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OPTIMAL RATES OF CONVERGENCE FOR NOISY SPARSE
PHASE RETRIEVAL VIA THRESHOLDED WIRTINGER FLOW

BY T. TONY CAI∗,1, XIAODONG LI†,2 AND ZONGMING MA∗,3

University of Pennsylvania∗ and University of California, Davis†

This paper considers the noisy sparse phase retrieval problem: recovering
a sparse signal x ∈Rp from noisy quadratic measurements yj = (a′

j x)2 +εj ,
j = 1, . . . ,m, with independent sub-exponential noise εj . The goals are to
understand the effect of the sparsity of x on the estimation precision and to
construct a computationally feasible estimator to achieve the optimal rates
adaptively. Inspired by the Wirtinger Flow [IEEE Trans. Inform. Theory 61
(2015) 1985–2007] proposed for non-sparse and noiseless phase retrieval, a
novel thresholded gradient descent algorithm is proposed and it is shown to
adaptively achieve the minimax optimal rates of convergence over a wide
range of sparsity levels when the aj ’s are independent standard Gaussian
random vectors, provided that the sample size is sufficiently large compared
to the sparsity of x.

1. Introduction. In a range of fields in science and engineering, researchers
face the problem of recovering a p-dimensional signal of interest x by probing the
signal via a set of p-dimensional sensing vectors aj for j = 1, . . . ,m, and hence
the observations are the (a′

j x)’s contaminated with noise. This gives rise to the
linear regression model in statistical terminology where x is the regression coef-
ficient vector and A = [a1, . . . ,am]′ is the design matrix. There is an extensive
literature on the theory and methods for the estimation/recovery of x under such
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a linear model. However, in many important applications, including X-ray crys-
tallography, microscopy, astronomy, diffraction and array imaging, interferometry
and quantum information, it is sometimes impossible to observe a′

j x directly and
the measurement that one is able to obtain is the magnitude/energy of a′

j x contam-
inated with noise. In other words, the observations are generated by the following
phase retrieval model:

yj = |a′
j x|2 + εj , j = 1, . . . ,m,(1.1)

where ε = (ε1, . . . , εm)′ is a vector of stochastic noise with Eε = 0. Note that
E(yj ) = |a′

j x|2, so in the real case, (1.1) can be treated as a generalized linear
model with the multi-value link function g(z) := ±√

z. We refer interested readers
to [41] and the reference therein for more detailed discussions on the scientific and
engineering background for this model.

In many applications, especially those related to imaging, the signal x ∈ Rp

admits a sparse representation under some known and deterministic linear trans-
formation. Without loss of generality, we assume in the rest of the paper that such
a linear transform has already taken place, and hence the signal x is sparse itself.
In this case, model (1.1) is referred to as the sparse phase retrieval model. In ad-
dition, we consider the case where ε are independent centered sub-exponential
random errors. This is motivated by the observation that in the application settings
where model (1.1) is appropriate, especially in optics, heavy-tailed noise may arise
due to photon counting.

Efficient computational methods for phase retrieval have been proposed in the
community of optics, and they are mostly based on the seminal work by Gerch-
berg, Saxton, and Fienup [19, 21]. The effectiveness of these methods relies on
careful exploration of prior information of the signal in the spatial domain. More-
over, these methods were revealed later as non-convex successive projection algo-
rithms [4, 30]. This provides insight for the occasional observation of stagnation
of iterates and failure of convergence.

Recently, in view of multiple illumination with masks, novel computational
methods were proposed for phase retrieval without exploring or employing a pri-
ori information of the signal. These methods include semidefinite programming
[9, 12–14, 44], polarization [2], alternating minimization [37], gradient methods
[11], alternating projection [35], etc. More importantly, elegant and remarkable
theoretical guarantees for these methods have also been established. As for noise-
less sparse phase retrieval, semidefinite programming has been proven to be effec-
tive with theoretical guarantees [22, 31, 38]. Other empirical methods for sparse
phase retrieval include belief propagation [39] and greedy methods [40].

Regarding noisy phase retrieval, some stability results have been established in
the literature; see [10, 15, 42]. In particular, stability results have been obtained
in [16] for noisy sparse phase retrieval by semidefinite programming, though the
authors did not study the optimal estimation error rates with respect to either the
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sparsity level of the signal or the sample size. Nearly minimax convergence rates
for sparse phase retrieval with Gaussian noise have been given in [28] under sub-
Gaussian design matrices. However, the optimal rates are achieved by empirical
risk minimization under sparsity constraints, in which both the objective function
and the constraint are non-convex, implying that the procedure is not computation-
ally feasible.

In the present paper, we establish the minimax optimal rates of convergence
for noisy sparse phase retrieval under sub-exponential noise, and propose a novel
thresholded gradient descent method in order to estimate the signal x under the
model (1.1). For conciseness, we focus on the case where the signal and the sens-
ing vectors are all real-valued, and the key ideas extend naturally to the complex
case. The theoretical analysis sheds light on the effects of the sparsity of the signal
x and the presence of sub-exponential noise on the minimax rates for the estimation
of x under the �2 loss, as long as the sensing vectors aj ’s are independent standard
Gaussian vectors. Combining the minimax upper and lower bounds given in Sec-
tion 3, the optimal rate of convergence for estimating the signal x under the �2 loss

is σ
‖x‖2

√
k logp

m
, where k is the sparsity of x, ‖ · ‖2 is the usual Euclidean norm, and

σ characterizes the noise level. Moreover, it is shown that the thresholded gradient
descent procedure is both rate-optimal and computationally fast, and the sample
size requirement matches the state-of-the-art result in computational sparse phase
retrieval under structureless Gaussian design matrices.

We now explain some notation used throughout the paper. For any n-dimensio-
nal vector v = (v1, . . . , vn)

′ and a subset S ⊂ {1, . . . , n}, we denote by vS the
n-dimensional vector by keeping the coordinates of v with indices in S unchanged,
while changing all other components to zero. We denote ‖v‖q := (v

q
1 +· · ·+v

q
n)1/q

for q ≥ 1, and ‖v‖∞ = max1≤k≤n |vk|. Also denote ‖v‖0 as the number of nonzero
components of v. For any matrix M ∈ Rn1×n2 , and any subsets S1 ∈ {1, . . . , n1}
and S2 ∈ {1, . . . , n2}, MS1S2 ∈ Rn1×n2 is defined by keeping the submatrix of M
with row index set S1 and column index set S2, while changing all other entries
to zero. For any q1 ≥ 1 and q2 ≥ 1, we denote ‖M‖q2→q1 the induced operator
norm from the Banach space (Rn2,‖ · ‖q2) to (Rn1,‖ · ‖q1). For simplicity, denote
‖M‖ := ‖M‖2→2. We denote by In the n × n identity matrix. For any two posi-
tive sequences {an} and {bn}, we write an � bn or bn � an if an/bn is uniformly
bounded by some absolute constant. We further write an � bn if both an � bn and
bn � an hold.

