A CONVEX OPTIMIZATION APPROACH TO HIGH-DIMENSIONAL SPARSE QUADRATIC DISCRIMINANT ANALYSIS∗

BY T. TONY CAI, AND LINJUN ZHANG

University of Pennsylvania

In this paper, we study high-dimensional sparse Quadratic Discriminant Analysis (QDA) and aim to establish the optimal convergence rates for the classification error. Minimax lower bounds are established to demonstrate the necessity of structural assumptions such as sparsity conditions on the discriminating direction and differential graph for the possible construction of consistent high-dimensional QDA rules.

We then propose a classification algorithm called SDAR using constrained convex optimization under the sparsity assumptions. Both minimax upper and lower bounds are obtained and this classification rule is shown to be simultaneously rate optimal over a collection of parameter spaces, up to a logarithmic factor. Simulation studies demonstrate that SDAR perform well numerically. The method is also illustrated through an analysis of prostate cancer data and colon tissue data.

1. Introduction. Discriminant analysis is a commonly used classification technique in statistics and machine learning. It has a wide range of applications, including, for example, face recognition [26], text mining [4], business forecasting [12] and gene expression analysis [18]. In the ideal setting of two known normal distributions \(N_p(\mu_1, \Sigma_1) \) (class 1) and \(N_p(\mu_2, \Sigma_2) \) (class 2), the goal of the discriminant analysis is to classify a new observation \(z \), which is drawn from one of the two distributions with prior probabilities \(\pi_1 \) and \(\pi_2 \) respectively, into one of the two classes. In the ideal setting where all the parameters \(\theta = (\pi_1, \pi_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2) \) are known, the optimal classifier is the quadratic discriminant rule is given by

\[
G^*_\theta(z) = \begin{cases}
1, & (z - \mu_1)^\top D(z - \mu_1) - 2\delta^\top \Omega_2(z - \mu) - \log(|\Sigma_1|) + 2 \log(\pi_1) > 0 \\
2, & (z - \mu_1)^\top D(z - \mu_1) - 2\delta^\top \Omega_2(z - \mu) - \log(|\Sigma_1|) + 2 \log(\pi_1) \leq 0,
\end{cases}
\]

where \(\delta = \mu_2 - \mu_1, \bar{\mu} = \frac{\mu_1 + \mu_2}{2} \), and \(D = \Omega_2 - \Omega_1 \) with \(\Omega_i = \Sigma_i^{-1} \) for \(i = 1, 2 \), see, for example, Anderson [1]. When \(\Sigma_1 = \Sigma_2 \), the quadratic classification boundary in (1.1) becomes linear, reducing the quadratic discriminant analysis (QDA) to the linear discriminant analysis (LDA).

∗The research was supported in part by NSF Grant DMS-1712735 and NIH Grant R01 CA127334.

MSC 2010 subject classifications: Primary 62H30; secondary 62C20, 62H12

Keywords and phrases: Classification; Constrained \(\ell_1 \) minimization; High-dimensional data; Minimax lower bound; Optimal rate of convergence; Quadratic discriminant analysis
QDA has been an important technique for classification and is more flexible than the LDA [15]. In practice, the parameters $\pi_1, \pi_2, \mu_1, \mu_2, \Sigma_1$ and Σ_2 are usually unknown and instead one observes two independent random samples, $X_1^{(1)}, \ldots, X_{n_1}^{(1)} \sim \text{i.i.d.} \ N_p(\mu_1, \Sigma_1)$ and $X_1^{(2)}, \ldots, X_{n_2}^{(2)} \sim \text{i.i.d.} \ N_p(\mu_2, \Sigma_2)$. It is practically important to construct a data-driven classification rule based on the two samples. In the low-dimensional setting where the dimension p is small relative to the sample sizes, a natural approach is to simply plug the sample means and sample covariance matrices into the oracle QDA rule (1.1). This approach has been well studied. See, for example, Anderson [1]. Thanks to the explosive growth of big data, high-dimensional data, where the dimension p can be much larger than the sample sizes, are now routinely collected in scientific investigations in a wide range of fields. In such settings, the conventional LDA and QDA rules perform poorly.

For high-dimensional LDA, there already exist a number of proposals and theoretical studies. In particular, assuming sparsity on the discriminating direction, direct estimation methods have been introduced in Cai and Liu [6] and Mai et al. [23] and optimality theory is developed in Cai and Zhang [7]. In contrast, relatively few methods have been introduced for regularized QDA in the high-dimensional setting and developing an optimality theory is technically more challenging. Li and Shao [19] studied high-dimensional QDA by imposing sparsity assumptions on $\delta, \Sigma_1, \Sigma_2$ and $\Sigma_1 - \Sigma_2$ separately, and then plugging the estimates of these quantities into the oracle QDA rule (1.1). Jiang et al. [17] introduced a direct estimation approach by assuming that $\Omega_1 - \Omega_2$ and $(\Omega_1 + \Omega_2)\delta$ are sparse, and proposed a consistent classification rule. However, it is unclear whether any of these methods achieves the optimal convergence rate for the classification error.

In the present paper, we propose a sparse QDA rule using convex optimization and aim to establish the optimal convergence rates for the classification error in the high-dimensional settings. It is intuitively clear that QDA is a difficult problem in the high-dimensional setting. For example, it can be seen easily from (1.1) that knowledge of the log-determinant of the covariance matrices $\log(\frac{\Sigma_1}{\Sigma_2})$ is essential for the QDA. However, as shown in Cai et al. [9], there is no consistent estimator for the log-determinant of the covariance matrices in the high-dimensional setting even when they are known to be diagonal. We begin by establishing rigorously minimax lower bound results, which demonstrate that structural assumptions such as sparsity conditions on the discriminating direction $\beta = \Omega_2 \delta$ and differential graph $D = \Omega_2 - \Omega_1$ are necessary for the possible construction of consistent high-dimensional QDA rules. There are two key steps in obtaining the impossibility results: One is the reduction of the classification error to an alternative loss and another is a careful construction of a collection of least favorable multivariate normal distributions.

We then propose a classification algorithm called SDAR (Sparse Discriminant Analysis with Regularization) to solve the high-dimensional QDA problem under the sparsity assumptions. The SDAR algorithm proceeds by first es-
estimating β and D through constrained convex optimization, and then using the estimators to construct a data-driven classification rule. The first estimation step is in a similar spirit to that in Jiang et al. [17] by directly estimating the key quantities in the oracle QDA rule. The second classification step is based on a simple but important observation that $\log(|\Sigma_1|/|\Sigma_2|) = \log(|D\Sigma_1 + I_p|)$. As a result, we are able to derive an explicit convergence rate for the classification error of the proposed SDAR algorithm. In addition, we establish a matching minimax lower bound, up to a logarithm factor, that shows the near-optimality of the classifier. Both simulations and real data analysis are carried out to study the numerical performance of the proposed algorithm. The results show that the proposed SDAR algorithm outperforms existing methods in the literature. The methodology and theory developed for high-dimensional QDA for two groups in the Gaussian setting are also extended to multi-group classification and to classification under the Gaussian copula model.

The contributions of the present paper are three-fold. Firstly, we address the necessity of structural assumptions on the parameters for the high-dimensional QDA problem by observing that consistent classification is impossible unless $p = o(n)$ without any such assumptions. Secondly, under the sparsity assumptions, we proposed the SDAR rule, and established an explicit convergence rate of classification error. To the best of our knowledge, this is the first explicit convergence rate for high-dimensional QDA. Lastly, we provide a minimax lower bound, which shows that the convergence rate obtained by the SDAR rule is optimal, up to a logarithmic factor.

The rest of the paper is organized as follows. In Section 2, minimax lower bounds are established to show the necessity of imposing structural assumptions for high-dimensional QDA. Section 3 presents in detail the data-driven classification procedure SDAR. Theoretical properties of SDAR are investigated in Section 4 under certain sparsity conditions. The upper and lower bounds together show that the SDAR rule achieves the optimal rate for the classification error up to a logarithmic factor. Simulation studies are given in Section 5 where we compare the performance of the proposed algorithm to other existing classification methods in the literature. In addition, the merits of the SDAR classifier are illustrated through an analysis of a prostate cancer dataset and a colon tissue dataset. Section 6 discusses extensions to multi-group classification and to classification under the Gaussian copula model. The proofs of main results are given in Section 7, and proofs of other results are provided in the supplement.

Notation and definitions. We first introduce basic notation and definitions that will be used throughout the rest of the paper. For an event A, $\mathbb{1}\{A\}$ is the indicator function on A. For an integer $m \geq 1$, $[m]$ denotes the set $\{1, 2, ..., m\}$. Throughout the paper, vectors are denoted by boldface letters. For a vector u, $\|u\|$, $\|u\|_1, \|u\|_\infty$ denotes the ℓ_2 norm, ℓ_1 norm, and ℓ_∞ norm respectively. We use $\text{supp}(u)$ to denote the support of the vector u. 0_p is a p-dimensional vector with elements being 0, and 1_p is a p-dimensional
vector with elements being 1. For \(i \in [p] \), \(e_i \) is the \(i \)-th standard basis. For a matrix \(M \in \mathbb{R}^{p \times p} \), \(\| M \|, \| M \|_F, \| M \|_1 \) denote the spectral norm, Frobenius norm, and matrix \(l_1 \) norm respectively. In addition, \(|M|_1 = \sum_{i,j} |M_{i,j}| \), \(|M|_\infty = \max_{i,j} |M_{i,j}| \), and \(|M| \) is the determinant of \(M \). Let \(\lambda_i(M) \) denote the \(i \)-th eigenvalue of \(M \) with \(\lambda_1(M) \geq \ldots \geq \lambda_p(M) \). Let \(M > 0 \) denote \(M \) to be a positive semidefinite matrix and \(I_p \) is the \(p \times p \) identity matrix.

In addition, \(M_1 \otimes M_2 \) denotes the Kronecker product and \(\text{vec}(M) \) is the \(p^2 \times 1 \) vector obtained by stacking the columns of \(M \). \(\text{diag}(M) \) is the linear operator that sets all the off diagonal elements of \(M \) to 0.

For a positive integer \(s < p \), let \(\Gamma(s;p) = \{ u \in \mathbb{R}^p : \| u_S \|_1 \leq \| u_S \|_1 \}, \) for some \(S \subset [p] \) with \(|S| = s \}, \) where \(u_S \) denotes the subvector of \(u \) confined to \(S \). For two sequences of positive numbers \(a_n \) and \(b_n \), \(a_n \lesssim b_n \) means that for some constant \(c > 0 \), \(a_n \leq c \cdot b_n \) for all \(n \), and \(a_n \asymp b_n \) if \(a_n \lesssim b_n \) and \(b_n \lesssim a_n \). \(a_n \ll b_n \) means that \(\lim_{n \to \infty} [a_n]/b_n = 0 \). In our asymptotic framework, we let \(n \) be the driving asymptotic parameter, \(s \) and \(p \) approach infinity as \(n \) grows to infinity. We also use \(c, c_1, c_2, \ldots, C, C_1, C_2 \) to denote constants that does not depend on \(n, p \), and their values may vary from place to place.

2. The Difficulties of High-dimensional QDA. As mentioned in the introduction, high-dimensional QDA is a difficult problem. In this section, we establish explicit minimax lower bounds that show the necessity of structural assumptions on the discriminating direction \(\beta = \Omega_2 \delta \) and differential graph \(D = \Omega_2 - \Omega_1 \) for constructing consistent high-dimensional QDA rules.

2.1. The setup. Suppose we have random samples collected from \(\pi_1 N_p(\mu_1, \Sigma_1) + \pi_2 N_p(\mu_2, \Sigma_2) \), among which \(n_1 \) samples belong to class 1: \(x_1, \ldots, x_{n_1} \sim N_p(\mu_1, \Sigma_1) \), and \(n_2 \) samples are in class 2: \(y_1, \ldots, y_{n_2} \sim N_p(\mu_2, \Sigma_2) \). The goal is to construct a classification rule \(\hat{G} \), which is a function of \(x_i \)’s and \(y_i \)’s, to classify a future data point \(z \sim \pi_1 N_p(\mu_1, \Sigma_1) + \pi_2 N_p(\mu_2, \Sigma_2) \). This model is parametrized by \(\theta = (\pi_1, \pi_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2) \).

Let \(n = \min\{n_1, n_2\} \). For any classification rule \(\hat{G} : \mathbb{R}^p \to \{1, 2\} \), the accuracy is measured by the classification error

\[
R_{\theta}(\hat{G}) = \mathbb{E}_{\theta}[1 \{ \hat{G}(z) \neq L(z) \}],
\]

where \(L(z) \) denotes the true class label of \(z \), that is, \(L(z) = 1 \) if \(z \sim N_p(\mu_1, \Sigma_1) \), and 2 otherwise.

When \(\theta = (\pi_1, \pi_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2) \) is known in advance, the oracle classification rule in (1.1) is the Bayes rule and achieves the minimal classification error, see Anderson [1]. For ease of presentation, let us define the discriminant function by

\[
Q(z; \theta) = (z - \mu_1)\top D(z - \mu_1) - 2\delta\top \Omega_2 (z - \bar{\mu}) - \log\left(\frac{|\Sigma_1|}{|\Sigma_2|}\right) + 2 \log\left(\frac{\pi_1}{\pi_2}\right).
\]
Then $Q(z; \theta) = 0$ characterizes the classification boundary of the oracle QDA rule, and (1.1) can be rewritten as

$$G_\theta^*(z) = 1 + 1 \{Q(z; \theta) \leq 0\},$$

and $R_\theta(G_\theta^*) = \min_{G \in \mathcal{G}} R_\theta(G)$, where \mathcal{G} is the set of all classification rules.

In the following the Bayes classification risk $R_\theta(G_\theta^*)$ is used as the benchmark and the excess risk $R_\theta(\hat{G}) - R_\theta(G_\theta^*)$ is used to evaluate the performance of a data-driven classification rule \hat{G}. We say \hat{G} is consistent, or G_θ^* can be mimicked by \hat{G}, if the excess risk $R_\theta(\hat{G}) - R_\theta(G_\theta^*) \to 0$ as the sample size $n \to \infty$.

