs well numer-
ically. The algorithm is also illustrated through an analysis of prostate cancer
data and colon tissue data. The methodology and theory developed for high-
dimensional QDA for two groups in the Gaussian setting are also extended
to multigroup classification and to classification under the Gaussian copula
model.

1. Introduction. Gaussian distribution plays a fundamental role in statistics and ma-
chine learning. Discriminant analysis, which aims to classify two multivariate Gaussian dis-
tributions, has a wide range of contemporary applications including face recognition [27,
43], business forecasting [15, 24] and gene expression analysis [26, 29, 30]. It also yields
fruitful theoretical results in the new era of machine learning, such as understanding the in-
terpolation of neural network training [17, 28, 37] and investigating adversarial robustness
[14, 16, 39]. In the ideal setting of two known normal distributions Np(μ1,�1) (class 1)
and Np(μ2,�2) (class 2), the goal of the discriminant analysis is to classify a new obser-
vation z, which is drawn from one of the two distributions with prior probabilities π1 and
π2, respectively, into one of the two classes. In the ideal setting where all the parameters
θ = (π1, π2,μ1,μ2,�1,�2) are known, the optimal classifier is the quadratic discriminant
rule is given by

(1.1) G∗
θ (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, (z − μ1)
�D(z − μ1) − 2δ��2(z − μ̄) − log

( |�1|
|�2|

)
+ 2 log

(
π1

π2

)
> 0,

2, (z − μ1)
�D(z − μ1) − 2δ��2(z − μ̄) − log

( |�1|
|�2|

)
+ 2 log

(
π1

π2

)
≤ 0,

where δ = μ2 − μ1, μ̄ = μ1+μ2
2 , and D = �2 − �1 with �i = �−1

i for i = 1,2; see, for ex-
ample, Anderson [2]. When �1 = �2, the quadratic classification boundary in (1.1) becomes
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linear, reducing the quadratic discriminant analysis (QDA) to the linear discriminant analysis
(LDA).

QDA has been an important technique for classification and is more flexible than the LDA
[22]. In practice, the parameters π1, π2,μ1,μ2,�1 and �2 are usually unknown and in-

stead one observes two independent random samples, X
(1)
1 , . . . ,X(1)

n1

i.i.d.∼ Np(μ1,�1) and

X
(2)
1 , . . . ,X(2)

n2

i.i.d.∼ Np(μ2,�2). It is practically important to construct a data-driven classifi-
cation rule based on the two samples. In the low-dimensional setting where the dimension p

is small relative to the sample sizes, a natural approach is to simply plug the sample means
and sample covariance matrices into the oracle QDA rule (1.1). This approach has been well
studied; see, for example, Anderson [2]. Thanks to the explosive growth of big data, high-
dimensional data, where the dimension p can be much larger than the sample sizes, are now
routinely collected in scientific investigations in a wide range of fields. In such settings, the
conventional LDA and QDA rules perform poorly.

For high-dimensional LDA, there already exist a number of proposals and theoretical stud-
ies. In particular, assuming sparsity on the discriminating direction, direct estimation methods
have been introduced in Cai and Liu [7] and Mai, Zou and Yuan [35] and optimality theory
is developed in Cai and Zhang [11]. In contrast, relatively few methods have been introduced
for regularized QDA in the high-dimensional setting and developing an optimality theory is
technically more challenging. Li and Shao [31] studied high-dimensional QDA by imposing
sparsity assumptions on δ, �1, �2 and �1 − �2 separately, and then plugging the estimates
of these quantities into the oracle QDA rule (1.1). Jiang, Wang and Leng [25] introduced a
direct estimation approach by assuming that �1 − �2 and (�1 + �2)δ are sparse, and pro-
posed a consistent classification rule. However, it is still unclear whether any of these methods
achieves the optimal convergence rate for the classification error.

In the present paper, by observing that the oracle rule (1.1) depends on θ only through the
discriminating direction β = �2δ and differential graph D = �2 − �1, we propose a sparse
QDA rule by directly estimating D and β through convex optimization, and aim to establish
the optimality of the proposed classifier in the high-dimensional settings. It is intuitively
clear that QDA is a difficult problem in the high-dimensional setting. For example, it can
be seen easily from (1.1) that knowledge of the log-determinant of the covariance matrices
log(

|�1||�2|) is essential for the QDA. However, as shown in Cai, Liang and Zhou [8], there
is no consistent estimator for the log-determinant of the covariance matrices in the high-
dimensional setting even when they are known to be diagonal. We begin by establishing
rigorously minimax lower bound results, which demonstrate that structural assumptions such
as sparsity conditions on the discriminating direction β and differential graph D are necessary
for the possible construction of consistent high-dimensional QDA rules. There are two key
steps in obtaining the impossibility results: One is the reduction of the classification error
to an alternative loss and another is a careful construction of a collection of least favorable
multivariate normal distributions.

We then propose a classifier called SDAR (Sparse Discriminant Analysis with
Regularization) to solve the high-dimensional QDA problem under the sparsity assumptions.
The SDAR algorithm proceeds by first estimating β and D through constrained convex op-
timization, and then using the estimators to construct a data-driven classification rule. The
first estimation step is in a similar spirit to that in Jiang, Wang and Leng [25] by directly
estimating the key quantities in the oracle QDA rule. The second classification step is based
on a simple but important observation that log(|�1|/|�2|) = log(|D�1 + Ip|). As a result,
we are able to derive an explicit convergence rate for the classification error of the proposed
SDAR algorithm. In addition, we establish a matching minimax lower bound, up to a loga-
rithm factor, that shows the near-optimality of the classifier. Both simulations and real data
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analysis are carried out to study the numerical performance of the proposed algorithm. The
results show that the proposed SDAR algorithm outperforms existing methods in the litera-
ture. The methodology and theory developed for high-dimensional QDA for two groups in
the Gaussian setting are also extended to multi-group classification and to classification under
the Gaussian copula model.

The contributions of the present paper are three-fold. First, we address the necessity of
structural assumptions on the parameters for the high-dimensional QDA problem by observ-
ing that consistent classification is impossible unless p = o(n) without any such assumptions.
Second, under the sparsity assumptions, we proposed the SDAR rule, and established an ex-
plicit convergence rate of classification error. To the best of our knowledge, this is the first
explicit convergence rate for high-dimensional QDA. Lastly, we provide a minimax lower
bound, which shows that the convergence rate obtained by the SDAR rule is optimal, up to a
logarithmic factor.

The rest of the paper is organized as follows. In Section 2, minimax lower bounds are
established to show the necessity of imposing structural assumptions for high-dimensional
QDA. Section 3 presents in detail the data-driven classification procedure SDAR. Theoreti-
cal properties of SDAR are investigated in Section 4 under certain sparsity conditions. The
upper and lower bounds together show that the SDAR rule achieves the optimal rate for the
classification error up to a logarithmic factor. In Section 5, we consider the semiparametric
copula model and introduced a new method called Copula SDAR (CSDAR) and developed
corresponding theoretical results for this non-Gaussian model. Simulation studies are given
in Section 6 where we compare the performance of the proposed algorithms to other exist-
ing classification methods in the literature. In addition, the merits of the SDAR and SDAR
classifiers are illustrated through an analysis of a prostate cancer dataset and a colon tissue
dataset. Section 7 discusses extensions to multigroup classification and to classification under
the Gaussian copula model. The proofs of main results are given in Section 8, and proofs of
other results are provided in the Supplementary Material [12].

Notation and definitions. We first introduce basic notation and definitions that will be
used throughout the rest of the paper. For an event A, 1{A} is the indicator function on
A. For an integer m ≥ 1, [m] denotes the set {1,2, . . . ,m}. Throughout the paper, vectors
are denoted by boldface letters. For a vector u, ‖u‖,‖u‖1,‖u‖∞ denotes the �2 norm, �1
norm, and �∞ norm, respectively. We use supp(u) to denote the support of the vector u.
0p is a p-dimensional vector with elements being 0, and 1p is a p-dimensional vector
with elements being 1. For i ∈ [p], ei is the ith standard basis. For a matrix M ∈ R

p×p ,
‖M‖,‖M‖F ,‖M‖1 denote the spectral norm, Frobenius norm and matrix l1 norm, respec-
tively. In addition, |M|1 = ∑

i,j |Mi,j |, |M|∞ = maxi,j |Mi,j | and |M| is the determinant of
M . Let λi(M) denote the ith eigenvalue of M with λ1(M) ≥ · · · ≥ λp(M). Let M 
 0 de-
note M to be a positive semidefinite matrix and Ip is the p × p identity matrix. In addition,
M1 ⊗ M2 denotes the Kronecker product and vec(M) is the p2 × 1 vector obtained by stack-
ing the columns of M . diag(M) is the linear operator that sets all the off diagonal elements
of M to 0. Ei,i is a p × p matrix whose (i, i)th entry is 1 and 0 else. For a positive integer
s < p, let �(s;p) = {u ∈ R

p : ‖uSC‖1 ≤ ‖uS‖1, for some S ⊂ [p] with |S| = s}, where uS

denotes the subvector of u confined to S. For two sequences of positive numbers an and bn,
an � bn means that for some constant c > 0, an ≤ c · bn for all n, and an  bn if an � bn and
bn � an. an � bn means that limn→∞ |an|/|bn| = 0. In our asymptotic framework, we let n

be the driving asymptotic parameter, s and p approach infinity as n grows to infinity. We also
use c, c1, c2, . . . ,C,C1,C2 to denote constants that does not depend on n,p, and their values
may vary from place to place.
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2. The difficulties of high-dimensional QDA. As mentioned in the Introduction, high-
dimensional QDA is a difficult problem. In this section, we establish explicit minimax lower
bounds that show the necessity of structural assumptions on the discriminating direction β =
�2δ and differential graph D = �2 − �1 for constructing consistent high-dimensional QDA
rules.

2.1. The setup. Suppose one observes n1 samples from class 1: x1, . . . ,xn1

i.i.d.∼
Np(μ1,�1), n2 samples from class 2: y1, . . . ,yn2

i.i.d.∼ Np(μ2,�2), and the prior proba-
bilities of class 1 and 2 are π1 and π2, respectively. The goal is to construct a classifi-
cation rule Ĝ, which is a function of xi’s and yi ’s, to classify a future data point z ∼
π1Np(μ1,�1)+π2Np(μ2,�2). This model is parametrized by θ = (π1, π2,μ1,μ2,�1,�2).
Let n = min{n1, n2}. For any classification rule Ĝ : Rp → {1,2}, the accuracy is measured
by the classification error

(2.1) Rθ (Ĝ) = Eθ

[
1
{
Ĝ(z) �= L(z)

}]
,

where L(z) denotes the true class label of z, that is, L(z) = 1 if z ∼ Np(μ1,�1), and 2
otherwise.

When θ = (π1, π2,μ1,μ2,�1,�2) is known in advance, the oracle classification rule in
(1.1) is the Bayes rule and achieves the the minimal classification error; see Anderson [2].
For ease of presentation, let us define the discriminant function by

(2.2) Q(z; θ) = (z − μ1)
�D(z − μ1) − 2δ��2(z − μ̄) − log

( |�1|
|�2|

)
+ 2 log

(
π1

π2

)
.

Then Q(z; θ) = 0 characterizes the classification boundary of the oracle QDA rule, and (1.1)
can be rewritten as

G∗
θ (z) = 1 + 1

{
Q(z; θ) ≤ 0

}
,

and Rθ (G
∗
θ ) = minG∈G Rθ (G), where G is the set of all classification rules.

In the following, the Bayes classification risk Rθ (G
∗
θ ) is used as the benchmark and the

excess risk Rθ (Ĝ) − Rθ (G
∗
θ ) is used to evaluate the performance of a data-driven classi-

fication rule Ĝ. We say Ĝ is consistent, or G∗
θ can be mimicked by Ĝ, if the excess risk

Rθ (Ĝ) − Rθ (G
∗
θ ) → 0 as the sample size n → ∞.

2.2. Impossibility of QDA in high dimensions. We now characterize the fundamental lim-
its of QDA by showing that, without structural assumptions, G∗

θ cannot be mimicked unless
p � n, which precludes the framework in the high-dimensional settings that motivates our
study.

