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Summary. The integrative analysis of multiple datasets is becoming increasingly impor-
tant in many fields of research. When the same features are studied in several inde-
pendent experiments, a common integrative approach is to jointly analyze the multiple
sequences of multiple tests that result. It is frequently necessary to classify each feature
into one of several categories, depending on the null and non-null configuration of its corre-
sponding test statistics. This paper studies this signal classification problem, motivated by
a range of applications in large-scale genomics. Two new types of misclassification rates
are introduced, and both oracle and data-driven procedures are developed to control each
of these types while also achieving the largest expected number of correct classifications.
The proposed data-driven procedures are proved to be asymptotically valid and optimal
under mild conditions, and are shown in numerical experiments to be nearly as power-
ful as oracle procedures, with substantial gains in power over their competitors in many
settings. In an application to psychiatric genetics, the proposed procedures are used to
discover genetic variants that may affect both bipolar disorder and schizophrenia, as well
as variants that may help distinguish between these conditions.

Keywords: Integrative Analysis, Multiple Testing, Set-specific Marginal False Discov-
ery Rate, Signal Classification, Total Marginal False Discovery Rate

1. Introduction

1.1. Overview
Most statistical methods for multiple testing are intended for analyzing a single sequence
of multiple tests, arising from a single study. In recent years, however, summary test
statistics and p-values from multiple studies have become readily publicly accessible.
Researchers have realized that a great deal of information is contained in the comparison
of these studies, and that much can be learned by discovering their similarities and
differences through an integrative analysis. Thus an emerging statistical problem is to
develop powerful and efficient methods for the joint analysis of multiple sequences of
multiple tests, where the same features are tested in each sequence.

These types of joint analyses are especially prevalent in modern large-scale genomics
studies, for example the effort to understand the genetic regulation of gene expression
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Table 1. Signal classes and labels for two
sequences of multiple tests

Class label θ1i θ2i
0 0 0
1 0 1
2 1 0
3 1 1

in humans. The Genotype Tissue Expression Project (Lonsdale et al., 2013) collected
genotype as well as gene expression data from 53 tissue types from hundreds of donors.
A major task is to determine which genetic variants regulate the expression levels of
which genes. This is accomplished by significance testing, for each gene in each tissue, of
the association between the expression level and each typed genetic variant. But because
some regulatory variants may only be active in certain tissue types, an important problem
is to classify each variant in terms of the tissues in which their associated test statistics
are or are not significant (Flutre et al., 2013; Torres et al., 2014; GTEx Consortium,
2015). This requires the simultaneous consideration of an enormous number of sequences
of multiple tests.

Similar joint analyses arise in psychiatric genetics. Some disorders, such as schizophre-
nia and bioplar disorder, share many symptoms and can be difficult to differentiate in
clinical diagnoses (Andreassen et al., 2013). Several large genome-wide association stud-
ies have now made it possible to compare the genetics of these two diseases (Ruderfer
et al., 2014; Gratten et al., 2014; Cross-Disorder Group of Psychiatric Genomics Con-
sortium, 2013b). Identifying genetic variants that are significantly associated with one
disease but not the other can pave the way for a molecular diagnostic procedure that
can more accurately distinguish the two conditions, while identifying variants that are
associated with both conditions can shed light on their common biological basis. Clas-
sifying variants in this way requires the joint analysis of two sets of summary statistics,
one from each disorder.

These types of integrative analysis abound across genetics and genomics research, and
can frequently be formulated in terms of grouping genomic features into different classes
based on their corresponding test statistics across the multiple sequences of tests. To fix
ideas, let Xji be the z-score for the ith genomic feature in the jth study (i = 1, . . . ,m;
j = 1, . . . , J); for example, Xji can denote the test statistic, in the jth tissue, for the
association between the ith genetic variant and the expression level of a given gene.
This paper will only consider J = 2, but extensions to more than two studies are
straightforward. Let θjk ∈ {0, 1} indicate whether Xji contains signal or not, so that
θji = 1 if Xji is truly non-null and θji = 0 otherwise. The four possible configurations of
(θ1i, θ2i) determine four classes to which each genomic feature can belong. Table 1 lists
and labels these classes. If Xji corresponds to the ith expression quantitative trait locus
in the jth tissue, for example, identifying cross-tissue versus tissue-specific loci becomes
equivalent to classifying the tests either into class 3, or into classes 1 or 2.

This paper studies this signal classification problem, where the goal is to correctly as-
sign as many genomic features into these signal classes as possible while controlling some
measure of misclassification error. Signal classification can be viewed as a generalization
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Table 2. Example confusion matrix after applying a signal clas-
sification procedure

True class
Predicted class 0 1 2 3 Total

0 C00 C01 C02 C03 R0

1 C10 C11 C12 C13 R1

2 C20 C21 C22 C23 R2

3 C30 C31 C32 C33 R3

Total m0 m1 m2 m3 m

of the standard multiple testing problem, which only seeks to determine whether each
feature is null or non-null and is therefore equivalent to binary classification. In con-
trast, signal classification is more similar to multi-class classification, where the results
of applying a classification procedure to two sequences of multiple tests can be displayed
in the form of a confusion matrix. An example is shown in Table 2.

This paper proposes novel methods for signal classification. New concepts for mea-
suring misclassification error are first defined. In the usual multiple testing framework,
where signals are either null or non-null, misclassification error is frequently measured
using the false discovery rate (Benjamini and Hochberg, 1995). However, when signals
can fall into more than two classes, there are multiple possible types of false discov-
ery rates, each of which measures different combinations of the off-diagonal entries of
the confusion matrix in Table 2. Two types in particular are considered in this paper.
New asymptotically optimal methods are then developed under the framework of La-
grangian multiplier optimization to control each of these types of misclassification error
while achieving the largest possible number of correct classifications. Related theoreti-
cal results that determine the optimal thresholds for the proposed procedures and reveal
relationships between the multi-class and binary classification approaches, are also pro-
vided. Though signal classification is discussed here in the context of the joint analysis
of multiple sequences of test statistics, the framework and methods proposed in this pa-
per can be readily extended to other situations where classification into multiple signal
classes is necessary.

1.2. Related work
Studying multiple sequences of tests has become relevant as interest in areas such as
integrative genomics (Hawkins et al., 2010; Kristensen et al., 2014; Li, 2013; Ritchie
et al., 2015) has grown. However, research in the multiple sequence setting has still
focused on binary classification, typically on the problem of determining whether or not
signals belong to class 3 of Table 1. This is of great interest because class 3 signals are
more likely to constitute replicable scientific findings (Benjamini et al., 2009; Bogomolov
and Heller, 2013; Heller et al., 2014).

A common framework is to posit a four-group mixture model for the (X1i, X2i), where
each mixture component corresponds to one of the signal classes in Table 1. Many
authors have shown that the optimal multiple testing procedure is based on the local
false discovery rate for being in class 3, which requires the unknown null and alternative
distributions of the test statistics in each sequence. One approach is to approximate the
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local false discovery rate in some way (Chi, 2008; Du and Zhang, 2014). An alternative
is to estimate the unknown distributions and obtain a data-driven version of the optimal
testing procedure (Chung et al., 2014; Heller and Yekutieli, 2014). Recent technical
reports by Urbut et al. (2017) and Li et al. (2013, 2017) extend this type of approach to
three or more sequences of test statistics.

All of these methods are still limited to only two possible decisions for each tested
feature: whether that feature belongs to a given set of classes of interest, or not. For
example, Heller and Yekutieli (2014) defines the set of interest to contain only class 3, in
order to discover features that are significant in both sequences. Alternatively, the set
of interest could be defined to contain both classes 1 and 2, in order to identify signals
that are unique to only one of the two sequences, and a modified version of the method
of Heller and Yekutieli (2014) could be applied.

However, there appear to be no existing methods for signal classification with multiple
sequences of tests that allow for two or more sets of signal classes of interest. A common
approach is to identify null and non-null genomic features in each sequence separately,
controlling sequence-specific false discovery rates. These separate discoveries are then
used to determine the signal class of each feature. For example, a feature called as a
non-discovery in sequence 1, at a false discovery rate of level α1, and a discovery in
sequence 2 at level α2, would be assigned to class 2 of Table 1. However, it is unclear
how the separate error levels α1 and α2 contribute to the overall misclassification error.

1.3. Organization of the paper
Section 2 proposes two definitions of misclassification error in this multi-class setting
and then formalizes the related signal classification problems. Section 3 develops new
oracle and data-driven methods to achieve optimal classification under error control, and
establishes related theoretical results. Simulation results demonstrating the performance
of the proposed methods are given in Section 4. In Section 5, the proposed procedures
are applied to study the genetic architectures of bipolar disorder and schizophrenia. A
discussion on possible extensions is given in Section 6. Proofs and additional results are
contained in Section 7 and the Appendices.

2. Problem formulation

2.1. Definitions
As illustrated in Table 2, two sequences of test statistics X1i and X2i give rise to four
possible signal classes 0, . . . , 3. However, in most applications not all signal classes are
equally interesting. Frequently, the four possible classes are partitioned into K + 1
disjoint subsets, where K may equal 1, 2, or 3. Let S0 ⊂ {0, . . . , 3} denote the set
of classes that are not of interest, and let Sk ⊂ {0, . . . , 3}\S0 for k = 1, . . . ,K denote
disjoint subsets of the remaining important classes, such that ∪Kk=0Sk = {0, . . . , 3}. For
a concrete example, suppose that Xji is the differential expression z-score of the ith gene
in brain region j. In some analyses the goal may be to classify each gene as being active
only in region 1, active only in region 2, or active in both regions. In this case, K = 3
and S0 = {0}, S1 = {1}, S2 = {2}, and S3 = {3}. In other applications the goal may
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only be to distinguish genes that are region-specific, regardless of region, from those that
are not. In this case K = 2, S0 = {0}, S1 = {1, 2}, and S2 = {3}.