2.2. Impossibility of QDA in high dimensions. We now characterize the fundamental limits of QDA by showing that, without structural assumptions, G_θ^* cannot be mimicked unless $p \ll n$, which precludes the framework in the high-dimensional settings that motivates our study.

We first consider the simple case where $\Sigma_1 = \Sigma_2 = \Sigma$, and in which case the QDA is reduced to the LDA problem. Under the LDA model in the high-dimensional regime, Bickel and Levina [5] and Cai et al. [10] proposed consistent classification rules under stringent structural conditions on (μ_1, μ_2, Σ). In this paper, we demonstrate the necessity of these structural assumptions by showing that without structural assumptions, a consistent classification rule is impossible in the high-dimensional LDA problem.

We firstly consider the parameter space

$$\Theta_p^{(1)} = \{\theta = (1/2, 1/2, \mu_1, \mu_2, I_p, I_p) : \mu_1, \mu_2 \in \mathbb{R}^p, c_1 \leq \|\mu_1 - \mu_2\| \leq c_2\},$$

for some constant $c_1, c_2 > 0$.

Theorem 2.1. Suppose that \hat{G} is any classification rule constructed based on the observations $x_1, \ldots, x_n \overset{i.i.d.}{\sim} N_p(\mu_1, I_p)$, $y_1, \ldots, y_n \overset{i.i.d.}{\sim} N_p(\mu_2, I_p)$ with $\theta = (1/2, 1/2, \mu_1, \mu_2, I_p, I_p) \in \Theta_p^{(1)}$, then when n is sufficiently large,

$$\inf_{\hat{G}} \sup_{\theta \in \Theta_p^{(1)}} \mathbb{E} \left[R_\theta(\hat{G}) - R_\theta(G_\theta^*)\right] \gtrsim \frac{p}{n} \land 1.$$

This theorem implies that even when the covariance matrices are equal and known to be identity matrices, as long as the mean vectors μ_1, μ_2 are unknown, no data-driven method is able to mimic G_θ^* in the high dimensional setting where $p \gtrsim n$. Structural assumptions are μ_1 and μ_2 are necessary for a consistent classification rule.

However, for high-dimensional QDA, structural assumptions on μ_1 and μ_2 are not enough and more assumptions are needed. To this end, we consider another scenario where μ_1 and μ_2 are known exactly. Let $\mu_1^*, \mu_2^* \in \mathbb{R}^p$ be two given vectors and define the parameter space

$$\Theta_p^{(2)}(\mu_1^*, \mu_2^*) = \{\theta = (1/2, 1/2, \mu_1^*, \mu_2^*, \Sigma_1, \Sigma_2) : \Sigma_1, \Sigma_2 \text{ are diagonal matrices}\}.$$
Theorem 2.2. Suppose \hat{G} is constructed based on the observations $x_1, \ldots, x_n \sim_{i.i.d.} N_p(\mu_1, \Sigma_1), y_1, \ldots, y_n \sim_{i.i.d.} N_p(\mu_2, \Sigma_2)$. For any given $\mu^*_1, \mu^*_2 \in \mathbb{R}^p$ with $\|\mu^*_1 - \mu^*_2\|^2 \leq C$ where $C > 0$ is some constant, when $\theta = (1/2, 1/2, \mu_1, \mu_2, \Sigma_1, \Sigma_2) \in \Theta_p^{(2)}(\mu_1, \mu_2)$, we have for sufficiently large n,

$$\inf_{\hat{G}} \sup_{\theta \in \Theta_p^{(2)}(\mu_1, \mu_2)} \mathbb{E} \left[R_\theta(\hat{G}) - R_\theta(G^*_\theta) \right] \gtrsim \frac{p \log^2 n}{n} \land 1.$$

This theorem implies that even if we have the prior information that μ_1, μ_2 are known and Σ_1, Σ_2 are both diagonal, the quadratic discriminant rule G^*_θ cannot be mimicked consistently if $p \gtrsim n$. The construction of consistent classification rules requires stronger assumptions.

The main strategy of these proofs are discussed in Section 4.2, and the detailed proofs of these lower bound results is provided in Section 7.1. In addition, the lower bounds are tight, up to a logarithmic factor. Specifically, by using the techniques similar to that in Theorem 4.2, the plug-in classification rule \hat{G}, which is obtained by plugging in sample means and sample covariance matrices in (1.1), satisfies that $R_\theta(\hat{G}) - R_\theta(G^*_\theta) \lesssim \frac{p \log^2 n}{n} \land 1$. This result is further discussed in the supplement.

3. Sparse Quadratic Discriminant Analysis. The inconsistency results in Theorems 2.1 and 2.2 imply the necessity of imposing structural assumptions on both the mean vectors and covariance matrices. In this section, we consider the QDA problem under the assumptions that the discriminating direction $\beta = \Omega_2 \delta$ and the differential graph D are both sparse. This sparsity assumption, according to (2.2), implies that the classification boundary of the oracle rule depends only on a small number of features in z. It is also worth noting that the differential graph D corresponds to the change of interactions in two different graphs Ω_1 and Ω_2. The problem of interaction selection is important in its own right and has been studied extensively recently in dynamic network analysis under various environmental and experimental conditions, see Bandyopadhyay et al. [3], Zhao et al. [30], Xia et al. [27], Hill et al. [16].

To see that these two sparsity assumptions are sufficient to obtain a consistent estimator for the optimal classification rule G^*_θ, we begin by rewriting $Q(z; \theta)$, defined in (2.2). Recall that $\delta = \mu_2 - \mu_1, \bar{\mu} = \frac{\mu_1 + \mu_2}{2}, D = \Omega_2 - \Omega_1$ and $\beta = \Omega_2 \delta, \tilde{\beta}$, then

$$Q(z; \theta) = (z - \mu_1)^\top D (z - \mu_1) - 2\beta^\top (z - \bar{\mu}) - \log(\frac{\Sigma_1}{\Sigma_2}) + 2 \log(\frac{\pi_1}{\pi_2})$$

(3.1) $$= (z - \mu_1)^\top D (z - \mu_1) - 2\beta^\top (z - \bar{\mu}) - \log(D \Sigma_1 + I_p) + 2 \log(\frac{\pi_1}{\pi_2}).$$

A simple but essential observation of (3.1) is that the first three quantities in the above oracle QDA rule G^*_θ depends on either D or β, and the forth term $\log(\pi_1/\pi_2)$ is easy to estimate. In the present paper, we shall show that under the sparsity assumptions on these two quantities, D and β can
be estimated directly and efficiently, and the classification rule based on these two estimates enjoys desirable theoretical guarantees.

Remark 1. By symmetry, $Q(z; \theta)$ can also be rewritten in a form that depends on $(\Omega_1 + \Omega_2)\delta$ and D. The reason that we consider $(\Omega_2\delta, D)$ as the key quantity is that this could be easily extended to the case with K multiple groups. In this generalized setting, we consider using the first group as a benchmark, and computing the likelihood ratio of other groups versus the first one. As a result, the key quantity in the multiple classification case is $\{(\Omega_k(\mu_k - \mu_1), \Omega_k - \Omega_1)\}_{k=2}^K$. See more discussion in Section 6.

In the following, we proceed to estimate D and β through constrained convex optimization. Let the first sample covariance matrix be $\hat{\Sigma}_1 = n_1^{-1} \sum_{i=1}^{n_1} (x_i - \bar{\mu}_1)(x_i - \bar{\mu}_1)^\top$, where $\bar{\mu}_1 = n_1^{-1} \sum_{i=1}^{n_1} x_i$ and define $\hat{\Sigma}_2$ and $\bar{\mu}_2$ similarly. Since D satisfies the equation $\Sigma_1 D \Sigma_2 = \Sigma_2 D \Sigma_1 = \Sigma_1 - \Sigma_2$, a sensible estimation procedure is to solve $\Sigma_1 D \Sigma_2 / 2 + \Sigma_2 D \Sigma_1 / 2 - \hat{\Sigma}_1 + \hat{\Sigma}_2 = 0$ for D. We estimate D through the following constrained ℓ_1 minimization approach (3.2)

$$\hat{D} = \arg \min_{D \in \mathbb{R}^{p \times p}} \left\{ |D|_1 : \|\Sigma_1 D \Sigma_2 / 2 + \Sigma_2 D \Sigma_1 / 2 - \hat{\Sigma}_1 + \hat{\Sigma}_2\|_\infty \leq \lambda_{1,n} \right\},$$

where $\lambda_{1,n} = c_1 \sqrt{\frac{\log p}{n}}$ is a tuning parameter with some constant $c_1 > 0$ that will be specified later.

Remark 2. The estimator \hat{D} defined in (3.2) is similar to that in Zhao et al. [30], but has better numerical performance due to symmetrization. In addition, we are able to solve (3.2) in a more computationally efficient way. Zhao et al. [30] vectorized D and transformed the optimization problem (3.2) to a linear programming with a $p^2 \times p^2$ constraint matrix $\hat{\Sigma}_1 \otimes \hat{\Sigma}_2$, which is computationally demanding for large p. In contrast, we solve (3.2) by using the primal-dual interior point method [11], and keep the matrix form of D in each step of conjugate gradient descent, by using the matrix multiplications $\frac{1}{2} \hat{\Sigma}_1 D \hat{\Sigma}_2 + \frac{1}{2} \hat{\Sigma}_2 D \hat{\Sigma}_1$ instead of computing $(\frac{1}{2} \hat{\Sigma}_1 \otimes \hat{\Sigma}_2 + \frac{1}{2} \hat{\Sigma}_2 \otimes \hat{\Sigma}_1) \text{vec}(D)$ repeatedly. As a result, the computational complexity is reduced to $O(p^3)$ from $O(p^4)$, and our method is able to handle the problem with larger dimension p. The code is available at https://github.com/linjunz/SDAR.

We then proceed to estimating β. Similarly, since the true β satisfies that $\Sigma_2 \beta = \mu_2 - \mu_1$, following Cai and Liu [6], β can be estimated by the following procedure

$$(3.3) \quad \hat{\beta} = \arg \min_{\beta \in \mathbb{R}^p} \left\{ \|\beta\|_1 : \|\hat{\Sigma}_2 \beta - \hat{\mu}_2 + \hat{\mu}_1\|_\infty \leq \lambda_{2,n} \right\},$$

where $\lambda_{2,n} = c_2 \sqrt{\frac{\log p}{n}}$ is a tuning parameter with some constant $c_2 > 0$.

We estimate π_1 and π_2 by $\hat{\pi}_1 = \frac{n_1}{n_1 + n_2}$ and $\hat{\pi}_2 = \frac{n_2}{n_1 + n_2}$ respectively. Given the solutions \hat{D} and $\hat{\beta}$ to (3.2) and (3.3) and the estimates $\hat{\pi}_1$ and $\hat{\pi}_2$, we then propose the following classification rule: classify z to class 1 if and only if

$$(z - \hat{\mu}_1)^\top \hat{D} (z - \hat{\mu}_1) - 2 \hat{\beta}^\top (z - \frac{\hat{\mu}_1 + \hat{\mu}_2}{2}) - \log(|\hat{D}\hat{\Sigma}_1 + I_p|) + \log(\frac{\hat{\pi}_1}{\hat{\pi}_2}) > 0.$$

We shall call this rule the Sparse quadratic Discriminant Analysis rule with Regularization (SDAR), and denote it by \hat{G}_{SDAR}. Analytically, it’s written as

$$(3.4)$$

$$\hat{G}_{\text{SDAR}}(z) = 1+ 1\{(z - \hat{\mu}_1)^\top \hat{D} (z - \hat{\mu}_1) - 2 \hat{\beta}^\top (z - \frac{\hat{\mu}_1 + \hat{\mu}_2}{2}) - \log(|\hat{D}\hat{\Sigma}_1 + I_p|) + \log(\frac{\hat{\pi}_1}{\hat{\pi}_2}) \leq 0\}.$$

The SDAR rule is easy to implement as both (3.2) and (3.3) can be solved by linear programming. We shall show in the next sections that the SDAR rule has desirable properties both theoretically and numerically.

4. Theoretical Guarantees. We now study the accuracy of the estimators \hat{D} and $\hat{\beta}$ in (3.2) and (3.3), and the performance of the resulting classifier \hat{G}_{SDAR} in (3.4). We first establish the rates of convergence for the estimation and classification error and then provide matching minimax lower bounds, up to logarithm factors. These results together show the near-optimality of the SDAR rule.

4.1. Upper bounds. To overcome the limitations illustrated in Section 2, we consider the following parameter space of $\theta = (\pi_1, \pi_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2)$. Especially, we assume here that both the discriminating direction β and the differential graph D are sparse. Let $f_{Q,\theta}$ be the probability density of $Q(z; \theta)$ defined in (2.2), we consider the following parameter space.

$$(4.1)$$

$$\Theta_p(s_1, s_2) = \{\theta = (\pi_1, \pi_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2) : \mu_1, \mu_2 \in \mathbb{R}^p, \Sigma_1, \Sigma_2 \succ 0, \|D\|_F, \|\beta\|_2 \leq M_0, M_1^{-1} \leq \lambda_{\min}(\Sigma_k) \leq \lambda_{\max}(\Sigma_k) \leq M_1, k = 1, 2, \sup_{|x| < \delta} f_{Q,\theta}(x) < M_2, c \leq \pi_1, \pi_2 \leq 1 - c\},$$

for some constants $M_0 > 0, M_1 > 1, \delta, M_2 > 0$ and $c \in (0, 1/2)$.

