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Abstract—TIn this paper, we study detection and fast reconstruc-
tion of the celebrated Watts-Strogatz (WS) small-world random
graph model (Watts and Strogatz, 1998) which aims to describe
real-world complex networks that exhibit both high clustering
and short average length properties. The WS model with neigh-
borhood size £ and rewiring probability probability 5 can be
viewed as a continuous interpolation between a deterministic ring
lattice graph and the Erdds-Rényi random graph. We study the
computational and statistical aspects of detection and recovery
of the deterministic ring lattice structure (strong ties) in the
presence of random connections (weak ties). The phase diagram
in terms of (k, 3) is shown to consist of several regions according
to the difficulty of the problem. We propose distinct methods for
these regions.

Index Terms—Small world networks, random graphs, spectral
analysis, detection, reconstruction, computational boundary.

I. INTRODUCTION

The “small-world” phenomenon aims to describe real-world
complex networks that exhibit both high clustering and short
average length properties. While most of the pairs of nodes are
not friends, any node can be reached from another in a small
number of hops. The Watts-Strogatz (WS) model, introduced
in (Newman and Watts, 1999; Watts and Strogatz, 1998), is a
popular generative model for networks that exhibit the small-
world phenomenon. The WS model interpolates between the
two extremes—the regular lattice graph for high clustering
on the one hand, and the random graph exhibiting the short
chain property on the other. Considerable effort has been
spent on studying the asymptotic statistical behavior (degree
distribution, average path length, clustering coefficient, etc.)
and the empirical performance of the WS model (Amaral et al.,
2000; Barrat and Weigt, 2000; Latora and Marchiori, 2001;
Van Der Hofstad, 2009; Watts, 1999). Successful applications
of the WS model have been found in a range of disciplines,
such as psychology (Milgram, 1967), epidemiology (Moore
and Newman, 2000), medicine and health (Stam et al., 2007),
to name a few. In one of the first algorithmic studies of small-
world networks, Kleinberg (2000) investigated the theoretical
difficulty of finding the shortest path between any two nodes
when one is restricted to use local algorithms, and further
extended the small-world notion to long range percolation
on graphs (Benjamini and Berger, 2000; Coppersmith et al.,
2002).

In the present paper, we study detection and reconstruction
of small-world networks. Our focus is on both statistical and
computational aspects of these problems. Given a network,
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the first challenge is to detect whether it enjoys the small-
world property (i.e., high clustering and short average path),
or whether the observation may simply be explained by
the Erd6s-Rényi random graph (the null hypothesis). The
second question is concerned with the reconstruction of the
neighborhood structure if the network does exhibit the small-
world phenomenon. In the language of social network analysis,
the detection problem corresponds to detecting the existence
of strong ties (close friend connections) in the presence
of weak ties (random connections). The more difficult re-
construction problem corresponds to distinguishing between
strong and weak ties. Statistical and computational difficulties
of both detection and reconstruction are due to the latent
high-dimensional permutation matrix which blurs the natural
ordering of the ring structure on the nodes.

Let us parametrize the WS model in the following way:
the number of nodes is denoted by n, the neighborhood
size by k, and the rewiring probability by 3. Provided the
adjacency matrix A € R™*™, we are interested in identifying
the tuples (n, k, 3) when detection and reconstruction of the
small-world random graph is possible. Specifically, we focus
on the following two questions.

Detection Given the adjacency matrix A up to a permutation,
when (in terms of n, k, 5) and how (in terms of procedures)
can one statistically distinguish whether it is a small-world
graph (5 < 1), or a random graph with matching degree
(8 = 1). What can be said if we restrict our attention to
computationally efficient procedures?

Reconstruction  Once the presence of the neighborhood
structure is confirmed, when (in terms of n, k, 5) and how (in
terms of procedures) can one estimate the deterministic neigh-
borhood structure? If one only aims to estimate the structure
asymptotically consistently, are there computationally efficient
procedures, and what are their limitations?

We address the above questions by presenting a phase
diagram in Figure 1. The phase diagram divides the parameter
space into four disjoint regions according to the difficulty
of the problem. We propose distinct methods for the regions
where solutions are possible.

A. Why the Small-World Model?

Finding and analyzing the appropriate statistical models for
real-world complex networks is one of the main themes in
network science. Many real empirical networks—for exam-
ple, internet architecture, social networks, and biochemical
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pathways—exhibit two features simultaneously: high cluster-
ing among individual nodes and short distance between any
two nodes. Consider the local tree rooted at a person. The
high clustering property suggests prevalent existence of triadic
closure, which significantly reduces the number of reachable
people within a certain depth (in contrast to the regular tree
case where this number grows exponentially with the depth),
contradicting the short average length property. In a pathbreak-
ing paper, Watts and Strogatz (1998) provided a mathematical
model that resolves the above seemingly contradictory notions.
The solution is surprisingly simple — interpolating between
structural ring lattice graph and a random graph. The ring
lattice provides the strong ties (i.e., homophily, connection to
people who are similar to us) and triadic closure, while the
random graph generates the weak ties (connection to people
who are otherwise far-away), preserving the local-regular-
branching-tree-like structure that induces short paths between
pairs.

We remark that one can find different notions of “small-
worldness” in the existing literature. For instance, “small-
world” refers to “short chain” in (Kleinberg, 2000; Milgram,
1967), while it refers to both “high clustering” and “short
chain” in (Watts and Strogatz, 1998). We adopt the latter
definition in the current study.