We first consider the simple case where �1 = �2 = �, and in which case the QDA is
reduced to the LDA problem. Under the LDA model in the high-dimensional regime, Bickel
and Levina [6] and Cai, Zhang and Ma [9] proposed consistent classification rules under
stringent structural conditions on (μ1,μ2,�). In this paper, we demonstrate the the necessity
of these structural assumptions by showing that without structural assumptions, a consistent
classification rule is impossible in the high-dimensional LDA problem.

We first consider the parameter space

�(1)
p = {

θ = (1/2,1/2,μ1,μ2, Ip, Ip) : μ1,μ2 ∈ R
p, c1 ≤ ‖μ1 − μ2‖ ≤ c2

}
,

for some constant c1, c2 > 0.
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THEOREM 2.1. Suppose that Ĝ is any classification rule constructed based on the obser-

vations x1, . . . ,xn
i.i.d.∼ Np(μ1, Ip), y1, . . . ,yn

i.i.d.∼ Np(μ2, Ip) with θ = (1/2,1/2,μ1,μ2,

Ip, Ip) ∈ �
(1)
p , then when n is sufficiently large,

inf
Ĝ

sup
θ∈�

(1)
p

E
[
Rθ (Ĝ) − Rθ

(
G∗

θ

)]
� p

n
∧ 1.

This theorem implies that even when the covariance matrices are equal and known to be
identity matrices, as long as the mean vectors μ1,μ2 are unknown, no data-driven method is
able to mimic G∗

θ in the high-dimensional setting where p � n. Structural assumptions are
μ1 and μ2 are necessary for a consistent classification rule.

However, for high-dimensional QDA, structural assumptions on μ1 and μ2 are not enough
and more assumptions are needed. To this end, we consider another scenario where μ1 and
μ2 are known exactly. Let μ∗

1,μ
∗
2 ∈R

p be two given vectors and define the parameter space

�(2)
p

(
μ∗

1,μ
∗
2
)= {

θ = (
1/2,1/2,μ∗

1,μ
∗
2,�1,�2

) : �1,�2 are diagonal matrices
}
.

THEOREM 2.2. Suppose Ĝ is constructed based on the observations x1, . . . ,xn
i.i.d.∼

Np(μ1,�1), y1, . . . ,yn

i.i.d.∼ Np(μ2,�2). For any given μ∗
1,μ

∗
2 ∈ R

p with ‖μ∗
1 − μ∗

2‖2 ≤ C

where C > 0 is some constant, when θ = (1/2,1/2,μ1,μ2,�1,�2) ∈ �
(2)
p (μ∗

1,μ
∗
2), we have

for sufficiently large n,

inf
Ĝ

sup
θ∈�

(2)
p (μ∗

1,μ∗
2)

E
[
Rθ (Ĝ) − Rθ

(
G∗

θ

)]
� p

n
∧ 1.

This theorem implies that even if we have the prior information that μ1,μ2 are known and
�1,�2 are both diagonal, the quadratic discriminant rule G∗

θ cannot be mimicked consis-
tently if p � n. The construction of consistent classification rules requires stronger assump-
tions.

The main strategy of these proofs are discussed in Section 4.2, and the detailed proofs of
these lower bound results are provided in Section 8.1. In addition, the lower bounds are tight,
up to a logarithmic factor. Specifically, by using the techniques similar to that in Theorem 4.2,
the plug-in classification rule Ĝ, which is obtained by plugging in sample means and sample

covariance matrices in (1.1), satisfies that Rθ (Ĝ)−Rθ (G
∗
θ )�

p log2 n
n

∧1. This result is further
discussed in the Supplementary Material.

3. Sparse quadratic discriminant analysis. The inconsistency results in Theorems 2.1
and 2.2 imply the necessity of imposing structural assumptions on both the mean vectors and
covariance matrices. In this section, we consider the QDA problem under the assumptions
that the discriminating direction β = �2δ and the differential graph D are both sparse. This
sparsity assumption, according to (2.2), implies that the classification boundary of the oracle
rule depends only on a small number of features in z. It is also worth noting that the differ-
ential graph D corresponds to the change of interactions in two different graphs �1 and �2.
The problem of interaction selection is important in its own right and has been studied exten-
sively recently in dynamic network analysis under various environmental and experimental
conditions; see Bandyopadhyay et al. [4], Zhao, Cai and Li [47], Xia, Cai and Cai [44], Hill
et al. [23].

To see that these two sparsity assumptions are sufficient to obtain a consistent estimator
for the optimal classification rule G∗

θ , we begin by rewriting Q(z; θ), defined in (2.2). Recall
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that δ = μ2 − μ1, μ̄ = μ1+μ2
2 ,D = �2 − �1 and β = �2δ, then

Q(z; θ) = (z − μ1)
�D(z − μ1) − 2β�(z − μ̄) − log

( |�1|
|�2|

)
+ 2 log

(
π1

π2

)
(3.1)

= (z − μ1)
�D(z − μ1) − 2β�(z − μ̄) − log

(|D�1 + Ip|)+ 2 log
(

π1

π2

)
.

A simple but essential observation of (3.1) is that the first three quantities in the above
oracle QDA rule G∗

θ depends on either D or β , and the forth term log(π1/π2) is easy to
estimate. In the present paper, we shall show that under the sparsity assumptions on these
two quantities, D and β can be estimated directly and efficiently, and the classification rule
based on these two estimates enjoys desirable theoretical guarantees.

REMARK 1. By symmetry, Q(z; θ) can also be rewritten in a form that depends on
(�1 + �2)δ and D. The reason that we consider (�2δ,D) as the key quantity is that this
could be easily extended to the case with K multiple groups. In this generalized setting, we
consider using the first group as a benchmark, and computing the likelihood ratio of other
groups versus the first one. As a result, the key quantity in the multiple classification case is
{(�k(μk − μ1),�k − �1)]}Kk=2. See more discussion in Section 7.

In the following, we proceed to estimate D and β through constrained convex opti-
mization. Let the first sample covariance matrix be �̂1 = n−1

1
∑n1

i=1(xi − μ̂1)(xi − μ̂1)
�,

where μ̂1 = n−1
1

∑n1
i=1 xi and define �̂2 and μ̂2 similarly. Since D satisfies the equation

�1D�2 = �1 − �2 and �2D�1 = �1 − �2, a sensible estimation procedure is to solve
�̂1D�̂2/2 + �̂2D�̂1/2 − �̂1 + �̂2 = 0 for D. We estimate D through the following con-
strained �1 minimization approach:

(3.2) D̂ = arg min
D∈Rp×p

{
|D|1 :

∣∣∣∣12�̂1D�̂2 + 1

2
�̂2D�̂1 − �̂1 + �̂2

∣∣∣∣∞ ≤ λ1,n

}
,

where λ1,n = c1

√
logp

n
is a tuning parameter with some constant c1 > 0 that will be specified

later.

REMARK 2. The estimator D̂ defined in (3.2) is similar to that in Zhao, Cai and Li
[47], but has better numerical performance due to symmetrization. In addition, we are able
to solve (3.2) in a more computationally efficient way. Zhao, Cai and Li [47] vectorized D

and transformed the optimization problem (3.2) to a linear programming with a p2 × p2

constraint matrix �̂1 ⊗ �̂2, which is computationally demanding for large p. In contrast, we
solve (3.2) by using the primal-dual interior point method [13], and keep the matrix form of
D in each step of conjugate gradient descent, by using the matrix multiplications 1

2�̂1D�̂2 +
1
2�̂2D�̂1 instead of computing (1

2�̂1 ⊗ �̂2 + 1
2�̂2 ⊗ �̂1)vec(D) repeatedly. As a result,

the computational complexity is reduced to O(p3) from O(p4), and our method is able to
handle the problem with larger dimension p. The code is available at https://github.com/
linjunz/SDAR.

We then proceed to estimating β . Similarly, since the true β satisfies that �2β = μ2 − μ1,
following Cai and Liu [7], β can be estimated by the following procedure:

(3.3) β̂ = arg min
β∈Rp

{‖β‖1 : ‖�̂2β − μ̂2 + μ̂1‖∞ ≤ λ2,n

}
,

where λ2,n = c2

√
logp

n
is a tuning parameter with some constant c2 > 0.

https://github.com/linjunz/SDAR
https://github.com/linjunz/SDAR
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We estimate π1 and π2 by π̂1 = n1
n1+n2

and π̂2 = n2
n1+n2

, respectively. Given the solutions

D̂ and β̂ to (3.2) and (3.3) and the estimates π̂1 and π̂2, we then propose the following
classification rule: classify z to class 1 if and and only if

(z − μ̂1)
�D̂(z − μ̂1) − 2β̂

�(
z − μ̂1 + μ̂2

2

)
− log

(|D̂�̂1 + Ip|)+ log
(

π̂1

π̂2

)
> 0.

We shall call this rule the Sparse quadratic Discriminant Analysis rule with Regularization
(SDAR), and denote it by ĜSDAR. Analytically, it is written as

ĜSDAR(z)

= 1 + 1
{
(z − μ̂1)

�D̂(z − μ̂1) − 2β̂
�(

z − μ̂1 + μ̂2

2

)

− log
(|D̂�̂1 + Ip|)+ log

(
π̂1

π̂2

)
≤ 0

}
.

(3.4)

The SDAR rule is easy to implement as both (3.2) and (3.3) can be solved by linear pro-
gramming. We shall show in the next sections that the SDAR rule has desirable properties
both theoretically and numerically.

4. Theoretical guarantees. We now study the accuracy of the estimators D̂ and β̂ in
(3.2) and (3.3), and the performance of the resulting classifier ĜSDAR in (3.4). We first es-
tablish the rates of convergence for the estimation and classification error and then provide
matching minimax lower bounds, up to logarithm factors. These results together show the
near-optimality of the SDAR rule.

4.1. Upper bounds. To overcome the limitations illustrated in Section 2, we consider the
following parameter space of θ = (π1, π2,μ1,μ2,�1,�2). Especially, we assume here that
both the discriminating direction β and the differential graph D are sparse. Let fQ,θ be the
probability density of Q(z; θ) defined in (2.2), we consider the following parameter space:

�p(s1, s2) =
{
θ = (π1, π2,μ1,μ2,�1,�2) : μ1,

μ2 ∈ R
p,�1,�2 
 0, |D|0 ≤ s1,‖β‖0 ≤ s2

‖D‖F ,‖β‖2 ≤ M0,M
−1
1 ≤ λmin(�k) ≤ λmax(�k) ≤ M1, k = 1,2,

sup
|x|<δ

fQ,θ (x) < M2, c ≤ π1, π2 ≤ 1 − c
}
,

(4.1)

for some constants M0 > 0,M1 > 1, δ,M2 > 0 and c ∈ (0,1/2).

REMARK 3. Note that we assume sparsity on both the discriminant direction β and
the differential graph D, whose necessities are shown by Theorem 2.1 and 2.2. The upper
bound on ‖β‖2 is a general assumption in LDA (see Cai and Liu [7], Neykov et al. [38];
and Cai, Zhang and Ma [9]), and we assume the same on ‖vec(D)‖2 = ‖D‖F in the QDA
setting. Moreover, the condition on the bounded density is commonly assumed in discrim-
inant analysis; see the margin assumption in Mammen and Tsybakov [36], condition (C1)
in Cai and Liu [7] and discussions in Li and Shao [31] and Jiang, Wang and Leng [25].
In the following, we present a condition on θ such that this bounded density assumption
holds. Note that the term z�Dz + β�z is equal in distribution to a weighted noncentral chi-
square distribution, by using the similar proof as that of Lemma 7.2 in Xu, Zhang and Wu
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[45], the condition sup|x|<δ fQ,θ (x) < M2 holds when either the two largest positive eigen-

values of D λ1(D),λ2(D) or the two largest negative eigenvalues of D λ̃1(D), λ̃2(D) are
of the same order, that is, 0 < lim infn→∞ λ1(D)

λ1(D)+λ2(D)
< lim supn→∞ λ1(D)

λ1(D)+λ2(D)
< 1 or

0 < lim infn→∞ λ̃1(D)

λ̃1(D)+λ̃2(D)
< lim supn→∞ λ̃1(D)

λ̃1(D)+λ̃2(D)
< 1.

At first, we show that over the parameter space �p(s1, s2), the estimators D̂, β̂ obtained
in (3.2) and (3.3) converge to the true parameters D and β . This theorem will then be used to
establish the consistency of the proposed classification rule.