Remark 3. Note that we assume sparsity on both the discriminant direction β and the differential graph D, whose necessities are shown by Theorem 2.1 and 2.2. The upper bound on $\|\beta\|_2$ is a general assumption in LDA, see Cai and Liu [6], Neykov et al. [24]; and Cai et al. [10], and we assume the same on $\|\text{vec}(D)\|_2 = \|D\|_F$ in the QDA setting. Moreover, the condition on the bounded density is commonly assumed in discriminant
analysis, see condition (C1) in Cai and Liu [6], and discussions in Li and Shao [19] and Jiang et al. [17]. In the following we present a condition on \(\theta \) such that this bounded density assumption holds. Note that the term
\[
(z^\top Dz + \beta^\top z)
\]

is equal to the similar proof as that of Lemma 7.2 in Xu et al. [28], the condition \(\sup_{|z|<\delta} E_{Q, \theta}(z) < M_2 \) holds when either the two largest positive eigenvalues of \(D_{\lambda_1}(D), \lambda_2(D) \) or the two largest negative eigenvalues of \(D_{\tilde{\lambda}_1}(D), \tilde{\lambda}_2(D) \) are of the same order, that is, 0 < \(\lim_{n \to \infty} \frac{\lambda_1(D)}{\lambda_1(D) + \lambda_2(D)} \) < \(\lim_{n \to \infty} \frac{\tilde{\lambda}_1(D)}{\lambda_1(D) + \lambda_2(D)} \) < 1 or 0 < \(\lim_{n \to \infty} \frac{\hat{\lambda}_1(D)}{\lambda_1(D) + \lambda_2(D)} \) < \(\lim_{n \to \infty} \frac{\hat{\tilde{\lambda}}_1(D)}{\lambda_1(D) + \lambda_2(D)} \) < 1.

At first, we show that over the parameter space \(\Theta_p(s_1, s_2) \), the estimators \(\hat{D}, \hat{\beta} \) obtained in (3.2) and (3.3) converge to the true parameters \(D \) and \(\beta \). This theorem will then be used to establish the consistency of the proposed classification rule.

Theorem 4.1. Consider the parameter space \(\Theta_p(s_1, s_2) \), and assume that \(n_1 \geq n_2, s_1 + s_2 \lesssim \frac{n}{\log p} \), where \(n = \min\{n_1, n_2\} \). In optimization problems (3.2) and (3.3), let \(\lambda_{i,n} = c_i \sqrt{\log p/n} \) with \(c_i > 0 \), \(i = 1, 2 \) being sufficiently large constants. Then as \(n \) goes to infinity, the estimators obtained in (3.2) and (3.3) satisfies that, with probability at least \(1 - p^{-1} \),

\[
\|\hat{D} - D\|_F \lesssim \sqrt{\frac{s_1 \log p}{n}}; \quad \|\hat{\beta} - \beta\|_2 \lesssim \sqrt{\frac{s_2 \log p}{n}}.
\]

The above theorem shows that although our estimating procedure (3.3) is different from Zhao et al. [30], the same convergence rate can be obtained and requires milder theoretical conditions. In fact, Zhao et al. [30] assumes that \(\|\Omega_1\|_1 \) and \(\|\Omega_2\|_1 \) are both bounded, and additionally requires that the off-diagonal elements of \(\Sigma_1 \) and \(\Sigma_2 \) are vanishing as \(n \to \infty \), which is much stronger than conditions in (4.1). In addition, the above bound implies that when \(\Sigma_1 = \Sigma_2 \), that is, \(s_1 = 0 \), we have \(\hat{D} = D = 0 \) when \(\lambda_{1,n} \) is suitably chosen. This implies that when the two covariance matrices are equal, SDAR rule (3.4) would adaptively be reduced to the LPD rule in Cai and Liu [6] designed for high-dimensional LDA.

We now turn to the performance of the classification rule \(\hat{G}_{\text{SDAR}} \). The behavior of \(\hat{G}_{\text{SDAR}} \) is measured by the excess risk \(R_\theta(\hat{G}_{\text{SDAR}}) - R_\theta(G_\theta^*) \), defined in (2.1). The following theorem provides the upper bound for the excess classification error.

Theorem 4.2. Consider the parameter space \(\Theta_p(s_1, s_2) \), and assume that \(n_1 \geq n_2, s_1 + s_2 \lesssim \frac{n}{\log p \log^2 n} \). Then when \(n \) goes to infinity, the proposed SDAR classification rule in (3.4) satisfies that, for sufficiently large \(n \),

\[
\sup_{\theta \in \Theta_p(s_1, s_2)} \mathbb{E} \left[R_\theta(\hat{G}_{\text{SDAR}}) - R_\theta(G_\theta^*) \right] \lesssim (s_1 + s_2) \cdot \frac{\log p}{n} \cdot \log^2 n.
\]
The result in Theorem 4.2 shows that \hat{G}_{SDAR} is able to mimic G^\ast_{θ} consistently over the parameter space $\Theta_p(s_1, s_2)$, and to the best of our knowledge, gives the first explicit convergence rate of classification error for the high-dimensional QDA problem.

Remark 4. Related work studying the convergence of classification error includes Li and Shao [19] and Jiang et al. [17], but both Theorem 3 in Li and Shao [19] and Theorem 4 in Jiang et al. [17] only show the consistency of their proposed classification rules instead of explicit convergence rates. Although in Corollary 3 of Jiang et al. [17], the authors showed a convergence rate for the classification error of order $s_1^2 s_2^2 \sqrt{\log p/n}$ under some regularity conditions, this result is based on the assumption that an intercept term η defined in their paper, is known. Jiang et al. [17] proposed to estimate η based on the idea of cross validation and in their theorem 3 they showed the consistency of this estimation without explicit convergence rate. In contrast, our paper shows that the convergence rate $O((s_1 + s_2) \log p \cdot \log 2^n/n)$ is achievable, which is much faster than their results. In addition, the assumptions here are weaker.

The major technical challenge of this improvement is the characterization of the distribution of $Q(z; \theta)$, which involves the sum of weighted non-central chi-square random variables. In the next section we will show that this convergence rate is indeed optimal up to logarithm factors.

4.2. Minimax lower bound for sparse QDA. In this section we establish the minimax lower bound for the convergence rate of $R_{\theta}(\hat{G}) - R_{\theta}(G^\ast_{\theta})$, and thus show the optimality of \hat{G}_{SDAR} up to logarithm factors.

Theorem 4.3. Consider the parameter space $\Theta_p(s_1, s_2)$ defined in (4.1). Suppose $n_1 \asymp n_2$, $1 \leq s_1, s_2 \leq o\left(\frac{n}{\log p}\right)$, and \hat{G} is constructed based on the observations $x_1, ..., x_n \overset{i.i.d.}{\sim} N_p(\mu_1, \Sigma_1)$, $y_1, ..., y_n \overset{i.i.d.}{\sim} N_p(\mu_2, \Sigma_2)$. Then the minimax risk of the classification error over $\Theta_p(s_1, s_2)$ satisfies

$$\inf_{\hat{G}} \sup_{\theta \in \Theta_p(s_1, s_2)} \mathbb{E}\left[R_{\theta}(\hat{G}) - R_{\theta}(G^\ast_{\theta})\right] \gtrsim (s_1 + s_2) \cdot \frac{\log p}{n}.$$

The challenge of proving Theorem 4.3 is that the excess risk $R_{\theta}(\hat{G}) - R_{\theta}(G^\ast_{\theta})$ does not satisfy the triangle inequality (or subadditivity), which is essential to the standard minimax lower bound techniques. To overcome this challenge, we define an alternative risk function $L_{\theta}(\hat{G})$ as follows,

$$L_{\theta}(\hat{G}) := \mathbb{P}_{\theta}\left(\hat{G}(z) \neq G^\ast_{\theta}(z)\right).$$

This loss function $L_{\theta}(\hat{G})$ is essentially the probability that \hat{G} produces a different label than G^\ast_{θ}, and satisfies the triangle inequality, as shown in Lemma 7.1. The connection between $R_{\theta}(\hat{G}) - R_{\theta}(G^\ast_{\theta})$ and $L_{\theta}(\hat{G})$ is presented...
by the following lemma, which shows that it’s sufficient to provide a lower bound for \(L_\theta(G) \) to prove Theorem 4.3.

Lemma 4.1. Suppose \(\theta \in \Theta_p(s_1, s_2) \). There exists a constant \(c > 0 \), doesn’t depend on \(n, p \), such that for some classification rule \(G \), if \(L_\theta(G) < c \), then,

\[
L_\theta^2(G) \lesssim \mathbb{P}_\theta(G(z) \neq L(z)) - \mathbb{P}_\theta(G_\theta(z) \neq L(z)).
\]

Based on Lemma 4.1, we use Fano’s inequality on a carefully designed least favorable multivariate normal distributions to complete the proof of Theorems 2.2 and 4.3. The details are shown in Section 7.

5. **Numerical Studies.** In this section we firstly conduct simulation studies to investigate the impossibility results shown in Section 2.2, and then study numerical properties of the proposed SDAR method under various settings.

5.1. **Impossibility results.** We would like to illustrate the impossibility results Theorem 2.1 and Theorem 2.2 in a numerical fashion in this subsection.

Let us start with Theorem 2.1, which shows the sparsity condition on \(\beta \) is necessary. In the simulation, we consider the simple case where both covariance matrices are known to be identity but the means are unknown: \(x_1, \ldots, x_n \sim N_p(\mu_1, I_p) \) and \(y_1, \ldots, y_n \sim N_p(\mu_2, I_p) \) and let \(\mu_1 = -\mu_2 = \mu = \frac{1}{\sqrt{p}} \cdot 1_p \), satisfying \(\|\mu_1 - \mu_2\|_2 = 2 \).

We consider nine cases where \((n, p) = (100, 200), (150, 200), (200, 200), (100, 300), (200, 300), (300, 300), (200, 600), (400, 600), (600, 600) \). In each setting, we compare the oracle classification rule \(G^*_\theta \) in (1.1) with the plug-in classification rule \(\hat{G} \) where we estimate \(\mu_1, \mu_2 \) by the sample means. The testing sample size is set to 100 and the simulation is repeated 100 times in each setting. The simulations results is summarized in the following table.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(R_\theta(\hat{G}))</th>
<th>(R_\theta(G^*_\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p=200)</td>
<td>(100)</td>
<td>0.242 (0.054)</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>0.232 (0.051)</td>
</tr>
<tr>
<td></td>
<td>(200)</td>
<td>0.219 (0.039)</td>
</tr>
<tr>
<td>(p=300)</td>
<td>(100)</td>
<td>0.265 (0.048)</td>
</tr>
<tr>
<td></td>
<td>(200)</td>
<td>0.223 (0.047)</td>
</tr>
<tr>
<td></td>
<td>(300)</td>
<td>0.208 (0.038)</td>
</tr>
<tr>
<td>(p=600)</td>
<td>(200)</td>
<td>0.269 (0.045)</td>
</tr>
<tr>
<td></td>
<td>(400)</td>
<td>0.230 (0.035)</td>
</tr>
<tr>
<td></td>
<td>(600)</td>
<td>0.201 (0.035)</td>
</tr>
</tbody>
</table>

To illustrate Theorem 2.2, we consider a simple case where \(\mu_1 = -\mu_2 = (1, 0, 0, \ldots, 0)^T \) and the covariance matrices are known to be diagonal. Two
classes are \(N_p(\mu_1, I_p) \) and \(N_p(\mu_2, \Sigma_2) \), where \(\Sigma_2 = (I_p + \sum_{i=1}^{p/2} \frac{2}{\sqrt{p}} E_{i,i})^{-1} \) and
\(E_{i,i} \) is a \(p \times p \) matrix whose \((i, i)\)-th entry is 1 and 0 else.

We consider nine cases where \((n, p) = (100, 200), (150, 200), (200, 200), (100, 300), (200, 300), (300, 300), (200, 600), (400, 600), (600, 600)\). In each setting, we compare the oracle classification rule \(G_{opt} \), that is (1.1), with the plug-in classification rule \(\hat{G} \) where we estimate \(\Sigma_1, \Sigma_2 \) by the diagonals of sample covariance matrices. The following table summarizes the simulation results where the testing sample size is set to 100 and the simulation is repeated 100 times.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(R_{\theta}(\hat{G}))</th>
<th>(R_{\theta}(G_{opt}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p=200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.274 (0.049)</td>
<td>0.193 (0.038)</td>
</tr>
<tr>
<td>150</td>
<td>0.260 (0.036)</td>
<td>0.193 (0.038)</td>
</tr>
<tr>
<td>200</td>
<td>0.252 (0.033)</td>
<td>0.193 (0.038)</td>
</tr>
<tr>
<td>(p=300)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.271 (0.043)</td>
<td>0.151 (0.034)</td>
</tr>
<tr>
<td>200</td>
<td>0.238 (0.048)</td>
<td>0.151 (0.034)</td>
</tr>
<tr>
<td>300</td>
<td>0.224 (0.039)</td>
<td>0.151 (0.034)</td>
</tr>
<tr>
<td>(p=600)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.296 (0.032)</td>
<td>0.183 (0.046)</td>
</tr>
<tr>
<td>400</td>
<td>0.255 (0.055)</td>
<td>0.183 (0.046)</td>
</tr>
<tr>
<td>600</td>
<td>0.245 (0.037)</td>
<td>0.183 (0.046)</td>
</tr>
</tbody>
</table>

5.2. SDAR on synthetic data. In this section, we provide extensive numerical evidence to show the empirical performance of SDAR by comparing it to its competitors, including the sparse QDA (SQDA, Li and Shao (2015)), the direct approach for sparse LDA (LPD, Cai and Liu (2012)), the conventional LDA (LDA), the conventional QDA (QDA) and the oracle procedure (Oracle). The oracle procedure uses the true underlying model and serves as the optimal risk bound for comparison. We evaluate all methods via three synthetic datasets.

In all simulations, the sample size is \(n_1 = n_2 = 200 \) while the number of variables \(p \) varies from 100, 200, 400 to 600. The sparsity levels are set to be \(s_1 = 10, s_2 = 20 \). The discriminating direction \(\beta = (1, \ldots, 1, 0, \ldots, 0)^T \) is sparse such that only the first \(s_1 = 10 \) entries are nonzero. Given the inverse covariance matrix of the second sample \(\Omega_2 \), the mean for class 1 is \(\mu_1 = (0, \ldots, 0)^T \) and the mean for class 2 is set to be \(\mu_2 = \mu_1 - \Sigma_2 \beta \). In addition, the differential graph \(D \) is a random sparse symmetric matrix with its nonzero positions generated by uniform sample. Each nonzero entry on \(D \) is i.i.d. and from a standard normal distribution \(N(0, 1) \). Lastly, we let \(\Omega_1 = D + \Omega_2 \), and \(\Omega_1 = \Sigma_1^{-1}, \Omega_2 = \Sigma_2^{-1} \). We use the following three models to generate \(\Omega_2 \).