B. Rewiring Model

Let us now define the WS model. Consider a ring lattice
with n nodes, where each node is connected with its k
nearest neighbors (k/2 on the left and £/2 on the right,
k even for convenience). The rewiring process consists of
two steps. First, we erase each currently connected edge
with probability /3, independently. Next, we reconnect each
edge pair with probability B%, allowing multiplicity.! The
observed symmetric adjacency matrix A € {0,1}"*™ has the
following structure under some unobserved permutation matrix

P, €{0,1}™*™ For 1 < i < j < n, the probability that
[PrAPI];; =1

is given by
() 1-B1-pL), ifo<li—jl<k
(i) B-E; otherwise,

modn—l—g

and the entries are independent of each other. Equivalently, we
have for 1 <1< j<n

Aij =k ([PBP!;;), (1

where k(-) is the entry-wise i.i.d. Markov channel,
(0) ~ Bernoulli BL
" n—1)’
(1) ~ Bernoulli [ 1 — (1 — ﬂi)
" n—1")"

'The original rewiring process in Watts and Strogatz (1998) does not
allow multiplicity; however, for the simplicity of technical analysis, we
focus on reconnection allowing multiplicity. These two rewiring processes
are asymptotically equivalent.

and B € {0,1}™*™ indicates the support of the structural ring
lattice

B [Loifo<li-jl<k
E 0, otherwise

modnflfg @

We denote by WS(n, k, 8) the distribution of the random
graph generated from the rewiring model, and denote by
ER(n, %) the Erd6s-Rényi random graph distribution (with
matching average degree k). Remark that if 8 = 1, the
small-world graph WS(n, k, 3) reduces to ER(n, —£-), with
no neighborhood structure. In contrast, if § = 0, the small-
world graph WS(n, k,3) corresponds to the deterministic
ring lattice, without random connections. We focus on the
dependence of the gap 1 — 8 = o(1) on n and k, such
that distinguishing between WS(n, k, 8) and ER(n, %) or
reconstructing the ring lattice structure is statistically and
computationally possible.

C. Summary of Results

The main theoretical and algorithmic results are summarized
in this section. We first introduce several regions in terms of
(n, k, B), according to the difficulty of the problem instance,
and then we present the results using the phase diagram in
Figure 1. Except for the ‘impossible region’, we will intro-
duce algorithms with distinct computational properties. The
‘impossible region’ is defined through a lower bound, while
the other regions are classified according to upper bounds on
performance of respective procedures.

Impossible region: 1 — 5§ < 107% v k’%. In this region,

no multiple testing procedure (regardless of computational
budget) can succeed in distinguishing, with vanishing error,
among the class of models that includes all of WS(n, k, )
and ER(n, —£-).

’n—1

Hard region: k’%\/k’%jl—ﬁ<\/%v7mﬁl.ltis

possible to distringuish between WS(n, k, 3) and ER(n, n’il)
statistically with vanishing error; however the evaluation of
the test statistic (5) requires exponential time complexity, to

the best of our knowledge.

Easy region: \/%\/ Lokgn <1-8= 10% Vi k’%. There
exists an efficient spectral test that can distinguish between the

small-world random graph WS(n, k, 8) and the ErdGs-Rényi
graph ER(n, %) in time nearly linear in the matrix size.

log 1
osn \logn L) _ g <1 In

this region, not only is it possible to detect the existence of the
lattice structure in a small-world graph, but it is also possible to
consistently reconstruct the neighborhood structure via a novel
computationally efficient correlation thresholding procedure.

Reconstructable region:

The following phase diagram provides an intuitive illus-
tration of the above theoretical results. If we parametrize
Ek=xn"0<z<land1l—-p8=xn"Y0<y <1, each point
(x,y) € [0,1]? corresponds to a particular problem instance
with parameter bundle (n, k = n*, 8 = 1—n"¥). According to
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1-8=n"Y0<y<1

Y

1/2

1/4

1/2 r
k=n"0<zx<1

Fig. 1: Phase diagram for small-world network: impossible
region (red region I), hard region (blue region II), easy region
(green region III), and reconstructable region (cyan region IV).

the location of (x, y), the difficulty of the problem changes; for
instance, the larger the x and the smaller the y is, the easier the
problem becomes. The various regions are: impossible region
(red region 1), hard region (blue region II), easy region (green
region III), reconstructable region (cyan region IV).

D. Notation

A, B,Z € R""™ denote symmetric matrices: A is the
adjacency matrix, B is the structural signal matrix as in
Equation (2), and Z = A —EA is the noise matrix. We denote
the matrix of all ones by J. Notations <, >, <, > denote the
asymptotic order: a(n) < b(n) if and only if lim sup b( ) <eg,

with some constant ¢ > 0, a(n) < b(n) “if and only if
lim sup Z(("; = 0. C,C’ > 0 are universal constants that may
n—r 00

change from line to line. For a symmetric matrix A, \;(A),
1 <4 < n, denote the eigenvalues in a decreasing order. The
inner-product (A, B) = tr(A” B) denotes both the Euclidian
inner-product and matrix inner-product. For any integer n,
[n] := {0,1,...,n — 1} denotes the index set. Denote the
permutation in symmetric group m € S, and its associated

matrix form as Py.

For a graph G(V,E) generated from the Watts-Strogatz
model WS(n, k, 3) with associated permutation 7, for each
node v; € V,1 < i < |V|, we denote

k
12
mod n 2},

| &

N(wi) = { 0 <) - )] <

the ring neighborhood of v; before permutation 7 is applied.

E. Organization of the Paper

The following sections are dedicated to the theoretical
justification of the various regions in Section I-C. Specifically,

Section II establishes the boundary for the impossible region
I, where the detection problem is information-theoretically
impossible. We contrast the hard region II with the regions III
and IV in Section III; here, the difference arises in statistical
and computational aspects of detecting the strong tie structure
inside the random graph. Section IV studies a correlation
thresholding algorithm that reconstructs the neighborhood
structure consistently when the parameters lie within the
reconstructable region IV. We also study a spectral ordering
algorithm which succeeds in reconstruction in a part of region
III. Whether the remaining part of region III admits a recovery
procedure is an open problem. Additional further directions are
listed in Section V.