A signal classification procedure is represented by a decision rule δ = (δ1, . . . , δm),
where δi ∈ {0, . . . ,K} that indicates the set Sk to which the ith genomic feature is
assigned. Usual notions of power (Sarkar, 2002; Genovese and Wasserman, 2002; Taylor
et al., 2005; Basu et al., 2017; Cai and Sun, 2017) and false discovery rate (Storey, 2002;
Benjamini and Hochberg, 1995; Genovese and Wasserman, 2002) need to be generalized
in order to accommodate multiple sets of signal classes of interest. To measure the power
of δ, define the total expected number of true positives to be

tETP(δ) = E(

K∑
k=1

∑
`∈Sk

C``), (1)

where the C`` are diagonal entries of the confusion matrix in Table 2. This measure
equals the total number of tests correctly classified by δ into any of the sets Sk of
interest.

There are multiple ways to measure the misclassification error incurred by δ. One
possibility is the total marginal false discovery rate, defined to be

tmFDR(δ) =
E(
∑K

k=1

∑
`∈Sk

∑
`′ 6=`C``′)

E(
∑K

k=1

∑
`∈Sk R`)

, (2)

where the C``′ are the off-diagonal entries of Table 2. The numerator of (2) is the
average number of features incorrectly classified into any of the Sk, and the denominator
equals the expected value of the total number of features classified into any of the Sk.
The quantity (2) reduces to the standard marginal false discovery rate in the binary
classification problem of distinguishing between S0 and ∪Kk=1Sk. Alternatively, define
the set-specific marginal false discovery rate for set k to be

smFDRk(δ) =
E(
∑

`∈Sk
∑

`′ 6=`C``′)

E(
∑

`∈Sk R`)
, k = 1, . . . ,K, (3)

which measures the proportion of misclassifications only for the kth set of interest. This
reduces to the standard marginal false discovery rate when distinguishing between only
∪ 6̀=kS` and Sk.

2.2. Signal classification problems
The two measures of false discovery lead to two different signal classification problems.

Definition 1 (Total). The signal classification problem under total error is to find
the δ that

maximizes tETP(δ) subject to tmFDR(δ) ≤ α (4)

for a given error level 0 < α < 1.
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Definition 2 (Set-specific). The signal classification problem under set-specific
error is to find the δ that

maximizes tETP(δ) subject to smFDRk(δ) ≤ αk (5)

for given error levels 0 < α1, . . . , αK < 1.

When K = 1, i.e., S1 is the only set of signal classes of interest, problems (4) and (5)
coincide. In this case, signal classification reduces to the usual multiple testing frame-
work, albeit with non-standard null and alternative distributions, and some special cases
have been previously studied (Andreassen et al., 2013; Chung et al., 2014; Heller and
Yekutieli, 2014). In general, however, these two problems can give different classification
rules.

The advantage of problem (5) is that the different αk allow for fine error control
over the different types of misclassifications. For example, if the X1i come from a study
with a very large sample size while the X2i come from a much smaller study, it may be
desirable to choose a more stringent αk when classifying features into class 1 of Table 2,
as compared to class 2. However, it may not always be clear how the αk should be chosen,
so problem (4) offers total error control at a single error level. It is straightforward to
show that the optimal rule of problem (5) is also a feasible solution to problem (4)
at level α = maxk αk, though it may not maximize the total expected number of true
positives in problem (4).

3. Proposed methods

3.1. Oracle procedures
Similar to the two-groups model for a single sequence of multiple tests (Sun and Cai,
2007), let the signal indicators (θ1i, θ2i) be independent and identically distributed across
features i. Since in many applications the test statistics X1i and X2i arise from inde-
pendent datasets, assume that they are independent conditional on θ1i and θ2i. Finally,
let Fj0(x) and Fj1(x) denote the distribution functions of Xji conditional on θji = 0
and θji = 1, respectively, where Fj0 is known. Then the test statistics are distributed
according to the four-group model

(X1i, X2i) ∼
3∑
`=0

π`F1`1F2`2 , (6)

where for ` ∈ {0, . . . , 3}, `1 equals the value of θ1i for signals in class ` and `2 equals
the value of θ2i. For example, from Table 1, ` = 2 implies `1 = 1 and `2 = 0. Finally,
π` = P(θ1i = `1, θ2i = `2).

It is easy to check that the total error control problem (4) is equivalent to maximizing

E

[
K∑
k=1

m∑
i=1

I(δi = k){1− TORk (X1i, X2i)}

]
subject to

E

[
K∑
k=1

m∑
i=1

I(δi = k){TORk (X1i, X2i)− α}

]
≤ 0,
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where

TORk (x1, x2) =

∑
`/∈Sk π`f1`1(x1)f2`2(x2)∑3
`=0 π`f1`1(x1)f2`2(x2)

(7)

and fj0 and fj1 are the densities corresponding to Fj0 and Fj1.
This optimization problem can be solved by minimizing the Lagrangian

LT (λ, δ) =
∑K

k=1

∑m
i=1 I(δi 6= k){1− TORk (X1i, X2i)}

+
∑K

k=1

∑m
i=1 λI(δi = k){TORk (X1i, X2i)− α},

since any δ that minimizes the L(λ, δ) conditional on the observed test statistics will
also minimize E{LT (λ, δ)}. Here the penalty parameter λ > 0 can be viewed as the
relative cost of a misclassification into the wrong class of interest, compared to the cost
of a misclassification into the null class S0. The λ and the error level α are related by
the following result. This can be regarded as a generalization of the compound decision
theoretic treatment of false discovery rate, proposed by Sun and Cai (2007), to signal
classification.

Proposition 1. For any λ > 0, define the classification rule δλT = (δλT1, . . . δ
λ
Tm)

where

δλT i = arg min
k∈{0,...,K}

∑
k′∈{1,...,K},k′ 6=k

{1− TORk′ (X1i, X2i)}+ λ{TORk′ (X1i, X2i)− α}. (8)

(i) δλT minimizes E{LT (λ, δ)};

(ii) Let NOR
T (λ) = E

[∑K
k=1 I(δλT i = k){TORk (X1i, X2i)− α}

]
and define

λ? = inf{λ : NOR
T (λ) ≤ 0}.

If NOR
T (0) ≥ 0 holds, then NOR

T (λ?) = 0.

Remark 1. Intuitively, an optimal decision rule should make the most of the misclassi-
fication error that it is allowed, in order to maximize the number of discoveries it makes.
In other words, δλT should achieve tmFDR = α. The quantity NOR

T (λ) in Proposition 1
derives from the constraint on tmFDR and can be interpreted as a measure of how
much of the allotted misclassification error has not been used up by δλT . The assumption
NOR
T (0) ≥ 0 is indispensable, otherwise it would be possible for all features to be classi-

fied into one of the Sk but the total marginal false discovery rate to still be less than α.
It can be shown that NOR

T (λ) is non-increasing in λ, so NOR
T (0) < 0 would imply that

for some values of α there may not exist any λ such that tmFDR(δλT ) exactly attains
α. In this sense, the assumption NOR

T (0) ≥ 0 ensures that the nominal level α can be
achieved exactly by some λ.

The oracle procedure δ?T = (δ?T1, . . . , δ
?
Tm) for the total error control problem (4) can

now be defined. Theorem 1 shows that δ?T achieves the largest total expected number of
true positives among all rules that can control the total marginal false discovery rate.
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Theorem 1. With δλTi and λ? defined in Proposition 1, define

δ?T = (δλ
?

T1, . . . , δ
λ?

Tm).

If α satisfies NOR
T (0) ≥ 0 from Proposition 1(ii), then,

(i) tmFDR(δ?T ) = α;

(ii) For any other classification rule δ that satisfies tmFDR(δ) ≤ α,

tETP(δ?T ) ≥ tETP(δ).

Similarly, the constraints in the set-specific error control problem (5) can be equiva-
lently expressed as

E

[
m∑
i=1

I(δi = k){TORk (X1i, X2i)− αk}

]
≤ 0 for k = 1, . . . ,K,

so problem (5) can be solved by minimizing the Lagrangian

LS(λ, δ) =
∑K

k=1

∑m
i=1 I(δi 6= k){1− TORk (X1i, X2i)}

+
∑K

k=1

∑m
i=1 λkI(δi = k){TORk (X1i, X2i)− αk}.

Proposition 2 makes the connection between the set-specific error control problem (5)
and a minimization problem with the objective function E{LS(λ, δ)}.

Proposition 2. For any λ = (λ1, . . . , λK) with λk > 0, define the classification rule
δλS = (δλS1, . . . δ

λ
Sm) where

δλSi = arg min
k∈{0,...,K}

∑
k′∈{1,...,K},k′ 6=k

{1− TORk′ (X1i, X2i)}+ λk{TORk (X1i, X2i)− αk}. (9)

(i) δλS minimizes E{LS(λ, δ)};

(ii) Let NOR
k (λ) = E

[
I(δλSi = k){TORk (X1i, X2i)− αk}

]
and define

λ̌k,n = inf{λk ≤ λ̌k,n−1 : NOR
k (λ̌k,n−1) ≤ 0}, k = 1, . . .K,

where n ≥ 1, λ̌k,0 = ∞, λ̌k,n−1 is the λ with λk′ = λ̌k′,n−1, k′ 6= k. Suppose that
αk + αk′ ≤ 1 holds for any k 6= k′ ∈ {1, . . . ,K} and 0 ∈ {(NOR

1 (λ), . . . , NOR
K (λ)) :

λ ∈ {<+ ∪ {0}}K}. Then, sequence {λ̌k,n, n ≥ 1} is convergent and NOR
k (λ?) = 0

for all k = 1, . . . ,K where λ? = (λ?1, . . . , λ
?
K) and λ?k = limn→∞ λ̌k,n.