THEOREM 4.1. Consider the parameter space �p(s1, s2), and assume that n1  n2, s1 +
s2 � n

logp
, where n = min{n1, n2}. In optimization problems (3.2) and (3.3), let λi,n =

ci

√
logp/n with ci > 0, i = 1,2 being sufficiently large constants. Then the estimators ob-

tained in (3.2) and (3.3) satisfies that, with probability at least 1 − p−1,

‖D̂ − D‖F �
√

s1 logp

n
; ‖β̂ − β‖2 �

√
s2 logp

n
.

The above theorem shows that although our estimating procedure (3.3) is different from
Zhao, Cai and Li [47], the same convergence rate can be obtained and requires milder the-
oretical conditions. In fact, Zhao, Cai and Li [47] assumes that ‖�1‖1 and ‖�2‖1 are both
bounded, and additionally requires that the off-diagonal elements of �1 and �2 are vanish-
ing as n → ∞, which is much stronger than conditions in (4.1). In addition, the above bound
implies that when �1 = �2, that is, s1 = 0, we have D̂ = D = 0 when λ1,n is suitably cho-
sen. This implies that when the two covariance matrices are equal, SDAR rule (3.4) would
adaptively be reduced to the LPD rule in Cai and Liu [7] designed for high-dimensional LDA.

We now turn to the performance of the classification rule ĜSDAR. The behavior of ĜSDAR
is measured by the excess risk Rθ (ĜSDAR)−Rθ (G

∗
θ ), defined in (2.1). The following theorem

provides the upper bound for the excess classification error.

THEOREM 4.2. Consider the parameter space �p(s1, s2), and assume that n1  n2, s1 +
s2 � n

logp·log2 n
. Then the proposed SDAR classification rule in (3.4) satisfies that

sup
θ∈�p(s1,s2)

E
[
Rθ (ĜSDAR) − Rθ

(
G∗

θ

)]
� (s1 + s2) · logp

n
· log2 n.

The result in Theorem 4.2 shows that ĜSDAR is able to mimic G∗
θ consistently over the

parameter space �p(s1, s2), and to the best of our knowledge, gives the first explicit conver-
gence rate of classification error for the high-dimensional QDA problem.

REMARK 4. Related work studying the convergence of classification error includes Li
and Shao [31] and Jiang, Wang and Leng [25], but both Theorem 3 in Li and Shao [31]
and Theorem 4 in Jiang, Wang and Leng [25] only show the consistency of their proposed
classification rules instead of explicit convergence rates. Although in Corollary 3 of Jiang,
Wang and Leng [25], the authors showed a convergence rate for the classification error of
order s1s

2
2
√

logp/n under some regularity conditions, this result is based on the assumption
that an intercept term η, defined in their paper, is known. Jiang, Wang and Leng [25] proposed
to estimate η based on the idea of cross-validation and in their Theorem 3 they showed the
consistency of this estimation without explicit convergence rate. In contrast, our paper shows
that the convergence rate O((s1 + s2) logp · log2 n/n) is achievable, which is much faster
than their results. In addition, the assumptions here are weaker.
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The major technical challenge of this improvement is the characterization of the distribu-
tion of Q(z; θ), which involves the sum of weighted noncentral chi-square random variables.
In the next section, we will show that this convergence rate is indeed optimal up to logarithm
factors.

4.2. Minimax lower bound for sparse QDA. In this section, we establish the minimax
lower bound for the convergence rate of Rθ (Ĝ) − Rθ (G

∗
θ ), and thus show the optimality of

ĜSDAR up to logarithm factors.

THEOREM 4.3. Consider the parameter space �p(s1, s2) defined in (4.1). Suppose n1 
n2, 1 ≤ s1, s2 ≤ o( n

logp
), and Ĝ is constructed based on the observations x1, . . . ,xn

i.i.d.∼
Np(μ1,�1), y1, . . . ,yn

i.i.d.∼ Np(μ2,�2). Then the minimax risk of the classification error
over �p(s1, s2) satisfies

inf
Ĝ

sup
θ∈�p(s1,s2)

E
[
Rθ (Ĝ) − Rθ

(
G∗

θ

)]
� (s1 + s2) · logp

n
.

REMARK 5. Theorems 4.2 and 4.3 together show that the proposed SQDA rule is optimal
for classifying Gaussian data under mild regularity conditions. No other method can have a
faster convergence rate of misclassification error in this region. The method and results can
be further extended beyond the Gaussian setting. See Section 5 for a detailed discussion on
the extension.

The challenge of proving Theorem 4.3 is that the excess risk Rθ (Ĝ) − Rθ (G
∗
θ ) does not

satisfy the triangle inequality (or subadditivity), which is essential to the standard minimax
lower bound techniques. To overcome this challenge, we define an alternative risk function
Lθ (Ĝ) as follows:

(4.2) Lθ (Ĝ) := Pθ

(
Ĝ(z) �= G∗

θ (z)
)
.

This loss function Lθ (Ĝ) is essentially the probability that Ĝ produces a different label
than G∗

θ , and satisfies the triangle inequality, as shown in Lemma 8.1. The connection be-
tween Rθ (Ĝ) − Rθ (G

∗
θ ) and Lθ (Ĝ) is presented by the following lemma, which shows that

it is sufficient to provide a lower bound for Lθ (Ĝ) to prove Theorem 4.3.

LEMMA 4.1. Suppose θ ∈ �p(s1, s2). There exists a constant c > 0, does not depend on
n,p, such that for some classification rule G, if Lθ (G) < c, then

L2
θ (G) � Pθ

(
G(z) �= L(z)

)− Pθ

(
Gθ (z) �= L(z)

)
.

Based on Lemma 4.1, we use Fano’s inequality on a carefully designed least favorable
multivariate normal distributions to complete the proof of Theorems 2.2 and 4.3. The details
are shown in Section 8.

5. Extension to the non-Gaussian distributions. The Gaussianity assumption can be
relaxed by incorporating semiparametric Gaussian copula model into the QDA framework.
This larger semiparametric Gaussian copula model enables robust estimation and classifica-
tion, and has been studied widely in statistics and machine learning, including linear discrim-
inant analysis (LDA) [21, 34], correlation matrix estimation [20], graphical models [5, 33,
46] and linear regression [10].
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The Semiparametric Discriminant Analysis (SeDA) model, introduced by Lin and Jeon
[32], assumes that there are two groups of p-dimensional observations x

(1)
1 , . . . ,x

(1)
n1 ∼ X(1),

x
(2)
1 , . . . ,x

(2)
n2 ∼ X(2), and there are some unknown strictly increasing functions f1, . . . , fp ,

such that

(5.1) f
(
X(k)) def= (

f1
(
X

(k)
1

)
, . . . , fp

(
X(k)

p

))∼ Np(μk,�k) for k = 1,2.

By properties of the Gaussian distribution, fj ’s are only unique up to location and scale
shifts. Therefore, for identifiability, same as Mai and Zou [34], we assume, for j = 1, . . . , p,

(5.2) E
[
fj

(
X

(1)
j

)]= μ
(1)
j = 0; Var

(
fj

(
X

(1)
j

))= σ
(1)
jj = 1.

The SeDA model in the high-dimensional LDA setting was recently studied by Mai and
Zou [34] and Han, Zhao and Liu [21] under the assumption that �k’s are all equal. By apply-
ing the LPD idea in Cai and Liu [7], consistent classification rules were proposed under this
semiparametric linear discriminant analysis model.

The current paper presents a framework to extend the high-dimensional semiparametric
LDA to high-dimensional semiparametric QDA. Estimating the mean vectors and covariance
matrices similarly as in Mai and Zou [34], Han, Zhao and Liu [21] and then plugging these es-
timators in (3.2) and (3.3) would lead to a generalized classification rule under the semipara-
metric quadratic discriminant analysis model. Specifically, for j ∈ {0,1,2, . . . , p}, let F̂

(k)
j (t)

be the empirical cumulative distribution function of {x(k)
ij }nk

i=1 Winsorized at (1/n2
k,1−1/n2

k)

[34], with j ∈ {1,2, . . . , p}. In addition, we estimate the mean μ
(2)
j and variance σ

(2)
jj , respec-

tively, by

(5.3) μ̂
(2)
j = 1

n2

n2∑
i=1

�−1 ◦ F̂
(1)
j

(
x

(2)
ij

)
, σ̂

(2)
jj = 1

n2 − 1

n2∑
i=1

(
�−1 ◦ F̂

(1)
1

(
x

(2)
i

)− μ̂
(2)
j

)2
.

Here, we note that by the identifiability assumption (5.2), we have μ̂
(1)
j = 0, σ̂

(1)
jj = 1 for

j = 1,2, . . . , p.
Then we estimate the correlation matrices of X(1) and X(2) the same way as Han, Zhao

and Liu [21]. For j1 �= j2 ∈ [p], we first let the Kendall’ss tau be

τ̂
(k)
j1,j2

= 2

n(n − 1)

∑
i,i′∈[n]

sign
{(

X
(k)
ij1

− X
(k)
i′j1

)(
X

(k)
ij2

− X
(k)
i′j2

)}
,

and then estimate the correlation matrices R(k) = (R
(k)
j1,j2

)j1,j2∈[p] by

R̂
(k)
j1,j2

= sin
(

π

2
τ̂

(k)
j1,j2

)
· 1{j1 �= j2} + 1 · 1{j1 = j2} for k = 1,2.

At last, we let D̂
(k)
V = diag((σ̃

(k)
11 )1/2, . . . , (σ̃

(k)
pp )1/2), and estimate �k by

�̃k = D̂
(k)
V R̂D̂

(k)
V for k = 1,2.

Moreover, we estimate the monotone transformation in a pooled way as

f̂j (t) = 1

n1 + n2

(
n1
(
μ̂

(1)
j + (

σ̂
(1)
jj

)1/2 · �−1(F̂ (1)
j (t)

))
+ n2

(
μ̂

(2)
j + (

σ̂
(2)
jj

)1/2 · �−1(F̂ (2)
j (t)

)))
,

where μ̃
(k)
j = 1

nk

∑nk

i=1 x
(k)
ij , and σ̃

(k)
jj = 1

nk−1
∑nk

i=1(x
(k)
ij − μ̃

(k)
j )2.
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After we obtain the estimators μ̃1, μ̃2, �̃1, �̃2, f̂ , we can then apply the framework we
developed in previous sections for the copula QDA model as follows.

First, we estimate the D̂ and β̂ by plugging them into (3.2) and (3.3) to get D̃ and β̃ ,
respectively.

Under the SeDA model, the oracle classification rule is given by

(5.4) G
copula
θ (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1,
(
f (z) − μ1

)�
D
(
f (z) − μ1

)− 2δ��2
(
f (z) − μ̄

)
− log

( |�1|
|�2|

)
+ 2 log

(
π1

π2

)
> 0,

2,
(
f (z) − μ1

)�
D
(
f (z) − μ1

)− 2δ��2
(
f (z) − μ̄

)
− log

( |�1|
|�2|

)
+ 2 log

(
π1

π2

)
≤ 0.

Therefore, for a new observation z, we propose the following extended classification rule
Copula SDAR (CSDAR) for the QDA under the copula model.

ĜCSDAR(z)

= 1 + 1
{(

f̂ (z) − μ̃1
)�

D̂
(
f̂ (z) − μ̃1

)− 2β̃
�(

f̂ (z) − μ̃1 + μ̃2

2

)

− log
(|D̃�̃1 + Ip|)+ log

(
π̂1

π̂2

)
≤ 0

}
.

(5.5)

We then derive the theoretical properties for this extended SDA rule. At first, we have the
following bounds on estimating β and D in this non-Gaussian setting.

THEOREM 5.1. Consider the parameter space �p(s1, s2), and assume that n1  n2,
(s1 + s2) · n−1 → 0 depending on {Fi(zi)}pi=1. Then the proposed SDAR classification rule in
(3.4) satisfies that, with probability at least 1 − O(p−1),

‖D̃ − D‖F �
√

s1 logp

n
; ‖β̃ − β‖2 �

√
s2 logp

n
.

We then analyze the misclassification error of this extended SDAR rule. In addition to
parameter estimation, under the SeDA model, it’s required to estimate {fj (t)}pj=1. Since the
estimation of fj is only accurate when there are sufficient samples around t , we define the
following region: let S = j1, . . . , js be the joint set of the row support of D and support of β ,
and γ ∈ (0,1), define Mn ⊂ R

p:

Mn = {
x ∈R

p : xS ∈ [
f −1

j1
(−

√
2γ logn), f −1

j1
(
√

2γ logn)
]× . . .