II. THE IMPOSSIBLE REGION: LOWER BOUNDS

We start with an information-theoretic result that describes
the difficulty of distinguishing among a class of models.
Theorem 1 below characterizes the impossible region, as in
Section I-C, in the language of minimax multiple testing error.
The proof is postponed to Section VI.

Theorem 1 (Impossible Region). Consider the following sta-
tistical models: % denotes the distribution of the Erdds-Rényi
random graph ER(n ,#) and P, € S,_1 denote distri-
butions of the Watts-Strogatz small-world graph WS(n, k, B)
as in Equation (1) with different permutations . Consider any
selector ¢ : {0,1}"*"™ — S,,_1 U{0} that maps the adjacency
matrix A € {0,1}"*™ to a decision in S,_1 U {0}. Then for

any fixed 0 < a <1 /8, the following lower bound on multiple
testing error holds:

lim min max {Po(6#£0), ——— 3 Pr(d£m) s >1-2a,
n— 00 (n—l)! €Sy 1
when the parameters satisfy

/logn , logn 1
]._BSCQ n or 1_ﬁ§005 k lgn—logn

with constants Cy,, C, that only depend on «. In other words,

if

logn logn

1-8< o
no multiple testing procedure can succeed in distinguishing,
with vanishing error, the class of models containing all of

WS(n, k, ) and ER(n, = 1)

The missing latent random variable, the permutation matrix
Py, is the object we are interested in recovering. A permutation
matrix P, induces a certain distribution on the adjacency
matrix A. Thus the parameter space of interest, including mod-
els WS(n, k, 8) and ER(n, -5 ), is of cardinality (n—1)!+1.
Based on the observed adJacency matrix, distinguishing among
the models WS(n, k, 8) and ER(n, %) is equivalent to a
multiple testing problem. The impossible region characterizes
the information-theoretic difficulty of this reconstruction prob-
lem by establishing the condition that ensures non-vanishing
minimax testing error as n, k(n) — oco.

The “high dimensional” nature of this problem is mainly
driven by the unknown permutation matrix, and this latent
structure introduces difficulty both statistically and computa-
tionally. Statistically, via Le Cam’s method, one can build a
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distance metric on permutation matrices using the distance
between the corresponding measures (measures on adjacency
matrices induced by the permutation structure). In order to
characterize the intrinsic difficulty of estimating the permuta-
tion structure, one needs to understand the richness of the set
of permutation matrices within certain distance to one partic-
ular element, a combinatorial task. The combinatorial nature
of the problem makes the “naive” approach computationally
intensive.

III. HARD V.S. EASY REGIONS: DETECTION STATISTICS

This section studies the hard and easy regions in Section I-C.
First, we propose a near optimal test, the maximum likelihood
test, that detects the ring structure above the information
boundary derived in Theorem 1. However, the evaluation of
the maximum likelihood test requires O(n™) time complexity.
The maximum likelihood test succeeds outside of region I,
and, in particular, succeeds (statistically) in the hard region
II. We then propose another efficient test, the spectral test,
that detects the ring structure in time O*(n?) via the power
method. The method succeeds in regions III and IV.

Theorem 2 combines the results of Lemma 1 and Lemma 2
below.

Theorem 2 (Detection: Easy and Hard Boundaries). Consider
the following statistical models: Py denotes the distribution
of the Erdds-Rényi random graph ER(n 7ﬁ) and Pp,m €
Sn_1 denote distributions of the Watts-Strogatz small-world
graph WS(n, k, 8). Consider any selector ¢ : {0,1}"*" —

{0,1} that maps an adjacency matrix to a binary decision.
We say that minimax detection for the small-world random
model is possible when

lim min max
n— oo o]

{Pa¢#o §j¢>¢¢1}

' 71'657, 1

(3)
If the parameter (n, k, 8) satisfies

/1 1
hard boundary : 1— [ = o8M Oin,
n

minimax detection is possible, and an exponential time max-
imum likelihood test (5) ensures (3). If, in addition, the
parameter (n, k, 3) satisfies

1
easy boundary: 1—( = \/; \Y

then a near-linear time spectral test (7) ensures (3).

Viogn
k )

Proof of Theorem 2 consists of two parts, which will be
addressed in the following two sections, respectively.

A. Maximum Likelihood Test

Consider the test statistic 7} as the objective value of the
following optimization

Ty (A) := max (P,BPT A), 4)

™

where P, € {0,1}"*" is taken over all permutation matrices
and A is the observed adjacency matrix. The maximum
likelihood test ¢; : A — {0,1} based on T by

$1(4) (5)

_ { 1 if Ty (A) > \ /—nk logn! + 2 - logn!
0 otherwise.

The threshold is chosen as the rate k2 +

@) (‘/anlog% V nlog %) : if the objective value is of
a greater order, then we believe the graph is generated from

the small-world rewiring process with strong ties; otherwise
we cannot reject the null, the random graph model with only
weak ties.

Lemma 1 (Guarantee for Maximum Likelihood Test). The
maximum likelihood test ¢, in Equation (5) succeeds in
detecting the small-world random structure when

1
1— 8/ 20y
n

1 (n—1)!
o 2 Ber A=

Remark 1. Lemma 1 can be viewed as the condition on
the signal and noise separation. By solving the combinatorial
optimization problem, the test statistic aggregates the signal
that separates from the noise the most. An interesting open
problem is: if we solve a relaxed version of the combinatorial
optimization problem (4) in polynomial time, how much
stronger the condition on 1 — /3 needs to be to ensure power.

logn
k )

in the sense that

lim
n,k(n)—oo

max {P0(¢1 #0),

B. Spectral Test

For the spectral test, we calculate the second largest eigen-
value of the adjacency matrix A as the test statistic

T>(A) = Az(A). (6)
The spectral test ¢ : A — {0,1} is
bo(A) = { 1 if Ty(A) = Vk Vv logn

0 otherwise.
Namely, if A2(A) passes the threshold, we classify the graph
as a small-world graph. Evaluation of (7) requires near-linear
time O*(n?) in the size of the matrix.