Remark 2. Proposition 2(ii) plays the same role as the condition on NOR
T (0) in Propo-

sition 1(ii). In the set-specific error control problem (5), not all error levels α1, . . . , αK
correspond to a λ such that smFDRk(δ

λ
S ) attains αk for all k = 1, . . . ,K. The restric-

tion that αk +αk′ < 1 for any k 6= k′ ∈ {1, . . . ,K} is mild since it includes a wide range
of choices for α. For example, it allows 0 ≤ αk ≤ 1/2, k = 1, . . . ,K, which is adequate
for many applications.

The oracle procedure δ?S = (δ?S1, . . . , δ
?
Sm) for the set-specific error control problem (5)

can now be defined. Theorem 2 shows that δ?S achieves the largest total expected number
of true positives among all rules that can control the set-specific marginal false discovery
rates.
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Theorem 2. With λ? and λ? defined in Proposition 2, define

δ?S = (δλ
?

S1 , . . . , δ
λ?

Sm).

If α1, . . . , αK satisfy the conditions in Proposition 2(ii), then

(i) smFDRk(δ
?
S) = αk for k = 1, . . . ,K;

(ii) For any other classification rule δ that satisfies smFDRk(δ) ≤ αk, k = 1, . . . ,K.

tETP(δ?S) ≥ tETP(δ).

When class 3 is the only class of interest, the two oracle methods described in Theo-
rems 1 and 2 are identical to the oracle method proposed by Heller and Yekutieli (2014).
Otherwise they are different in general, and this will be further explored in simulations
in Section 4.

3.2. Data-driven procedures
The oracle procedures described in the previous section cannot be implemented in prac-
tice because they are functions of TORk (X1i, X2i) defined in (7), which depends on the
unknown mixture proportions π` and non-null densities fj1. However, the TORk can be
estimated by first defining the marginal proportions πj`j = P(θji = `j) and the marginal
densities fj(x) = πj0fj0(x) + πj1fj1(x) and rewriting

TORk (x1, x2) =

∑
`/∈Sk π`/(π1`1π2`2){π1`1f1`1(x1)/f1(x1)}{π2`2f2`2(x2)/f2(x2)}∑3
`=0 π`/(π1`1π2`2){π1`1f1`1(x1)/f1(x1)}{π2`2f2`2(x2)/f2(x2)}

.

Next, estimates π̂j`j for the marginal proportions can be obtained by applying the

method of Jin and Cai (2007) to the statistics Φ−1{Fj0(Xji)}, and estimates f̂j(x) of
the marginal densities can be obtained using standard kernel-based methods (Silverman,
1986). The likelihood ratios in TORk (x1, x2) can then be estimated because

π̂j0fj0(x)/f̂j(x)
p→ πj0fj0(x)/fj(x), 1− π̂j0fj0(x)/f̂j(x)

p→ πj1fj1(x)/fj(x).

In practice, each estimated likelihood ratio is set equal to 1 if its calculated value exceeds
1. Finally, an estimate π̂0 of P(θ1i = 0, θ2i = 0) can be obtained by applying the method
of Jin and Cai (2007) to the statistics

Φ−1
(
Gχ2,2

[
Φ−1{F10(X1i)}2 + Φ−1{F20(X2i)}2

])
,

where Gχ2,2 is the distribution function of a chi-square random variable with two degrees
of freedom, and estimates of the other π` can be calculating using π̂0 and the π̂j`j . The

above estimates can then be inserted into TORk to give the plug-in statistic T̂k, which is
set equal to 1 if its calculated value exceeds 1.

The data-driven procedure that solves the total error control problem (4) can be

constructed as follows. First define δ̂λT i to be the solution to the total error minimization

problem (8) with T̂k in place of TORk . Next, define N̂T (λ) = m−1
∑m

i=1

∑K
k=1 I(δ̂λT i =
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Table 3. Data-driven Algorithm For Total Error Control
Let T̂min(x1, x2) = mink T̂k(x1, x2), and let T̂

(i)
min be the ordered statistics T̂min(x1i, x2i)

and δ̂?T (i), T
(i)
k be the corresponding decision functions and testing statistics. Define

r = max{j : 1/j
∑j

i=1 T̂
(i)
min ≤ α}. Then,

δ̂?T (i) =

{
k, i ≤ r and T̂

(i)
min = T̂

(i)
k

0, i > r

k){T̂k(X1i, X2i)−α}. This expression can be simplified because it can be seen from the
definition of the oracle total error control rule in (8) that for k = 1, . . . ,K

I(δ̂λT i = k) = I

{
T̂k ≤ α+

1− α
λ+ 1

, T̂k′ < min
k′ 6=k

T̂k′

}
.

Thus the I(δ̂λT i = k) in N̂T (λ) can be replaced with the right-hand side of the above
equation. Finally define

λ̂? = inf{λ : N̂T (λ) ≤ 0}. (10)

Then the data-driven classification rule that solves problem (4) is defined to be

δ̂?T = (δ̂λ̂
?

T1, . . . , δ̂
λ̂?

Tm),

and a simple algorithm for its calculation is presented in Table 3. This algorithm is
similar to multiple testing procedures that use local false discovery rates (Sun and Cai,
2007).

Theorem 3 shows that the data-driven δ̂?T is asymptotically valid and optimal and
thus can be very useful in practice.

Theorem 3. If

(C1) π̂j`
p→ πj`, j = 1, 2 and ` = 0, 1;

(C2) π̂j0fj0(xji)/f̂j(xji)
p→ πj0fj0(xji)/fj(xji), uniformly for all i, j = 1, 2

hold, then (i) tmFDR(δ̂?T ) = α+ o(1), and (ii) tETP(δ̂?T )/tETP(δ?T ) = 1 + o(1).

The data-driven rule that solves the set-specific error control problem (5) can be

similarly developed. Let δ̂λSi be the solution to the set-specific error minimization prob-

lem (9) with T̂k in place of TORk , N̂k(λ) = 1/m
∑m

i=1 I(δ̂λSi = k)[T̂k(x1i, x2i) − αk] and

construct a sequence {λ̂k,n, n ≥ 1} that satisfies

λ̂k,n = inf{λ ≤ λ̂k,n−1 : N̂k(λ̂k,n−1) ≤ 0}, (11)

where λ̂k,0 =∞, λ̂k,n−1 is the λ with λk = λ and λk′ = λ̂k′,n−1 for k′ 6= k. Like sequence

{λ̌k,n, n ≥ 1} defined in Proposition 2, the convergence of the sequence {λ̂k,n, n ≥ 1}
can be proved similarly. Let λ̂?k be the value to which {λ̂k,n, n ≥ 1} converges. Then the
data-driven procedure that solves problem (5) can be defined to be

δ̂?S = (δ̂λ̂
?

S1 , . . . , δ̂
λ̂?

Sm),
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Table 4. Data-driven Algorithm For Set-Specific Error Control
• Step 1. Let T̂

(i)
k be the ordered statistics T̂k(x1i, x2i) and determine

the initial threshold vector λ = (λ1, . . . , λK), where for each

k ∈ {1, . . . ,K}, λk = (1− αk)/(T̂
(rk)
k − αk)− 1, and rk =

max{j : 1/j
∑j

i=1 T̂
(i)
k ≤ αk}.

• Step 2. For each k, calculate N̂k(λ) and N̂k(λ̃k,rk+1) where λ̃k,j =

(λ̃1,j , ..., λ̃K,j) with λ̃k,j = (1− αk)/(T̂
(j)
k − αk)− 1 and λ̃k′,j

= λk′ , k
′ 6= k. If N̂k(λ) ≤ 0 and N̂k(λ̃rk+1) > 0 hold for all k,

λ is the desired threshold vector. Otherwise go to Step 3.

• Step 3. Let r̃k = max{j ≥ rk : N̂k(λ̃k,j) ≤ 0} and reset rk = r̃k. Then,
update the λ in Step 1 and repeat Steps 2 and 3 till this loop

is terminated. The λ in the last iteration is the desired λ̂?.

• Step 4. Apply λ̂? to equation (9) with T̂k in place of TOR
k to obtain

the classification rule δ̂?S = (δ̂?S1, . . . , δ̂
?
Sm).

where λ̂? = (λ̂?1, . . . , λ̂
?
K).

A fast algorithm for calculating δ̂?S is provided in Table 4, which shows that the
algorithm can be regarded as a stage-wise multiple testing procedure for identifying set-
specific signals. That is, in each stage, or each iteration of steps 2 and 3, a two class
multiple testing procedure is performed for each of the K sets of interest in turn. This
process terminates when the estimated threshold sequences converge.

Theorem 4 shows that the data-driven δ̂?S is asymptotically valid and optimal.