× [
f −1

js
(−

√
2γ logn), f −1

js
(
√

2γ logn)
]}

,

which is a high-probability event with P(Mn) ≥ 1 − C · s · n−γ .
We then define the misclassification error for the copula model:

(5.6) R̃θ (Ĝ) = Eθ

[
1
{
Ĝ(z) �= L(z) | z ∈ Mn

}]
.

Similar construction of Mn has been considered in all previous papers considering the
SeDA model [21, 34, 48]. We then have the following result for the misclassification error.

THEOREM 5.2. Consider the parameter space �p(s1, s2). Under the same condition as
in Theorem 5.1, and γ ∈ (0,1) satisfies s · n−γ → 0, then the proposed SDAR classification
rule in (3.4) satisfies that, for sufficiently large n,

sup
θ∈�p(s1,s2)

E
[
R̃θ (ĜCSDAR) − R̃θ

(
G

copula
θ

)]
� (s1 + s2) · logp

n1−γ
· log2 n.
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TABLE 1
Average classification errors (s.e.) based on n = 100 test samples from 100 replications under the setting where

covariance matrices are known to be identity

n Rθ (Ĝ) Rθ (Gopt)

p = 200 100 0.242 (0.054) 0.155 (0.035)
150 0.232 (0.051) 0.155 (0.035)
200 0.219 (0.039) 0.155 (0.035)

p = 300 100 0.265 (0.048) 0.149 (0.032)
200 0.223 (0.047) 0.149 (0.032)
300 0.208 (0.038) 0.149 (0.032)

p = 600 200 0.269 (0.045) 0.158 (0.035)
400 0.230 (0.035) 0.158 (0.035)
600 0.201 (0.035) 0.158 (0.035)

REMARK 6. The additional term nγ commonly appeared in recent literature studying
Gaussian copula models, especially for the classification setting (see Han, Zhao and Liu [21],
Zhao and Wegkamp [48] and Mai and Zou [34]), and this term occurs due to the necessity of

estimating f ′
j s. We improve the the convergence rate of

√
s

n(1−γ )/2 from prior works to s
n1−γ in

Theorem 5.2.

6. Numerical studies. In this section, we first conduct simulation studies to investigate
the impossibility results shown in Section 2.2, and then study numerical properties of the
proposed SDAR and CSDAR methods under various settings.

6.1. Impossibility results. We would like to illustrate the impossibility results Theo-
rem 2.1 and Theorem 2.2 in a numerical fashion in this subsection.

Let us start with Theorem 2.1, which shows the sparsity condition on β is necessary. In
the simulation, we consider the simple case where both covariance matrices are known to be
identity but the means are unknown: x1, . . . ,xn ∼ Np(μ1, Ip) and y1, . . . ,yn ∼ Np(μ2, Ip)

and let μ1 = −μ2 = μ = 1√
p

· 1p , satisfying ‖μ1 − μ2‖2 = 2.
We consider nine cases where (n,p) = (100,200), (150,200), (200,200), (100,300),

(200,300), (300,300), (200,600), (400,600), (600,600). In each setting, we compare the
oracle classification rule G∗

θ in (1.1) with the plug-in classification rule Ĝ where we estimate
μ1,μ2 by the sample means. The testing sample size is set to 100 and the simulation is
repeated 100 times in each setting. The simulations results is summarized in Table 1.

To illustrate Theorem 2.2, we consider a simple case where μ1 = −μ2 = (1,0,0, . . . ,0)�
and the covariance matrices are known to be diagonal. Two classes are Np(μ1, Ip) and

Np(μ2,�2), where �2 = (Ip + ∑p/2
i=1

2√
p
Ei,i)

−1 and Ei,i is a p × p matrix whose (i, i)th
entry is 1 and 0 else.

We consider nine cases where (n,p) = (100,200), (150,200), (200,200), (100,300),
(200,300), (300,300), (200,600), (400,600), (600,600). In each setting, we compare the
oracle classification rule Gopt, that is (1.1), with the plug-in classification rule Ĝ where we
estimate �1,�2 by the diagonals of sample covariance matrices. Table 2 summarizes the
simulation results where the testing sample size is set to 100 and the simulation is repeated
100 times.

6.2. SDAR on synthetic data. In this section, we provide extensive numerical evidence
to show the empirical performance of SDAR by comparing it to its competitors, including
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TABLE 2
Average classification errors (s.e.) based on n = 100 test samples from 100 replications under the setting where

means are known to be 0p and covariance matrices are known to be diagonal

n Rθ (Ĝ) Rθ (Gopt)

p = 200 100 0.274 (0.049) 0.193 (0.038)
150 0.260 (0.036) 0.193 (0.038)
200 0.252 (0.033) 0.193 (0.038)

p = 300 100 0.271 (0.043) 0.151 (0.034)
200 0.238 (0.048) 0.151 (0.034)
300 0.224 (0.039) 0.151 (0.034)

p = 600 200 0.296 (0.032) 0.183 (0.046)
400 0.255 (0.055) 0.183 (0.046)
600 0.245 (0.037) 0.183 (0.046)

the sparse QDA (SQDA, Li and Shao [31]), the direct approach for sparse LDA (LPD, Cai
and Liu [7]), the conventional LDA (LDA), the conventional QDA (QDA) and the oracle
procedure (Oracle). The oracle procedure uses the true underlying model and serves as the
optimal risk bound for comparison. We also compare SDAR with other popular classifiers,
including sparse logistic regression (SLR), random forest (RF), AdaBoost (AB) and Kernel
SVM (KSVM). We evaluate all methods via three synthetic datasets.

In all simulations, the sample size is n1 = n2 = 200 while the number of variables p varies
from 100,200,400 to 600. The sparsity levels are set to be s1 = 10, s2 = 20. The discrimi-
nating direction β = (1, . . . ,1,0, . . . ,0)� is sparse such that only the first s1 = 10 entries are
nonzero. Given the inverse covariance matrix of the second sample �2, the mean for class 1
is μ1 = (0, . . . ,0)� and the mean for class 2 is set to be μ2 = μ1 − �2β . In addition, the dif-
ferential graph D is a random sparse symmetric matrix with its nonzero positions generated
by uniform sample. Each nonzero entry on D is i.i.d. and from a standard normal distribution
N(0,1). Lastly, we let �1 = D + �2, and �1 = �−1

1 ,�2 = �−1
2 . We use the following three

models to generate �2.

Model 1: AR(1) model: �2 = (�ij )p×p with �ij = ρ|i−j |. In the simulation, the tuning

parameters for the SDAR method are chosen by cross-validation over a grid { k
4

√
logp

n
}k=1:15.

The simulation results from 100 replications are summerized as follows, with ρ = 0.5.
Model 2: Block sparse model: We generate �2 = UT �U , where � ∈ R

p×p is a diagonal
matrix and its entries are i.i.d. and uniform on [1,2], and U ∈ R

p×p is a random matrix with
i.i.d. entries from N(0,1). In the simulation, the tuning parameters for SDAR method are

chosen over a grid { k
2

√
logp

n
}k=1:15.

Model 3: Erdős–Rényi random graph: Let �̃2 = (ω̃ij ) where ω̃ij = uij δij , δij ∼ Ber(1, ρ)

being the Bernoulli random variable with success probability 0.05 and uij ∼ Unif[0.5,1] ∪
[−1,−0.5]. After symmetrizing �̃2, set �2 = �̃2 + {max(−φmin(�̃2),0) + 0.05}Ip to en-
sure the positive definiteness. In the simulation, the tuning parameters for SDAR method are

chosen over a grid { k
2

√
logp

n
}k=1:15.

In each model, the number of repetition is set to be 100, and the classification errors are
evaluated based on the test data with size 200 that is generated from a Gaussian mixture model
1
2Np(μ1,�1)+ 1

2Np(μ2,�2). We compare the proposed SDAR method with the oracle QDA
rule (1.1). The simulation results are summarized in Table 3 and visualized in Figure 1.

This simulation results show that the proposed SDAR algorithm outperforms the LPD al-
gorithm when there are strong interactions among features (D �= 0). As expected, the conven-
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FIG. 1. Visualization of the results in Table 3.

tional LDA and QDA works poorly in the high-dimensional setting, and the performance of
conventional QDA is even worse due to overfitting. Comparing to the model-free classifiers,
we found that they perform better than LDA/QDA, but still have higher misclassification er-
ror than the proposed SDAR algorithm since the latter incorporates more model information
such as Gaussianity and sparsity. In the setting where D = 0, the estimated D̂ would equal to
D = 0 for properly chosen λ1, according to Theorem 4.1. As we estimate β and D separately,
the proposed SDAR rule in this case would adaptively reduced to LPD. For reasons of space,
we do not present the detailed numerical results for this case.

6.3. CSDAR on synthetic data under Gaussian copula model. Same as the previous dis-
cussion, in this section, we compare the performance of CSDAR with its competitors, includ-
ing LDA, QDA, SQDA, LPD, SLR, RF, AB and KSVM. For the synthetic data generation,
we use the same parameter settings as Model 1–Model 3 to generate mean vectors and covari-
ance matrices, and call them Model 4–6. Additionally, after the generation of Gaussian dis-
tributed data, for each model, we apply the following monotone transformations: f1(x) = x3,
f2(x) = arctan(x), f3(x) = arctan3(x), f4(x) = x5 to the 1st–5th, 11th–15th, 2st–50th and
51st–85th entries, respectively. The simulation results are summarized in Table 4 and visual-
ized in Figure 2.

This simulation results show that all Gaussian-model based algorithms fail in this setting,
while the proposed CSDAR classifier and model free algorithms still maintain their good
performances. Further, due to the incorporation of the model information such as Gaussian
copula and sparsity, the CSDAR algorithm has smaller misclassification errors than RF, AB,
SLR and KSVM in most cases.

FIG. 2. Visualization of the results in Table 4.
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TABLE 3
Average classification errors (s.d.) based on n = 200 test samples from 100 replications under three different

models (Gaussian setting)

p 100 200 400 600

Model 1 LDA 0.200 (0.019) 0.224 (0.028) 0.269 (0.022) 0.302 (0.024)
QDA 0.236 (0.026) 0.274 (0.023) 0.418 (0.025) 0.432 (0.027)
SQDA (Shao et al.) 0.202 (0.022) 0.231 (0.027) 0.301 (0.023) 0.347 (0.025)
LPD 0.151 (0.020) 0.163 (0.021) 0.208 (0.028) 0.256 (0.025)
SLR 0.256 (0.024) 0.276 (0.007) 0.281 (0.013) 0.275 (0.020)
RF 0.176 (0.021) 0.190 (0.022) 0.225 (0.018) 0.231 (0.013)
Adaboost 0.182 (0.018) 0.210 (0.029) 0.229 (0.017) 0.225 (0.026)
KSVM 0.213 (0.027) 0.254 (0.016) 0.279 (0.022) 0.259 (0.029)
SDAR 0.117 (0.019) 0.159 (0.022) 0.191 (0.029) 0.202 (0.027)
CSDAR 0.132 (0.017) 0.173 (0.025) 0.209 (0.024) 0.217 (0.022)
Oracle 0.076 (0.010) 0.097 (0.007) 0.098 (0.010) 0.097 (0.009)

Model 2 LDA 0.231 (0.022) 0.214 (0.021) 0.335 (0.025) 0.378 (0.027)
QDA 0.249 (0.025) 0.296 (0.029) 0.405 (0.026) 0.446 (0.028)
SQDA (Shao et al.) 0.214 (0.023) 0.243 (0.024) 0.327 (0.023) 0.376 (0.025)
LPD 0.163 (0.018) 0.156 (0.019) 0.220 (0.027) 0.253 (0.024)
SLR 0.258 (0.015) 0.268 (0.015) 0.296 (0.012) 0.309 (0.025)
RF 0.199 (0.027) 0.272 (0.020) 0.339 (0.038) 0.370 (0.029)
Adaboost 0.200 (0.018) 0.229 (0.017) 0.268 (0.027) 0.279 (0.031)
KSVM 0.215 (0.031) 0.304 (0.021) 0.331 (0.022) 0.336 (0.018)
SDAR 0.141 (0.015) 0.152 (0.019) 0.155 (0.020) 0.192 (0.019)
CSDAR 0.159 (0.021) 0.163 (0.019) 0.183 (0.026) 0.233 (0.027)
Oracle 0.045 (0.010) 0.054 (0.007) 0.042 (0.008) 0.056 (0.008)