Lemma 2 (Guarantee for Spectral Test). The second eigen-
value test ¢o in Equation (7) satisfies

L oo
-1y Z Pi(p2 #1) p =

1=1
1
1—B=4/=V
=y

The main idea behind Lemma 2 is as follows. Let us look
at the expectation of the adjacency matrix,

)

lim
n,k(n)—oco

max {P0(¢2 #0),

whenever

Vdiogn
-

EA:(lfﬂ)(lfﬂ—) PT'BP, +5— (J—1),
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where J is the matrix of all ones. The main structure matrix
PIBP, is a permuted version of the circulant matrix (see
e.g. (Gray, 2006)). The spectrum of the circulant matrix B is
highly structured, and is of distinct nature in comparison to
the noise matrix A — EA.

IV. RECONSTRUCTABLE REGION: FAST STRUCTURAL
RECONSTRUCTION

In this section, we discuss reconstruction of the ring
structure in the Watts-Strogatz model. We show that in the
reconstructable region (region IV in Figure 1), a correlation
thresholding procedure succeeds in reconstructing the ring
neighborhood structure. As a by-product, once the neighbor-
hood structure is known, one can distinguish between weak
ties (random edges) and strong ties (neighborhood edges) for
each node. A natural question is whether there is another
algorithm that can work in a region (beyond region IV) where
correlation thresholding fails. We show that in a certain regime
with large k, a spectral ordering procedure outperforms the
correlation thresholding procedure and succeeds in parts of
regions III and IV (as depicted in Figure 2 below).

A. Correlation Thresholding

Consider the following correlation
procedure for neighborhood reconstruction.

thresholding

Algorithm 1: Correlation Thresholding for Neighborhood
Reconstruction
Data: An adjacency matrix A € R™*" for the graph
G(V,E).
Result: For each node v;,1 < i < n, an estimated set for
neighborhood A (v;).
1. For each v;, calculate correlations (A;, 4;), j # 1 ;
2. Sort {(Ai, A;),j € [nJ\{¢}} in a decreasing order,
select the largest k ones to form the estimated set N (vi) 3
Output: N (v;), for all i € [n]

The following lemma proves consistency of the above
Algorithm 1. Note the computational complexity is O(n -
min{logn, k}) for each node using quick-sort, with a total
runtime O*(n?).

Lemma 3 (Consistency of Correlation Thresholding). Con-
sider the Watts-Strogatz random graph WS(n, k, ). Under
the reconstructable regime IV (in Figure 1), that is,

lognv <logn>1/4’ ®)

1_
Cis k n

correlation thresholding provides a consistent estimate of the
neighborhood set N'(v;) w.h.p in the sense that

W (o) AN (v3)]
\N(Ui)\

where /\ denotes the symmetric set difference.

lim max
n,k(n)—oo i€[n]

:O’

The condition under which consistency of correlation
thresholding is ensured corresponds to the reconstructable
region in Figure 1. One may ask if there is another algorithm
that can provide a consistent estimate of the neighborhood set
beyond region IV. The answer is yes, and we will show in the
following section that under the regime when k is large (for
instance, k > n%), indeed it is possible to slightly improve
on Algorithm 1.

B. Spectral Ordering

Consider the following spectral ordering procedure,
which approximately reconstructs the ring lattice structure
. . 7
when k is large, i.e., k >~ ns.

Algorithm 2: Spectral Reconstruction of Ring Structure

Data: An adjacency matrix A € R™*" for the graph
G(\V,E).

Result: A ring embedding of the nodes V.

1. Calculate top 3 eigenvectors in the SVD A = UXUT.

Denote second and third eigenvectors as v € R™ and

v € R", respectively;

2. For each node ¢ and vector A.; € R"™, calculate the

associated angle ; for the vector (u” A.;,vT A;);

Output: the sorted sequence {6;}7_; and the
corresponding ring embedding of the nodes. For
each node v;, N (v;) are the closest k nodes in
the ring embedding.

The following Lemma 4 shows that when k is large,
Algorithm 2 also provides consistent reconstruction of the ring
lattice. Its computational complexity is O* (n?).

Lemma 4 (Guarantee for Spectral Ordering). Consider the
Watts-Strogatz graph WS(n, k, ). Assume k is large enough
in the following sense:

log k

1
> lim ogk > !

1> 1 .
n.k(n)—oo logn = 1, k(n)oo logn 8

Under the regime

n3.5

1-p8> e )
the spectral ordering provides consistent estimate of the neigh-
borhood set N'(v;) w.h.p. in the sense that
|N(vi)AN(Uz’)|

lim max———F— =0,

where /\ denotes the symmetric set difference.

In Lemma 4, we can only prove consistency of spectral
ordering under the technical condition that k is large. We do
not believe this is due to an artifact of the proof. Even though
the structural matrix (the signal) has large eigenvalues, the
eigen-gap is not large enough. The spectral ordering succeeds
when the spectral gap stands out over the noise level, which
implies that k needs to be large enough.
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1-8=n"Y0<y<1

Y
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Fig. 2: Phase diagram for small-world networks: impossible
region (red region I), hard region (blue region II), easy region
(green region III), and reconstructable region (cyan region IV
and IV’). Compared to Figure 1, the spectral ordering proce-
dure extends the reconstructable region (IV) when k > nte
av).

Let us compare the region described in Equation (9) with
the reconstructable region in Equation (8). We observe that
spectral ordering pushes slightly beyond the reconstructable
region when k > ni6, as shown in Figure 2.