Theorem 4. If Conditions (C1) and (C2) stated in Theorem 3 hold, then for all

k ∈ {1, . . . ,K}, (i) smFDRk(δ̂
?
S) = αk+o(1), and (ii) tETP(δ̂?S)/tETP(δ?S) = 1+o(1)

3.3. Adjusted separate discovery procedure
Based on the proposed data-driven test statistics T̂ORk (x1i, x2i), the separate discovery
procedure for signal classification, described in Section 1.2, can be adjusted so that it
provides valid control of the two types of misclassification errors introduced in this paper.
Without loss of generality, this section considers the case K = 3 for illustration.

Let Pji be the p-value of the ith feature in sequence j. The separate discovery
procedure would set δi = 1 if P1i > c1 and P2i ≤ c2, δi = 2 if P1i ≤ c1 and P2i > c2, and
δi = 3 if P1i ≤ c1 and P2i ≤ c2, for some cutoffs cj such that the marginal false discovery
rate for sequence j attains αj . As mentioned in Section 1.2, the separate discovery
procedure cannot control the tmFDR and the smFDR at desired nominal levels. This
cannot be remedied by merely choosing different values for αj . Instead, the key difficulty
is that the non-discovery classifications in each sequence are unreliable.

This limitation can be overcome by employing two different cutoffs for each study.
Specifically, set δi = 1 if P1i > c11 and P2i ≤ c12, δi = 2 if P1i ≤ c21 and P2i > c22,
and δi = 3 if P1i ≤ c31 and P2i ≤ c32, where the ckj can all be unequal. Then the
separate discovery procedure can be adjusted by finding the ckj such that

∑m
i=1 I(δi =

k)[T̂ORk (x1i, x2i)−αk] ≈ 0 for the set-specific error control problem, and
∑m

i=1

∑K
k=1 I(δi =

k)[T̂ORk (x1i, x2i) − α] ≈ 0 for the total error control problem. This new procedure may
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lead to some features being classified into more than one set of interest. Appendix C in
the supplementary file provides an algorithm to find the cutoffs, as well as details for
resolving overlapping classifications.

This adjusted separate discovery procedure can approximately control the different
misclassification errors. However, unlike the other procedures proposed in this paper, it
is computationally intensive and that its cutoffs are not optimal in the sense having the
largest tETP values.

4. Simulations

This section investigates the numerical performance of the proposed oracle and data-
driven procedures. Pairs of test statistics (X1i, X2i) for i = 1, . . . ,m were generated for
m = 20, 000 features according to the four-group model (6), with class labels defined as
in Table 1. Specifically, the null and alternative density functions were

fj0(x) = φ(x), fj1(x) = φ

(
x− µj
σj

)
for sequences j = 1, 2, where φ(x) is the standard normal density. The signal standard
deviation σj was set to 4/101/2 throughout while the mean signal strength µj , signal
proportions, and nominal total or set-specific marginal false discovery rates were varied
across simulation settings. All settings were simulated 200 times.

The following procedures were compared:

(a) The oracle and data-driven procedures for the total and set-specific error control
problems proposed in this paper.

(b) The method of Heller and Yekutieli (2014). Though originally developed to classify
features into either S0 = {0, 1, 2} or S1 = {3}, it can easily be modified to accom-
modate any set S1. However, it cannot be extended to the general classification
problem when there is more than one set of classes of interest.

(c) The separate discovery approach based on p-values, using the procedure proposed
by Genovese and Wasserman (2004). For the total error control problem, the
error levels in each individual sequence are all set to equal the desired nominal
total marginal false discovery rate (2). For the set-specific error control problem,
the error levels in each individual sequence are all set to equal the average of the
desired nominal set-specific marginal false discovery rates.

(d) The adjusted separate discovery approach based on p-values, given in Section 3.3.

Four sets of simulations were conducted. The first setting considered total marginal
error control for the binary classification problem of identifying features that are only
significant in one of the two studies, in order words classifying features into either S0 =
{0, 3} or S1 = {1, 2}. The signal strengths µ1 and µ2 were varied between 2.8 to 3.7,
signal proportions were set as (π00, π01, π10, π11) = (0.8 − h, h, h, 0.2 − h) for h varying
between 0.05 and 0.1, and nominal total marginal false discovery rates (2) were varied
between 0.05 and 0.2.

Results in Figure 1 show that the oracle, data-driven, and adjusted separate discovery
methods were all able to control the total marginal false discovery rate at the desired
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Fig. 1. Total marginal false discovery rate control for classifying signals into S0 = {0, 3} or
S1 = {1, 2}. tmFDR = empirical total marginal false discovery rate (2); tETP = empirical total
number of true positives (1); OR T: oracle total control error procedure from Theorem 1; DD T
= data-driven total error control procedure from Theorem 3; HY = method of Heller and Yekutieli
(2014); SD = separate discovery procedure; ASD = adjusted separate discovery procedure from
Section 3.3.

nominal level. Among these, the oracle procedure had the most power, as expected, but
the data-driven procedure performed almost as well. The method of Heller and Yekutieli
(2014) was slightly too liberal in controlling the false discovery rate when the signals
were weak and there were few signals in S1, but otherwise performed as well as the
proposed data-driven procedure in most situations. With stronger signals, more signals
in S1, and higher nominal total marginal false discovery rates, all methods increased in
power, and the difference between the oracle and data-driven procedures decreased.

The second simulation setting also considered total marginal error control, but for
classifying signals into either S0 = {0}, S1 = {1}, S2 = {2}, or S3 = {3}. All parameters
were set as in the previous simulation setting except with (π00, π01, π10, π11) = (1 −
h, h/3, h/3, h/3) for h varying between 0.21 and 0.36. The method of Heller and Yekutieli
(2014) cannot be applied to this multiclass problem, but the other methods followed the
same trends as before, as shown in Figure 2.

The next set of simulations studied the set-specific error control for this multiclass
classification problem. Signal strengths were varied between 2.8 and 3.7, signal pro-
portions were set to (π00, π01, π10, π11) = (1 − h, h/3, h/3, h/3) with h varying between
0.21 and 0.3, and nominal set-specific marginal false discovery rates αk (3) were varied
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Fig. 2. Total marginal false discovery rate control for classifying signals into S0 = {0}, S1 = {1},
S2 = {2}, or S3 = {3}. tmFDR = empirical total marginal false discovery rate (2); tETP =
empirical total number of true positives (1); OR T: oracle total error control procedure from
Theorem 1; DD T = data-driven total error control procedure from Theorem 3; SD = separate
discovery procedure; ASD = adjusted separate discovery procedure from Section 3.3.

between 0.05 and 0.2. For simplicity, all αk were set to be equal for k = 1, . . . , 3. Results
are plotted in Figure 3. The oracle and data-driven procedures again had the nearly
same performance, and uniformly dominated the adjusted separate discovery procedure.

Finally, simulations were conducted to explore the relationship between the total (4)
and set-specific (5) error control problems for the multiclass problem with sets Sk = {k}
for k = 0, . . . , 3. Signal strengths were either set equal to µ in both sequences, or to
µ − 1 in sequence 1 and µ + 2 in sequence 2, with µ varying between 4 and 5. Signal
proportions among the sets Sk of interest were either uniform, with (π00, π01, π10, π11) =
(0.7, 0.1, 0.1, 0.1), or non-uniform, equal to (0.7, 0.05, 0.05, 0.2).

The first row of Figure 4 reports the empirical set-specific false discovery rates
acheived by the oracle total error control procedure, where the nominal total error was
set to 0.1. The realized set-specific errors differed across the sets of interest. It was
always lowest for S3 and highest for the set S2 that contained features that were signif-
icant only in test statistic sequence 1, which in these simulations had the higher signal
strength. The differences between the realized set-specific errors increased as the signal
strengths and the non-uniformity of the signal proportions increased.

The second row of Figure 4 reports the empirical total false discovery rates of the
oracle set-specific error control procedure, where the nominal set-specific errors were set
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Fig. 3. Set-specific marginal false discovery rate control for classifying signals into S0 = {0},
S1 = {1}, S2 = {2}, or S3 = {3}. Due to symmetry (α1 = α2 = α3), plots of the set-specific
marginal false discovery rate for classification into S2 are identical to those for classification
into S1 and therefore are omitted. smFDR = empirical set-specific marginal false discovery
rate (3); tETP = empirical total number of true positives (1); OR S: oracle set-specific error
control procedure from Theorem 2; DD S = data-driven set-specific error control procedure from
Theorem 4; SD = separate discovery procedure; ASD = adjusted separate discovery procedure
from Section 3.3.
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Fig. 4. Comparison of total and set-specific error control problems for classifying signals into
S0 = {0}, S1 = {1}, S2 = {2}, or S3 = {3}. smFDR = empirical set-specific marginal false
discovery rate (3); smFDR k = the smFDR for class k = 1, 2, 3; tmFDR = empirical total marginal
false discovery rate (2); OR T: oracle procedure from Theorem 1 with α = 0.1; OR S: oracle
set-specific error control procedure from Theorem 2; OR S1: the OR S procedure with α1 =
α2 = α3 = 0.1; OR S2: the OR S procedure with α1 = 2α2 = α3/2 = 0.1; OR S3: the OR S
procedure with the nominal set-specific errors induced by the OR T procedure.
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to α1 = α2 = α3 = 0.1, α1 = 2α2 = α3/2 = 0.1, or the set-specific errors that were
induced by the oracle total control procedure with α = 0.1. These plots show that the
oracle set-specific procedure was also able to control the total error when all αk equaled
the desired total nominal level, or when they equaled the induced error levels. With
uniform signal proportions, the oracle set-specific procedure controlled the total error at
roughly the average of the nominal set-specific errors.