The rest of the paper is organized as follows: In Section 2, we introduce in detail
our sparse phase retrieval procedure, which consists of two steps. The first is an ini-
tialization step by applying a diagonal thresholding method to a matrix constructed
with available data. The second step, that is, thresholded Wirtinger flow (TWF),
applies iteratively thresholded gradient descent for the recovery of the sparse vec-
tor x. Section 3 establishes the minimax optimal rates of convergence for noisy
sparse phase retrieval under the �2 loss. The results show that the proposed thresh-
olded gradient descent method is rate-optimal. In Section 4, numerical simulations
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illustrate the effectiveness of thresholding in denoising, and demonstrate how the
relative estimation error depends on the thresholding parameter β . In particular,
by letting β = 0, TWF reduces to Wirtinger flow (WF) iterate proposed in [11],
and we show numerically that TWF is much more accurate than WF in estimation.
Moreover, we verify the minimax rate established in Section 3 by studying how the
estimation error depends on the sample size m, sparsity k, and the noise-to-signal
ratio σ/‖x‖2

2. In Section 5, we discuss the connections between our thresholded
gradient method for noisy sparse phase retrieval and related methods proposed in
the literature for high-dimensional regression. The proofs are given in Section 6
with some technical details deferred to the Appendix.

2. Methodology. The major component of the our method is a thresholded
gradient descent algorithm to obtain a sparse solution to a given non-convex em-
pirical risk minimization problem. Due to the non-convex and sparse nature of
the problem, in order to avoid any local optimum or non-sparse solution that is far
away from the truth; the initialization step is crucial. Thus, we also provide a candi-
date method which can be justified theoretically for yielding a good initializer. The
methodology is proposed assuming that A has standard Gaussian entries, though
it could potentially also be used when such an assumption does not necessarily
hold.

2.1. Thresholded Wirtinger flow. Given the sensing vectors aj and the noisy
magnitude measurements yj as in (1.1) for j = 1, . . . ,m, waiving the sparse as-
sumption aside, one can consider estimating x by minimizing the following empir-
ical risk function

f (z) := 1

4m

m∑
j=1

(∣∣a′
j z
∣∣2 − yj

)2
.(2.1)

Statistically speaking, in the low-dimensional setup with fixed p and m → ∞,
if the additive noises are heavy-tailed, least-absolute-deviations (LAD) methods
might be more robust than least-squares methods. However, recent progress in
modern linear regression analysis shows that least-squares could be preferable to
LAD when p and m are proportional, even the noises are sub-exponential [18].
Due to this surprising phenomenon, we simply take the least-squares empirical
risk in (2.1), although phase retrieval is a nonlinear regression problem rather than
linear regression discussed in [18]. More importantly, close-form gradient methods
can be induced from the empirical risk function in (2.1), which is computationally
convenient. To be specific, at any current value of z, the estimator is updated by
taking a step along the gradient direction

∇f (z) = 1

m

m∑
j=1

(∣∣a′
j z
∣∣2 − yj

)(
a′
j z
)
aj(2.2)
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until a stationary point is reached. Indeed, [11] showed that under appropriate con-
ditions, initialized by an appropriate spectral method, a gradient method, referred
to as Wirtinger flow, leads to accurate recovery of x up to a global phase in the
complex domain and noiseless setting.

However, the direct application of gradient descent is not ideal for noisy sparse
phase retrieval since it does not utilize the knowledge that the true signal x is
sparse in order to mitigate the contamination of the noise. To incorporate this a
priori knowledge, it makes sense to seek a “sparse minimizer” of (2.1). To this
end, suppose we have a sparse initial guess x(0) for x. To update x(0) to another
sparse vector, we may take a step along ∇f (x(0)), and then sparsify the result by
thresholding.

Indeed, if we were given the oracle knowledge of the support S of x, then we
can reduce the problem to recovering xS based on the {yj , ajS}mj=1. By avoiding
estimating any coordinate of x in Sc, we could greatly reduce variance of the re-
sulting estimator of x. In reality, we do not have such oracle knowledge and the
additional thresholding step added on top of gradient descent is intended to mimic
the oracle behavior by hopefully restricting all the updated coordinates on S.

Let Tτ be any thresholding function satisfying

Tτ (x) = 0 ∀x ∈ [−τ, τ ], and
∣∣Tτ (x) − x

∣∣ ≤ τ ∀x ∈ R.(2.3)

For any vector b = (b1, . . . , bp)′, let Tτ (b) = (Tτ (b1), . . . ,Tτ (bp))′. With the
foregoing definition, the proposed thresholded gradient descent method can be
summarized as Algorithm 1. In view of the Wirtinger flow method for noiseless
phase retrieval [11], we name our approach the “Thresholded Wirtinger Flow”
(TWF) method. The data-driven choice of the threshold level in (2.5) is motivated
by the following intuition. Assume that the sensing vectors {aj : j = 1, . . . ,m}
are independent standard Gaussian vectors. For a fixed z, if we act as if each
(|a′

j z|2 − yj )(a′
j z) is a fixed constant, then the gradient in (2.2) is a linear com-

bination of Gaussian vectors and hence has i.i.d. Gaussian entries with mean zero
and variance 1

m2

∑m
j=1(|a′

j z|2 − yj )
2(a′

j z)2. Therefore, the threshold τ(z) is sim-
ply

√
β log(mp) times the standard deviation of these Gaussian random variables,

which is essentially the universal thresholding in the Gaussian sequence model lit-
erature [24]. The above intuition is not exactly true, since in each iterate z = x̂(n)

depends on A hence not fixed. However, the resulting thresholds in (2.5) are in-
deed the right choices as justified by Theorem 3.1 in Section 3, and illustrated
numerically in Section 4. Notice that there are two tuning parameters μ and β ,
which should be treated as absolute constants. We will validate some theoretical
choices and also provide practical choices in Sections 3 and 4, respectively. Al-
though the algorithm is motivated by assuming standard Gaussian sensing vectors,
its applicability might extend to more general cases.
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Algorithm 1: Thresholded Wirtinger flow for noisy sparse phase retrieval
Input: Data {aj , yj }mj=1; initial estimator x̂0; thresholding function T ;

gradient tuning parameter μ; thresholding tuning parameter β;
number of iterations T .