C. Numerical Study

To see how the ring embedding Algorithm 2 performs
on real dataset, we implemented it in Python, on the co-
appearance network of characters in the novel Les Misérable”
(Knuth, 1993). Figure 3 summarizes the visualization (zoom
in for better resolution). Each node represents one character,
and the color and size illustrate its degree, with darker color
and larger size meaning higher degree. The lines connecting
nodes on the ring represent co-appearance relationship in the
chapters of the book, with the line width summarizing the
co-appearance intensity. As one can see in the embedding,
the obvious triangle is among the three main characters —
Valjean, Marius and Cosette. In the ring embedding, Valjean
and Javert are next to each other, so does Marius and Eponine,
as they have very strong ties (enemies and friends) in the plot.
The algorithm embeds the main characters — Valjean, Marius,
Fantine, Thenadler, etc — in a rather spread out fashion on
the ring, with each main character communicating with many
other minor characters as in the novel. The structure assures
the “short chain” property — any two characters can reach each
other through these few main characters as middle points. One
can also see many triadic closures in the ring neighborhood

>The data is downloaded from Prof. Mark Newman’s website http:/
www-personal.umich.edu/~mejn/netdata/.

Fig. 3: Ring embedding of Les Misérable co-appearance
network.

around main character, supporting the local “high clustering”
feature.

V. DISCUSSION

a) Comparison to stochastic block models: Recently,
stochastic block models (SBM) have attracted considerable
amount of attention from researchers in various fields (Decelle
et al., 2011; Massoulié, 2014; Mossel et al., 2013). Community
detection in stochastic block models focuses on recovering the
hidden community structure obscured by noise in the adja-
cency matrix and further concealed by the latent permutation
on the nodes.

Detectability or weak recovery of the hidden community
is one of the central question in studying SBM in the con-
stant degree regime. Drawing insights from statistical physics,
Decelle et al. (2011) conjectured a sharp transition threshold
(also known as the Kesten-Stigum bound) for detection in
the symmetric two-community case, above which recovering
the community better than random guessing is possible, and
below which — impossible. Massoulié (2014); Mossel et al.
(2013) proved the conjecture independently, one using spectral
analysis on the non-backtracking matrix (Hashimoto, 1989),
the other through analyzing non-backtracking walks. Later,
for partial recovery and strong recovery (reconstruction) of
multiple communities beyond the symmetric case, Abbe and
Sandon (2015) characterized the recovery threshold in terms
of the Chernoff-Hellinger divergence.

The hidden community structure for classic SBM is il-
lustrated in Figure 4 (left) as a block diagonal matrix. An
interesting but theoretically more challenging extension to the
classic SBM is the mixed-membership SBM, where each node
may simultaneously belong to several communities. Consider
an easy case of the model, where the mixed-membership
occurs only within neighborhood communities, as shown in
the middle image of Figure 4. The small-world network we
are investigating in this paper can be seen as an extreme
case (shown on the right-most figure) of this easy mixed-
membership SBM, where each node falls in effectively & local
clusters. In the small-world network model, identifying the
structural links and random links becomes challenging since
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N\

Fig. 4: The structural matrices for stochastic block model
(left), mixed membership SBM (middle), and small-world
model (right). The black location denotes the support of the
structural matrix.

there are many local clusters, in constrast to the relatively
small number of communities in SBM. The multitude of local
clusters makes it difficult to analyze the effect of the hidden
permutation on the structural matrix. We view the current
paper as an initial attempt at tackling this problem.

b) Relations to graph matching: Small world reconstruc-
tion, community membership reconstruction, planted clique
localization etc., can be cast as solving for the latent per-
mutation matrix P, with different structural matrix B, in
argmaxp c(PrAPL, B) as suggested in Eq. (4). This is
also called graph matching (Lyzinski et al.,, 2014). As one
aims to match the observed adjacency matrix A to the struc-
tural matrix B via latent permutation matrix P.. As written
in the above form, the reconstruction task is reduced to a
quadratic assignment problem (QAP), which is known to be
NP-hard (Burkard et al., 1998; Cela, 2013). Due to the NP-
hard nature of QAP, various relaxations on the permutation
matrix constraints have been proposed: for instance, orthogo-
nal matrices, doubly stochastic matrices, and SDP relaxations
(Chandrasekaran et al., 2012). Quantifying the loss due to a
relaxation for each model is a challenging task.

¢) Reconstructable region: We addressed the reconstruc-
tion problem via two distinct procedures: correlation thresh-
olding and spectral ordering. Whether there exist other com-
putationally efficient algorithms that can significantly improve
upon the current reconstructable region is an open problem.
Designing new algorithms requires a deeper insight into the
structure of the small-world model, and will probably shed
light on better algorithms for mixed membership models.

VI. TECHNICAL PROOFS

Proof of Theorem 1. Denote the circulant matrix by B (it is
B, for any 7 € S,,_1). The log-likelihood for WS model on
symmetric matrix X (with diagonal elements being 0) is

1—B(1—B+47)

10g L. 1,5(X|B) =1
0g Ly, k,5(X|B) = log B1-FE,)

<XvB>
5nﬁl
71_/3”%1 -(X,J—1-B)

k k
+nklog(B(1 = B——=)) +n(n -1 - k)log(l - f—r)

+ log

For the Erd6és-Rényi model, the log likelihood is

k
n—1
k
n—1

k
logﬁnyk(X)zlogl ~(X,.]7I>+n(n71)log(1f71).
n—

The Kullback-Leibler divergence between these two models
is

Pp(X)

KL(Pp||Py) = Ex~pg log

Py(X)
_ n’il ﬂnﬁl X.J I
—]EXNPB — log@flog% < ) - >
k
1-6(1-5:5) Bt
1 n —log—"—— ] -(X,B
+<og B ) ogl_ﬂ% (X, B)
k k

+nklog(B8(1 — 5m)) +n(n—1-—k)log(l— ﬁm

which is equal to

k k

_(log s Bk )
ke k
1_71,—1 1_’8n—1

(a-pu-sLpmsstou-n.0-1)
—+ (log

1- 61— B7ty) Bty )
~n(n ~ log(l — —) 4 nklog(8(1 — §—))