Model 1: Block sparse model: We generate \(\Omega_2 = U^T \Lambda U \), where \(\Lambda \in \mathbb{R}^{p \times p} \) is a diagonal matrix and its entries are i.i.d. and uniform on \([1, 2] \), and \(U \in \mathbb{R}^{p \times p} \) is a random matrix with i.i.d. entries from \(N(0, 1) \).
the simulation, the tuning parameters for SDAR method are chosen over a grid \(\{ k^{2} \left(\frac{\log p}{n} \right) \}_{k=1:15} \).

Model 2: AR(1) model: \(\Omega_2 = (\Omega_{ij})_{p \times p} \) with \(\Omega_{ij} = \rho^{\left| i-j \right|} \). In the simulation, the tuning parameters for the SDAR method are chosen by cross validation over a grid \(\{ k^{2} \left(\frac{\log p}{n} \right) \}_{k=1:15} \). The simulation results from 100 replications are summerized as follows, with \(\rho = 0.5 \).

Model 3: Erdős-Rényi random graph: Let \(\tilde{\Omega}_2 = (\tilde{\omega}_{ij}) \) where \(\tilde{\omega}_{ij} = u_{ij} \delta_{ij} \), \(\delta_{ij} \sim \text{Ber}(1, \rho) \) being the Bernoulli random variable with success probability 0.05 and \(u_{ij} \sim \text{Unif}[0.5, 1] \cup [-1, -0.5] \). After symmetrizing \(\tilde{\Omega}_2 \), set \(\Omega_2 = \tilde{\Omega}_2 + \{ \max(-\phi_{\min}(\tilde{\Omega}_2), 0) + 0.05 \} I_p \) to ensure the positive definiteness. In the simulation, the tuning parameters for SDAR method are chosen over a grid \(\{ k^{2} \left(\frac{\log p}{n} \right) \}_{k=1:15} \).

In each model, the number of repetition is set to be 100, and the classification errors are evaluated based on the test data with size 100 that is generated from a Gaussian mixture model \(\frac{1}{2}N_p(\mu_1, \Sigma_1) + \frac{1}{2}N_p(\mu_2, \Sigma_2) \). We compare the proposed SDAR method with the oracle QDA rule (1.1). The simulation results are summarized in Table 3.

This simulation result shows that the proposed SDAR algorithm outperforms the LPD algorithm when there are strong interactions among features \(D \neq 0 \). As expected, the conventional LDA and QDA works poorly in the high-dimensional setting, and the performance of conventional QDA is even worse due to overfitting. In the setting where \(D = 0 \), the estimated \(\hat{D} \) would equal to \(D = 0 \) for properly chosen \(\lambda_1 \), according to Theorem 4.1. As we estimate \(\beta \) and \(D \) separately, the proposed SDAR rule in this case would adaptively reduced to LPD. For reasons of space we do not present the detailed numerical results for this case.

5.3. **Real data.** In addition to the simulation studies, we also illustrate the merits of the SDAR classifier in the analysis of two real datasets to further investigate the numerical performance of the proposed method. One is the prostate cancer data in Singh, et al. (2002), which is available at ftp://stat.ethz.ch/Manuscripts/dettling/prostate.rda, and another dataset is the colon tissues data analyzed in Alon et al. (1999) by using the Oligonucleotide microarray technique, available at http://microarray.princeton.edu/oncology/affydata/index.html. These two datasets were frequently used for illustrating the empirical performance of the classifier for high-dimensional data in recent literature, see Dettling (2004) and Efron (2010). We will compare SDAR with the existing methods, including the sparse QDA (SQDA, Li and Shao (2015)), the direct approach for sparse LDA (LPD, Cai and Liu (2012)), the conventional LDA (LDA), the conventional QDA (QDA).

5.3.1. **Prostate cancer data.** The prostate cancer data consists of genetic expression levels for \(p = 6033 \) genes from 102 individuals (50 normal control
Table 3
Average classification errors (s.d.) based on n = 200 test samples from 100 replications under three different models

<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>0.200(0.019)</td>
<td>0.224(0.028)</td>
<td>0.269(0.022)</td>
<td>0.302(0.024)</td>
</tr>
<tr>
<td>QDA</td>
<td>0.236(0.026)</td>
<td>0.274(0.023)</td>
<td>0.418(0.025)</td>
<td>0.432(0.027)</td>
</tr>
<tr>
<td>Model 1 SQDA (Shao et al.)</td>
<td>0.202(0.022)</td>
<td>0.231(0.027)</td>
<td>0.301(0.023)</td>
<td>0.347(0.025)</td>
</tr>
<tr>
<td>LPD</td>
<td>0.151(0.020)</td>
<td>0.163(0.021)</td>
<td>0.208(0.028)</td>
<td>0.256(0.025)</td>
</tr>
<tr>
<td>SDAR</td>
<td>0.075(0.019)</td>
<td>0.089(0.022)</td>
<td>0.091(0.029)</td>
<td>0.102(0.027)</td>
</tr>
<tr>
<td>Oracle</td>
<td>0.044(0.010)</td>
<td>0.023(0.007)</td>
<td>0.039(0.010)</td>
<td>0.047(0.009)</td>
</tr>
<tr>
<td>LDA</td>
<td>0.214(0.023)</td>
<td>0.243(0.024)</td>
<td>0.327(0.023)</td>
<td>0.376(0.025)</td>
</tr>
<tr>
<td>QDA</td>
<td>0.249(0.025)</td>
<td>0.296(0.029)</td>
<td>0.405(0.026)</td>
<td>0.446(0.028)</td>
</tr>
<tr>
<td>Model 2 SQDA (Shao et al.)</td>
<td>0.214(0.023)</td>
<td>0.243(0.024)</td>
<td>0.327(0.023)</td>
<td>0.376(0.025)</td>
</tr>
<tr>
<td>LPD</td>
<td>0.163(0.018)</td>
<td>0.156(0.019)</td>
<td>0.220(0.027)</td>
<td>0.253(0.024)</td>
</tr>
<tr>
<td>SDAR</td>
<td>0.065(0.015)</td>
<td>0.042(0.014)</td>
<td>0.081(0.020)</td>
<td>0.092(0.019)</td>
</tr>
<tr>
<td>Oracle</td>
<td>0.045(0.010)</td>
<td>0.025(0.007)</td>
<td>0.031(0.008)</td>
<td>0.045(0.008)</td>
</tr>
<tr>
<td>LDA</td>
<td>0.242(0.024)</td>
<td>0.294(0.029)</td>
<td>0.335(0.026)</td>
<td>0.374(0.026)</td>
</tr>
<tr>
<td>QDA</td>
<td>0.236(0.023)</td>
<td>0.205(0.020)</td>
<td>0.234(0.031)</td>
<td>0.252(0.027)</td>
</tr>
<tr>
<td>Model 3 SQDA (Shao et al.)</td>
<td>0.242(0.024)</td>
<td>0.294(0.029)</td>
<td>0.335(0.026)</td>
<td>0.374(0.026)</td>
</tr>
<tr>
<td>LPD</td>
<td>0.078(0.022)</td>
<td>0.077(0.026)</td>
<td>0.096(0.028)</td>
<td>0.112(0.026)</td>
</tr>
<tr>
<td>SDAR</td>
<td>0.065(0.013)</td>
<td>0.039(0.009)</td>
<td>0.031(0.008)</td>
<td>0.048(0.010)</td>
</tr>
</tbody>
</table>

subjects and 52 prostate cancer patients). The SDAR classifier allows us to model the interactions among genes and thus improve the classification accuracy. For this data, we follow the same data cleaning routine in Cai and Liu (2011), retaining only the top 200 genes with the largest absolute values of the two sample t-statistics. The average classification errors using 5-fold cross-validation for various methods with 50 repetitions are reported in Table 4. The proposed SDAR method outperforms all the other methods

<table>
<thead>
<tr>
<th></th>
<th>SDAR</th>
<th>SQDA (Shao et al.)</th>
<th>LPD</th>
<th>LDA</th>
<th>QDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing error</td>
<td>2.20(1.11)</td>
<td>3.10(1.26)</td>
<td>11.20(1.87)</td>
<td>32.20(3.67)</td>
<td>35.30(4.18)</td>
</tr>
</tbody>
</table>

5.3.2. Colon tissues data. The colon tissues data analyzed gene expression difference between tumor and normal colon tissues using the Oligonucleotide microarray technique, consisting 20 observations from normal tissues and 42 observations from tumor tissues, measured in p = 2000 genes.

Similarly to the analysis of the prostate cancer data, to control the computational costs, we use 200 genes with the largest absolute values of the two sample t-statistics. Classification results by using 5-fold cross-validation with 50 repetitions are summarized in Table 5. In this example, the SDAR is still the best among all classifiers.

<table>
<thead>
<tr>
<th></th>
<th>SDAR</th>
<th>SQDA (Shao et al.)</th>
<th>LPD</th>
<th>LDA</th>
<th>QDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing error</td>
<td>19.05(2.40)</td>
<td>23.20(2.36)</td>
<td>26.67(2.75)</td>
<td>38.20(3.14)</td>
<td>39.30(4.71)</td>
</tr>
</tbody>
</table>
6. Extensions. We have so far focused on high-dimensional QDA for two groups in the Gaussian setting. The methodology and theory developed in the earlier sections can be extended to multi-group classification and to classification under the Gaussian copula model.

6.1. Multi-group classification. We first turn to multi-group classification. Suppose there are K classes $N_p(\mu_k, \Sigma_k)$ with prior probability π_k for $1 \leq k \leq K$ respectively, and an observation z is drawn from the same distribution. In the ideal setting where all the parameters are known, the oracle rule classifies z to class k if and only if

$$k = \arg \min_{k \in [K]} \{Q_k(z)\},$$

where the discriminating function $Q_k(z)$ is

$$Q_k(z) = \begin{cases} 1, & k = 1 \\ \frac{1}{2}(z - \mu_k)\top D_k(z - \mu_k) - \beta_k\top(z - \mu_k) - \frac{1}{2} \log |D_k\Sigma_1 + I_p| + \log \pi_k, & k \geq 2, \end{cases}$$

with $\hat{\mu}_k = \frac{\mu_k + \mu_1}{2}$, $D_k = \Omega_1 - \Omega_k$, $\beta_k = \Omega_1(\mu_k - \mu_1)$, and $\Omega_k = \Sigma_k^{-1}$. When the parameters are unknown and random samples from K classes (with prior probabilities $\{\pi_k\}_{k=1}^K$) are available: $x^{(k)}_1, \ldots, x^{(k)}_{n_k} \overset{i.i.d.}{\sim} N_p(\mu_k, \Sigma_k)$, $k = 1, \ldots, K$, by assuming the sparsity on D_k's and β_k's, they can then be estimated by solving a similar linear programming as in (3.2) and (3.3). For $k = 2, 3, \ldots, K$, D_k and β_k are estimated by

$$\hat{D}_k = \arg \min_{D \in \mathbb{R}^{p \times p}} \left\{ |D|_1 : \frac{1}{2} \hat{\Sigma}_1 D \hat{\Sigma}_k + \frac{1}{2} \hat{\Sigma}_2 D \hat{\Sigma}_1 = \hat{\Sigma}_1 + \hat{\Sigma}_k |_\infty \leq \lambda_{1,n} \right\},$$

where $\lambda_{1,n}$ is a tuning parameter with constant $c_1 > 0$.

$$\hat{\beta}_k = \arg \min_{\beta \in \mathbb{R}^p} \left\{ \|\beta\|_1 : \|\hat{\Sigma}_1 \beta - \hat{\mu}_k + \hat{\mu}_1\|_\infty \leq \lambda_{2,n} \right\},$$

where $\lambda_{2,n}$ is a tuning parameter with constant $c_2 > 0$.

Given these estimators and $\hat{\pi}_k = n_k / (\sum_{k=1}^K n_k)$, the discriminating function is then estimated by

$$\hat{Q}_k(z) = \begin{cases} 1, & k = 1 \\ \frac{1}{2}(z - \hat{\mu}_k)\top \hat{D}_k(z - \hat{\mu}_k) - \hat{\beta}_k\top(z - \hat{\mu}_k) - \frac{1}{2} \log |\hat{D}_k\hat{\Sigma}_1 + I_p| + \log \hat{\pi}_k, & k \geq 2, \end{cases}$$

Then the SDAR classification rule for multi-group classification is constructed as

$$\hat{G}(z) = \arg \min_{k \in [K]} \{\hat{Q}_k(z)\}.$$
6.2. Classification under Gaussian copula model. The Gaussianity assumption can be related by incorporating semiparametric Gaussian copula model into the QDA framework. This larger semiparametric Gaussian copula model enables robust estimation and classification, and has been studied widely in statistics and machine learning, including linear discriminant analysis [14, 22], correlation matrix estimation [13], graphical models [21, 29], and linear regression [8].

The Semiparametric Discriminant Analysis (SeDA) model, introduced by Lin and Jeon [20], assumes that there are \(K \) groups of \(p \)-dimensional observations \(x_{1}^{(1)}, \ldots, x_{n_{1}}^{(1)} \sim X^{(1)}, x_{1}^{(2)}, \ldots, x_{n_{2}}^{(2)} \sim X^{(2)}, \ldots, x_{1}^{(K)}, \ldots, x_{n_{K}}^{(K)} \sim X^{(K)} \), and there are some unknown strictly increasing functions \(f_{11}, \ldots, f_{1p}, \ldots, f_{K1}, \ldots, f_{Kp} \) such that

\[
f_{k}(X^{(k)}) = (f_{k1}(X_{1}^{(k)}), \ldots, f_{kp}(X_{p}^{(k)})) \sim N_{p}(\mu_{k}, \Sigma_{k}) \quad \text{for} \quad k = 1, \ldots, K.
\]

The linear SeDA model in the high-dimensional setting was recently studied by Han et al. [14] and Mai and Zou [22] under the assumption that \(\Sigma_{k} \)'s are all equal. By applying the LPD idea in Cai and Liu [6], consistent classification rules were proposed under this semiparametric linear discriminant analysis model.