Output: Final estimator x̂.
1 Initialize n ← 0, x̂(0) = x̂0 and

φ2 = 1

m

m∑
j=1

yj(2.4)

repeat
2 Compute threshold level

τ
(̂
x(n)) =

√√√√β log(mp)

m2

m∑
j=1

(∣∣a′
j x̂(n)

∣∣2 − yj

)2∣∣a′
j x̂(n)

∣∣2;(2.5)

3 Update

x̂(n+1) = ϕ
(̂
x(n)) := T(μ/φ2)τ (̂x(n))

(
x̂(n) − μ

φ2 ∇f
(̂
x(n))),(2.6)

until n = T ;
where ∇f is defined in (2.2);

4 Return x̂ = x̂(T ).

2.2. Initialization. It is worth noting that the success of Algorithm 1 depends
crucially on the initial estimator for two reasons. First, the empirical risk (2.1) is
a non-convex function of z, and hence the success of a gradient descent based
approach depends naturally on the starting point. Moreover, an accurate initializer
can reduce the required number of iterations in the thresholded Wirtinger flow
algorithm. In view of its crucial rule, we propose in Algorithm 2 an initialization
method which can be proven to yield a decent starting point for Algorithm 1 under
our modeling assumption.

The motivation of the algorithm is similar to that of diagonal thresholding [25]
for sparse PCA: we want to identify a small collection of coordinates with big
marginal signals and then compute an estimator of x by focusing only on these co-
ordinates. In particular, the quantity Il in (2.7) captures the marginal signal strength
of the lth coordinate and Ŝ0 (2.8) selects all coordinates with big marginal signals.
Last but not least, (2.9) and (2.10) computes the initial estimator by focusing only
on the coordinates in Ŝ0. There is a tuning parameter α needed as input of the algo-
rithm, which can be treated as an absolute constant. We will provide some justified
theoretical choice later.
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Algorithm 2: Initialization for Algorithm 1
Input: Data {aj , yj }mj=1; tuning parameter α.
Output: Initial estimator x̂0.

1 Compute

Il = 1

m

m∑
j=1

yja
2
j l, l = 1, . . . , p.(2.7)

2 Let φ2 be defined as in (2.4). Select a set of coordinates

Ŝ0 =
{
l ∈ [p] : Il >

(
1 + α

√
log(mp)

m

)
φ2

}
.(2.8)

3 Compute a p × p matrix

WŜ0Ŝ0
:= 1

m

m∑
j=1

yj aj Ŝ0
a′
j Ŝ0

.(2.9)

4 Return

x̂0 = φv̂1,(2.10)

where v̂1 as the leading eigenvector of WŜ0Ŝ0
.

3. Theory. We first establish the statistical convergence rate for the thresh-

olded Wirtinger flow method under the case of “Gaussian design”, that is, aj
i.i.d.∼

N (0, Ip) for j = 1, . . . ,m in (1.1). Moreover, we assume the signal x is k-sparse,
that is, ‖x‖0 = k, and the noises ε1, . . . , εm are m independent centered sub-
exponential random variables with maximum sub-exponential norm σ , that is,
σ := max1≤i≤m ‖εi‖ψ1 . Here, for any random variable X, its sub-exponential norm
is defined as ‖X‖ψ1 := supp≥1 p−1(E|X|p)1/p . This definition, as well as some
fundamental properties of sub-exponential variables (such as Bernstein inequal-
ity), can be found in Section 5.2.4 of [43].

THEOREM 3.1. Suppose β = 4 in (2.5) and μ ≤ μ0 in (2.6) for some absolute
constant μ0. If

α ≥ K

(
1 + σ

‖x‖2
2

)
(3.1)

in (2.8) for some absolute constant K > 0 and

m ≥ Cα2k2 log(mp)(3.2)
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for some absolute constant C > 0, then

sup
‖x‖0=k

P(A,y|x)

(
min
i=0,1

∥∥̂x(t) − (−1)ix
∥∥

2 >
1

6

(
1 − μ

16

)t

‖x‖2 + C0σ

‖x‖2

√
k logp

m

)
(3.3)

≤ 46

m
+ 10

ek
+ t

mp2

for some absolute constant C0 > 0.
When σ/‖x‖2

2 = o(
√

m/ logm) and is unknown, and the noises are i.i.d. Gaus-
sian with variance σ 2 in (1.1), we can estimate ‖x‖2

2 by φ2 in (2.4) and define

σ̂ =
√

( 1
m

∑m
j=1 y2

j − 3φ4)+. Then with probability at least 1 − 1/m, there holds

1 + σ̂
φ2 � 1 + σ

‖x‖2
2
. Set α = K(1 + σ̂ /φ2) for some absolute constant K > 0. Then

the claim (3.3) continues to hold with the first term on the right side 46/m replaced
by 47/m.

The proof is given in Section 6, where Lemma 6.3 guarantees the efficacy of the
initialization step Algorithm 2, and Lemmas 6.4 and 6.5 explain why the thresh-
olded Wirtinger flow method leads to accurate estimation.

There are three conditions in the theorem concerning the three tuning param-
eters: the thresholding parameter β , gradient step size parameter μ and the ini-
tialization thresholding parameter α. For β , although theoretically we let β = 4,
Section 4 shows that choosing β ≤ 1 usually yields the smallest estimation er-
ror for x empirically. For μ, the condition μ ≤ μ0 implies that μ should be chosen
conservatively as a small constant in each iteration, and in Section 4 we follow this
principle to choose μ = 0.01. For the initialization parameter α, the condition (3.1)
is relatively strong though it is essential for the effectiveness of Algorithm 2. How-
ever, as we will see in Section 4, the final TWF estimator x̂ is not sensitive to the
choice of α. When the noises are i.i.d. Gaussian with variance σ 2 in (1.1), the pro-
posed estimators for ‖x‖2

2 and σ in Theorem 3.1 are motivated by the observations
that E[yj ] = ‖x‖2

2 and Var(yj ) = 2‖x‖4
2 + σ 2.

In the noiseless case where σ = 0, with high probability, we obtain
mini=0,1 ‖̂x(t) − (−1)ix‖2 ≤ 1

6(1 − μ
16)t‖x‖2. This implies that thresholded gra-

dient descent method leads to linear convergence to the original signal up to a
global sign. It shows explicitly that the smaller μ is, the more slowly thresholded
Wirtinger flow converges.