—1
B-BEy)  P1-poE
k k
(a-p0-p0B 450 -1 B)
n—1 n—1
n—1

+n(n—1—k)log(l — BL)

n—1

= Diog LTPFT  piog L 10
=n(n —1)log P, — nklog 5 (10)

1 1- 874 k
— {logg + log ﬁ] nk [1 —(1- ﬁ)ﬁﬁ]

1 1-8(1—-pEg) k
+ |:108,B+10gT nk [1_ﬂ(1_ﬂm):|

1 k
zflogE-nk[lJrBfﬁﬁ]

1—pB-Fk_ 2
+log%~n|:(n—1—k)+(1—ﬁ)5nlilj|

n—1

1-801-B8:E7) k

+10gT'n’€|:1—5(1_/8n_1):|< (11

Via the inequality log(1 + z) < z for all z > —1, we can
further simplify the above expression as

KL(Pg||P)

< nk(1 - B) {_5+B1+(1_5)ﬁn(n—k21—k)}

< k(1 B) [(1 R LRt —Wm—kzl—k)}
<1—6>2</13—6J‘1> (n—1) < C-n(1-B)2 (12)

2 . .
where 0 < C < %% —&—% is some universal constant (note

we are interested in the case when 3 is close to 1).

)
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When k < n'/2, the above bound can be further strength-
ened, in the following sense (recall equation (11)):

KL(Ps||P)
<nk(1-8) [+ -
- n—1 nin—1-k)
1—8(1-p-=E k
+log Sl DR 1-8(1-8—)
Bt n—1
1-p(1 -+t 1-p(1—-p-E
§ log B( kﬂn_1). 6( kﬁn_l) k25 n '
Bn—l 5ﬁ n—1
Denote ¢ := % = TB + B. Thus we have
KL(Pg||Py) < tlogt - k%%. (13)
Suppose for some constant o, > 0, and o = v, - %(1 - 1),
we have the following
nlog % 1
b o= ez (14)
0ga—77<
nlog 2 loglogan log & nlog &
and thgt S « k2 . (1 W < « kQ 2
15)
Plugging in the expression for ¢ into (14), if
1-0 1 log 2 1 k
< all . € — 16
B < af +n71 k loganlogf n—1 (1o
_ logn 1
k log nlog
we have
nlog % 1 nlog 2
<a = tlogt<a £
k2 loganlog - k2
which further implies, via Equation (12),
1
KL(Pp, ||Py) < tlogt - k*
(TL*I)' Z ( B7r|| 0)— og 1
TESH_1
oy - log(n — 1)L
Recalling the bound on KL-divergence, if
« (n—1)log2 \/logn
1-8< . € = 17
= \/C n2 n 17
we have
1 2 2
o 2 KLPo IR <n2(1 = 8)7 < o Jog(n —

TESn_1

We invoke the following Lemma on minimax error through
Kullbak-Leibler divergence.

Lemma 5 (Tsybakov (2009), Proposition 2.3). Let Py, P,..
Py; be probability measures on (X, A) satisfying

.

M
1
MZKL(PMPg) <a-logM (18)

j=1

with probability at least 1 — exp(—
non-zero B; ;,4 > j, and it is clear that A;; ~ Bernoulli(

with 0 < a < &. Then for any v : X — [M + 1]

M
max {Po(wyéO),AZZPj(w#j)}
\/M 2
= UM 11 (1_2a_ 10gM>'

Hence, if either one of the conditions in Equations (16) and
(17) holds, we have

> KL(Pg,||Py) < a. - log(n — 1)L.

TESn-1

(n—1)! 1

Putting everything together, Equation (19) holds whenever if

logn

logn
.
Applying Lemma 5, we complete the proof:

1-8<

(n—1)!
n%o min max {Po(qﬁ;é()), ﬁ ; PL(qb;éz)}
(n—1) I T B
= 1+m< e 1og(n—1)!>_1 .

O

Proof of Lemma 1. Let us state the well-known Bernstein’s
inequality (Boucheron et al. (2013), Theorem 2.10), which
will be used in the proof of this lemma.

Lemma 6 (Bernstein’s inequality). Let X, ..., X, be inde-
pendent bounded real-valued random variables. Assume that
there exist positive numbers v and c such that

> EX7] <
i=1
X; <3c,V1<i<n a.s.

then we have, for all t > 0,

i=1

P (Z(Xi —EX;) > V20t + ct> <et. (20)

First, let us consider the case when the adjacency matrix A
is generated from the ErdGs-Rényi random graph ER(n, ﬁ)
For any P, with 7 € S,,_1, we know (P, BPI A) has the

1)1 same distribution as (B, A). Thus, in view of Lemma 6,

in law
(PBPI, A) "==" (B, A) =2 A;;Bj;

>3

=2 "E[A;]Bi; +2) (Ay; — E[A])By;

>3] >3]

k /| k 2
< 2 -
_n—lnk+ nflnkt—i_gt

t). Indeed, there are nk/ 2

nl)
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and 27, E[A;;]Bi; = nk£;, implying the choice of ¢ =
1 and

3
v=" E[(A;By;)’| = Y E[A}|B; =

i<j i<j

nk k

2 n—1

in Lemma 6. Via the union bound, taking ¢ = logn!, we have

max (PBPT A)

k [k 2
nk + 2 nk -logn!+ = - logn!
n—1 n—1 3

with probability at least 1 — (n — 1)!exp(—logn!) =1 — 1.