Model 3 LDA 0.279 (0.028) 0.305 (0.032) 0.340 (0.031) 0.387 (0.029)
QDA 0.298 (0.024) 0.356 (0.025) 0.406 (0.026) 0.457 (0.025)
SQDA (Shao et al.) 0.242 (0.024) 0.294 (0.029) 0.335 (0.026) 0.374 (0.026)
LPD 0.236 (0.023) 0.205 (0.020) 0.234 (0.031) 0.252 (0.027)
SLR 0.287 (0.015) 0.303 (0.015) 0.292 (0.011) 0.310 (0.026)
RF 0.288 (0.014) 0.317 (0.022) 0.343 (0.024) 0.359 (0.027)
Adaboost 0.275 (0.028) 0.272 (0.016) 0.276 (0.018) 0.252 (0.019)
KSVM 0.271 (0.034) 0.325 (0.025) 0.325 (0.036) 0.313 (0.027)
SDAR 0.115 (0.022) 0.137 (0.026) 0.146 (0.028) 0.155 (0.026)
CSDAR 0.143 (0.019) 0.184 (0.024) 0.202 (0.032) 0.178 (0.023)
Oracle 0.065 (0.013) 0.039 (0.009) 0.031 (0.008) 0.048 (0.010)

6.4. Real data. In addition to the simulation studies, we also illustrate the merits of the
SDAR classifier in the analysis of two real datasets to further investigate the numerical per-
formance of the proposed method. One is the prostate cancer data in Singh et al. [40], which
is available at ftp://stat.ethz.ch/Manuscripts/dettling/prostate.rda, and another dataset is the
colon tissues data analyzed in Alon et al. [1] by using the Oligonucleotide microarray tech-
nique, available at http://microarray.princeton.edu/oncology/affydata/index.html. These two
datasets were frequently used for illustrating the empirical performance of the classifier for
high-dimensional data in recent literature; see Dettling [18] and Efron [19]. We will compare
SDAR with the existing methods, including the sparse QDA (SQDA, Li and Shao [31]), the
direct approach for sparse LDA (LPD, Cai and Liu [7]), the conventional LDA (LDA), the
conventional QDA (QDA).

6.4.1. Prostate cancer data. The prostate cancer data consists of genetic expression lev-
els for p = 6033 genes from 102 individuals (50 normal control subjects and 52 prostate
cancer patients). The SDAR classifier allows us to model the interactions among genes, and

ftp://stat.ethz.ch/Manuscripts/dettling/prostate.rda
http://microarray.princeton.edu/oncology/affydata/index.html
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TABLE 4
Average classification errors (s.d.) based on n = 200 test samples from 100 replications under three different

models (Gaussian copula setting)

p 100 200 400 600

Model 4 LDA 0.369 (0.011) 0.362 (0.013) 0.411 (0.023) 0.382 (0.014)
QDA 0.332 (0.012) 0.382 (0.008) 0.446 (0.009) 0.497 (0.002)
SQDA (Shao et al.) 0.401 (0.019) 0.374 (0.034) 0.315 (0.032) 0.345 (0.027)
LPD 0.224 (0.026) 0.235 (0.045) 0.292 (0.041) 0.298 (0.008)
SLR 0.254 (0.021) 0.266 (0.017) 0.282 (0.016) 0.289 (0.019)
RF 0.138 (0.005) 0.200 (0.008) 0.230 (0.011) 0.267 (0.023)
Adaboost 0.145 (0.004) 0.201 (0.005) 0.219 (0.012) 0.232 (0.006)
KSVM 0.209 (0.008) 0.265 (0.010) 0.267 (0.007) 0.309 (0.008)
CSDAR 0.125 (0.005) 0.164 (0.005) 0.196 (0.002) 0.206 (0.005)

Model 5 LDA 0.431 (0.008) 0.398 (0.007) 0.462 (0.008) 0.440 (0.011)
QDA 0.421 (0.008) 0.379 (0.008) 0.439 (0.009) 0.499 (0.001)
SQDA (Shao et al.) 0.455 (0.011) 0.392 (0.013) 0.388 (0.017) 0.417 (0.020)
LPD 0.319 (0.017) 0.349 (0.022) 0.405 (0.020) 0.431 (0.024)
SLR 0.309 (0.010) 0.345 (0.027) 0.349 (0.028) 0.351 (0.022)
RF 0.213 (0.007) 0.248 (0.007) 0.331 (0.011) 0.342 (0.006)
Adaboost 0.203 (0.007) 0.225 (0.005) 0.246 (0.006) 0.265 (0.009)
KSVM 0.254 (0.006) 0.307 (0.007) 0.343 (0.008) 0.349 (0.007)
CSDAR 0.157 (0.018) 0.162 (0.005) 0.160 (0.006) 0.197 (0.009)

Model 6 LDA 0.351 (0.016) 0.403 (0.009) 0.439 (0.010) 0.406 (0.007)
QDA 0.416 (0.006) 0.426 (0.011) 0.435 (0.007) 0.489 (0.003)
SQDA (Shao et al.) 0.313 (0.016) 0.400 (0.022) 0.459 (0.022) 0.452 (0.012)
LPD 0.290 (0.013) 0.396 (0.018) 0.464 (0.014) 0.429 (0.013)
SLR 0.344 (0.024) 0.357 (0.022) 0.350 (0.032) 0.339 (0.028)
RF 0.294 (0.007) 0.290 (0.008) 0.335 (0.006) 0.266 (0.010)
Adaboost 0.282 (0.008) 0.249 (0.007) 0.263 (0.009) 0.221 (0.015)
KSVM 0.304 (0.007) 0.312 (0.008) 0.370 (0.012) 0.330 (0.014)
CSDAR 0.209 (0.008) 0.189 (0.004) 0.172 (0.007) 0.165 (0.005)

thus improve the classification accuracy. For this data, we follow the same data cleaning rou-
tine in Cai and Liu [7], retaining only the top 200 genes with the largest absolute values of
the two sample t-statistics. The average classification errors using 5-fold cross-validation for
various methods with 50 repetitions are reported in Table 5. The proposed SDAR method
outperforms all the other methods

6.4.2. Colon tissues data. The colon tissues data analyzed gene expression difference
between tumor and normal colon tissues using the Oligonucleotide microarray technique,
consisting 20 observations from normal tissues and 42 observations from tumor tissues, mea-
sured in p = 2000 genes.

TABLE 5
Classification error (%) with s.d. of prostate cancer data by various methods

SDAR SQDA (Shao et al.) LPD LDA QDA

Testing error 2.20 (1.11) 3.10 (1.26) 11.20 (1.87) 32.20 (3.67) 35.30 (4.18)

CSDAR RF AB SLR KSVM

Testing error 4.27 (0.15) 3.10 (4.26) 5.36 (4.89) 4.13 (1.02) 5.36 (2.39)
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TABLE 6
Classification error (%) with s.d. of colon tissues data by various methods

SDAR SQDA (Shao et al.) LPD LDA QDA

Testing error 19.05 (2.40) 23.20 (2.36) 26.67 (2.75) 38.20 (3.14) 39.30 (4.71)

CSDAR RF AB SLR KSVM

Testing error 22.27 (2.41) 25.33 (4.24) 23.81 (3.72) 20.20 (2.31) 25.71 (4.24)

Similar to the analysis of the prostate cancer data, to control the computational costs, we
use 200 genes with the largest absolute values of the two sample t-statistics. Classification
results by using 5-fold cross-validation with 50 repetitions are summarized in Table 6. In this
example, the SDAR is still the best among all classifiers.

7. Extension to the multigroup classification. We have so far focused on high-
dimensional QDA for two groups in the Gaussian setting. The methodology and theory devel-
oped in the earlier sections can be extended to multigroup classification and to classification
under the Gaussian copula model.

7.1. Multigroup classification. We first turn to multigroup classification. Suppose there
are K classes Np(μk,�k) with prior probability πk for 1 ≤ k ≤ K , respectively, and an
observation z is drawn from the same distribution. In the ideal setting where all the parameters
are known, the oracle rule classifies z to class k if and only if

k = arg min
k∈[K]

{
Qk(z)

}
,

where the discriminating function Qk(z) is

Qk(z) =
⎧⎨⎩1, k = 1,

1

2
(z − μk)

�Dk(z − μk) − β�
k (z − μ̄k) − 1

2
log |Dk�1 + Ip| + logπk, k ≥ 2,

with μ̄k = μ1+μk

2 ,Dk = �1 − �k , βk = �1(μk − μ1), and �k = �−1
k . When the param-

eters are unknown and random samples from K classes (with prior probabilities {πk}Kk=1)

are available: x
(k)
1 , . . . ,x

(k)
nk

i.i.d.∼ Np(μk,�k), k = 1, . . . ,K , by assuming the sparsity on Dk’s
and βk’s, they can then be estimated by solving a similar linear programming as in (3.2) and
(3.3). For k = 2,3, . . . ,K , Dk and βk are estimated by

(7.1) D̂k = arg min
D∈Rp×p

{
|D|1 :

∣∣∣∣12�̂1D�̂k + 1

2
�̂2D�̂1 − �̂1 + �̂k

∣∣∣∣∞ ≤ λ1,n

}
,

where λ1,n is a tuning parameter with constant c1 > 0.

(7.2) β̂k = arg min
β∈Rp

{‖β‖1 : ‖�̂1β − μ̂k + μ̂1‖∞ ≤ λ2,n

}
,

where λ2,n is a tuning parameter with constant c2 > 0.
Given these estimators and π̂k = nk/(

∑K
k=1 nk), the discriminating function is then esti-

mated by

Q̂k(z) =
⎧⎨⎩1, k = 1,

1

2
(z − μ̂k)

�D̂k(z − μ̂k) − β̂
�
k (z − ˆ̄μk) − 1

2
log |D̂k�̂1 + Ip| + log π̂k, k ≥ 2.
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Then the SDAR classification rule for multigroup classification is constructed as

Ĝ(z) = arg min
k∈[K]

{
Q̂k(z)

}
.

By applying the same techniques we developed for Theorems 4.1 and 4.2, similar conver-
gence rates can be obtained for both estimation and classification errors.

8. Proofs. We present the proofs of Theorems 2.1, 2.2, 4.1, 4.2 in this section. The proof
of Theorem 4.3 is similar to Theorems 2.1, 2.2, so we present its proof in the Supplementary
Material.

8.1. Proof of Theorem 2.1 and 2.2. We prove Theorem 2.1 and 2.2 for the case where
p � n. In the case where lim supn→∞ p/n = ∞, the right hand side of Theorem 2.1 (and 2.2)
is of constant order and we can consider only the first n-dimension of p-dimensional vector,
and assume the rest is known.

We begin by collecting a few important technical lemmas that will be used in the proofs
of the minimax lower bounds.

8.1.1. Technical lemmas.

LEMMA 8.1 ([3]). For any θ , θ̃ ∈ �p(s1, s2) and any classification rule Ĝ, recall that
G∗

θ̃
is the optimal rule w.r.t. θ̃ . If

Lθ

(
G∗

θ̃

)+ Lθ (Ĝ) +
√

KL(Pθ ,Pθ̃ )

2
≤ 1/2,

then

Lθ

(
G∗

θ̃

)− Lθ (Ĝ) −
√

KL(Pθ ,Pθ̃ )

2
≤ Lθ̃ (Ĝ) ≤ Lθ

(
G∗

θ̃

)+ Lθ (Ĝ) +
√

KL(Pθ ,Pθ̃ )

2
,

where the KL divergence of two probability density functions Pθ1 and Pθ2 is defined by

KL(Pθ1,Pθ2) =
∫

Pθ1(x) log
Pθ1(x)

Pθ2(x)
dz.

LEMMA 8.2 ([41]). Let M ≥ 0 and θ0, θ1, . . . , θM ∈ �p(s1, s2). For some constants
α ∈ (0,1/8), γ > 0, and any classification rule Ĝ, if KL(Pθ i

,Pθ0) ≤ α logM/n for all 1 ≤
i ≤ M , and Lθ i

(Ĝ) < γ implies Lθj
(Ĝ) ≥ γ for all 0 ≤ i �= j ≤ M , then

inf
Ĝ

sup
i∈[M]

Eθ i

[
Lθ i

(Ĝ)
]
� γ.