In the noisy case, if μ > 0 is an absolute constant, by letting t � log(1/δ) where

δ = σ

‖x‖2
2

√
k logp

m
, we obtain mini=0,1 ‖̂x(t) − (−1)ix‖2 � σ

‖x‖2

√
k logp

m
with high

probability. If the knowledge of δ is not available, by choosing t = O(logp), we

can obtain mini=0,1 ‖̂x(t) − (−1)ix‖2 � σ
‖x‖2

√
k logp

m
+ 1

pc for any predetermined

c > 0. The convergence rate σ
‖x‖2

√
k logp

m
is better than the upper bound result es-
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tablished in [28], which is achieved by minimizing (2.1) under the sparsity con-
straint. Notice that the procedure in [28] is almost minimax. Consequently, our
thresholded Wirtinger flow method leads to an estimator close to the global mini-
mizer of the non-convex objective function (2.1) over the set of k-sparse vectors.

Ignoring any polylog factor, the above convenient properties of thresholded
Wirtinger flow are guaranteed by the sample size condition m � k2. When m � p,
this condition is crucial for the effectiveness of initialization Algorithm 2. An im-
mediate question is whether such a minimum sample size condition is in some
sense necessary for any computationally efficient algorithm, if the sensing matrix
is random and structureless?4 A similar phenomenon has been previously observed
in the related but different problem of sparse principal component analysis. As-
suming the hardness of the planted clique problem [3], a series of papers [6, 20,
45] have shown that a comparable minimum sample size condition is necessary
for any estimator computable in polynomial time complexity to achieve consis-
tency and optimal convergence rates uniformly over a parameter space of interest.
In particular, it was shown in [20] that this is the case even for the most restrictive
parameter space in sparse principal component analysis—(discretized) Gaussian
single spiked model with a sparse leading eigenvector. Establishing comparable
computational lower bounds for sparse phase retrieval, especially under the Gaus-
sian design, is an interesting project for future research.

In the case when m � p (ignoring polylog factor), to obtain an appropriate ini-
tialization, Algorithm 2 can be replaced by the standard spectral initialization for
phase retrieval shown in [11, 37], in which the signal does not need to be sparse. In
other words, under the scenario m � p, the sample size condition m � k2 is likely
not essential for the minimaxity of the thresholded Wirtinger flow method. It is in-
teresting to study in the future, say, whether the condition m � k2 in Theorem 3.1
can be relaxed into m� min(k2,p) with the same level of estimation accuracy.

The convergence rate σ
‖x‖2

√
k logp

m
is essentially optimal. The following lower

bound result has been essentially proven in [28].

THEOREM 3.2 ([28]). Let �(k,p,R) = {x ∈ Rp : ‖x‖2 = R,‖x‖0 = k}. Sup-
pose the aj ’s are i.i.d. N (0, Ip), and the εj ’s are i.i.d. N (0, σ 2

0 ) with sub-
exponential norm σ = C′

0σ0 for some absolute constant C′
0. Moreover, assume

A and ε are mutually independent. There holds under model (1.1),

inf
x̂

sup
x∈�(k,p,R)

P(A,y|x)

(
min
i=0,1

∥∥̂x − (−1)ix
∥∥

2 ≥ C0
σ

R

√
k log(ep/k)

m

)
≥ 1

5
,

provided m ≥ C( σ 2

‖x‖4
2

+ 1)k log(ep/k), where both C and C0 are some absolute

constants.

4With intractable methods, a slightly larger upper bound than (3.3) can be obtained the weaker
sample size condition m � k; see, for example, [28].
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4. Numerical simulation. In this section, we report numerical simulation re-
sults to demonstrate how the relative estimation error depends on the thresholding
parameter β , the noise-to-signal ratio (NSR) σ/‖x‖2

2, the sample size m, and the
sparsity k. The main purpose of the section is two-folded. First, we demonstrate the
theoretical bound in Theorem 3.1 is informative to the actual performance of the
TWF algorithm. In addition, we provide numerical evidence that the performance
of the proposed algorithm is not overly sensitive to the choices of the tuning pa-
rameters.

To guarantee fair comparison, we always fix the dimension of the signal
p = 1000 and the initialization parameter α = 0.1 (except for the first case on
thresholding effect). Moreover, in each numerical experiment, we conservatively
choose gradient descent step size parameter μ = 0.01, and the number of itera-
tions T = 1000 for thresholded Wirtinger flow. The resulting estimator is denoted
as x̂ = x̂(1000).

As discussed before, the design matrix A consists of independent standard
Gaussian random variables. With each fixed k, the support of x is uniformly
distributed at random. The nonzero entries of x are i.i.d. ∼ N (0,1). The noise
ε ∼ N (0, σ 2Im), where σ is determined by ‖x‖2 and the choice of NSR σ/‖x‖2

2.
Notice that we simply denote by σ the common standard deviation of the noise
rather than their sub-exponential norm, since there is an absolute constant that
can absorb the scaling between the variance of a Gaussian variable and its sub-
exponential norm.

1. Thresholding effect: Fix α = 0.1, m = 7000, k = 100, and σ/‖x‖2
2 = 1. For

each β = 0,0.25,0.5, . . . ,3, we implement the algorithm for 10 times with inde-
pendently generated A, x, and ε. and then take the average of the 10 independent
relative errors min(‖̂x−x‖2, ‖̂x+x‖2)/‖x‖2. The relation between the average rel-
ative error and β is plotted as the dashed curve in Figure 1. The result shows that
the average relative error essentially decreases from 0.2365 to 0.1151 as the thresh-
olding parameter increases from 0 to 0.75, and then increases slowly up to 0.1684
as β continues to increase to 3. Since in the case β = 0, the thresholded Wirtinger
flow is essentially reduced to Wirtinger flow without thresholding. Therefore, our
simulation illustrates the improvement of TWF over WF in terms of estimation
accuracy in the noisy sparse phase retrieval setting.

We implement the above experiments again with the only difference α = 0.5.
The relation curve between the relative estimation error and β is plotted as the
solid curve in Figure 1. It is clear that the performance of the algorithm is very
close to the case α = 0.1. This indicates that the estimation accuracy of TWF is
relatively insensitive to the initialization parameter α.