Alternatively, suppose A is from the small-world rewiring
model WS(n, k, (), with permutation being identity. With
probability at least 1 — exp(—logn) =1 — %,

max (PrBPY, A) > (B, A)
= (B,E[A]) + (B, A - E[A])
>(1-p+p° )nk — +/nk -logn

where the last step follows via Hoeffding’s inequality: it is
clear that for (¢,7) with B;; # 0,

<

n—1

k
E[A;] =1 — 2—
[ ]] B + 6 n— 13
and 0 < A;; < 1 almost surely.
Therefore if there exist a threshold T° > 0 such that

(1— 3+ p? k 1)nk—\/nk-1ogn>T

n —

k [k 2
and T > nk + 2 nk-logn!+ = -logn! (21)
n—1 n—1 3

we have that

lim
n,k(n)—oco

(n—1)!
max {Po(cpl;éc)), ﬁ Z Pi(¢1¢1)}

< lim 1 =0.

n,k(n)—oco N

The detailed calculation of Equation (21) yields that the test
succeeds with high probability whenever

1
e ognvlogn.
n k
O

Proof of Lemma 2. Under the model WS(n, k,5) with per-
mutation P,

k k
A=(1-B)1—f—=2) PIBP+f——= - (J=D)+Z

where J = 117 € R"*", B is the ring structured signal matrix
defined in Equation (2), and Z is a zero-mean noise random
matrix.

We first study the random fluctuation part, Z7 = A — EA.
Let us bound the expectation E||A — EA|| as the first step,
for any adjacency matrix A € R™*" using the symmetrization
trick. Denote A’ ~ A as the independent copy of A sharing the
same distribution. Take £, G € R™*" as random symmetric

Rademacher and Gaussian matrices with entries E;;, Gy
being, respectively, independent Rademacher and Gaussian.
Denoting matrix Hadamard product as A o B, we have
E|A—EA| =E sup ((A—EA)v,v)
[[v]] ey =1
=E sup ((A—FEaA)v,v) <EsEa
[lv][ey=1

= EgEsE4

sup ((A— A")v,v)
[lvlley=1
sup ([Eo(A—A")v,v)
[lv]ley=1
<EsEg sup ([FoAJv,v)+EaEg sup ([—FEo A'lv,v)
llvlle,=1 llolle,=1
=2E Er sup <[E o A}U, v)

llvlle,=1

2
= Ve

< \/Z ‘EAEgEg sup ([|G|o E o Alv,v)
[lvlle,=1
m
2

‘EaEp sup ([Ec[|G]]o E o Alv,v)

llvfle,=1

‘EAEq sup (|G o A]v,v)

[lv]leg=1

= \/j]EA (EcllG o Al).

Recall the following Lemma from (Bandeira and van Handel,
2014).

Lemma 7 (Bandeira and van Handel (2014), Theorem 1.1).
Let X be the n xn symmetric random matrix with X = Go A,
where G,;,1 < j are i.i.d. N(0,1) and A;; are given scalars.

Then
Eq| X[l 3 max [> A% +max|A;|- /logn.
% - ij
J

Thus via Jensen’s inequality and the above Lemma, we
upper bound

m
B4~ BAI < |7 B4 EllG o Al)

< Ea maXﬁ+maX|Aul~\/@
7 - ij
j
<\/W+ logn
J

< \/k+012\/klogn+02logn+ v/logn < VEV v/logn,

where the last step uses Bernstein inequality Lemma 6.
Moving from expectation E||A — EA| to concentration on
||A—EA]| is through Talagrand’s concentration inequality (see,
Talagrand (1996) and Tao (2012) Theorem 2.1.13), since || - ||
is 1—Lipschitz convex function in our case (and the entries
are bounded), thus with probability at least 1 — 1,

|A—EA| <E||A—EA| 4+ C - y/logn < Vk V \/logn.

Now let us study the structural signal part. Matrix B is of
the form circulant matrix, the associated polynomial is
k2 1

r—1

fla) = (x+a" ")
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The eigenvectors can be analytically calculated: collect for all

ji=0,1,..,n/2
27y 2725 2mnyg
(cos0,cos —=,cos —=,...,cos —)
n n n
and . . )
. 2y . 2m2j . 27nyg
(sin0, cos —=,sin ——, ... sin —=)
n n n
and the corresponding eigenvalues are
k/2
A= f(wy) —QZCOS( )
Let us first assume % < %, thus the second largest

eigenvalue

k/2 km
2si k42
)\Q—QZCOS( ) = 811;152" cos( ;n )

Now if there exist a threshold 7" > 0 such that w.h.p.,
the second eigenvalue of the adjacency matrix generated from
WS model Aws separates from that of the adjacency matrix

generated from ER model Agg in the following sense
)\Q(Aws) >T > )\2(AER)7
(92 # 1) }
Using Weyl’s interlacing inequality, we have
A2(Aws) = A2 (E[Aws]) — [ Z]]

> (1= B)(1— ) — VRV Viogn,

= k.

we have

(n—1)!

IR

lim
n,k(n)—oo

max {Po(<]52 #0),

while

)\Q(AER) < \/%\/ v/ logn.

Therefore, we have the condition for which the second eigen-
value test succeeds:

(1-B)(1— B > VEV Viogn

which means

k VEkV /logn 1  +/logn
(1=B)(1— ) > sl [y YRR,
n—1 2sin g& cos (k+2)7 k k
sin% 2n
O

Proof of Lemma 3. Take any two rows A;., A;. of the adja-
cency matrix. Define the distance z = |71 (i) — 7~ (§) |ring-
Equivalently, the Hamming distance of the corresponding
signal vectors satisfies H(B,., B;.) = 2z. Therefore the union
of signal nodes for 7, j-th row is of cardinality |S;US;| = k+uz,
common signal nodes are of cardinality |[S; N S;| =k — =
unique signal nodes are of cardinality |S;AS;| = 2z, and
|S§ N S§| =n —k —x — 2. Each signal coordinate is 1 with

probability p = 1 - 3(1 - 25 k ) while non-signal coordinate
is 1 with probability g = ﬁ ——, and we have

Z ALlA_/l + Z AzlAJl + Z AllAJl

lesS;NS; 1eS;AS; lesSinss

(Ai, A

Observe as long as | # 4,7, Ay and Aj; are independent, and
{AuA;, 1 € [n]\{i,j}} are independent of each other.
Let us bound each term via Bernstein’s inequality Lemma 6,

Z AgAj € p*|S; N 8;| £ ( 2p2|S; N S|t + ;t)

les;NS;

1
> AuAj € pglSiAS;| + (\/qu|SiASj|t + 3t>

1€S;AS;

1
ST Audjy e PlSEnSE £ (, [242|S¢ 1 S5t + 375)

1ES¢NSe

with probability at least 1 — 6exp(—t). We take ¢ = (2 +
€)logn for any ¢ > 0, such that with probability at least
1 — Cn™¢, the above bound holds for all pairs (3, j).