The current paper presents a framework to extend the high-dimensional semiparametric LDA to high-dimensional semiparametric QDA. Estimating the mean vectors and covariance matrices similarly as in Han et al. [14], Mai and Zou [22] and then plugging these estimators in (3.2) and (3.3) would lead to a generalized classification rule under the semiparametric quadratic discriminant analysis model. We omit further detailed discussion for reasons of space.

7. Proofs. We present the proofs of Theorems 2.1, 2.2, 4.1, 4.2 in this section. The proof of Theorem 4.3 is similar to Theorems 2.1, 2.2, so we present its proof in the supplement.

7.1. Proof of Theorem 2.1 and 2.2. We prove Theorem 2.1 and 2.2 for the case where \(p \lesssim n \). In the case where \(\limsup_{n \to \infty} p/n = \infty \), the right hand side of Theorem 2.1 (and 2.2) is of constant order and we can consider only the first \(n \)-dimension of \(p \)-dimensional vector, and assume the rest is known.

We begin by collecting a few important technical lemmas that will be used in the proofs of the minimax lower bounds.

7.1.1. Technical lemmas.

Lemma 7.1 ([2]). For any \(\theta, \tilde{\theta} \in \Theta_{p}(s_{1}, s_{2}) \) and any classification rule \(\hat{G} \), recall that \(G_{\theta}^{*} \) is the optimal rule w.r.t. \(\theta \). If

\[
L_{\theta}(G_{\theta}^{*}) + L_{\theta}(\hat{G}) + \sqrt{\frac{KL(P_{\theta}, P_{\tilde{\theta}})}{2}} \leq 1/2,
\]

\[
L_{\theta}(G_{\theta}^{*}) + L_{\theta}(\hat{G}) + \sqrt{\frac{KL(P_{\theta}, P_{\tilde{\theta}})}{2}} \leq 1/2,
\]
then
\[L_\theta(G_\theta^*) - L_\theta(G) - \sqrt{\frac{KL(P_\theta, P_\hat{\theta})}{2}} \leq L_\theta(G) \leq L_\theta(G_\theta^*) + L_\theta(G) + \sqrt{\frac{KL(P_\theta, P_\hat{\theta})}{2}}, \]

where the KL divergence of two probability density functions \(P_\theta \) and \(P_{\theta_2} \) is defined by
\[KL(P_\theta, P_{\theta_2}) = \int P_{\theta_2}(x) \log \frac{P_{\theta_2}(x)}{P_\theta(x)} \, dz. \]

Lemma 7.2 (25). Let \(M \geq 0 \) and \(\theta_0, \theta_1, ..., \theta_M \in \Theta_p(s_1, s_2) \). For some constants \(\alpha \in (0, 1/8), \gamma > 0 \), and any classification rule \(G \), if \(KL(P_{\theta_1}, P_{\theta_2}) \leq \alpha \log M/n \) for all \(1 \leq i \leq M \), and \(L_{\theta_i}(G) < \gamma \) implies \(L_{\theta_j}(G) \geq \gamma \) for all \(0 \leq i \neq j \leq M \), then
\[\inf_{\theta} \sup_{G \in [M]} \mathbb{E}_{\theta}[L_{\theta_i}(G)] \gtrsim \gamma. \]

To use Fano’s type minimax lower bound, we need a covering number argument, provided by the following Lemma 7.3.

Lemma 7.3 (25). Define \(A_{p,s} = \{ u : u \in \{0, 1\}^p, \|u\|_0 = s \} \). If \(p \geq 4s \), then there exists a subset \(\{ u_0, u_1, ..., u_M \} \subset A_{p,s} \) such that \(u_0 = \{0, ..., 0\}^T \), \(\rho_H(u_i, u_j) \geq s/2 \) and \(\log(M+1) \geq \frac{s}{2} \log\left(\frac{p}{s}\right) \), where \(\rho_H \) denotes the Hamming distance.

7.1.2. Main proof of Theorem 2.1. At first we construct the following least favorable subset, which characterizes the difficulty of the general QDA problem. Let’s consider the parameter space
\[\Theta_1 = \{ \theta_u = (1/2, 1/2, \mu_1, \mu_2, I_p, I_p) : \mu_1 = \lambda_1 e_1 + \sum_{i=2}^{p} \frac{\lambda_2}{\sqrt{n}} \cdot u_i \cdot e_i, u \in A_{p,p/4}, \mu_2 = 0_p \}, \]
where \(A_{p,p/4} \) is defined in Lemma 7.3, and \(\lambda_1, \lambda_2 \) are of constant order and chosen later.

According to Lemma 7.3, there is a subset of \(\Theta_1 \) with logarithm cardinality being of order \(p \), such that for any \(\theta_u, \theta_u' \) in this subset, we have \(\rho_H(u, u') \geq p/8 \). We are going to apply Lemma 7.2 to this subset to complete the proof of Theorem 2.1.

For \(u \in A_{p,p/4} \), let \(\mu_u = \lambda_1 e_1 + \sum_{i=2}^{p} \frac{\lambda_2}{\sqrt{n}} \cdot u_i \cdot e_i \). Note that for two multivariate normal distributions \(P_{\theta_u} = N_p(\mu_u, I_p) \) and \(P_{\theta_u'} = N_p(\mu_u', I_p) \), the KL divergence between them are upper bounded by
\[KL(P_{\theta_u}, P_{\theta_u'}) = \frac{1}{2} \| \mu_u - \mu_u' \|_2^2 \leq \frac{\lambda_2^2 \cdot p}{4n}. \]
To use Lemma 7.2 to prove Theorem 2.1, we further need to show that for any \(\theta_u, \theta_u' \),
\[[R_\theta(G) - R_\theta(G_{\theta_u}^*)] + [R_\theta(G) - R_\theta(G_{\theta_u'}^*)] \gtrsim \frac{p}{n}. \]
By Lemma 4.1 and 7.1,
\[[R_\theta(G) - R_\theta(G_{\theta_u}^*)] + [R_\theta(G) - R_\theta(G_{\theta_{u'}}^*)] \]
\[\geq L_{\theta_u}^2(G) + L_{\theta_{u'}}^2(G) \geq \frac{1}{2}(L_{\theta_u}(G) + L_{\theta_{u'}}(G))^2 \geq \frac{1}{2}(L_{\theta_u}(G_{\theta_u}^*) - \sqrt{KL(P_{\theta_u}, P_{\theta_{u'}})})^2. \]

Since now that \(KL(P_{\theta_u}, P_{\theta_{u'}}) \leq \frac{\lambda^2 p}{4n} \), it’s then sufficient to show \(L_{\theta_u}(G_{\theta_u}^*) \geq c\sqrt{\frac{p}{n}} \) for some \(c > \frac{\lambda^2}{2n} \).

Without loss of generality, we assume that the coordinates of \(u \) and \(u' \) are ordered such that \(u_i = u_i' = 1 \) for \(i = 2, \ldots, m_1 \), \(u_i = 1 - u_i' = 1 \) for \(i = m_1 + 1, \ldots, m_2 \), \(u_i = 1 - u_i' = 0 \) for \(i = m_2 + 1, \ldots, m_3 \) and \(u_i = u_i' = 0 \) for \(i = m_3 + 1, \ldots, p \). We then have \(\rho_H(u, u') = m_3 - m_1 \geq \frac{p}{8} \).

Recall that when \(\Sigma_1 = \Sigma_2 = I_p \) and \(\mu_2 = 0_p \), the oracle rule is given by
\[G_{\theta}(z) = 1 + 1 \{ -\mu_1^T(z - \mu_1) > 0 \}. \]

Then
\[G_{\theta_u}^*(z) = 1 + 1 \{ -\lambda_2 \sqrt{n} \left(\sum_{i=2}^{m_1} z_i + \sum_{i=m_1+1}^{m_2} z_i \right) - \lambda_1 z_1 + \frac{1}{2} \lambda_1^2 + \frac{\lambda_2^2(p-1)}{8n} > 0 \}, \]
and
\[G_{\theta_{u'}}^*(z) = 1 + 1 \{ -\lambda_2 \sqrt{n} \left(\sum_{i=2}^{m_1} z_i + \sum_{i=m_1+1}^{m_2} z_i \right) - \lambda_1 z_1 + \frac{1}{2} \lambda_1^2 + \frac{\lambda_2^2(p-1)}{8n} > 0 \}. \]

Let \(Z_1 = -\lambda_1 z_1 - \frac{\lambda_2 \sqrt{n}}{\sqrt{2}} \sum_{i=2}^{m_1} z_i + \frac{1}{2} \lambda_1^2 + \frac{\lambda_2^2(p-1)}{8n} \), \(Z_2 = \frac{\lambda_2 \sqrt{n}}{\sqrt{2}} \sum_{i=m_1+1}^{m_2} z_i \) and \(Z_3 = \frac{\lambda_2 \sqrt{n}}{\sqrt{2}} \sum_{i=m_2+1}^{m_3} z_i \), then
\[G_{\theta_u}^*(z) = 1 + 1 \{ Z_1 - Z_2 > 0 \} \text{ and } G_{\theta_{u'}}^*(z) = 1 + 1 \{ Z_1 - Z_3 > 0 \}, \]
and therefore
\[L_{\theta_u}(G_{\theta_{u'}}^*) = P_{\theta_u}(G_{\theta_{u'}}^*(z) \neq G_{\theta_u}(z)) \]
\[= P_{\theta_u}(Z_2 \leq Z_1 \leq Z_3) + P_{\theta_u}(Z_3 \leq Z_1 \leq Z_2) \]
\[\geq P_{\theta_u}(Z_2 \leq Z_1 \leq Z_3) \]
\[= \frac{1}{2} P_{z \sim N_p(\mu_u, I_p)}(Z_2 \leq Z_1 \leq Z_3) + \frac{1}{2} P_{z \sim N_p(0_p, I_p)}(Z_2 \leq Z_1 \leq Z_3) \]
\[\geq \frac{1}{2} \Phi_{\lambda_1^2 + \lambda_2^2(p-1)/(4n)}(Z_2 \leq Z_1 \leq Z_3). \]

Then, since \(Z_1 \sim N \left(\frac{1}{2} \lambda_1^2 + \frac{\lambda_2^2(p-1)}{8n}, \lambda_1^2 + \frac{\lambda_2^2(p-1)}{4n} \right) \), the density of \(Z_1 \), \(f(z) \) satisfies,
\[f(z) \geq \frac{1}{\sqrt{2\pi(\lambda_1^2 + \lambda_2^2(p-1)/(4n))}} \exp\left(-\frac{(z - \lambda_1^2/2 - \lambda_2^2(p-1)/(8n))^2}{2(\lambda_1^2 + \lambda_2^2(p-1)/(4n))^2} \right), \]
leading to

\[f(z) \geq c_1(\lambda_1, \lambda_2), \text{ for } z \in [\sqrt{\frac{p}{n}} \lambda_2, \sqrt{\frac{p}{n}}] \]

for some constant \(c_1(\lambda_1, \lambda_2) = \frac{1}{\sqrt{2\pi(\lambda_1^2 + \lambda_2^2)}} \exp\left(-\frac{1}{2(\lambda_1^2 + \lambda_2^2)}\right) \).

In addition, since \(m_3 - m_1 \geq \left(\frac{p}{8}, \frac{p}{2} \right) \), \(Z_3 - Z_2 \) is normally distributed with mean 0 and variance of order \(\frac{p}{n} \), and therefore we claim that for some constant \(c_2 \),

\[E[(Z_3 - Z_2) \cdot \mathbb{1}\{-\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < Z_3 < \lambda_2 \sqrt{\frac{p}{n}}\}] \geq c_2 \lambda_2 \sqrt{\frac{p}{n}}. \]

In fact,

\begin{align*}
E[(Z_3 - Z_2) \cdot \mathbb{1}\{-\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < Z_3 < \lambda_2 \sqrt{\frac{p}{n}}\}] &
\geq E[(Z_3 - Z_2) \cdot \mathbb{1}\{-\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < \lambda_2 \sqrt{\frac{m_2 - m_1}{n}}\} \cdot \mathbb{1}\{-\lambda_2 \sqrt{\frac{m_3 - m_2}{n}} < Z_3 < \lambda_2 \sqrt{\frac{p}{n}}\}] \\
& \geq \lambda_2 \sqrt{\frac{p}{8n}} \cdot \mathbb{P}(-\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < \lambda_2 \sqrt{\frac{m_2 - m_1}{n}}) \cdot \mathbb{P}(\lambda_2 \sqrt{\frac{m_3 - m_2}{n}} < Z_3 < \lambda_2 \sqrt{\frac{p}{n}}) \\
& \geq \lambda_2 \sqrt{\frac{p}{8n}} \cdot \mathbb{P}(Z \sim \mathcal{N}(0,1))(-\sqrt{\frac{p}{m_2 - m_1}} < Z < \frac{1}{2}) \cdot \mathbb{P}(Z \sim \mathcal{N}(0,1))\left(\frac{1}{2} < Z < \sqrt{\frac{p}{m_2 - m_3}}\right) := c_2 \lambda_2 \sqrt{\frac{p}{n}},
\end{align*}

where \(c_2 = \sqrt{\frac{1}{8}} \mathbb{P}(Z \sim \mathcal{N}(0,1))(-\sqrt{\frac{p}{m_2 - m_1}} < Z < \frac{1}{2}) \cdot \mathbb{P}(Z \sim \mathcal{N}(0,1))\left(\frac{1}{2} < Z < \sqrt{\frac{p}{m_3 - m_2}}\right) \) is of constant order and the inequality above uses \(\sqrt{m_2 - m_1} + \sqrt{m_3 - m_2} \geq \sqrt{m_3 - m_1} \geq \sqrt{p/8}, m_2 - m_1, m_3 - m_2 \leq m_3 - m_1 \leq p/2 \).