To use Fano’s type minimax lower bound, we need a covering number argument, provided
by the following Lemma 8.3.

LEMMA 8.3 ([41]). Define Ap,s = {u : u ∈ {0,1}p,‖u‖0 = s}. If p ≥ 4s, then there
exists a subset {u0,u1, . . . ,uM} ⊂ Ap,s such that u0 = {0, . . . ,0}�, ρH (ui ,uj ) ≥ s/2 and
log(M + 1) ≥ s

5 log(
p
s
), where ρH denotes the Hamming distance.
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8.1.2. Main proof of Theorem 2.1. At first we construct the following least favorable
subset, which characterizes the difficulty of the general QDA problem. Let us consider the
parameter space

�1 =
{
θu = (1/2,1/2,μ1,μ2, Ip, Ip) :

μ1 = λ1e1 +
p∑

i=2

λ2√
n

· ui · ei ,u ∈ Ap,p/4,μ2 = 0p

}
,

where Ap,p/4 is defined in Lemma 8.3, and λ1, λ2 are of constant order and chosen later.
According to Lemma 8.3, there is a subset of �1 with logarithm cardinality being of order

p, such that for any θu, θu′ in this subset, we have ρH (u,u′) ≥ p/8. We are going to apply
Lemma 8.2 to this subset to complete the proof of Theorem 2.1.

For u ∈ Ap,p/4, let μu = λ1e1 +∑p
i=2

λ2√
n

· ui · ei . Note that for two multivariate normal
distributions Pθu = Np(μu, Ip) and Pθu′ = Np(μu′, Ip), the KL divergence between them
are upper bounded by

KL(Pθu,Pθu′ ) = 1

2
‖μu − μu′‖2

2 ≤ λ2
2 · p
4n

.

To use Lemma 8.2 to prove Theorem 2.1, we further need to show that for any θu, θu′ ,[
Rθ (G) − Rθ

(
G∗

θu

)]+ [
Rθ (G) − Rθ

(
G∗

θu′
)]
� p

n
.

By Lemma 4.1 and 8.1,[
Rθ (G) − Rθ

(
G∗

θu

)]+ [
Rθ (G) − Rθ

(
G∗

θu′
)]

� L2
θu

(G) + L2
θu′ (G) ≥ 1

2

(
Lθu(G) + Lθu′ (G)

)2 ≥ 1

2

(
Lθu

(
G∗

θu′
)−

√
KL(Pθu,Pθu′ )

2

)2
.

Since now that KL(Pθu,Pθu′ ) ≤ λ2
2·p
4n

, it is then sufficient to show Lθu(G
∗
θu′ ) ≥ c

√
p
n

for

some c > λ2
2
√

2
.

Without loss of generality, we assume that the coordinates of u and u′ are ordered such
that ui = u′

i = 1 for i = 2, . . . ,m1, ui = 1 − u′
i = 1 for i = m1 + 1, . . . ,m2, ui = 1 − u′

i = 0
for i = m2 + 1, . . . ,m3 and ui = u′

i = 0 for i = m3 + 1, . . . , p. We then have ρH (u,u′) =
m3 − m1 ≥ p

8 .
Recall that when �1 = �2 = Ip and μ2 = 0p , the oracle rule is given by

G∗
θ (z) = 1 + 1

{
−μ�

1

(
z − μ1

2

)
> 0

}
.

Then

G∗
θu

(z) = 1 + 1

{
− λ2√

n

(
m1∑
i=2

zi +
m2∑

i=m1+1

zi

)
− λ1z1 + 1

2
λ2

1 + λ2
2(p − 1)

8n
> 0

}
,

and

G∗
θu′ (z) = 1 + 1

{
− λ2√

n

(
m1∑
i=2

zi +
m3∑

i=m2+1

zi

)
− λ1z1 + 1

2
λ2

1 + λ2
2(p − 1)

8n
> 0

}
.
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Let Z1 = −λ1z1 − λ2√
n

∑m1
i=2 zi + 1

2λ2
1 + λ2

2(p−1)

8n
, Z2 = λ2√

n

∑m2
i=m1+1 zi and Z3 =

λ2√
n

∑m3
i=m2+1 zi , then

G∗
θu

(z) = 1 + 1{Z1 − Z2 > 0} and G∗
θu′ (z) = 1 + 1{Z1 − Z3 > 0}

and, therefore,

Lθu

(
G∗

θu′
)= Pθu

(
G∗

θu′ (z) �= G∗
θu

(z)
)

= Pθu(Z2 ≤ Z1 ≤ Z3) + Pθu(Z3 ≤ Z1 ≤ Z2)

≥ Pθu(Z2 ≤ Z1 ≤ Z3)

= 1

2
Pz∼Np(μu,Ip)(Z2 ≤ Z1 ≤ Z3) + 1

2
Pz∼Np(0p,Ip)(Z2 ≤ Z1 ≤ Z3)

≥ 1

2
Pz∼Np(0p,Ip)(Z2 ≤ Z1 ≤ Z3).

Then, since Z1 ∼ N(1
2λ2

1 + λ2
2(p−1)

8n
, λ2

1 + λ2
2p/(4n)), the density of Z1, f (z) satisfies

f (z) ≥ 1√
2π(λ2

1 + λ2
2p/(4n))

exp
(
−(z − λ2

1/2 − λ2
2(p − 1)/(8n))2

2(λ2
1 + λ2

2p/(4n))2

)
,

leading to

f (z) ≥ c1(λ1, λ2), for z ∈ [−λ2
√

p/n,λ2
√

p/n]
for some constant c1(λ1, λ2) = 1√

2π(λ2
1+λ2

2p/(4n))
exp(− (λ2

√
p/n+λ2

1/2+λ2
2(p−1)/(8n))2

2(λ2
1+λ2

2p/(4n))2 ).

In addition, since m3 − m1 ∈ (
p
8 ,

p
2 ), Z3 − Z2 is normally distributed with mean 0 and

variance of order p
n

and, therefore, we claim that for some constant c2,

E

[
(Z3 − Z2) · 1

{
−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n

}]
≥ c2λ2

√
p

n
.

In fact,

E

[
(Z3 − Z2) · 1

{
−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n

}]

≥ E

[
(Z3 − Z2) · 1

{
−λ2

√
p

n
< Z2 < −λ2

2

√
m2 − m1

n
,
λ2

2

√
m3 − m2

n
< Z3 < λ2

√
p

n

}]

≥ λ2

√
p

n
· P
(
−λ2

√
p

n
< Z2 < −λ2

2

√
m2 − m1

n

)
· P
(

λ2

2

√
m3 − m2

n
< Z3 < λ2

√
p

n

)

≥ λ2

√
p

8n
· PZ∼N(0,1)

(
−
√

p

m2 − m1
< Z < −1

2

)
· PZ∼N(0,1)

(
1

2
< Z <

√
p

m3 − m2

)

≥ λ2

√
p

8n
· PZ∼N(0,1)

(
−√

2 < Z < −1

2

)
· PZ∼N(0,1)

(
1

2
< Z <

√
2
)

:= c2λ2

√
p

n
,

where c2 =
√

1
8PZ∼N(0,1)(−

√
2 < Z < −1

2) · PZ∼N(0,1)(
1
2 < Z <

√
2) is of constant or-

der and the inequality above uses
√

m2 − m1 + √
m3 − m2 ≥ √

m3 − m1 ≥ √
p/8, m2 −

m1,m3 − m2 ≤ m3 − m1 ≤ p/2.
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Then we have

Pz∼Np(0p,Ip)(Z2 ≤ Z1 ≤ Z3)

≥ Pz∼Np(0p,Ip)

(
Z2 ≤ Z1 ≤ Z3,−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n

)

= EZ2

[∫ Z3

Z2

f (z1) dz1 · 1
{
−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n

}]

≥ c1(λ1, λ2) · ·EZ2

[
(Z3 − Z2) · 1

{
−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n

}]

≥ c1(λ1, λ2)c2λ2 ·
√

p

n
.

Since p � n, we have c1(λ1, λ2) → ∞ when λ1, λ2 → 0. Therefore, we can choose λ1, λ2

to be sufficiently small such that c1(λ1, λ2)c2λ2

√
p
n

≥ λ2
2
√

2

√
p
n

. This completes the proof.

8.1.3. Proof of Theorem 2.2. At first, we construct the following least favorable subset,
which characterizes the difficulty of the general QDA problem. For simplicity of notation, we
use the letters λ1, λ2 in this section, whose values are different from those in Section 8.1.2.

Since the KL-divergence and �2 norm are invariant to translations and orthogonal trans-
formations, without loss of generality, we assume that μ∗

1 = −μ∗
2 = λ1e1 + λ̃1e2 for some

constants λ1, λ̃1 > 0 whose values are determined later, with 2
√

λ2
1 + λ̃2

1 = ‖μ∗
1 − μ∗

2‖2. In
addition, we assume that p/4 is an integer.

Now let us consider

�2 =
{
θu = (

1/2,1/2, λ1e1 + λ̃1e2,−λ1e1 − λ̃1e2,�
u
1 ,�2

) :

�u
1 =

(
Ip + λ̃2E2,2 + λ2√

n

p/2∑
i=3

uiEi,i

)−1

,u ∈ Ap,p/4,�2 = Ip + λ̃2E2,2

}
,

where Ap,p/4 is defined in Lemma 8.3.
According to Lemma 8.3, there is a subset of �1 with logarithm cardinality being of order

p, such that for any θu, θu′ in this subset, we have ρH (u,u′) ≥ p/8. We are going to apply
Lemma 8.2 to this subset to complete the proof of Theorem 2.2.

At first, we note that for two multivariate normal distribution Np(μ∗
1,�

u
1 ) and Np(μ∗

1,

�u′
1 ), using the fact that log(1 + x)  x − x2/2 + o(x2) for x = o(1), the KL divergence

between them are upper bounded by

KL = 1

2

[
log

|�u′
1 |

|�u
1 | − p + tr

((
�u′

1
)−1

�u
1
)]

= 1

2

[ p∑
i=3

log
1 + λ2√

n
u′

i

1 + λ2√
n
ui

− ρH

(
u,u′)+

p∑
i=3

1 + λ2√
n
ui

1 + λ2√
n
u′

i

]

= 1

2

[
−

p∑
i=3

log
(

1 +
λ2√
n
(ui − u′

i)

1 + λ2√
n
u′

i

)
+

p∑
i=3

λ2√
n
(ui − u′

i )

1 + λ2√
n
u′

i

]

= 1

4

p∑
i=3

1

n

(
ui − u′

i

)2 + o

(
p

n

)
≤ λ2

2p

16n
+ o

(
p

n

)
≤ λ2

2p

8n
.
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Therefore, we have KL(Pθu,Pθu′ ) ≤ λ2
2p/(8n). To use Lemma 8.2 to prove Theorem 2.2,

we further need to show that for any θu, θu′ ,[
Rθ (G) − Rθ

(
G∗

θu

)]+ [
Rθ (G) − Rθ

(
G∗

θu′
)]
� p

n
.

By Lemma 4.1 and 8.1,[
Rθ (G) − Rθ

(
G∗

θu

)]+ [
Rθ (G) − Rθ

(
G∗

θu′
)]

≥ L2
θu

(Ĝ) + L2
θu′ (Ĝ) ≥ 1

2

(
Lθu(Ĝ) + Lθu′ (Ĝ)

)2 ≥ 1

2

(
Lθu

(
G∗

θu′
)−

√
KL(Pθu,Pθu′ )

2

)2
.

Since now that KL(Pθu,Pθu′ ) ≤ λ2
2

p
8n

, it is then sufficient to show Lθu(G
∗
θu′ ) ≥ c

√
p
n

for
some c > λ2/4.

Recall that

G∗
θ (z) = 1

{
(z − μ1)

�D(z − μ1) − 2δ��2(z − μ1) + δ��2δ − log
( |�1|

|�2|
)

> 0
}
,

where δ = μ2 − μ1, D = �2 − �1.
Without loss of generality, we assume that ui = u′

i = 1 when i = 3, . . . ,m1, ui = 1 −u′
i =

1 when i = m1 + 1, . . . ,m2, ui = 1 −u′
i = 0 when i = m2 + 1, . . . ,m3 and ui = u′

i = 0 when
i = m3 + 1, . . . , p.