Thus for all |77 (i) — 771 (j)|sing > K pairs,

(A;, Aj) < 2kpg + (n — 2k — 2)¢?

+ (\/4kpqt +/2(n — 2k — 2)¢% + t) ,
1) =
(Ai, Aj) > (k — x)p* + 2apg + (n — k — v — 2)¢°
- (\/2(k —2)p2t + JAwpgt + /2(n — k —x — 2)@2t + t) .

Thus, with t = (24 €¢)logn, p = 1 — B(1 — B-%;) and
qzﬁn 7. if @ < xo with

[logn 1
e AU B = R
2 n (1 _5)2a
we have

(k=) (p— ) 2 2t + V2 + 1) (VEp? + Vng?) V2L
2275—}—(\/kaq—i—\/(n—2k'—2)q2+\/(k—x)p2
+\/2wpq+\/(n—k—w—2)q2)\/§,

which further implies,

fOI' ‘71—7 1(j)|ring S x pairs

logn

o
—=1-C
2 1

min A; A > max A ALY
j:‘W_l(i)_ﬂ_l(j)‘x'itxggivo < J > jéN(”q) < J >
IN(0) AN (v)| &k — g
max
ieln]  |N(vs)]

B logn 1 logn 1
N T TV e ey

Therefore we can reconstruct the neighborhood consistently,

under the condition
15 logn y <logn>l/4.
k n
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Proof of Lemma 4. Since eigen structure is not affected by
permutation, we will work under the case when the true
permutation is identity. We work under a mild technical
assumption that we have two independent observation of the
adjacency matrix, one used for calculating the eigen-vector,
the other used for projection to reduce dependency. Note this
technical assumption only affect the signal (1 — ) to noise
(k/n) ratio by a constant factor Recall that A = M + Z,
where M = (1 — B)(1 — 3.2 By B—|—Bn ;- (J = 1)
is the signal matrix. Denote the eigenvectors of M to be
U € R™ " and eigenvectors of A to be U € R™ ", Denote
the projection matrix corresponding the subspace of the second
and third eigenvector U.o,U.3 to be H. Similarly H denotes
the projection matrix to the 2-dim space spanned by U.g, Us.
Classic Davis-Kahan perturbation bound informs us that two
dimensional subspace H and H are close in spectral norm

; 12
|H—H|| < 77
A= Z]]
where the spectral gap A\ of M is
AN = (1—5)(1—B—) (A2 = Xa)

. k/2 k/2
:(175)(17571? 22605(@—)722605( )
o B k 2sin &7 (k+2)m 2sin &* (k+2)m
==/t ﬁn—1)|: sin & " on sin 2% R

koK
< (1= B)(1 -0

From the proof of Lemma 2, we know with high probability

1Z]| < V&V /logn.

Note we have for the true signal matrix M and true
projection H

HM'L = <U2,MZ> N UAQ + <U3,MZ> N UA3’
_ (1 ?/ﬂﬁ)kz cos (Z 7n1)27r Ust (1 *\/g))\z sin (Z *711)27r Us:
(22)

however, one only observes the noisy version HA, eR" (of
the signal HM.; € R™), which satisfies the equality
HA;=HM;+ (H—-H)M,;+HZ;.
Hence we have, uniformly for all 4,
[HA; — HM;|| < |[(H — H)M.;| + |[HZ.;||
< |[H = H|[| M| + | HZ 3|
< VEV /logn f (1 —
AN —VEV Iogn
with probability 1 —n~¢, with some constants ¢,C' > 0. Here
the last line follows from Davis-Kahan bound on ||H — H||

and Azuma-Hoeffding’s inequality for (Ua, Z) and (U3, Z.;)
condition on H. Denote this stochastic error as

\/E\/\/logn
= VE1 = B) + C/logn,
AN —VEkV /Iogn &
= k n?
S T2

n2

B) + Cy/logn

n2

The second line follows under the condition 1 — 3 = &,
which is ensured under Eq. (23).

For any ¢,j with |j — i|sing = m, Eq. (22) together with
simple geometry implies

[HM.; — HM.j||
_ =B [ -2 (1) 2
- (e )

1/2

(e i)

= 7(1 _\/?)\2 - 2sin %

Therefore, fix any i, for j ¢ N (v;) not in 7’s neighborhood,
using triangle inequality we have

min ||HA, — HA,| > mm HHM — HM || — 20
FEN (v4) JEN
Zi(kﬂn c2sin T 95
vn n
_ (U282 g0 BT us) 1os
Vn n
> max ||HA; - HA,|
|5 =] ring <M
with

k 1
m= Zarcsin (sm % - 5;{?1—6)

Therefore the following bound on symmetric set difference
holds

arcsin (sm AL 2(5\F 1/3)

N (v3) AN (v3)]
max ————-— <1—
el Nw)l T kn
n2yvn _1 3.5
. - 5
< ’. k2 k1 — n
=¢ b k*1-p

(23)

one can recover the neighborhood consistently w.h.p. in the
sense

N (01) AN (v3)]

Nl

lim max
n,k(n)—oco i€[n]
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