The third row of Figure 4 reports the realized average number of true positives for
both oracle procedures. For the oracle total error control procedure, the nominal total
error was set to 0.1. To conduct a fair comparison, the nominal set-specific errors for
the oracle set-specific error control procedure were set as either α1 = α2 = α3 = 0.1, or
the set-specific errors induced by running the oracle total control procedure at α = 0.1.
The plots show that the oracle set-specific error control procedure with induced error
levels was as powerful as the oracle total error procedure, and more powerful than when
α1 = α2 = α3 = 0.1. This trend was more pronounced with larger signal strengths and
non-uniform signal proportions.

5. Application to psychiatric genetics

The proposed methods were applied to study the genetic architectures of bipolar disor-
der and schizophrenia. A better understanding of the genetic differences and similarities
between these diseases could lead to more effective diagnosis and treatment. To ex-
plore this question, Ruderfer et al. (2014) performed two large genome-wide association
studies, one of bipolar disorder, with 10,410 cases and 10,700 controls, and the other
of schizophrenia, with 9,369 cases and 8,723 controls. These studies were comprised
of completely independent samples, in particular, they did not share any control sub-
jects. Summary Z-scores are available from the website of the Psychiatric Genomics
Consortium. Before analyses reported below, the SNPs were first pruned at a linkage
disequilibrium r2 threshold of 0.5, using genotype data from the 1000 Genomes Project
(1000 Genomes Project Consortium, 2015) as a reference panel. There were 439,040
variants remaining after pruning.

The data-driven total error control procedure was first applied to classify these SNPs
into sets S0, containing SNPs that were not significant in either study, S1, containing
SNPs associated only with schizophrenia, S2, containing SNPs associated only with
bipolar disorder, and S3, containing SNPs significant in both studies. The nominal total
marginal false discovery rate was set to 0.05. The first row of Table 5 reports the number
of SNPs classified to each of the three classes. The majority of the discovered SNPs
were classified into S3, consistent with previous work showing that bipolar disorder and
schizophrenia have closely related genetic etiologies (Huang et al., 2010; Cross-Disorder
Group of Psychiatric Genomics Consortium, 2013a,b).

In some cases, however, SNPs in S3 may not be of primary interest. For example,
SNPs in S1 or S2 are more useful than SNPs in S3 for developing more accurate diagnostic
procedures to differentiate patients with bipolar disorder from those with schizophrenia.
Currently this differential diagnosis is difficult to perform, especially in the early stages
of these disorders (Ruderfer et al., 2014). For the purpose of addressing this problem,
capturing SNPS that belong to S1 and S2 is more important than finding SNPS in S3,
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Table 5. Number of SNPs from Ruderfer et al. (2014) classified into different
sets of interest. S1: SNPs associated only with schizophrenia; S2: SNPs
associated only with bipolar disorder.

Method Marginal false discovery rate S1 S2 S3
Total α = 0.05 2 1 54

Set-specific α1 = 0.1, α2 = 0.1, α3 = 0.01 4 2 8

Table 6. SNPs from Ruderfer et al. (2014) classified as being disease-
specific, using the set-specific error control procedure with α1 = α2 = 0.1
and α3 = 0.01. S1: SNPs significantly associated only with schizophrenia;
S2: SNPs significantly associated only with bipolar disorder; BIP: Z-score
for bipolar disorder; SCZ: Z-score for schizophrenia.

Class S1 Class S2
SNP BIP SCZ SNP BIP SCZ
rs9273012 0.5391 5.2989 rs13166360 4.9054 -0.4711
rs1977 1.5329 5.0143 rs9788865 5.3086 1.0716
rs6932590 1.9759 5.2021
rs1150753 1.3222 4.9154

though all three classes remain of interest.
The proposed set-specific error control procedure can be applied to this type of set-

ting. To illustrate, the method was applied with nominal set-specific marginal false
discovery rates set to 0.10 for S1 and S2 and to 0.01 for S3. The more liberal thresholds
for S1 and S2 allow for the discovery of more SNPs that are potentially diagnostically
useful, and are offset by the more stringent threshold for S3. The second row of Table 5
shows that more disease-specific SNPs were indeed detected.

These SNPs, along with their Z-scores for the two diseases, are reported in Table
6. The four SNPs specific to schizophrenia are all located on chromosome 6 inside
the major histocompatibility region, which indicates that the immune system might be
differentially involved in schizophrenia; this is consistent with conclusions of Ruderfer
et al. (2014). In contrast, SNPs rs13166360 and rs9788865, found to be specific to bipolar
disorder, are located on chromosomes 5 and 16, respectively. The former is a coding SNP
in the adenylyl cyclase type 2 gene (Mühleisen et al., 2014) and thus indicates that cyclic
AMP signaling may differ between the two diseases. The latter appears to regulate levels
of a long non-coding RNA (Lonsdale et al., 2013), which may point to a new mechanism
of action in bipolar disorder.

6. Discussion

This paper studies signal classification for multiple sequences of test statistics. It in-
troduces two new criteria for measuring misclassification errors and proposes powerful
procedures for controlling these errors using a generalized compound decision-theoretic
framework. It is shown that the proposed methods are asymptotically optimal.

It is straightforward to extend the proposed procedures to more than two sequences
of test statistics. For example, considering three studies would allow for eight possi-
ble signal classes, which can be accommodated by extending model (6) to have eight



Signal Classification 19

components instead of four. The proposed oracle and data-driven procedures can then
be modified accordingingly. However, the current implementation of these methods
can grow unwieldy as the number of possible signal classes increases. In addition, the
proposed procedures are developed under the assumption that the test statistics are
independent across features. They may be robust to certain types of dependence, but
could lose power if the features are highly correlated. These issues will be further studied
in future work.

When domain knowledge, such as biological theory or prior experimental results, are
available, they can be used as prior information to weight the observed test statistics,
which can further improve the power of the proposed procedures. For the single data
sequence, notable progress on weighting methods has been made (Roeder and Wasser-
man, 2009; Roquain and van de Wiel, 2009; Basu et al., 2017). However, it is unclear
how these methods can be applied to multiple sequences of tests. This is an interesting
problem for future study.

7. Proofs of Some Theoretical Results

This section only proves the theoretical results (Proposition 2, Theorem 2 and Theo-
rem 4) for the set-specific error control problem (5). The proofs on the total error control
problem (4) (Proposition 1, Theorem 1 and Theorem 3) are provided in Appendix A of
the supplementary file.

7.1. Proof of Proposition 2
(i) To derive the oracle procedure that minimizes LS(λ, δ) it suffices to minimize each
of the terms

K∑
k=1

[I(δi 6= k){1− TORk (X1i, X2i)}+ λkI(δi = k){TORk (X1i, X2i)− αk}]

for i = 1, . . . ,m, which is achieved by δλSi defined in (9). Thus, for any δ ∈ {0, 1}m,

LS(λ, δλT ) ≤ LS(λ, δ),

where δλT = (δλS1, . . . , δ
λ
Sm). Take the expectation to both sides, then E{LS(λ, δλT )} ≤

E{LS(λ, δ)} holds for any δ ∈ {0, 1}m.
(ii) Before proving the result of this part, the following result need to be discussed first.
That is, NOR

k (λ) is non-increasing in λk but non-decreasing in λk′ , k
′ 6= k.

Let Aλk = {TORk ≤ αk+ 1−αk
λk+1} and Bλk = {λk(TORk −αk)+TORk < mink′ 6=k λk′(T

OR
k′ −

αk) + TORk′ }, then

NOR
k (λ) = E{I{TORk ≤ αk + 1−αk

λk+1 , λk(T
OR
k − αk) + TORk

< mink′ 6=k[λk′(T
OR
k′ − αk) + TORk′ ]}(TORk (X1i, X2i)− αk)}

= E
[
IAλk IBλk [TORk (X1i, X2i)− α]

]
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Suppose that λ
(1)
k > λ

(2)
k > 0, it can be concluded that Aλ(1)

k
⊆ Aλ(2)

k
and Bλ(1)

k
⊆ Bλ(2)

k
.

The former can be easily derived because αk+(1−αk)/(λ
(1)
k +1) < αk+(1−αk)/(λ

(2)
k +1)

when λ
(1)
k > λ

(2)
k > 0. The latter can be proved as follows.

If TORk < αk, then 1 − TORk′ + 1 − TORk ≤ 1 and TORk′ > 1 − αk ≥ αk′ . Thus,
λk(T

OR
k −αk) +TORk < mink′ 6=k λk′(T

OR
k′ −αk) +TORk′ will always hold for any λk. That

is, Bλ(1)
k
∩ {TORk < αk} = Bλ(2)

k
∩ {TORk < αk}.

If TORk ≥ αk, then λ
(1)
k (TORk − αk) + TORk ≥ λ(2)

k (TORk − αk) + TORk and thus Bλ(1)
k
∩

{TORk ≥ αk} ⊆ Bλ(2)
k
∩ {TORk ≥ αk}. Till now, Bλ(1)

k
⊆ Bλ(2)

k
is proved completely.

Applying the results that Aλ(1)
k
⊆ Aλ(2)

k
and Bλ(1)

k
⊆ Bλ(2)

k
, then

NOR
k (λ1)−NOR

k (λ2) =

E
[
(IA

λ
(1)
k

IB
λ
(1)
k

− IA
λ
(2)
k

IB
λ
(2)
k

)I{TORk ≥ αk}[TORk (X1i, X2i)− αk]
]
≤ 0.

where λj , j = 1, 2, is the λ with λk = λ
(j)
k and λk′ = λk′ , k

′ 6= k. That is, NOR
k (λ) is

non-increasing in λk. Similarly, it can be shown that NOR
k (λ) is non-decreasing in λk′ .