2. Sparsity effect: Fix m = 7000, σ/‖x‖2
2 = 1, and β = 1. In each choice of

sparsity k = 25,50, . . . ,200, the average of the relative error min(‖̂x − x‖2, ‖̂x +
x‖2)/‖x‖2 is taken over 10 independent instances of (A,x,ε). Figure 2 demon-
strates that the average relative error essentially increases from 0.1059 to 0.1666 as
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FIG. 1. The relation between the average relative error and the thresholding parameter β . Setup
of parameters: p = 1000, m = 7000, k = 100, σ/‖x‖2

2 = 1, μ = 0.01, and T = 1000. Dashed curve
with α = 0.1, while solid curve with α = 0.5.

the sparsity increases from 25 to 200. This verifies our prediction by Theorem 3.1
that due to the denoising effect of iterative thresholding, the relative estimation
accuracy of TWF improves as the signal becomes sparser.

FIG. 2. The relation between the average relative error and the sparsity k. Setup of parameters:
p = 1000, σ/‖x‖2

2 = 1, m = 7000, β = 1, α = 0.1, μ = 0.01 and T = 1000.
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FIG. 3. The relation between the average relative error and the noise-to-signal-ratio σ/‖x‖2
2. Setup

of parameters: p = 1000, m = 7000, k = 100, β = 1, α = 0.1, μ = 0.01 and T = 1000.

3. Noise effect: Fix m = 7000, k = 100, and β = 1. In each choice of NSR
σ/‖x‖2

2 = 0,0.1, . . . ,1, with 5 instances of (A,x,ε) generated independently, we
take the average of the relative error min(‖̂x − x‖2, ‖̂x + x‖2)/‖x‖2. In Figure 3, it
shows how the average relative error depends on NSR. The average relative error
strictly increases from 0.0000 to 0.1219, as the NSR increases from 0 to 1. The
figure perfectly verifies Theorem 3.1 in terms of the linear relationship between
estimation relative error and NSR σ/‖x‖2

2.
4. Sample size effect: Fix k = 100, σ/‖x‖2

2 = 1, and β = 1. In each choice
of m = 2000,3000, . . . ,11,000, with 5 instances of (A,x,ε) generated indepen-
dently, the average of the relative error min(‖̂x−x‖2, ‖̂x+x‖2)/‖x‖2 is calculated.
In Figure 4, it shows how the average relative error depends on the sample size.
When the sample sizes are 2000 and 3000, that is, twice and three times as large
as p, the average relative errors are 0.8444 and 0.3651 respectively. In these cases,
the thresholded gradient descent method leads to poor recovery of the original sig-
nal. When the sample size increases from 4000 to 11,000, the average relative
error decreases steadily from 0.1692 to 0.0956. This also validates Theorem 3.1 in
that the relative estimation error of TWF decreases as the sample size increases.

5. Discussion. In this paper, we established the optimal rates of convergence
for noisy sparse phase retrieval under the Gaussian design in the presence of sub-
exponential noise, provided that the sample size is sufficiently large. Furthermore,
a thresholded gradient descent method called “Thresholded Wirtinger Flow” was
introduced and shown to achieve the optimal rates.
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FIG. 4. The relation between the average relative error and the sample size m. Setup of parameters:
p = 1000, σ/‖x‖2

2 = 1, k = 100, β = 1, α = 0.1, μ = 0.01 and T = 1000.

Iterative thresholding has been employed in a variety of problems in high-
dimensional statistics, machine learning and signal processing, under the as-
sumption that the signal or parameter vector/matrix satisfies a sparse or low-
rank constraint. Examples include compressed sensing/sparse approximation
[7, 17, 34, 36], sparse principal component analysis [33, 48], high-dimensional
regression [1, 23, 47] and low-rank matrix recovery [8, 26, 29]. There are some
connections between the present paper and [33]. The initialization method in Algo-
rithm 2 is similar to the initialization method in [33], both of which are originated
from [25]. However, the method in [33] was motivated by the fact that the spar-
sity constrained leading eigenvector of the sample covariance matrix is a minimax
rate-optimal estimator and the thresholded power iteration serves as a heuristic
algorithm for computing the sparsity constrained sample eigenvector. Thus, it is
an unsupervised learning problem. In contrast, the thresholded gradient descent
approach in the current paper is designed to seek a sparsity constrained solution to
some least square problem, which is a supervised learning problem.

Regarding the application of iterative thresholding and projected gradient meth-
ods in high-dimensional M-estimation, their statistical optimality has been estab-
lished when the empirical risk function satisfies certain properties, such as restric-
tive strong convexity and smoothness (RSC and RSS) [1, 23, 47]. Although our
thresholded gradient method aims to solve (2.1) for a sparse solution, the exist-
ing analytical framework for high-dimensional M-estimation does not apply to
the sparse phase retrieval problem, since the empirical risk function in (2.1) does
not satisfy RSC in general, no matter how large the sample size is. Instead, we
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have shown that thresholded gradient methods can achieve optimal statistical pre-
cision for signal recovery, even when the empirical risk function does not satisfy
the common assumption of RSC.

Besides thresholded gradient methods, convexly and non-convexly regularized
methods are also widely-used for high-dimensional M-estimation. In fact, some
iterative thresholding methods are induced by regularizations; see, for example,
[17]. Therefore, an alternative candidate method for solving the noisy sparse phase
retrieval problem is to penalize the empirical risk function in (2.1) before taking
the minimum, in order to promote a sparse solution. The major difficulty is ap-
parently the non-convexity of the empirical risk function. An interesting result in
[32] guarantees the statistical precision of all local optima, as long as the non-
convex penalty satisfies certain regularity conditions, and the empirical risk func-
tion, possibly non-convex, satisfies the restricted strong convexity. A similar result
appeared in [46], in which the empirical risk function is required to satisfy a sparse
eigenvalue (SE) condition. However, back to noisy sparse phase retrieval, the em-
pirical risk function in (2.1) satisfies neither RSC nor SE in general, so there is no
guarantee that all local optima are consistent. A natural question is whether some
penalized version of (2.1) is strongly convex in a sufficiently large neighborhood of
its global minimum, such that a tractable initializer lies in this neighborhood pro-
vided the sample size is sufficiently large. Another interesting question is whether
the global minimizer of such penalized version of (2.1) is a rate-optimal estimator
of the original sparse signal. We leave these questions for future research.

6. Proof of Theorem 3.1. We focus on the case where (3.1) holds. To prove
the second part of theorem, we simply observe that Lemmas 6.2 and A.1 ensure
that (3.1) holds with high probability under the extra conditions.