Then we have

\begin{align*}
P_{Z \sim \mathcal{N}(0, I_p)}(Z_2 \leq Z_1 \leq Z_3) & \geq P_{Z \sim \mathcal{N}(0, I_p)}(Z_2 \leq Z_1 \leq Z_3, -\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < Z_3 < \lambda_2 \sqrt{\frac{p}{n}}) \\
= E_{Z_1} \left[\int_{Z_2}^{Z_3} f(z) \, dz_1 \cdot \mathbb{1}\{-\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < Z_3 < \lambda_2 \sqrt{\frac{p}{n}}\} \right] \\
\geq c_1(\lambda_1, \lambda_2) \cdot E_{Z_2}[\{Z_3 - Z_2\} \cdot \mathbb{1}\{-\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < Z_3 < \lambda_2 \sqrt{\frac{p}{n}}\}] \\
\geq c_1(\lambda_1, \lambda_2) \cdot c_2 \lambda_2 \cdot \sqrt{\frac{p}{n}},
\end{align*}

Since \(p \leq \frac{n}{2} \), we have \(c_1(\lambda_1, \lambda_2) \rightarrow \infty \) when \(\lambda_1, \lambda_2 \rightarrow 0 \). Therefore, we can choose \(\lambda_1, \lambda_2 \) to be sufficiently small such that \(c_1(\lambda_1, \lambda_2) \cdot \lambda_2 \geq \frac{\lambda_2}{2\sqrt{2}} \sqrt{\frac{p}{n}} \). This completes the proof.
7.1.3. Proof of Theorem 2.2. At first we construct the following least favorable subset, which characterizes the difficulty of the general QDA problem. For simplicity of notation, we use the letters \(\lambda_1, \lambda_2 \) in this section, whose values are different from those in Section 7.1.2.

Since the KL-divergence and \(\ell_2 \) norm are invariant to translations and orthogonal transformations, without loss of generality, we assume that \(\mu_1^* = -\mu_2^* = \lambda_1 e_1 + \hat{\lambda}_1 e_2 \) for some constants \(\lambda_1, \hat{\lambda}_1 > 0 \) whose values are determined later, with \(2\sqrt{\lambda_1^2 + \hat{\lambda}_1^2} = \|\mu_1^* - \mu_2^*\|_2 \). In addition, we assume that \(p/4 \) is an integer.

Now let’s consider

\[
\Theta_2 = \{ \theta_u = (1/2, 1/2, \lambda_1 e_1 + \hat{\lambda}_1 e_2, -\lambda_1 e_1 - \hat{\lambda}_1 e_2, \Sigma_1^u, \Sigma_2) : \Sigma_1^u = (I_p + \hat{\lambda}_2 E_{2,2} + \frac{\lambda_2}{\sqrt{n}} \sum_{i=3}^{p/2} u_i E_{i,i})^{-1}, u \in A_{p,p/4}, \Sigma_2 = I_p + \hat{\lambda}_2 E_{2,2}, \}
\]

where \(A_{p,p/4} \) is defined in Lemma 7.3.

According to Lemma 7.3, there is a subset of \(\Theta_1 \) with logarithm cardinality being of order \(p \), such that for any \(\theta_u, \theta_{u'} \) in this subset, we have \(\rho_H(u, u') \geq p/8 \). We are going to apply Lemma 7.2 to this subset to complete the proof of Theorem 2.2.

At first we note that for two multivariate normal distribution \(N_p(\mu_1^*, \Sigma_1^u) \) and \(N_p(\mu_1^*, \Sigma_1^{u'}) \), using the fact that \(\log(1 + x) \sim x - x^2/2 + o(x^2) \) for \(x = o(1) \), the KL divergence between them are upper bounded by

\[
KL = \frac{1}{2} \left[\log \frac{|\Sigma_1^{u'}|}{|\Sigma_1^u|} - p + \text{tr}\left((\Sigma_1^{u'})^{-1}\Sigma_1^u\right) \right]
\]

\[
= \frac{1}{2} \left[\sum_{i=3}^{p} \log \left(\frac{1 + \frac{\lambda_2}{\sqrt{n}} u_i'}{1 + \frac{\lambda_2}{\sqrt{n}} u_i} \right) - \rho_H(u, u') + \sum_{i=3}^{p} \log \left(1 + \frac{\lambda_2}{\sqrt{n}} u_i' \right) \right]
\]

\[
= \frac{1}{2} \left[- \sum_{i=3}^{p} \log \left(1 + \frac{\lambda_2}{\sqrt{n}} u_i' \right) + \sum_{i=3}^{p} \frac{\lambda_2}{\sqrt{n}} (u_i - u_i') \right]
\]

\[
= \frac{1}{4} \sum_{i=3}^{p} \frac{1}{n} (u_i - u_i')^2 + o\left(\frac{p}{n} \right) \leq \frac{\lambda_2^2 p}{16n} + o\left(\frac{p}{n} \right) \leq \frac{\lambda_2^2 p}{8n}.
\]

Therefore we have \(KL(\mathbb{P}_{\theta_u}, \mathbb{P}_{\theta_{u'}}) \leq \frac{\lambda_2^2 p}{8n} \). To use Lemma 7.2 to prove Theorem 2.2, we further need to show that for any \(\theta_u, \theta_{u'} \),

\[
[R_{\theta}(G) - R_{\theta}(G_{\theta_u}^*)] + [R_{\theta}(G) - R_{\theta}(G_{\theta_{u'}}^*)] \geq \frac{p}{n}.
\]

By Lemma 4.1 and 7.1,

\[
[R_{\theta}(G) - R_{\theta}(G_{\theta_u}^*)] + [R_{\theta}(G) - R_{\theta}(G_{\theta_{u'}}^*)] \geq L_{\theta_u}^2(\hat{G}) + L_{\theta_{u'}}^2(\hat{G}) \geq \frac{1}{2} (L_{\theta_u}(G) + L_{\theta_{u'}}(G))^2 \geq \frac{1}{2} (L_{\theta_u}(G_{\theta_u}^*) - \sqrt{KL(\mathbb{P}_{\theta_u}, \mathbb{P}_{\theta_{u'}})})^2.
\]
Since now that $KL(P_{\theta_u}, P_{\theta_{u'}}) \leq \lambda_2^2 \frac{p}{2n}$, it’s then sufficient to show $L_{\theta_u}(G_{\theta_{u'}}) \geq c\sqrt{\frac{p}{n}}$ for some $c > \lambda_2/4$.

Recall that

$$G_{\theta_u}(z) = 1 \{ (z - \mu_1)^T D(z - \mu_1) - 2\delta^T \Omega_2 (z - \mu_1) + \delta^T \Omega_2 \delta - \log\left(\frac{|\Sigma_1|}{|\Sigma_2|}\right) > 0 \},$$

where $\delta = \mu_2 - \mu_1$, $D = \Omega_2 - \Omega_1$.

Without loss of generality, we assume that $u_i = u_i' = 1$ when $i = 3, \ldots, m_1$, $u_i = 1 - u_i'$ = 1 when $i = m_1 + 1, \ldots, m_2$, $u_i = 1 - u_i'$ = 0 when $i = m_2 + 1, \ldots, m_3$ and $u_i = u_i' = 0$ when $i = m_3 + 1, \ldots, p$.

Then with a little abuse of notation, we have $z \sim \frac{1}{2} N_p(\mu_1, \Sigma_1) + \frac{1}{2} N_p(\mu_2, \Sigma_2)$ with $\mu_1 - \mu_2 = \lambda_1 e_1 + \lambda_2 e_2$. Using the fact that $\log(1 + \frac{\lambda_1}{\sqrt{n}}) = \frac{\lambda_1}{\sqrt{n}} - \frac{\lambda_1^2}{2n} + o\left(\frac{1}{n}\right)$, we have

$$G_{\theta_u}(z) = 1 + \mathbb{P}_{\theta_u} \left(\frac{\lambda_2}{\sqrt{n}} \left(\sum_{i=3}^{m_1} (z_i^2 - 1) + \sum_{i=m_1+1}^{m_2} (z_i^2 - 1) \right) + 4\lambda_1 z_1 + 4 \frac{\lambda_1}{1 + \lambda_2} z_2 + \frac{p}{8n} + o\left(\frac{p}{n}\right) > 0 \right),$$

and

$$G_{\theta_{u'}}(z) = 1 + \mathbb{P}_{\theta_{u'}} \left(\frac{\lambda_2}{\sqrt{n}} \left(\sum_{i=3}^{m_1} (z_i^2 - 1) + \sum_{i=m_1+1}^{m_2} (z_i^2 - 1) \right) + 4\lambda_1 z_1 + 4 \frac{\lambda_1}{1 + \lambda_2} z_2 + \frac{p}{8n} + o\left(\frac{p}{n}\right) > 0 \right).$$

Let $Z_1 = -(4\lambda_1 z_1 + 4 \frac{\lambda_1}{1 + \lambda_2} z_2 + \frac{\lambda_2}{\sqrt{n}} \sum_{i=3}^{m_1} (z_i^2 - 1) + \frac{p}{8n})$, $Z_2 = \frac{\lambda_2}{\sqrt{n}} \sum_{i=m_1+1}^{m_2} (z_i^2 - 1)$, $Z_3 = \frac{\lambda_2}{\sqrt{n}} \sum_{i=m_2+1}^{m_3} (z_i^2 - 1)$, then

$$G_{\theta_u}(z) = 1 \{ -Z_1 + Z_2 + o(\frac{p}{n}) > 0 \} \text{ and } G_{\theta_{u'}}(z) = 1 \{ -Z_1 + Z_3 + o(\frac{p}{n}) > 0 \},$$

and

$$L_{\theta_u}(G_{\theta_{u'}}) = \mathbb{P}_{\theta_u}(G_{\theta_{u'}}(z) \neq G_{\theta_u}(z)) \geq \frac{1}{2} \mathbb{P}_{z \sim N_p(\mu_1, \Sigma_1)} \left(Z_2 + o(\frac{p}{n}) \leq Z_1 \leq Z_3 + o(\frac{p}{n}) \right)$$

$$+ \frac{1}{2} \mathbb{P}_{z \sim N_p(\mu_2, \Sigma_2)} \left(Z_3 + o(\frac{p}{n}) \leq Z_1 \leq Z_2 + o(\frac{p}{n}) \right)$$

$$\geq \frac{1}{2} \mathbb{P}_{z \sim N_p(\mu_1, \Sigma_2)} (Z_2 \leq Z_1 \leq Z_3) + o(\frac{p}{n}).$$

By central limit theorem, $\frac{\lambda_2}{\sqrt{m_3 - m_1}} Z_2, \frac{\lambda_2}{\sqrt{m_3 - m_2}} Z_3$ converges to the standard normal distribution $N(0, 1)$. Since $m_3 - m_2 = \rho_H(u, u') \geq p/8$, and $\lim \sup_{n, p \to \infty} \frac{p}{n} \leq C_1$, similar as the derivation in Section 7.1.2, there
exists a constant c_2, such that n, p are sufficiently large,

$$
E[(Z_3 - Z_2) \cdot 1 \{ -\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < Z_3 < \lambda_2 \sqrt{\frac{p}{n}} \}]
$$

$$
\geq E[(Z_3 - Z_2) \cdot 1 \{ -\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < -\frac{\lambda_2}{2} \sqrt{\frac{p}{n}}, \lambda_2 \sqrt{\frac{p}{n}} < Z_3 < \lambda_2 \sqrt{\frac{p}{n}} \}]
$$

$$
\geq \lambda_2 \sqrt{\frac{p}{n}} \cdot P(-\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < -\frac{\lambda_2}{2} \sqrt{\frac{m_2 - m_1}{n}}) \cdot P(\frac{\lambda_2}{2} \sqrt{\frac{m_3 - m_1}{n}} < Z_3 < \lambda_2 \sqrt{\frac{p}{n}})
$$

$$
\geq \lambda_2 \sqrt{\frac{p}{n}} \cdot P_{Z \sim N(0,1)}(-\sqrt{\frac{p}{m_2 - m_1}} < Z < -\frac{1}{2}) \cdot P_{Z \sim N(0,1)}(\frac{1}{2} < Z < \sqrt{\frac{p}{m_3 - m_2}})
$$

$$
\geq \lambda_2 \sqrt{\frac{p}{n}} \cdot P_{Z \sim N(0,1)}(-\sqrt{2} < Z < -\frac{1}{2}) \cdot P_{Z \sim N(0,1)}(\frac{1}{2} < Z < \sqrt{2}) \geq c_2 \lambda_2 \sqrt{\frac{p}{n}}.
$$

Similar to that in Section 7.1.2, let’s denote the probability density function of Z_1 by f. Use central limit theorem again, when $z \sim N_p(\mu_1, \Sigma_2)$, $p \leq n$, and n, p are sufficiently large, $Z_1 \approx N(-4\lambda_1^2 + \frac{4\lambda_1^2}{1+\lambda_2} + \frac{\lambda_1^2}{8n}, \lambda_2^2 + \frac{\lambda_1^2}{1+\lambda_2} + \frac{2(m_1-2)\lambda_1^2}{n})$ if $m_1 \to \infty$. Therefore, there exists constant $c_1(\lambda_1, \tilde{\lambda}_1, \lambda_2, \tilde{\lambda}_2)$, such that $\inf_{|x| < \lambda_2 \sqrt{p/n}} f(x) > c_1(\lambda_1, \tilde{\lambda}_1, \lambda_2, \tilde{\lambda}_2)$, and $c_1(\lambda_1, \tilde{\lambda}_1, \lambda_2, \tilde{\lambda}_2)$ goes to infinity when $\lambda_1, \lambda_2 \to 0, \tilde{\lambda}_2 \to \infty$, and $\tilde{\lambda}_1$ is chosen such that $\sqrt{\lambda_1^2 + \tilde{\lambda}_1^2} = \|\mu_1 - \mu_2\|_2/2$.

$$
P_{z \sim N_p(\mu_1, \Sigma_2)}(Z_2 \leq Z_1 \leq Z_3) \geq P_{z \sim N_p(\mu_1, \Sigma_2)}(Z_2 \leq Z_1 \leq Z_3, -\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < Z_3 < \lambda_2 \sqrt{\frac{p}{n}})
$$

$$
= \mathbb{E}_{Z_2} \left[\int_{Z_2}^{Z_3} f(z_1) \, dz_1 \cdot 1 \{ -\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < Z_3 < \lambda_2 \sqrt{\frac{p}{n}} \} \right]
$$

$$
\geq c_1(\lambda_1, \tilde{\lambda}_1, \lambda_2, \tilde{\lambda}_2) \cdot \mathbb{E}_{Z_2}[(Z_3 - Z_2) \cdot 1 \{ -\lambda_2 \sqrt{\frac{p}{n}} < Z_2 < Z_3 < \lambda_2 \sqrt{\frac{p}{n}} \}]
$$

$$
\geq c_1(\lambda_1, \tilde{\lambda}_1, \lambda_2, \tilde{\lambda}_2) c_2 \lambda_2 \cdot \sqrt{\frac{p}{n}}.
$$

Therefore, by choosing sufficiently small λ_1, λ_2 and large $\tilde{\lambda}_2$ (doesn’t depend on n, p), we have $c_2 c_1(\lambda_1, \tilde{\lambda}_1, \lambda_2, \tilde{\lambda}_2) \cdot \lambda_2 \sqrt{\frac{p}{n}} \geq \frac{\lambda_2}{4} \sqrt{\frac{E}{n}}$. \square

7.2. Proof of the Theorem 4.1
To prove Theorem 4.1 we begin by collecting a few important technical lemmas that will be used in the main proofs.