The result of part (ii) in Proposition 2 can now be proved. It follows from Lemma 1
that there exists a λ∗∗ ∈ Λ∗∗ such that our constructed K sequences {λ̌k,n, n ≥ 1}
satisfy the relationships λ̌k,1 ≥ · · · ≥ λ̌k,n ≥ · · · ≥ λ∗∗k . and that NOR

k (λ̌′k,n) = 0 holds
for k = 1, . . . ,K and n ≥ 1.

Following from the monotone convergence theorem, each sequence {λ̌k,n, n ≥ 1} will

converge to a number, denoted as λ?k. Let λ̌n = (λ̌1,n, . . . , λ̌K,n), then

NOR
k (λ?) = lim

n→∞
NOR
k (λ̌n) = lim

n→∞
NOR
k (λ̌′k,n) = 0.

7.2. Proof of Theorem 2
(i) Similar as the proof (i) of Theorem 1, the results smFDRk(δ

?
S) = αk for k = 1, . . . ,K

are very straightforward.
(ii) For any δ, if smFDRk(δ) ≤ αk, for all k = 1, . . . ,K then

E{
∑m

i=1

∑K
k=1[1− TORk (X1i, X2i)]− I(δ?T i = k)[1− TORk (X1i, X2i)]}

= E{
∑m

i=1

∑K
k=1 I(δ?T i 6= k)[1− TORk (X1i, X2i)] + λ?kI(δ?T i = k)(TORk (X1i, X2i)− αk)}

= E{LS(λ?, δ?S)} ≤ E{LS(λ?, δ)}
= E{

∑m
i=1

∑K
k=1{I(δi 6= k)[1− TORk (X1i, X2i)] + λ?kI(δi = k)(TORk (X1i, X2i)− αk)}}

≤ E{
∑m

i=1

∑K
k=1[1− TORk (X1i, X2i)]− I(δi = k)[1− TORk (X1i, X2i)]}.

Thus, tETP(δ?S) ≥ tETP(δ) holds.

7.3. Proof of Theorem 4
For ease of presentation, in this proof the TORk (X1i, X2i) and T̂k(X1i, X2i) will be denoted

as TORk,i and T̂k,i, respectively. Let N̂OR
k (λ) = 1/m

∑m
i=1 I{δλSi = k}[TORk,i −αk]. Accord-

ing to the weak law of large numbers (WLLN), result (a) N̂OR
k (λ̌k,n−1)

p→ NOR
k (λ̌k,n−1)

holds where λ̌k,n−1 is defined in proof of Proposition 2.



Signal Classification 21

For k ∈ {1, . . . ,K}, fix all λk′ , k
′ 6= k. N̂k(λ) is then a function of λk and its

continuous version, denoted as N̂C
k (λ, can be defined, which is similar to the definition

of N̂C
T (λ) in the proof of Theorem 3. It is easy to check that N̂C

k (λ) is continuous

in λk and monotone. Thus, its inverse function, denoted as N̂C,−1
k (λ), is well defined,

continuous and monotone. According to the construction of the N̂C
k (λ), results (b)

N̂k(λ̂k,n−1)− N̂C
k (λ̂k,n−1)

p→ 0 and (c) λ̂k,n − N̂C,−1
k (λ̂k0,n−1))

p→ 0 holds for all k.

Suppose that λ̂k′,n−1
p→ λ̌k′,n−1 for all k′ 6= k, results (d) and (e) can then be

derived immediately: (d) N̂C
k (λ̌k,n−1) − N̂C

k (λ̂k,n−1)
p→ 0 and (e) N̂C,−1

k (λ̂k0,n−1) −
N̂C,−1
k (λ̌k0,n−1)

p→ 0 where λ̂k0,n−1 and λ̌k0,n−1 are the λ’s with kth component 0 and

the rest same as the counterparts of λ̂k,n−1 and λ̌k,n−1, respectively.
To prove Theorem 4, the following results shall be discussed in turn. Suppose that

λ̂k′,n−1
p→ λ̌k′,n−1 for all k′ 6= k, then

(1) N̂k(λ̂k,n−1)− N̂OR
k (λ̌k,n−1)

p→ 0 holds for any λk > 0;

(2) N̂C,−1
k (λ̌k0,n−1)

p→ λ̌k,n and λ̂k,n
p→ λ̌k,n, n ≥ 1;

Proof of result (1): From the proof of result (1) in Proof of Theorem 3, it suffices to
show

E{[T̂k,i − αk]I{δ
λ̂k,n−1

Si = k} − [TORk,i − αk]I{δ
λ̌k,n−1

Si = k}}2 = o(1)

because N̂k(λ̂k,n−1) − N̂OR
k (λ̌k,n−1)

p→ 0 can then be proved by repeating to use the
above result. See the proof of result (1) in Proof of Theorem 3 for details.
Following from Lemma 2,

P{δλ̂k,n−1

Si = k, δ
λ̌k,n−1

Si 6= k}
≤ P{T̂k,i ≤ αk + (1− αk)/(λk + 1), TORk,i > αk + (1− αk)/(λk + 1)}
+ P{T̂k,i > αk + (1− αk)/(λk + 1), TORk,i ≤ αk + (1− αk)/(λk + 1)}
+ P{λk(T̂k,i − αk) + T̂k,i ≤ mink′ 6=k λ̂k′,n−1(T̂k′,i − αk′) + T̂k′,i,

λk(T
OR
k,i − αk) + T̂k,i > mink′ 6=k λ̌k′,n−1(TORk′,i − αk′) + TORk,i }

+ P{λk(T̂k,i − αk) + T̂k,i > mink′ 6=k λ̂k′,n−1(T̂k′,i − αk′) + T̂k′,i,

λk(T
OR
k,i − αk) + T̂k,i ≤ mink′ 6=k λ̌k′,n−1(TORk′,i − αk′) + TORk,i }

= o(1) + o(1) = o(1),

and similarly

P{δλ̂k,n−1

Si 6= k, δ
λ̌k,n−1

Si = k} = o(1).

Then,

E{[T̂k,i − αk]I{δ
λ̂k,n−1

Si = k} − [TORk,i − αk]I{δ
λ̌k,n−1

Si = k}}2

≤ E{[T̂k,i − TORk,i ]2I{δλ̂k,n−1

Si = k, δ
λ̌k,n−1

Si = k}
+E{[T̂k,i − α]2I{δλ̂k,n−1

Si = k, δ
λ̌k,n−1

Si 6= k}+ E{[TORk,i − α]2I{δλ̂k,n−1

Si 6= k, δ
λ̌k,n−1

Si = k}
≤ E{[T̂k,i − TORk,i ]2}+ P{δλ̂k,n−1

Si = k, δ
λ̌k,n−1

Si 6= k}+ P{δλ̂k,n−1

Si 6= k, δ
λ̌k,n−1

Si = k}
= o(1) + o(1) + o(1) = o(1).
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where E{[T̂k,i − TORk,i ]2} = o(1) follows from the results that T̂k,i − TORk,i
p→ 0 and |T̂k,i −

TORk,i | ≤ 1.

Proof of result (2): Similar to the proof of result (2) in the Proof of Theorem 3, it
suffices to prove that

N̂C
k (λ̌k,n−1)

p→ N̂OR
k (λ̌k,n−1),

which follows from the above results (1), (a), (b) and (d). Therefore, N̂C,−1
k (λ̌k0,n−1)

p→
λ̌k,n. By this result, together with results (c) and (e), λ̂k,n

p→ λ̌k,n can be obtained.

The result of Theorem can now be proved. When n = 1, λ̂k′ = λ̌k′ =∞ holds for all

k′ 6= k, thus λ̂k,n
p→ λ̌k,n. Repeat to apply the result (2), we have

λ̂k,n
p→ λ̌k,n, n ≥ 1.

Take the limitations on the both sides, it leads to λ̂?k
p→ λ∗k.

Following from the Lemma 2, we have

P{δλ̂?Si = k, δλ
?

Si 6= k}
≤ P{T̂k,i ≤ αk + (1− αk)/(λ̂?k + 1), TORk,i > αk + (1− αk)/(λ?k + 1)}
+ P{T̂k,i > αk + (1− αk)/(λ̂?k + 1), TORk,i ≤ αk + (1− αk)/(λ?k + 1)}
+ P{λ̂?k(T̂k,i − αk) + T̂k,i ≤ mink′ 6=k λ̂

?
k′(T̂k′,i − αk′) + T̂k′,i,

λ?k(T
OR
k,i − αk) + T̂k,i > mink′ 6=k λ

?
k′(T

OR
k′,i − αk′) + TORk,i }

+ P{λ̂?k(T̂k,i − αk) + T̂k,i > mink′ 6=k λ̂
?
k′(T̂k′,i − αk′) + T̂k′,i,

λ?k(T
OR
k,i − αk) + T̂k,i ≤ mink′ 6=k λ

?
k′(T

OR
k′,i − αk′) + TORk,i }

= o(1) + o(1) = o(1),

and similarly

P{δλ̂?Si 6= k, δλ
?

Si = k} = o(1).

Then,

E{|I{δλ̂?Si = k} − I{δλ?Si = k}|} ≤ P{δλ̂?Si = k, δλ
?

Si 6= k}+ P{δλ̂?Si 6= k, δλ
?

Si = k}
= o(1) + o(1) = o(1).