In model (1.1), denote S = supp(x), which implies |S| = k. Without loss of
generality, we assume S = {1, . . . , k}. As to the Gaussian design matrix A ∈ Rm×p ,
denote

AS :=

⎛⎜⎜⎝
a′

1S

...

a′
mS

⎞⎟⎟⎠ , ASc :=

⎛⎜⎜⎝
a′

1Sc

...

a′
mSc

⎞⎟⎟⎠ ,(6.1)

both of which are in Rm×p .
For any two random variables/vectors/matrices/sets X and Y , we denote by

X ⊥⊥ Y if X and Y are independent.

LEMMA 6.1. From the model (1.1), we have y ⊥⊥ ASc . Moreover, we have
{I1, . . . , Ik} ⊥⊥ ASc and φ ⊥⊥ ASc , where φ and {I1, . . . , Ik} are defined in (2.4)
and (2.7), respectively.

PROOF. The fact y = |Ax|2 + ε = |ASxS |2 + ε implies straightforwardly that
y ⊥⊥ ASc . By (2.7), we know for all l = 1, . . . , k, Il are defined by y and AS ,
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which implies that Il ⊥⊥ ASc for all l = 1, . . . , k. Finally, by (2.4), we know φ is
determined uniquely by y, which implies that φ ⊥⊥ ASc . �

LEMMA 6.2. On an event Ẽ0 with probability at least 1 − 3
m

,

1 −
(

2 + C0
σ

‖x‖2
2

)√
logm

m
≤ φ2

‖x‖2
2

≤ 1 +
(

2 + C0
σ

‖x‖2
2

)√
logm

m
+ 2 logm

m

for some numerical constant C0 > 0. As a consequence, for any δ < 1/10, as long

as m
logm

≥ C(δ)(1 + σ 2

‖x‖4
2
), there holds

9

10
≤ 1 − δ ≤ φ2

‖x‖2
2

≤ 1 + δ ≤ 11

10
.

PROOF. By the definition of φ2 and yj , j = 1, . . . ,m, we have

φ2 = 1

m

m∑
j=1

(
a′
j x
)2 + 1

m

m∑
j=1

εj .

As shown in Lemma A.7, with probability at least 1 − 1
m

,∣∣∣∣∣ 1

m

m∑
j=1

εj

∣∣∣∣∣ ≤ C0σ

√
logm

m

for some numerical constant C0 > 0. Moreover, since x is fixed, there holds∑m
j=1(a

′
j x)2

‖x‖2
2

∼ χ2(m).

By Lemma 4.1 of [27], with probability at least 1 − 2
m

, we have

1 − 2

√
logm

m
≤

∑m
j=1(a

′
j x)2

m‖x‖2
2

≤ 1 + 2

√
logm

m
+ 2 logm

m
.

The proof is complete. �

LEMMA 6.3. Let α ≥ K(1 + σ

‖x‖2
2
) for some large enough absolute constant

K , and x̂(0) be defined in Algorithm 2. There exists a random vector x(0) satisfying
x(0) ⊥⊥ ASc and supp(x(0)) ⊂ S, such that on an event E01 with probability at least
1 − 16

m
− 2e−k , we have

x(0) = x̂(0), and min
(∥∥x(0) − x

∥∥
2,
∥∥x(0) + x

∥∥
2

) ≤ 1
6‖x‖2,

provided m ≥ Cα2k2 log(mp). Here, C is an absolute constant.
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PROOF. Recall that S = {1, . . . , k} and Il = 1
m

∑m
j=1 yja

2
j l for l = 1, . . . , p.

Define

S0 =
{
l ∈ S : Il >

(
1 + α

√
log(mp)

m

)
φ2

}
⊂ S.(6.2)

Since {I1, . . . , Ik, φ} ⊥⊥ ASc , we have S0 ⊥⊥ ASc . Define x(0) ∈ Rp as the leading
eigenvector of

WS0S0 := 1

m

m∑
j=1

yj ajS0a′
jS0

∈Rp×p

with 2-norm φ. The fact supp(WS0×S0) ⊂ S0 × S0 implies supp(x(0)) ⊂ S0 ⊂ S.
Since {WS0S0, φ} ⊥⊥ ASc , we also have x(0) ⊥⊥ ASc .

To simplify notation, let us write for any j ∈ [m], ỹj := (a′
j x)2 = aj S

′x)2, which
implies yj = ỹj + εj . Notice that

Il − φ2 = 1

m

m∑
j=1

ỹj

(
a2
j l − 1

)+ 1

m

m∑
j=1

εj

(
a2
j l − 1

)
,(6.3)

in which we will first control the second term. For a given l ∈ [p], we know
a2

1l − 1, . . . , a2
ml − 1 are i.i.d. centered sub-exponential random variables with sub-

exponential norms being an absolute constant. Then, by Bernstein inequality (see,
e.g., Proposition 16 in [43]), conditionally on the εj ’s, we have with probability at
least 1 − 2

mp
,∣∣∣∣∣

m∑
j=1

εj

(
a2
j l − 1

)∣∣∣∣∣ ≤ C0
(‖ε‖2

√
log(mp) + ‖ε‖∞ log(mp)

)
for some absolute constant C0. Then by Lemma A.7, with probability at least 1 −
4/m, we have

max
1≤l≤p

∣∣∣∣∣ 1

m

m∑
j=1

εj

(
a2
j l − 1

)∣∣∣∣∣ ≤ C0σ

(√
log(mp)

m
+ log2(mp)

m

)
(6.4)

≤ C0σ

√
log(mp)

m
,

provided m ≥ C(logp) for some absolute constant C.
Next, we prove that with high probability x(0) = x̂(0). It suffices to prove Ŝ0 =

S0, that is, Ŝ0 ⊂ S. For any l ∈ Sc, ajl and ỹj are independent, and so conditional
on {ỹj , j ∈ [m]}, ∑m

j=1 ỹj a
2
j l is a weighted sum of χ2

1 variables. By Lemma 4.1
of [27],

P

{
m∑

j=1

ỹj

(
a2
j l − 1

)
> 2

√
t

(
m∑

j=1

ỹ2
j

)1/2

+ 2
(
max

j
ỹj

)
t

}
≤ exp(−t).
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Moreover, Chebyshev’s inequality, the Gaussian tail bound and the union bound
lead to

P

{
m∑

j=1

ỹ2
j /‖x‖4

2 > 3m + √
96mt

}
≤ t−2,

P
{
max

j
ỹj /‖x‖2

2 > t
}

≤ 2m exp(−t/2).