7.2.1. Auxiliary Lemmas

Lemma 7.4. Suppose $X_1, ..., X_n$ i.i.d. $\sim N_p(\mu, \Sigma)$, and assume that $\hat{\mu}, \hat{\Sigma}$ are the sample mean and sample covariance matrix respectively. Let $\Gamma(s; p) = \{ u \in \mathbb{R}^p : \|u\|_2 = 1, \|u_{Sc}\|_1 \leq \|u_S\|_1, \text{ for some } S \subset [p] \text{ with } |S| = s \}$, then
with probability at least \(1 - p^{-1}\),

\[
\sup_{\mathbf{u} \in \Gamma(s;p)} \mathbf{u}^\top (\hat{\mathbf{\mu}} - \mathbf{\mu}) \lesssim \sqrt{\frac{s \log p}{n}};
\]

\[
\sup_{\mathbf{u}, \mathbf{v} \in \Gamma(s;p)} \mathbf{u}^\top (\hat{\Sigma} - \Sigma) \mathbf{v} \lesssim \sqrt{\frac{s \log p}{n}}; \quad \sup_{\mathbf{a} \in \Gamma(s;p^2)} \mathbf{a}^\top \text{vec}(\hat{\Sigma} - \Sigma) \lesssim \sqrt{\frac{s \log p}{n}}.
\]

Lemma 7.5. Suppose \(X_1, \ldots, X_n\) i.i.d. \(\sim N_p(\mathbf{\mu}_1, \Sigma_1)\), \(Y_1, \ldots, Y_{n_2}\) i.i.d. \(\sim N_p(\mathbf{\mu}_2, \Sigma_2)\), \(n = \min(n_1, n_2)\) and assume that \(\hat{\mathbf{\mu}}_1, \hat{\mathbf{\mu}}_2, \hat{\Sigma}_1, \hat{\Sigma}_2\) are the sample means and sample covariance matrices. Denote \(V = \frac{1}{2} \Sigma_1 \otimes \Sigma_2 + \frac{1}{2} \Sigma_2 \otimes \Sigma_1\) and \(\tilde{V} = \frac{1}{2} \hat{\Sigma}_1 \otimes \hat{\Sigma}_2 + \frac{1}{2} \hat{\Sigma}_2 \otimes \hat{\Sigma}_1\). Assume that \(\mathbf{\beta} = \Omega_2(\mathbf{\mu}_2 - \mathbf{\mu}_1)\) and vec(D) has bounded \(\ell_2\) norm, then with probability at least \(1 - p^{-1}\),

\[
\|\hat{\mathbf{\mu}}_k - \mathbf{\mu}_k\|_\infty \lesssim \sqrt{\frac{\log p}{n}}, \quad \|\hat{\Sigma}_k - \Sigma_k\|_\infty \lesssim \sqrt{\frac{\log p}{n}}, \quad k = 1, 2;
\]

\[
\|\text{vec}(\hat{\Sigma} - \Sigma)\|_\infty \lesssim \sqrt{\frac{\log p}{n}}; \quad \|\tilde{V} - V\|_{\text{vec}(D)} \lesssim \sqrt{\frac{\log p}{n}}.
\]

Lemma 7.6. Suppose \(x, y \in \mathbb{R}^p\). Let \(h = x - y\). Denote \(S = \text{supp}(y)\) and \(s = |S|\). If \(\|x\|_1 \leq \|y\|_1\), then \(h \in \Gamma(s;p)\), that is,

\[
\|h_S\|_1 \leq \|h_{\bar{S}}\|_1.
\]

Lemma 7.7. For any two matrices \(A, B \in \mathbb{R}^{p \times p}\) with non-negative eigenvalues,

\[
|\log |A| - \log |B|| \leq \max\{|\text{tr}(B^{-1}(A - B))|, |\text{tr}(A^{-1}(B - A))|\}.
\]

7.2.2. Main proofs. We prove the consistency of estimation of \(D\) first. The consistency of estimating \(\mathbf{\beta}\) can be derived similarly.

Recall that

\[
(7.1) \quad \hat{D} = \arg \min_{D \in \mathbb{R}^{p \times p}} \left\{|D|_1 : \|\frac{1}{2} \Sigma_1 \otimes \hat{\Sigma}_2 + \frac{1}{2} \hat{\Sigma}_2 \otimes \Sigma_1\|_\infty \leq \lambda_{1,n} \right\}.
\]

By Lemma 7.5, \(D\) is a feasible solution to (7.1) with \(\lambda_{1,n} = c_1 \sqrt{\frac{\log p}{n}}\) when \(c_1\) is a sufficiently large constant. Then using Lemma 7.6, we have vec(D - \(\hat{D}\)) \(\in \Gamma(s_1;p^2)\).

Denote \(V = \frac{1}{2} \Sigma_1 \otimes \Sigma_2 + \frac{1}{2} \Sigma_2 \otimes \Sigma_1\), \(\mathbf{v}_\Sigma = \text{vec}(\Sigma_1) - \text{vec}(\Sigma_2)\) and \(\tilde{V} = \frac{1}{2} \hat{\Sigma}_1 \otimes \hat{\Sigma}_2 + \frac{1}{2} \hat{\Sigma}_2 \otimes \hat{\Sigma}_1\), \(\tilde{\mathbf{v}}_\Sigma = \text{vec}(\hat{\Sigma}_1) - \text{vec}(\hat{\Sigma}_2)\).

We have

\[
V \text{vec}(D) = (\frac{1}{2} \Sigma_1 \otimes \Sigma_2 + \frac{1}{2} \Sigma_2 \otimes \Sigma_1) \text{vec}(D) = \text{vec}(\frac{1}{2} \Sigma_1 D \Sigma_2 + \frac{1}{2} \Sigma_2 D \Sigma_1) = \text{vec}(\Sigma_1 - \Sigma_2) = \mathbf{v}_\Sigma.
\]
In addition, over the parameter space $\Theta_p(s_1, s_2)$,
\[\| V^{-1} \|_2 = \| \Omega_1 \otimes \Omega_2 \|_2 = \| \Omega_1 \|_2 \cdot \| \Omega_2 \|_2 \leq M_1^2, \]
which is followed by $\lambda_{\min}(V) \geq M_1^{-2}$.

As a consequence, by Lemma 7.4, with probability at least $1 - 3p^{-1}$,
\[
(7.2)
\]
where $\| \vec{D} - \vec{D}(\rho) \|_2 \cdot \| \hat{V} \vec{D} - \hat{v}_\Sigma \|_\infty$
\[+ \| \vec{D} - \vec{D}(\rho) \|_2 \cdot \sqrt{s_1 \log p n} \cdot \| \vec{D} - \hat{D} \|_2 \]
\[+ \| \vec{D} - \vec{D}(\rho) \|_2 \sqrt{s_1 \log p n} \cdot \| \vec{D} - \hat{D} \|_2 \sqrt{s_1 \log p n}. \]

In addition, since $\| (\vec{D} - \vec{D}(\rho)) \|_2 \cdot \| \hat{V} (\vec{D} - \vec{D}(\rho)) \|_2 \geq \lambda_{\min}(V) \| \vec{D} - \vec{D}(\rho) \|_2^2 \geq M_1^{-2} \| \vec{D} - \vec{D}(\rho) \|_2^2$, we then have
\[\| D - \hat{D} \|_F = \| \vec{D} - \vec{D}(\rho) \|_2 \sim \sqrt{s_1 \log p n}. \]

The estimation error of β can be derived similarly. By Lemma 7.5, β is a feasible solution to (3.3) with $\lambda_{2,n} = c_2 \sqrt{\log p n}$ when c_2 is sufficiently large.

Then using Lemma 7.6, we have $\beta - \hat{\beta} \in \Gamma(s_2; p)$.

Then with probability at least $1 - 3p^{-1}$,
\[
(7.3)
\]
\[\| \hat{\beta} - \beta \|_2 \cdot \| \hat{\Sigma}_2 \hat{\beta} - \hat{\delta} \|_\infty + \| \hat{\beta} - \beta \|_2 \cdot \sqrt{s_2 \log p n} \cdot \| \beta - \hat{\beta} \|_2 \]
\[+ \| \beta - \hat{\beta} \|_2 \sqrt{s_2 \log p n} \cdot \| \beta \|_2 + \| \beta - \hat{\beta} \|_2 \sqrt{s_2 \log p n}. \]

Similarly, since $\lambda_{\min}(\Sigma_2) \geq M_1^{-1}$, we have with probability at least $1 - p^{-1}$,
\[\| \beta - \hat{\beta} \|_2 \sim \sqrt{s_2 \log p n}. \]

7.3. Proof of Theorem 4.2. We note here that the notation c,C denote generic constants and their values might vary line by line. Recall that the QDA rule is
\[1 + 1 \{ (z - \mu_1)^T D(z - \mu_1) - 2\beta^T (z - \mu) - \log(|D\Sigma_1 + I_p|) + 2 \log\frac{\pi_1}{\pi_2} > 0 \}. \]
Let $\tilde{\mu} = (\mu_1 + \mu_2)/2$, $Q(z) = (z - \mu_1)^T D(z - \mu_1) - 2\beta^T (z - \tilde{\mu}) - \log((|D \Sigma_1 + I_p|) + 2 \log(\frac{2n}{\pi})$, $\hat{Q}(z) = (z - \hat{\mu}_1)^T \hat{D}(z - \hat{\mu}_1) - 2\beta^T (z - \hat{\mu}_1 + \hat{\mu}_2) - \log((|\hat{D} \Sigma_1 + I_p|) + 2 \log(\frac{2n}{\pi})$, and $M(z) = Q(z) - \hat{Q}(z)$, we are going to show that there exist some constants $c, C > 0$, such that for any $M > 0$,

$$\mathbb{P}_{z \sim N_p(\mu_1, \Sigma_1)} \left(|M(z)| > M \sqrt{\frac{(s_1 + s_2) \log p}{n}} \right) \leq e^{-cM} + Cp^{-1},$$

note that the above probability is taken with respect to the random samples $X_1, ..., X_n$ i.i.d. $\sim N_p(\mu_1, \Sigma_1)$, $Y_1, ..., Y_n$ i.i.d. $\sim N_p(\mu_2, \Sigma_2)$, and $z \sim N_p(\mu_1, \Sigma_1)$. We will later see how we reduce the mixed distribution of the test sample to the single distribution when we calculate the classification error.