Then with a little abuse of notation, we have z ∼ 1
2Np(μ1,�

u
1 )+ 1

2Np(μ2,�2) with μ!1−
μ2 = λ1e1 + λ̃1e2. Using the fact that log(1 + λ2√

n
) = λ2√

n
− λ2

2
2n

+ o( 1
n
), we have

G∗
θu

(z) = 1 + 1

{
λ2√
n

(
m1∑
i=3

(
z2
i − 1

)+
m2∑

i=m1+1

(
z2
i − 1

))

+ 4λ1z1 + 4
λ̃1

1 + λ̃2
z2 + p

8n
+ o

(
p

n

)
> 0

}
and

G∗
θu′ (z) = 1 + 1

{
λ2√
n

(
m1∑
i=3

(
z2
i − 1

)+
m3∑

i=m2+1

(
z2
i − 1

))

+ 4λ1z1 + 4
λ̃1

1 + λ̃2
z2 + p

8n
+ o

(
p

n

)
> 0

}
.

Let Z1 = −(4λ1z1 +4 λ̃1
1+λ̃2

z2 + λ2√
n

∑m1
i=3(z

2
i −1)+ p

8n
), Z2 = λ2√

n

∑m2
i=m1+1(z

2
i −1), Z3 =

λ2√
n

∑m3
i=m2+1(z

2
i − 1), then

G∗
θu

(z) = 1
{
−Z1 + Z2 + o

(
p

n

)
> 0

}
and G∗

θu′ (z) = 1
{
−Z1 + Z3 + o

(
p

n

)
> 0

}
,

and

Lθu

(
G∗

θu′
)= Pθu

(
G∗

θu′ (z) �= G∗
θu

(z)
)

≥ 1

2
Pz∼Np(μ1,�

u
1 )

(
Z2 + o

(
p

n

)
≤ Z1 ≤ Z3 + o

(
p

n

))
+ 1

2
Pz∼Np(μ2,�2)

(
Z3 + o

(
p

n

)
≤ Z1 ≤ Z2 + o

(
p

n

))
≥ 1

2
Pz∼Np(μ1,�2)(Z2 ≤ Z1 ≤ Z3) + o

(
p

n

)
.
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By the central limit theorem,
√

n

λ2
√

m2−m1
Z2,

√
n

λ2
√

m3−m2
Z3 converges to the standard normal

distribution N(0,1). Since m3 − m2 = ρH (u,u′) ≥ p/8, and lim supn,p→∞
p
n

≤ C1, similar
as the derivation in Section 8.1.2, there exists a constant c2, such that n,p are sufficiently
large,

E

[
(Z3 − Z2) · 1

{
−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n

}]

≥ E

[
(Z3 − Z2) · 1

{
−λ2

√
p

n
< Z2 < −λ2

2

√
p

n
,
λ2

2

√
p

n
< Z3 < λ2

√
p

n

}]

≥ λ2

√
p

n
· P
(
−λ2

√
p

n
< Z2 < −λ2

2

√
m2 − m1

n

)
· P
(

λ2

2

√
m3 − m1

n
< Z3 < λ2

√
p

n

)

≥ λ2

√
p

8n
· PZ∼N(0,1)

(
−
√

p

m2 − m1
< Z < −1

2

)
· PZ∼N(0,1)

(
1

2
< Z <

√
p

m3 − m2

)

≥ λ2

√
p

8n
· PZ∼N(0,1)

(
−√

2 < Z < −1

2

)
· PZ∼N(0,1)

(
1

2
< Z <

√
2
)

≥ c2λ2

√
p

n
.

Similar to that in Section 8.1.2, let us denote the probability density function of Z1 by
f . Use the central limit theorem again, when z ∼ Np(μ1,�2), p � n, and n,p are suffi-

ciently large, Z1 ≈ N(−4λ2
1 − 4λ̃2

1
1+λ̃2

+ p
8n

, λ2
1 + λ̃2

1
1+λ̃2

+ 2(m1−2)λ2
2

n
) if m1 → ∞. Therefore,

there exists constant c1(λ1, λ̃1, λ2, λ̃2), such that inf|x|<λ2
√

p/n f (x) > c1(λ1, λ̃1, λ2, λ̃2), and

c1(λ1, λ̃1, λ2, λ̃2) goes to infinity when λ1, λ2 → 0, λ̃2 → ∞, and λ̃1 is chosen such that√
λ2

1 + λ̃2
1 = ‖μ∗

1 − μ∗
2‖2/2,

Pz∼Np(μ1,�2)(Z2 ≤ Z1 ≤ Z3)

≥ Pz∼Np(μ1,�2)

(
Z2 ≤ Z1 ≤ Z3,−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n

)

= EZ2

[∫ Z3

Z2

f (z1) dz1 · 1
{
−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n

}]

≥ c1(λ1, λ̃1, λ2, λ̃2) · ·EZ2

[
(Z3 − Z2) · 1

{
−λ2

√
p

n
< Z2 < Z3 < λ2

√
p

n

}]

≥ c1(λ1, λ̃1, λ2, λ̃2)c2λ2 ·
√

p

n
.

Therefore, by choosing sufficiently small λ1, λ2 and large λ̃2 (does not depend on n,p),

we have c2c1(λ1, λ̃1, λ2, λ̃2) · λ2

√
p
n

≥ λ2
4

√
p
n

. �

8.2. Proof of the Theorem 4.1. To prove Theorem 4.1, we begin by collecting a few
important technical lemmas that will be used in the main proofs.

8.2.1. Auxiliary lemmas.

LEMMA 8.4. Suppose X1, . . . ,Xn i.i.d. ∼ Np(μ,�), and assume that μ̂, �̂ are the
sample mean and sample covariance matrix, respectively. Let �(s;p) = {u ∈ R

p : ‖u‖2 =
1,‖uSC‖1 ≤ ‖uS‖1, for some S ⊂ [p] with |S| = s}, then with probability at least 1 − p−1,

sup
u∈�(s;p)

u�(μ̂ − μ)�
√

s logp

n
;
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sup
u,v∈�(s;p)

u�(�̂ − �)v �
√

s logp

n
; sup

a∈�(s;p2)

a� vec(�̂ − �) �
√

s logp

n
.

LEMMA 8.5. Suppose X1, . . . ,Xn1 i.i.d. ∼ Np(μ1,�1), Y 1, . . . ,Y n2 i.i.d. ∼ Np(μ2,

�2), n = min(n1, n2) and assume that μ̂1, μ̂2, �̂1, �̂2 are the sample means and sample
covariance matrices. Denote V = 1

2�1 ⊗ �2 + 1
2�2 ⊗ �1 and V̂ = 1

2�̂1 ⊗ �̂2 + 1
2�̂2 ⊗ �̂1.

Assume that β = �2(μ2 − μ1) and vec(D) has bounded �2 norm, then with probability at
least 1 − p−1,

‖μ̂k − μk‖∞ �
√

logp

n
,

∥∥(�̂k − �k)β
∥∥∞ �

√
logp

n
, k = 1,2;

∥∥vec(�̂ − �)
∥∥∞ �

√
logp

n
; ∥∥(V̂ − V )vec(D)

∥∥∞ �
√

logp

n
.

LEMMA 8.6. Suppose x,y ∈ R
p . Let h = x − y. Denote S = supp(y) and s = |S|. If

‖x‖1 ≤ ‖y‖1, then h ∈ �(s;p), that is,

‖hSc‖1 ≤ ‖hS‖1.

LEMMA 8.7. For any two matrices A,B ∈ R
p×p with nonnegative eigenvalues,∣∣log |A| − log |B|∣∣≤ max

{∣∣tr(B−1(A − B)
)∣∣, ∣∣tr(A−1(B − A)

)∣∣}.
8.2.2. Main proofs. We prove the consistency of estimation of D first. The consistency

of estimating β can be derived similarly.
Recall that

D̂ = arg min
D∈Rp×p

{
|D|1 :

∥∥∥∥(1

2
�̂1 ⊗ �̂2 + 1

2
�̂2 ⊗ �̂1

)
vec(D) − vec(�̂1) + vec(�̂2)

∥∥∥∥∞
(8.1)

≤ λ1,n

}
.

By Lemma 8.5, D is a feasible solution to (8.1) with λ1,n = c1

√
logp

n
when c1 is a suffi-

ciently large constant. Then using Lemma 8.6, we have vec(D − D̂) ∈ �(s1;p2).
Denote V = 1

2�1 ⊗ �2 + 1
2�2 ⊗ �1, v� = vec(�1) − vec(�2) and V̂ = 1

2�̂1 ⊗ �̂2 +
1
2�̂2 ⊗ �̂1, v̂� = vec(�̂1) − vec(�̂2).

We have

V vec(D) =
(

1

2
�1 ⊗ �2 + 1

2
�2 ⊗ �1

)
vec(D) = vec

(
1

2
�1D�2 + 1

2
�2D�1

)
= vec(�1 − �2) = v�.

In addition, over the parameter space �p(s1, s2),∥∥V −1∥∥
2 = ‖�1 ⊗ �2‖2 = ‖�1‖2 · ‖�2‖2 ≤ M2

1 ,

which is followed by λmin(V ) ≥ M−2
1 .
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As a consequence, by Lemma 8.4, with probability at least 1 − 3p−1,∣∣(vec(D̂) − vec(D)
)�

V
(
vec(D̂) − vec(D)

)∣∣
≤ ∣∣(vec(D̂) − vec(D)

)�(
V̂ vec(D̂) − v̂�

)∣∣
+ ∣∣(vec(D̂) − vec(D)

)�
(V̂ − V )vec(D̂))

∣∣
+ ∣∣(vec(D̂) − vec(D)

)�
(v� − v̂�)

∣∣
� √

s1
∥∥vec(D̂) − vec(D)

∥∥
2 · ∥∥V̂ vec(D̂) − v̂�

∥∥∞

+ ∥∥vec(D̂) − vec(D)
∥∥

2 ·
√

s1 logp

n
· ∥∥vec(D) − vec(D̂)

∥∥
2

+ ∥∥vec(D̂) − vec(D̂)
∥∥

2

√
s1 logp

n
· ∥∥vec(D)

∥∥
2

+ ∥∥vec(D) − vec(D̂)
∥∥

2

√
s1 logp

n
.

(8.2)

In addition, since |(vec(D̂) − vec(D))�V (vec(D̂) − vec(D))| ≥ λmin(V )‖vec(D̂) −
vec(D)‖2

2 ≥ M−2
1 ‖vec(D̂) − vec(D)‖2

2, we then have

‖D − D̂‖F = ∥∥vec(D̂) − vec(D)
∥∥

2 �
√

s1 logp

n
.

The estimation error of β can be derived similarly. By Lemma 8.5, β is a feasible solution

to (3.3) with λ2,n = c2

√
logp

n
when c2 is sufficiently large. Then using Lemma 8.6, we have

β − β̂ ∈ �(s2;p).
Then with probability at least 1 − 3p−1,∣∣(β̂ − β)��2(β̂ − β)

∣∣
≤ ∣∣(β̂ − β)�(�̂2β̂ − δ̂)

∣∣+ ∣∣(β̂ − β)�(�̂2 − �2)β̂)
∣∣+ ∣∣(β̂ − β)�(δ − δ̂)

∣∣
�√

s2‖β̂ − β‖2 · ‖�̂β̂ − δ̂‖∞ + ‖β̂ − β‖2 ·
√

s2 logp

n
· ‖β − β̂‖2

+ ‖β − β̂‖2

√
s2 logp

n
· ‖β‖2 + ‖β − β̂‖2

√
s2 logp

n
.

(8.3)

Similarly, since λmin(�2) ≥ M−1
1 , we have with probability at least 1 − p−1,

‖β − β̂‖2 �
√

s2 logp

n
.

8.3. Proof of Theorem 4.2. We note here that the notation c,C denote generic constants
and their values might vary line by line. Recall that the QDA rule is

1 + 1
{
(z − μ1)

�D(z − μ1) − 2β�(z − μ̄) − log
(|D�1 + Ip|)+ 2 log

(
π1

π2

)
> 0

}
.