Thus, with probability at least 1 − 4
m

, for all l ∈ Sc,

1

m

m∑
j=1

ỹj

(
a2
j l − 1

) ≤ 2
√

3 + √
96‖x‖2

2

√
log(mp)

m
+ 8‖x‖2

2
(log(mp))2

m
(6.5)

≤ 8‖x‖2
2

√
log(mp)

m
.(6.6)

Here, the last inequality holds when m ≥ C for some absolute constant C.
Since α ≥ K(1 + σ

‖x‖2
2
) with large enough K , by (6.3), (6.5), (6.4) and

Lemma 6.2, we obtain that with probability at least 1 − 11
m

, for all l ∈ Sc,

Il − φ2 ≤ (
8‖x‖2

2 + C0σ
)√ log(mp)

m
≤ αφ2

√
log(mp)

m
,

which implies that Ŝ0 ⊂ S.
Next, we prove that ‖x(0) − x‖2/‖x‖2 ≤ 1

6 with high probability. For any fixed
l ∈ S, straightforward calculation yields Eỹj a

2
j l = ‖x‖2

2 + 2x2
l . On the other hand,

Eỹ2
j a4

j l = 105x4
l + 90x2

l

(‖x‖2
2 − x2

l

)+ 9
(‖x‖2

2 − x2
l

)2
.

So for Xj = ‖x‖2
2 +2x2

l − ỹj a
2
j l , we have Xj ≤ ‖x‖2

2 +2x2
l ≤ 3‖x‖2

2, EXi = 0 and

EX2
i = 20x4

j + 68‖x‖2
2x

2
l + 8‖x‖4

2 ≤ 96‖x‖4
2. By Lemma A.1,

P

{
m∑

j=1

ỹj a
2
j l − m

(‖x‖2
2 + 2x2

l

) ≤ −t

}
≤ exp

(
− t2

192‖x‖4
2m

)
.

Next, Lemma 4.1 of [27] leads to with probability at least 1 − 1
m

,

1

m

m∑
j=1

ỹj − ‖x‖2
2 ≤

(
2

√
logm

m
+ 2 logm

m

)
‖x‖2

2 ≤ 2.1‖x‖2
2

√
logm

m
.

The last two inequalities, together with (6.4) and (6.3), imply that with probability
at least 1 − 6

m
, for all l ∈ S,

Il − φ2 ≥ 2x2
l − (

16‖x‖2
2 + C0σ

)√ log(mp)

m
.
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Define S− = {l ∈ S : x2
l ≥ (11 + 3

5α)‖x‖2
2

√
log(mp)

m
}. Then, for all l ∈ S− we have

Il − φ2 ≥
(

6

5
α‖x‖2

2 + 6‖x‖2
2 − C0σ

)√
log(mp)

m
.

Since α ≥ K(1+ σ

‖x‖2
2
) with sufficiently large absolute constant K , by Lemma 6.2,

we have Il − φ2 ≥ αφ2
√

log(mp)
m

for all l ∈ S− on an event with probability at least
1 − 9/m. This implies S− ⊂ S0.

Therefore, we have

‖x − xS0‖2
2 ≤ ‖x − xS−‖2

2 ≤
(

11 + 3α

5

)
‖x‖2

2

√
k2 log(mp)

m
≤ δ2‖x‖2

2,(6.7)

provided that m ≥ C(δ)α2k2 log(mp). Notice that EW = ‖x‖2
2Ip + 2xx′, which

implies that (EW)SS = ‖x‖2
2(Ip)SS + 2xx′. Furthermore, by the definition of W,

we have

WSS = 1

m

m∑
j=1

∣∣a′
j S

x
∣∣2aj S

a′
j S

+ 1

m

m∑
j=1

εj aj S
a′
j S

.

By Lemma A.6, with probability at least 1 − 1/m, we have∥∥∥∥∥ 1

m

m∑
j=1

∣∣a′
j S

x
∣∣2aj S

a′
j S

− (‖x‖2
2(Ip)SS + 2xx′)∥∥∥∥∥ ≤ δ

2
‖x‖2

2,

provided m ≥ C(δ)k logp. Moreover, by Lemma A.7 and Lemma A.8, with prob-
ability at least 1−2/m−2e−k , we have ‖∑m

j=1 εj aj S
aj

′
S
‖ ≤ C0σ

√
m(k + logm).

Since m ≥ C(δ) σ 2

‖x‖4
2
k log(mp), we have 1

m
‖∑m

j=1 εj ajS
a′
jS

‖ ≤ δ
2‖x‖2

2. This implies

that ∥∥WS0S0 − (EW)S0S0

∥∥ ≤ ∥∥WSS − (EW)SS

∥∥ ≤ δ‖x‖2
2.

It is noteworthy that the leading eigenvector of (EW)S0S0 with unit norm is
xS0/‖xS0‖2, and the eigengap between the leading two eigenvalues of (EW)S0S0

is 2‖xS0‖2
2. Recall that x(0) is the leading eigenvector WS0S0 with norm φ. Then by

the sin-theta theorem,∥∥∥∥x(0)(x(0))T

φ2 − xS0xT
S0

‖xS0‖2
2

∥∥∥∥ ≤ δ‖x‖2
2

2‖xS0‖2
2 − δ‖x‖2

2

≤ δ

2 − 5δ
.

By Lemma 6.2, we have 1+δ ≥ φ/‖x‖2 ≥ 1−δ. Together with 1 ≥ ‖xS0‖2/‖x‖2 ≥
1 − δ, we can easily obtain that min(‖x(0) − x‖2,‖x(0) + x‖2) ≤ C0δ‖x‖2 for
some absolute constant C0. By letting δ be small enough, we have min(‖x(0) −
x‖2,‖x(0) + x‖2) ≤ 1/6‖x‖2. �
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LEMMA 6.4. Define η(z) = T(μ/φ2)τ (z)(z − μ

φ2 ∇f (z)S). With probability at

least 1 − 15
m

− 4e−k , for all z ∈ Rp satisfying ‖z − x‖2 ≤ 1
6‖x‖2 and supp(z) ⊂ S,

we have

‖η(z) − x‖2

‖x‖2
≤
(

1 − μ

8

)‖z − x‖2

‖x‖2
+ C0

μσ

‖x‖2
2

√
k logp

m
,

provided μ ≤ μ0 and m ≥ Ck2 logp. Here, C0, C, and μ0 are numerical con-
stants. This implies that, on an event E02 with probability at least 1 − 30

m
− 8e−k ,

for all z ∈ Rp satisfying min(‖z − x‖2,‖z + x‖2) ≤ 1
6‖x‖2 and supp(z) ⊂ S, we

have

min
i=0,1

∥∥η(z) − (−1)ix
∥∥

2 ≤
(

1 − μ

8

)
min
i=0,1

∥∥z − (−1)ix
∥∥

2 + C0
μσ

‖x‖2

√
k logp

m
.