By the above result, it is easy to show that

|E{1/m
∑m

i=1(TORk,i − αk)I{δλ̂
?

Si = k}}| = |E{[TORk,i − α][I{δλ̂?Si = k} − I{δλ?Si = k}]}|
≤ E{|I{δλ̂?Si = k} − I{δλ?Si = k}|} = o(1),

(12)

|E{1/m
∑m

i=1[1− TORk,i ][I{δλ̂?Si = k} − I{δλ?Si = k}]}|
≤ E{|I{δλ̂?Si = k} − I{δλ?Si = k}|} = o(1),

(13)

and

E

{
1/m

m∑
i=1

I{δλ̂?Si = k}

}
= E

{
1/m

m∑
i=1

I{δλ?Si = k}

}
+ o(1) > 0 (14)

By (12) and (14), the result that smFDRk(δ̂
?
S) = αk + o(1) can be derived. By (13),

the result that tETP(δ̂?S)/tETP(δ?S) = 1 + o(1) can be derived. Then, the proof of
Theorem 4 is completed.
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A. Proofs of Proposition 1, Theorem 1 and Theorem 3

A.1. Proof of Proposition 1
(i) To derive the oracle procedure that minimizes LT (λ, δ) it suffices to minimize each
of the terms

K∑
k=1

[I(δi 6= k){1− TORk (X1i, X2i)}+ λI(δi = k){TORk (X1i, X2i)− αk}]

for i = 1, . . . ,m. It is straightforward to check that the above subjective function is
achieved by

δλT i = arg min
k∈{0,...,K}

[
∑

k′∈{1,...,K},k′ 6=k

{1− TORk′ (X1i, X2i)}+ λ{TORk (X1i, X2i)− α}] (15)

for i = 1, . . . ,m, where λ0 = 0. Thus, for any δ ∈ {0, 1}m,

LT (λ, δλT ) ≤ LT (λ, δ),

where δλT = (δλT1, . . . , δ
λ
Tm). Take the expectations on both sides, then E{LT (λ, δλT )} ≤

E{LT (λ, δ)} holds for any δ ∈ {0, 1}m.

(ii) It is easy to see from (8) that for k = 1, . . . ,K,

I(δλT i = k) = I

{
TORk ≤ α+

1− α
λ+ 1

, TORk < min
k′ 6=k

TORk′

}
.

Thus,

NOR
T (λ) = E

[∑K
k=1 I

{
TORk ≤ α+ 1−α

λ+1 , T
OR
k < mink′ 6=k T

OR
k′

}(
TORk (X1i, X2i)− α

)]
= E

[
I
{
TORmin(X1i, X2i) ≤ α+ 1−α

λ+1

}(
TORmin(X1i, X2i)− α

)]
Let λ1 > λ2 > 0. Then,

NOR
T (λ2)−NOR

T (λ1) = E
[
I
{
α+ 1−α

λ1+1 < TORmin ≤ α+ 1−α
λ2+1

}(
TORmin(X1i, X2i)− α

)]
≥ 0.

That is, NOR
T (λ) is non-increasing in λ.

As NOR
T (0) ≥ 0 and NOR

T (λ) is continuous, there exists at least one λ such that
NOR
T (λ) = 0. Together with the above monotonicity of NOR

T (λ), NOR
T (λ?) = 0 always

holds. So far, Proposition 1 is completed.

A.2. Proof of Theorem 1
(i) Since (X11, X21), . . . , (X1i, X2i), . . . , (X1m, X2m) are independently and identically
distributed, NOR

T (λ) = 0 is equivalent to tmFDR(δ?T ) = α. By the part (ii) of Proposi-
tion 1, QORT (λ?) = α holds.
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(ii) For any δ, if tmFDR(δ) ≤ α, then

E{
∑m

i=1

∑K
k=1[1− TORk (X1i, X2i)]− I(δ?T i = k)[1− TORk (X1i, X2i)]}

= E{
∑m

i=1

∑K
k=1 I(δ?T i 6= k)[1− TORk (X1i, X2i)] + λ?I[δ?T i = k)](TORk (X1i, X2i)− α)}

= E{LT (λ?, δ?T )} ≤ E{LT (λ?, δ)}
= E{

∑m
i=1

∑K
k=1{I(δi 6= k)[1− TORk (X1i, X2i)] + λ?I(δi = k)(TORk (X1i, X2i)− α)}}

≤ E{
∑m

i=1

∑K
k=1[1− TORk (X1i, X2i)]− I(δi = k)[1− TORk (X1i, X2i)]}.

Thus, tETP(δ?T ) ≥ tETP(δ) holds.

A.3. Proof of Theorem 3
For ease of presentation, in this proof, the TORmin(X1i, X2i) and T̂min(X1i, X2i) will be

denoted as TORmin,i and T̂min,i, respectively. Let t = α + (1 − α)/(λ + 1) and define

N̂OR
T (λ) = 1/m

∑m
i=1 I{TORmin,i < t}[TORmin,i − α]. Then, by the weak law of large numbers

(WLLN), N̂OR
T (λ)

p→ NOR
T (λ) holds for any λ > 0.

Construct a continuous version of N̂T (λ) (denoted as N̂C
T (λ)) by linear interpolation,

i.e, for λ̂
(j+1)
min ≤ λ < λ̂

(j)
min,

N̂C
T (λ) =

t− T̂ (j)
min

T̂
(j+1)
min − T̂ (j)

min

N̂T (λ̂
(j)
min) +

T̂
(j+1)
min − t

T̂
(j+1)
min − T̂ (j)

min

NOR(λ̂
(j+1)
min ),

where T̂
(m+1)
min = 1 and λ̂

(j)
min = (1 − α)/(T̂

(j)
min − α) − 1. It is easy to check that N̂C

T (λ)

is continuous and monotone. Thus, its inverse function, denoted as N̂C,−1
T (λ), is well

defined, continuous and monotone. Meanwhile, E{|N̂C
T (λ) − N̂T (λ)|} ≤ 1/m → 0 as

m→∞. By Markov inequality, we have N̂C
T (λ)− N̂T (λ)

p→ 0 holds.
To prove Theorem 3, the following three results shall be discussed in turn.

(1) N̂T (λ)− N̂OR
T (λ)

p→ 0 holds for any λ > 0;

(2) λ̂?
p→ λ?;

(3) E{|I{T̂min,i ≤ t̂?} − I{TORmin,i ≤ t?}|}→0 where t̂? = α + (1 − α)/(λ̂? + 1) and
t? = α+ (1− α)/(λ? + 1).

Proof of result (1):

Since Conditions (C1) and (C2) hold, T̂min,i − TORmin,i = oP (1) holds uniformly for all i.

Together with the results 0 ≤ T̂min,i ≤ 1, 0 ≤ TORmin,i ≤ 1 and Lemma 2, it can be shown
that

E{[T̂min,i − α]I{T̂min,i ≤ t} − [TORmin,i − α]I{TORmin,i ≤ t}}2

≤ E{[T̂min,i − TORmin,i]
2I{T̂min,i ≤ t, TORmin,i ≤ t}}

+E{[T̂min,i − α]2I{T̂min,i ≤ t, TORmin,i > t}+ E{[TORmin,i − α]2I{T̂min,i > t, TORmin,i ≤ t}}
≤ E{[T̂min,i − TORmin,i]

2}+ E{I{T̂min,i ≤ t, TORmin,i > t}+ E{I{T̂min,i > t, TORmin,i ≤ t}}
= o(1) + o(1) + o(1) = o(1).

(16)
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By the Cauchy-Schwarz inequality, it has

E(|[T̂min,i − α]I{T̂min,i ≤ t} − [TORmin,i − α]I{TORmin,i ≤ t}|)
≤ (E{[T̂min,i − α]I{T̂min,i ≤ t} − [TORmin,i − α]I{TORmin,i ≤ t})2)1/2

= o(1)

(17)

and
E{[(T̂min,i − α)I{T̂min,i ≤ t} − (TORmin,i − α)I{TORmin,i ≤ t}]

× [(T̂min,i − α)I{T̂min,i ≤ t} − (TORmin,i − α)I{TORmin,i ≤ t}]}
≤ {E[(T̂min,i − α)I{T̂min,i ≤ t} − (TORmin,i − α)I{TORmin,i ≤ t}]2}1/2

× {E[(T̂min,i − α)I{T̂min,i ≤ t} − (TORmin,i − α)I{TORmin,i ≤ t}]2}1/2
= o(1)

(18)

Applying the results (16)-(18), the following results can be obtained.

|E{1/m
∑m

i=1[(T̂min,i − α)I{T̂min,i ≤ t} − (TORmin,i − α)I{TORmin,i ≤ t}]}|
≤ E{|(T̂min,i − α)I{T̂min,i ≤ t} − (TORmin,i − α)I{TORmin,i ≤ t}|} = o(1)

and

var(1/m
∑m

i=1([(T̂min,i − α)I{T̂min,i ≤ t} − (TORmin,i − α)I{TORmin,i ≤ t}])
≤ 1/mE[(T̂min,i − α)I{T̂min,i ≤ t} − (TORmin,i − α)I{TORmin,i ≤ t}]2

+(1− 1/m)E{[(T̂min,i − α)I{T̂min,i ≤ t} − (TORmin,i − α)I{TORmin,i ≤ t}]
×[(T̂min,i − α)I{T̂min,i ≤ t} − (TORmin,i − α)I{TORmin,i ≤ t}]}
= o(1).