Rewrite the QDA rule as

$$1 \{(z - \mu_1)^T D(z - \mu_1) - 2\beta^T (z - \mu_1) - \log(|D \Sigma_1 + I_p|) + 2 \log(\frac{\pi_1}{\pi_2}) > 0\}. $$

We firstly bound the estimation error of the constant term $\beta^T (\mu_2 - \mu_1)$. We have with probability at least $1 - p^{-1}$,

$$|\beta^T (\mu_2 - \mu_1) - \hat{\beta}^T (\mu_2 - \hat{\mu}_1)| \leq |\hat{\beta}^T (\mu_2 - \mu_1 - \hat{\mu}_2 + \hat{\mu}_1)| + ||\hat{\beta} - \beta||_2 ||\mu_2 - \mu_1||_2$$

$$\leq ||\hat{\beta}||_1 \cdot ||\mu_2 - \mu_1 - \hat{\mu}_2 + \hat{\mu}_1||_\infty + ||\hat{\beta} - \beta||_2 ||\mu_2 - \mu_1||_2$$

$$\leq ||\hat{\beta}||_1 \cdot ||\mu_2 - \mu_1 - \hat{\mu}_2 + \hat{\mu}_1||_\infty + ||\hat{\beta} - \beta||_2 ||\mu_2 - \mu_1||_2$$

$$\leq s_2 \cdot ||\mu_2 - \mu_1 - \hat{\mu}_2 + \hat{\mu}_1||_\infty + ||\hat{\beta} - \beta||_2 ||\mu_2 - \mu_1||_2 \leq \sqrt{s_2 \log p} \frac{n}{s_2}. $$

For $\log |D \Sigma_1 + I_p|$, notice that $D \Sigma_1 + I_p = \Omega \Sigma_1$ and the product of two positive semidefinite and symmetric matrices has non-negative eigenvalues, followed by $(D \Sigma_1 + I_p)^{-1} = \Omega_1 \Sigma_2 = (\Omega_2 - D) \Sigma_2 = I_p - D \Sigma_2$, then

$$\log |D \Sigma_1 + I_p| = \log \det(D \Sigma_1 + I_p) \leq \text{tr}((D \Sigma_1 + I_p)^{-1} (D \Sigma_1 - D \Sigma_1))$$

$$= \text{tr}((D \Sigma_1^2 + I_p) (D \Sigma_1 - D \Sigma_1))$$

$$= \text{tr}(D \Sigma_2^2) \frac{n}{s_1} \cdot \frac{n}{s_1} \text{tr}(D \Sigma_1 - D \Sigma_1)$$

$$\leq ||D \Sigma_2||_F \cdot ||D \Sigma_1 - D \Sigma_1||_F + \text{tr}(D \Sigma_1 - D \Sigma_1)$$

$$\leq ||D \Sigma_1 - D \Sigma_1||_F + \text{tr}(D \Sigma_1 - D \Sigma_1)$$

$$(7.4)$$

$$\leq ||D \Sigma_1 - D \Sigma_1||_F + \text{tr}(D \Sigma_1 - D \Sigma_1) + \text{tr}(D \Sigma_1 - D \Sigma_1).$$

In addition, with probability at least $1 - p^{-1}$,

$$||D \Sigma_1 - D \Sigma_1||_F \leq ||D \Sigma_1 - D \Sigma_1||_F + ||D \Sigma_1 - \hat{D} \Sigma_1||_F$$

$$\leq ||\Sigma_1||_2 ||D - \hat{D}||_F + ||\Sigma_1 - \hat{\Sigma}_1||_2 s_1 ||\hat{D}||_F$$

$$\leq \sqrt{s_1 \log p} \frac{n}{n} + ||\Sigma_1 - \hat{\Sigma}_1||_2 s_1 (||D||_F + \sqrt{s_1 \log p} \frac{n}{n})$$

$$\leq \sqrt{s_1 \log p} \frac{n}{n} + \sqrt{s_1 \log p} \frac{n}{n} (||D||_F + \sqrt{s_1 \log p} \frac{n}{n}) \leq \sqrt{s_1 \log p} \frac{n}{n},$$

$$\text{SPARSE QDA}$$
where \(\|\Sigma_1 - \hat{\Sigma}_1\|_{2,s_1} \) is defined as
\[
\|\Sigma_1 - \hat{\Sigma}_1\|_{2,s_1} := \sup_{\|u\|_0 \leq s_1, \|u\|_2 = 1} \| (\Sigma_1 - \hat{\Sigma}_1) u \|_2 \lesssim \sqrt{\frac{s_1 \log p}{n}},
\]
where the last inequality is similarly proved as Lemma 7.4, by using the packing number argument.

In addition, with probability at least \(1 - p^{-1} \),
\[
|\text{tr}(\hat{D}\Sigma_1 - \hat{D}\hat{\Sigma}_1)| \leq \sqrt{s_1} \|\Sigma_1 - \hat{\Sigma}_1\|_\infty \|\hat{D}\|_F \lesssim \sqrt{\frac{s_1 \log p}{n}}.
\]

There is still a remaining term \(\text{tr}(D\Sigma_1 - \hat{D}\Sigma_1) \) in (7.4), we will leave it there and use it when we derive the distribution of the term involving \(z \).

The other direction, the upper bound of \(\text{tr}(D\Sigma_1 - \hat{D}\Sigma_1) - (\log |D\Sigma_1 + I_p| - \log |\hat{D}\hat{\Sigma}_1 + I_p|) \), can be derived similarly. Therefore by symmetry, we have with probability at least \(1 - p^{-1} \)
\[
\left| (\log |D\Sigma_1 + I_p| - \log |\hat{D}\hat{\Sigma}_1 + I_p|) - (\text{tr}(D\Sigma_1 - \hat{D}\Sigma_1)) \right| \lesssim \sqrt{\frac{s_1 \log p}{n}}.
\]

For the term involving \(z \), when \(z \sim N_p(\mu_1, \Sigma_1) \), we have
\[
(z - \mu_1)^\top (D(z - \mu_1) - (z - \mu_1)^\top \hat{D}(z - \mu_1) - (\text{tr}(D\Sigma_1 - \hat{D}\Sigma_1)))
= (z - \mu_1)^\top (\hat{D} - D)(z - \mu_1) - (\text{tr}(D\Sigma_1 - \hat{D}\Sigma_1))
\]
\[
= z_0^\top \Sigma_1^{1/2}(\hat{D} - D) \Sigma_1^{1/2} z_0 - \text{tr}(\Sigma_1^{1/2}(\hat{D} - D) \Sigma_1^{1/2}) \overset{d}{=} \sum_{i=1}^p \lambda_i(z_{0i}^2 - 1),
\]
where \(\lambda_i \)'s are the eigenvalues of \(\Sigma_1^{1/2}(\hat{D} - D) \Sigma_1^{1/2} \).

Since with probability at least \(1 - p^{-1} \),
\[
\sqrt{\sum_{i=1}^p \lambda_i^2} = \|\Sigma_1^{1/2}(\hat{D} - D) \Sigma_1^{1/2}\|_F \leq \|\Sigma_1\|_2 \|\hat{D} - D\|_F \lesssim \sqrt{\frac{s_1 \log p}{n}},
\]
and with probability at least \(1 - p^{-1} \),
\[
\max_i |\lambda_i| \leq \|\Sigma_1^{1/2}(\hat{D} - D) \Sigma_1^{1/2}\|_2 \leq \|\Sigma_1\|_2 \|\hat{D} - D\|_2 \lesssim \sqrt{\frac{s_1 \log p}{n}},
\]
by Bernstein type inequality for sub-exponential random variables, see Vershynin (2011), we have for some \(\tilde{c}_1 > 0 \),
\[
\mathbb{P}(\sum_{i=1}^p \lambda_i(z_{0i}^2 - 1) \geq t) \leq 2 \exp\left\{ -\tilde{c}_1 \min\left\{ \frac{t^2}{s_1 \log p/n}, \frac{t}{\sqrt{s_1 \log p/n}} \right\} \right\},
\]
which implies that for some \(c_1 > 0 \),
\[
\mathbb{P}(\sum_{i=1}^p \lambda_i(z_{0i}^2 - 1) \geq M \sqrt{\frac{s_1 \log p}{n}}) \leq e^{-c_1 M} + C p^{-1}.
\]
For \((\hat{\beta} - \beta)^\top z\), when \(z \sim N_p(\mu_1, \Sigma_1)\), we have
\[
(\hat{\beta} - \beta)^\top z \sim N((\hat{\beta} - \beta)^\top \mu_1, (\hat{\beta} - \beta)^\top \Sigma_1(\hat{\beta} - \beta)).
\]
Since with probability at least \(1 - p^{-1}\),
\[
| (\hat{\beta} - \beta)^\top \mu_1 | \leq \| \hat{\beta} - \beta \|_2 \cdot \| \mu_1 \|_2 \lesssim \frac{s_2 \log p}{n},
\]
and with probability at least \(1 - p^{-1}\),
\[
| (\hat{\beta} - \beta)^\top \Sigma_1(\hat{\beta} - \beta) | \leq \| \Sigma_1 \|_2 \cdot \| \hat{\beta} - \beta \|_2^2 \leq \frac{s_2 \log p}{n},
\]
we have for some \(c_2 > 0\),
\[
\mathbb{P}(| (\hat{\beta} - \beta)^\top z | > M \sqrt{\frac{s_2 \log p}{n}}) \leq e^{-c_2 M^2} + C p^{-1}.
\]
Lastly,
\[
| 2 \log \left(\frac{\hat{\pi}_1}{\pi_2} \right) - \log \left(\frac{\hat{\pi}_1}{\pi_2} \right) | \lesssim | \hat{\pi}_1 - \pi_1 | + | \hat{\pi}_2 - \pi_2 |.
\]
and by Hoeffding inequality, for \(k \in [2]\), there are some constant \(c_H > 0\), such that
\[
\mathbb{P}(| \hat{\pi}_k - \pi_k | > t) \leq \exp(-c_H \cdot nt^2).
\]
We have for some constant \(c, M_H > 0\),
\[
\mathbb{P}(| 2 \log \left(\frac{\hat{\pi}_1}{\pi_2} \right) - \log \left(\frac{\hat{\pi}_1}{\pi_2} \right) | > M_H \sqrt{\frac{1}{n}}) \leq e^{-cM_H}.
\]
Therefore, there exists some \(c > 0\), such that for any \(M > 0\),
\[
\mathbb{P}_{z \sim N_p(\mu_1, \Sigma_1)}(M(z) > \frac{(s_1 + s_2) \log p}{n}) \leq e^{-cM} + C p^{-1}.
\]
Then it follows that
\[
R(\hat{G}_{SDAR}) - R^{\theta}(G^*_\theta)
= \frac{1}{2} \int_{Q(z) > 0} \frac{\pi_1}{(2\pi)^{p/2} |\Sigma_1|^{1/2}} e^{-1/2(z-\mu_1)^\top \Omega_1(z-\mu_1)} dz
+ \frac{1}{2} \int_{Q(z) \leq 0} \frac{\pi_2}{(2\pi)^{p/2} |\Sigma_2|^{1/2}} e^{-1/2(z-\mu_2)^\top \Omega_2(z-\mu_2)} dz
- \frac{1}{2} \int_{Q(z) > 0} \frac{\pi_1}{(2\pi)^{p/2} |\Sigma_1|^{1/2}} e^{-1/2(z-\mu_1)^\top \Omega_1(z-\mu_1)} dz
- \frac{1}{2} \int_{Q(z) \leq 0} \frac{\pi_2}{(2\pi)^{p/2} |\Sigma_2|^{1/2}} e^{-1/2(z-\mu_2)^\top \Omega_2(z-\mu_2)} dz.
\]
\begin{align*}
R(\hat{G}_{\text{SDAR}}) - R_\theta(G^*_\theta) &= \frac{1}{2} \int_{Q(z)>0} \frac{1}{(2\pi)^{p/2}} e^{-1/2(z-\mu_1)^T\Omega_1(z-\mu_1) - \log |\Sigma_1|/2 + \log \pi_1} \, dz \\
&\quad - \frac{1}{(2\pi)^{p/2}} e^{-1/2(z-\mu_2)^T\Omega_2(z-\mu_2) - \log |\Sigma_2|/2 + \log \pi_2} \, dz \\
&\quad - \frac{1}{2} \int_{\hat{Q}(z)>0} \frac{1}{(2\pi)^{p/2}} e^{-1/2(z-\mu_1)^T\Omega_1(z-\mu_1) - \log |\Sigma_1|/2 + \log \pi_1} \, dz \\
&\quad - \frac{1}{(2\pi)^{p/2}} e^{-1/2(z-\mu_2)^T\Omega_2(z-\mu_2) - \log |\Sigma_2|/2 + \log \pi_2} \, dz \\
\leq \frac{1}{2} \int_{Q(z)>0, Q(z) \leq \hat{Q}(z)} \frac{1}{(2\pi)^{p/2}} e^{-1/2(z-\mu_1)^T\Omega_1(z-\mu_1) - \log |\Sigma_1|/2} (1 - e^{-Q(z)}) \, dz \\
&\quad - \frac{1}{2} \int_{\hat{Q}(z)>0} \frac{1}{(2\pi)^{p/2}} e^{-1/2(z-\mu_1)^T\Omega_1(z-\mu_1) - \log |\Sigma_1|/2} (1 - e^{-Q(z)}) \, dz \\
&= \frac{1}{2} \mathbb{E}_{z \sim \mathcal{N}_p(\mu_1, \Sigma_1)} \left[(1 - e^{-Q(z)}) 1 \{0 < Q(z) \leq M(z)\} \right] \\
&\quad + \frac{1}{2} \mathbb{E}_{z \sim \mathcal{N}_p(\mu_1, \Sigma_1)} \left[(1 - e^{-Q(z)}) 1 \{0 < Q(z) \leq M(z)\} \cdot 1 \{M(z) < M \log n \sqrt{(s_1 + s_2) \log p} \} \right] \\
&\quad + \frac{1}{2} \mathbb{E}_{z \sim \mathcal{N}_p(\mu_1, \Sigma_1)} \left[(1 - e^{-Q(z)}) 1 \{0 < Q(z) \leq M(z)\} \cdot 1 \{M(z) \geq M \log n \sqrt{(s_1 + s_2) \log p} \} \right] \\
&\leq \frac{1}{2} \mathbb{E}_{z \sim \mathcal{N}_p(\mu_1, \Sigma_1)} \left[(1 - e^{-Q(z)}) 1 \{0 < Q(z) \leq M(z)\} \cdot 1 \{M(z) < M \log n \sqrt{(s_1 + s_2) \log p} \} \right] \\
&\quad + \mathbb{P}_{z \sim \mathcal{N}_p(\mu_1, \Sigma_1)} (M(z) \geq M \log n \sqrt{(s_1 + s_2) \log p}) \\
&\leq \frac{1}{2} \mathbb{E}_{z \sim \mathcal{N}_p(\mu_1, \Sigma_1)} \left[(1 - e^{-Q(z)}) 1 \{0 < Q(z) \leq M(z)\} \cdot 1 \{M(z) < M \log n \sqrt{(s_1 + s_2) \log p} \} \right] \\
&\quad + n^{-1} + p^{-1} \\
&\leq \log n \cdot \sqrt{(s_1 + s_2) \log p} \cdot \mathbb{E}_{z \sim \mathcal{N}_p(\mu_1, \Sigma_1)} \left[1 \{0 < Q(z) \leq M \log n \sqrt{(s_1 + s_2) \log p} \} \right] + n^{-1} + p^{-1} \\
&\leq \log^2 n \cdot \frac{(s_1 + s_2) \log p}{n},
\end{align*}

where the last inequality uses the assumption that \(\sup_{|x|<\delta} f_{Q, \theta}(x) \leq M_2\).
SUPPLEMENTARY MATERIAL

The supplement provides a detailed proof of Theorem 4.3, which is the lower bound of the misclassification error for high-dimensional QDA problem with sparsity assumptions. In addition, proofs of the technical lemmas used in the proofs of the main results are given.

References.