Let μ̄ = (μ1 + μ2)/2, Q(z) = (z − μ1)
�D(z − μ1) − 2β�(z − μ̄) − log(|D�1 + Ip|) +

2 log(π1
π2

), Q̂(z) = (z − μ̂1)
�D̂(z − μ̂1) − 2β̂

�
(z − μ̂1+μ̂2

2 ) − log(|D̂�̂1 + Ip|) + log( π̂1
π̂2

),
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and M(z) = Q(z) − Q̂(z), we are going to show that there exist some constants c,C > 0,
such that for any M > 0,

Pz∼Np(μ1,�1)

(∣∣M(z)
∣∣> M

√
(s1 + s2) logp

n

)
≤ e−cM + Cp−1,

note that the above probability is taken with respect to the random samples X1, . . . ,Xn1

i.i.d. ∼ Np(μ1,�1), Y 1, . . . ,Y n2 i.i.d. ∼ Np(μ2,�2), and z ∼ Np(μ1,�1). We will later see
how we reduce the mixed distribution of the test sample to the single distribution when we
calculate the classification error.

Rewrite the QDA rule as

1
{
(z−μ1)

�D(z−μ1)−2β�(z−μ1)+β�(μ2 − μ1)− log
(|D�1 +Ip|)+2 log

(
π1

π2

)
> 0

}
.

We first bound the estimation error of the constant term β�(μ2 − μ1). We have with prob-
ability at least 1 − p−1,∣∣β�(μ2 − μ1) − β̂

�
(μ̂2 − μ̂1)

∣∣
≤ ∣∣β̂�

(μ2 − μ1 − μ̂2 + μ̂1)
∣∣+ ∥∥(β̂ − β)�(μ2 − μ1)

∥∥
2

≤ ‖β̂‖1 · ‖μ2 − μ1 − μ̂2 + μ̂1‖∞ + ‖β̂ − β‖2‖μ2 − μ1‖2

≤ ‖β‖1 · ‖μ2 − μ1 − μ̂2 + μ̂1‖∞ + ‖β̂ − β‖2‖μ2 − μ1‖2

≤ √
s2‖β‖2 · ‖μ2 − μ1 − μ̂2 + μ̂1‖∞ + ‖β̂ − β‖2‖μ2 − μ1‖2 �

√
s2 logp

n
.

For log |D�1 + Ip|, notice that D�1 + Ip = �2�1 and the product of two positive semidef-
inite and symmetric matrices has nonnegative eigenvalues, followed by (D�1 + Ip)−1 =
�1�2 = (�2 − D)�2 = Ip − D�2, then

log |D�1 + Ip| − log |D̂�̂1 + Ip|
≤ tr

(
(D�1 + Ip)−1(D�1 − D̂�̂1)

)
= tr

(
(−D�2 + Ip)(D�1 − D̂�̂1)

)
= tr

(
(−D�2)(D�1 − D̂�̂1)

)+ tr(D�1 − D̂�̂1)

≤ ‖D�2‖F · ‖D�1 − D̂�̂1‖F + tr(D�1 − D̂�̂1)

≤ ‖D‖F ‖�2‖2 · ‖D�1 − D̂�̂1‖F + tr(D�1 − D̂�̂1)

≤ ‖D‖F ‖�2‖2 · ‖D�1 − D̂�̂1‖F + ∣∣tr(D̂�1 − D̂�̂1)
∣∣+ tr(D�1 − D̂�1).

(8.4)

In addition, with probability at least 1 − p−1,

‖D�1 − D̂�̂1‖F

≤ ‖D�1 − D̂�1‖F + ∥∥D̂(�1 − �̂1)
∥∥
F

≤ ‖�1‖2‖D − D̂‖F + ‖�1 − �̂1‖2,s1‖D̂‖F

�
√

s1 logp

n
+ ‖�1 − �̂1‖2,s1

(
‖D‖F +

√
s1 logp

n

)
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≤
√

s1 logp

n
+
√

s1 logp

n

(
‖D‖F +

√
s1 logp

n

)
�
√

s1 logp

n
,

where ‖�1 − �̂1‖2,s1 is defined as

‖�1 − �̂1‖2,s1 := sup
‖u‖0≤s1,‖u‖2=1

∥∥(�1 − �̂1)u
∥∥

2 �
√

s1 logp

n
,

where the last inequality is similarly proved as Lemma 8.4, by using the packing number
argument.

In addition, with probability at least 1 − p−1,

∣∣tr(D̂�1 − D̂�̂1)
∣∣≤ √

s1|�1 − �̂1|∞‖D̂‖F �
√

s1 logp

n
.

There is still a remaining term tr(D�1 − D̂�1) in (8.4), we will leave it there and use it
when we derive the distribution of the term involving z. The other direction, the upper bound
of tr(D�1 − D̂�1)− (log |D�1 + Ip|− log |D̂�̂1 + Ip|), can be derived similarly. Therefore,
by symmetry, we have with probability at least 1 − p−1

∣∣(log |D�1 + Ip| − log |D̂�̂1 + Ip|)− (
tr(D�1 − D̂�1)

)∣∣�
√

s1 logp

n
.

For the term involving z, when z ∼ Np(μ1,�1), we have

(z − μ1)
�D(z − μ1) − (z − μ1)

�D̂(z − μ1) − (
tr(D�1 − D̂�1)

)
= (z − μ1)

�(D̂ − D)(z − μ1) − (
tr(D�1 − D̂�1)

)
d= z�

0 �
1/2
1 (D̂ − D)�

1/2
1 z0 − tr

(
�

1/2
1 (D̂ − D)�

1/2
1

) def=
p∑

i=1

λi

(
z2

0i − 1
)
,

where λi ’s are the eigenvalues of �
1/2
1 (D̂ − D)�

1/2
1 .

Since with probability at least 1 − p−1,√√√√ p∑
i=1

λ2
i = ∥∥�1/2

1 (D̂ − D)�
1/2
1

∥∥
F ≤ ‖�1‖2‖D̂ − D‖F �

√
s1 logp

n
,

and with probability at least 1 − p−1,

max
i

|λi | ≤
∥∥�1/2

1 (D̂ − D)�
1/2
1

∥∥
2 ≤ ‖�1‖2‖D̂ − D‖2 �

√
s1 logp

n
,

by Bernstein type inequality for subexponential random variables (see Vershynin [42]), we
have for some c̃1 > 0,

P

(∣∣∣∣∣
p∑

i=1

λi

(
z2

0i − 1
)∣∣∣∣∣≥ t

)
≤ 2 exp

{
−c̃1 min

{
t2

s1 logp/n
,

t√
s1 logp/n

}}
,

which implies that for some c1 > 0,

P

(∣∣∣∣∣
p∑

i=1

λi

(
z2

0i − 1
)∣∣∣∣∣≥ M

√
s1 logp

n

)
≤ e−c1M + Cp−1.
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For (β̂ − β)�z, when z ∼ Np(μ1,�1), we have

(β̂ − β)�z ∼ N
(
(β̂ − β)�μ1, (β̂ − β)��1(β̂ − β)

)
.

Since with probability at least 1 − p−1,

∣∣(β̂ − β)�μ1
∣∣≤ ‖β̂ − β‖2 · ‖μ1‖2 �

√
s2 logp

n
,

and with probability at least 1 − p−1,∣∣(β̂ − β)��1(β̂ − β)
∣∣≤ ‖�1‖2 · ‖β̂ − β‖2

2 ≤ s2 logp

n
,

we have for some c2 > 0,

P

(∣∣(β̂ − β)�z
∣∣> M

√
s2 logp

n

)
≤ e−c2M

2 + Cp−1.

Lastly, ∣∣∣∣2 log
(

π1

π2

)
− log

(
π̂1

π̂2

)∣∣∣∣� |π̂1 − π1| + |π̂2 − π2|.
and by Hoeffding inequality, for k ∈ [2], there are some constant cH > 0, such that

P
(|π̂k − πk| > t

)≤ exp
(−cH · nt2).

We have for some constant c,MH > 0,

P

(∣∣∣∣2 log
(

π1

π2

)
− log

(
π̂1

π̂2

)∣∣∣∣> MH

√
1

n

)
≤ e−cMH .

Therefore, there exists some c > 0, such that for any M > 0,

Pz∼Np(μ1,�1)

(
M(z) > M

√
(s1 + s2) logp

n

)
≤ e−cM + Cp−1.

Then it follows that

R(ĜSDAR) − Rθ

(
G∗

θ

)
= 1

2

∫
Q(z)>0

π1

(2π)p/2|�1|1/2 e−1/2·(z−μ1)
��1(z−μ1) dz

+ 1

2

∫
Q(z)≤0

π2

(2π)p/2|�2|1/2 e−1/2·(z−μ2)
��2(z−μ2) dz

− 1

2

∫
Q̂(z)>0

π1

(2π)p/2|�1|1/2 e−1/2·(z−μ1)
��1(z−μ1) dz

− 1

2

∫
Q̂(z)≤0

π2

(2π)p/2|�2|1/2 e−1/2·(z−μ2)
��2(z−μ2) dz.

R(ĜSDAR) − Rθ

(
G∗

θ

)
= 1

2

∫
Q(z)>0

1

(2π)p/2 e−1/2·(z−μ1)
��1(z−μ1)−log |�1|/2+logπ1

− 1

(2π)p/2 e−1/2·(z−μ2)
��2(z−μ2)−log |�2|/2+logπ2 dz
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− 1

2

∫
Q̂(z)>0

1

(2π)p/2 e−1/2·(z−μ1)
��1(z−μ1)−log |�1|/2+logπ1

− 1

(2π)p/2 e−1/2·(z−μ2)
��2(z−μ2)−log |�2|/2+logπ2 dz

= 1

2

∫
Q(z)>0

1

(2π)p/2 e−1/2·(z−μ1)
��1(z−μ1)−log |�1|/2(1 − e−Q(z))dz

− 1

2

∫
Q̂(z)>0

1

(2π)p/2 e−1/2·(z−μ1)
��1(z−μ1)−log |�1|/2(1 − e−Q(z))dz

Then it follows

R(ĜSDAR) − Rθ

(
G∗

θ

)
≤ 1

2

∫
Q(z)>0,Q̂(z)≤0

1

(2π)p/2 e−1/2·(z−μ1)
��1(z−μ1)−log |�1|/2(1 − e−Q(z))dz

= 1

2

∫
Q(z)>0,Q(z)≤Q(z)−Q̂(z)

1

(2π)p/2 e−1/2·(z−μ1)
��1(z−μ1)−log |�1|/2(1 − e−Q(z))dz

= 1

2
Ez∼Np(μ1,�1)

[(
1 − e−Q(z))1{0 < Q(z) ≤ M(z)

}]
= 1

2
Ez∼Np(μ1,�1)

[(
1 − e−Q(z))1{0 < Q(z) ≤ M(z)

}
× 1

{
M(z) < M logn

√
(s1 + s2) logp

n

}]

+ 1

2
Ez∼Np(μ1,�1)

[(
1 − e−Q(z))1{0 < Q(z) ≤ M(z)

}
× 1

{
M(z) ≥ M logn

√
(s1 + s2) logp

n

}]

≤ 1

2
Ez∼Np(μ1,�1)

[(
1 − e−Q(z))1{0 < Q(z) ≤ M(z)

}
× 1

{
M(z) < M logn

√
(s1 + s2) logp

n

}]

+ Pz∼Np(μ1,�1)

(
M(z) ≥ M logn

√
(s1 + s2) logp

n

)
� Ez∼Np(μ1,�1)

[(
1 − e−Q(z))1{0 < Q(z) ≤ M(z)

}
× 1

{
M(z) < M logn

√
(s1 + s2) logp

n

}]
+ n−1 + p−1

� logn ·
√

(s1 + s2) logp

n
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×Ez∼Np(μ1,�1)

[
1
{

0 < Q(z) ≤ M logn

√
(s1 + s2) logp

n

}]
+ n−1 + p−1

� log2 n · (s1 + s2) logp

n
,

where the last inequality uses the assumption that sup|x|<δ fQ,θ (x) < M2.
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SUPPLEMENTARY MATERIAL

Supplement to “A convex optimization approach to high-dimensional sparse
quadratic discriminant analysis” (DOI: 10.1214/20-AOS2012SUPP; .pdf). The supple-
ment provides a detailed proof of Theorem 4.3, which is the lower bound of the misclassi-
fication error for the high-dimensional QDA problem with sparsity assumptions, and proofs
of Theorem 5.1 and 5.2, the convergence rate of CSQDA under the Gaussian Copula Model.
In addition, proofs of the technical lemmas used in the proofs of the main results are given.
Some additional simulation results are also presented in the supplement.
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