Therefore, N̂T (λ)− N̂OR
T (λ)

p→ 0 holds for any λ > 0.
Proof of result (2):

According to the construction of N̂C
T (λ), the result λ̂? − N̂C,−1

T (0)
p→ 0 holds immedi-

ately. Thus, it suffices to show that N̂C,−1
T (0)

p→ λ?. Since N̂C,−1
T (λ) is continuous and

NOR
T (λ?) = 0, it has that for any ε > 0, there exist a η > 0, such that

P{|N̂C,−1
T (0)− λ?| > ε} = P{|N̂C,−1

T (NOR
T (λ?))− N̂C,−1

T (N̂C
T (λ?))| > ε}

≤ P{|NOR
T (λ?))− N̂C

T (λ?)| > η}

Following from the result (1), N̂OR
T (λ)

p→ NOR
T (λ) and N̂C

T (λ) − N̂T (λ)
p→ 0, it is easy

to see that P{|N̂C,−1
T (0)− λ?| > ε} will tends to 0. Thus, we proved the result (2).

Proof of result (3):
Following from the Lemma 2, the result (3) can be proved immediately.

E{|I{T̂min,i ≤ t̂?} − I{TORmin,i ≤ t?}|}
≤ E{I{T̂min,i ≤ t̂?, TORmin,i > t?}}+ E{I{T̂min,i > t̂?, TORmin,i ≤ t?}}
→ 0, as m→∞.

The results of Theorem 3 can now be proved. By the result (3), it is easy to show
that

|E{1/m
∑m

i=1(TORmin,i − α)I{T̂min,i ≤ t̂?}}|
= |E{[TORmin,i − α][I{T̂min,i ≤ t̂?} − I{TORmin,i ≤ t?}]}|
≤ E{|I{T̂min,i ≤ t̂?} − I{TORmin,i ≤ t?}|} = o(1),

(19)
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|E{1/m
∑m

i=1[1− TORmin,i][I{T̂min,i ≤ t̂?} − I{TORmin,i ≤ t?}]}|
≤ E{|I{T̂min,i ≤ t̂?} − I{TORmin,i ≤ t?}|} = o(1),

(20)

and

E

{
1/m

m∑
i=1

I{T̂min,i ≤ t̂?}

}
= E

{
1/m

m∑
i=1

I{TORmin,i ≤ t?}

}
+ o(1) > 0 (21)

By (19) and (21), the result that tmFDR(δ̂?T ) = α + o(1) can be derived. By (20),

the result that tETP(δ̂?T )/tETP(δ?T ) = 1 + o(1) can be derived. Then, the proof of
Theorem 3 is completed.

B. Two Lemmas and their proofs

B.1. Lemma 1 and Its proof
Lemma 1. Suppose that 0 ∈ {(NOR

1 (λ), . . . , NOR
K (λ)) : λ ∈ {<+∪{0}}K}, then there

exists at least one λ with λk ≥ 0 such that NOR
k (λ) = 0 for all k = 1, . . . ,K. Further-

more, denote by Λ∗∗ = {λ∗∗ = (λ∗∗1 , . . . , λ
∗∗
K ) : NOR

k (λ∗∗) = 0 and λ∗∗k ≥ 0, for all k =

1, . . . ,K}, then NOR
k (λ̌′k,n) = 0 holds for k = 1, . . . ,K, where λ̌′k,n is the λ with

λk = λ̌k,n and λk′ = λ̌k′,n−1, k′ 6= k, and that there exists a λ∗∗ ∈ Λ∗∗ such that

λ̌k,n ≥ λ∗∗k for all k.

Proof: Let λ̌k0,n−1 be the λ with λk = 0 and λk′ = λ̌k′,n−1, k′ 6= k and consider the case

n = 1. First, we claim that NOR
k (λ̌k0,n−1) ≥ 0. Because NOR

k (λ̌k0,n−1) < 0 implies a
contradiction that

NOR
k (λ∗∗) ≤ NOR

k (λ̌k0,n−1) < 0 = NOR
k (λ∗∗)

for any λ∗∗ ∈ Λ∗∗. The first inequality here follows from the monotonicity of theNOR
k (λ).

The result NOR
k (λ̌k0,n−1) ≥ 0 indicates that there exists at least one λk ≥ 0 such that

NOR
k (λ̌k,n−1) = 0. Since NOR

k (λ) is a continuous and monotone function, λ̌k,n exists

uniquely and NOR
k (λ̌′k,n) = 0.

Second, let λ∗∗1 = (λ11, ..., λ1K) be one of Λ∗∗. Without loss of generality, suppose that
for some k ∈ {1, ...,K}, λ̌k,n < λ∗∗1k holds. Denote λ∗∗ to be the λ∗∗1 with λ̌k,n in place

of λ∗∗1k. Next, we will show in the following that λ∗∗ ∈ Λ∗∗ and that λ̌k,n ≥ λ∗∗k for all

k. If there are multiple k ∈ {1, ...,K} satisfying λ̌k,n < λ∗∗1k, we can repeat the following
proof many times to find the desired λ∗∗. The latter result is obvious, so we only need
to prove the former result. Repeat the proof of the monotonicity of the NOR

k (λ), we

can further prove the result that
∑K

k=1N
OR
k (λ) is also non-increasing in λk. With this

result, we have
∑K

k=1N
OR
k (λ∗∗) ≥

∑K
k=1N

OR
k (λ∗∗1 ) = 0. By the monotonicity of the

NOR
k (λ), we have NOR

k′ (λ∗∗) ≤ NOR
k′ (λ∗∗1 ) = 0 for k′ 6= k and NOR

k (λ∗∗) = 0 (due to the

fact that 0 = NOR
k (λ∗∗1 ) ≤ NOR

k (λ∗∗) ≤ NOR
k (λ̌′k,n) = 0). Therefore, NOR

k′ (λ∗∗) = 0 for

k′ 6= k. Otherwise, 0 ≤
∑K

k=1N
OR
k (λ∗∗) <

∑K
k′ 6=kN

OR
k′ (λ∗∗) +NOR

k (λ∗∗) < 0. This is a

contradiction and implies that NOR
k′ (λ∗∗) = 0 for all k′ 6= k. Till now, we have found a

λ∗∗ ∈ Λ∗∗ such that λ̌k,n ≥ λ∗∗k for all k.
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For n > 1, if λ̌k,n−1 ≥ λ∗∗k for all k, the results that λ̌k,n exists uniquely and λ̌k,n−1 ≥
λ̌k,n ≥ λ∗∗k can be proved similarly. Together with the results for case n = 1, we complete
the proof of this lemma.

B.2. Lemma 2 and Its proof
Lemma 2. Let Xm, Ym, X and Y be bounded continuous variables. Suppose that

X 6= Y , Xm
p→ X and Ym

p→ Y hold, then P{Xm ≤ Ym, X > Y } + P{Xm > Ym, X ≤
Y } → 0 as m→∞.

Proof: For any ε > 0, when m is sufficiently large,

P{Xm ≤ Ym, X > Y }}
= P{Xm ≤ Ym, Y < X ≤ Y + ε}+ P{Xm ≤ Ym, Y + ε < X}
≤ P{Y < X ≤ Y + ε}+ P{Xm ≤ Ym, Ym < Y + ε/2, Y + ε < X}+ P{Ym > Y + ε/2}
≤ P{0 < X − Y < ε}+ P{|Xm −X| > ε/2}}+ P{|Ym − Y | > ε/2}}

and similarly

P{Xm ≤ Ym, X > Y }}
≤ P{0 < Y −X < ε}+ P{|Xm −X| > ε/2}}+ P{|Ym − Y | > ε/2}}.

Let m→∞ and ε→ 0, then P{Xm ≤ Ym, X > Y }+ P{Xm > Ym, X ≤ Y } → 0.

C. Algorithm for adjusted sperate discovery procedure

First, for each class k, fix ck1 and find a ck2 over interval (0, 1) using bisection searching
algorithm such that

m∑
i=1

I(δi = k)[T̂ORk (x1i, x2i)− α′k] ≈ 0. (22)

where α′k is set to be the nominal smFDR level αk for the set-specific error control
problem, or the tmFDR level α for the total error control problem. Second, vary ck1

from the smallest test statistic Sj(1) to the largest test statistic Sj(m), repeat the first

step, and select the pair (ck1, ck2) having the largest
∑m

i=1 I(δi = k)[1 − T̂ORk (x1i, x2i)].
Due to the fact that the signals in the test statistics are sparse, this step can be greatly
simplified by varying ck1 from the smallest test statistic S1(1) to some test statistic S1(m1)

(e.g., m1 = 0.2m). Third, apply the resulting ckj ’s to the decision rules, described in
Section 3.3, to obtain the classification outcomes. If the three subsets have no overlaps,
the classification outcomes are the desired ones. Otherwise, a remedy to this modification
is necessary. This paper suggests keeping the genomic feature classified into several
classes in the one having the smallest oracle statistics across classes. For example, if the
ith feature is classified into classes 1 and 3, and T̂OR1 (x1i, x2i) < T̂OR3 (x1i, x2i), then the
ith feature will be kept in class 1. Fourth, adjust the α′k in (22) properly and repeat the
previous three steps such that

m∑
i=1

I(δi = k)[T̂ORk (x1i, x2i)− αk] ≈ 0 (23)
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for the set-specific error control problem, and

m∑
i=1

K∑
k=1

I(δi = k)[T̂ORk (x1i, x2i)− α] ≈ 0 (24)

for the total error control problem, are achieved by the resulting classification rules. For
example, increase α′k gradually till equations (23) for all k or equation (24) hold(s).
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