PROOF. Recall that ‖z−x‖2 ≤ ‖x‖2/6 and z is supported on S. Define u ∈ Rp

and v ∈ Rp by

u = η(z) = T(μ/φ2)τ (z)

(
z − μ

φ2 ∇f (z)S
)

= z − μ

φ2 ∇f (z)S + μ

φ2 τ(z)v,

such that supp(v) ⊂ S and ‖v‖∞ ≤ 1.
Since supp(z) ⊂ S = {1, . . . , k}, we have

∇f (z)S = 1

m

m∑
j=1

(∣∣a′
j S

z
∣∣2 − yj

)(
a′
j S

z
)
aj S

.(6.8)

For convenience, let

∇̃f (z)S = 1

m

m∑
j=1

(∣∣a′
j S

z
∣∣2 − ∣∣a′

j S
x
∣∣2)(a′

j S
z
)
aj S

,(6.9)

and so

∇f (z)S − ∇̃f (z)S = − 1

m

m∑
j=1

εj

(
a′
j S

z
)
aj S

.(6.10)

Denote h = z − x ∈ Rp , which implies supp(h) ⊂ S and ‖h‖2 ≤ ‖x‖2/6. Straight-
forward calculation yields

‖u − x‖2 ≤
∥∥∥∥h − μ

φ2 ∇̃f (z)S

∥∥∥∥
2
+ μ

φ2

∥∥∇f (z)S − ∇̃f (z)S
∥∥

2 + μ
√

k

φ2 τ(z)

(6.11)

:= T1 + μ

φ2 T2 + μ
√

k

φ2 τ(z).

It suffices to bound T1, T2 and τ(z).
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Bound for T1. By simple algebra, we have

T 2
1 = ‖h‖2

2 − μ

mφ2

m∑
j=1

(
2
∣∣a′

j S
x
∣∣2∣∣a′

j S
h
∣∣2 + 3

(
a′
j S

x
)(

a′
j S

h
)3 + ∣∣a′

j S
h
∣∣4)

+ μ2

φ4

∥∥∇̃f (z)S
∥∥2

2(6.12)

:= ‖h‖2
2 − μ

φ2 T11 + μ2

φ4 T12.

In what follows, we derive lower bound for T11 and upper bound for T12 separately.
Notice that

T11 = 1

m

m∑
j=1

(
2
(
a′
j S

x
)2(a′

j S
h
)2 + 3

(
a′
j S

x
)(

a′
j S

h
)3 + (

a′
j S

h
)4)

.

First, by Lemma A.6 with probability at least 1 − 1/m, we have

1

m

m∑
j=1

2
(
a′
j S

x
)2(a′

j S
h
)2 ≥ (2 − 2δ)

(
2
(
x′h

)2 + ‖x‖2
2‖h‖2

2
)
.

By Lemma A.5, with probability at least 1 − 2/m, we have

1

m

m∑
j=1

3
(
a′
j S

x
)(

a′
j S

h
)3 ≤ 3

m

(
m∑

j=1

(
a′
j S

x
)4
)1/4( m∑

j=1

(
a′
j S

h
)4
)3/4

≤ 3

m

(
(3m)1/4 + k1/2 +

√
2 logm

)4‖x‖2‖h‖3
2

≤ 10‖x‖2‖h‖3
2,

provided m ≥ Ck2 for some sufficiently large numerical constant C. This implies

T11 ≥ (2 − 2δ)‖x‖2
2‖h‖2

2 − 10‖x‖2‖h‖3
2 ≥ (1/3 − 2δ)‖x‖2

2‖h‖2
2.

As to the upper bound for T12, we can find ‖w‖2 = 1, such that

T12 = ∥∥∇̃f (z)S
∥∥2

2 ≤ 2

m2

∣∣∣∣∣
m∑

j=1

∣∣a′
j S

h
∣∣∣∣a′

j S
(2x + h)

∣∣∣∣a′
j S

(x + h)
∣∣∣∣a′

j S
w
∣∣∣∣∣∣∣

2

.

By Hölder’s inequality and Lemma A.5, we have

T12 ≤ 2

m2

(
m∑

j=1

∣∣a′
j S

h
∣∣4 m∑

j=1

∣∣a′
j S

(2x + h)
∣∣4 m∑

j=1

∣∣a′
j S

(x + h)
∣∣4 m∑

j=1

∣∣a′
j S

w
∣∣4)1/2

≤ 2

m2

(
(3m)1/4 + k1/2 +

√
2 logm

)8‖h‖2
2‖2x + h‖2

2‖x + h‖2
2‖w‖2

2

≤ C0‖h‖2
2‖x‖4

2,
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provided m ≥ Ck2, with sufficiently large constants C0 and C. To summarize, with
probability at least 1 − 3/m,

T 2
1 ≤ ‖h‖2

2 − μ

φ2 (1/3 − 2δ)‖h‖2
2‖x‖2

2 + C0
μ2

φ4 ‖x‖4
2‖h‖2

2.(6.13)

By Lemma 6.2, letting δ small enough, we have with probability at least 1 − 6/m,

T1 ≤ (1 − μ/8)‖h‖2,

provided μ ≤ μ0 with sufficiently small absolute constant μ0 > 0.

Bound for T2. Note that

T2 ≤ 7

6m
‖x‖2

∥∥∥∥∥
m∑

j=1

εj ajS
a′
jS

∥∥∥∥∥.
By Lemma A.7 and Lemma A.8, with probability at least 1 − 2/m − 2e−k , we
have ∥∥∥∥∥

m∑
j=1

εj ajS
a′
jS

∥∥∥∥∥ ≤ C0σ
√

m(k + logm)

provided m/ logm ≥ k. In summary, by Lemma 6.2, we have that with probability
at least 1 − 5/m − 2e−k ,

μ

φ2 T2 ≤ C0μ
σ

‖x‖2

√
k + logm

m
.

Bound for τ(z). By simple algebra,

τ 2(z) = β logp

m2

m∑
j=1

((
a′
j S

h
)
a′
j S

(2x + h) − εj

)2∣∣a′
j S

(x + h)
∣∣2

≤ 2β logp

m2

{
m∑

j=1

∣∣a′
j S

h
∣∣2∣∣a′

j S
(2x + h)

∣∣2|a′
j S

(x + h)|2

+
m∑

j=1

ε2
j

∣∣a′
j S

(x + h)
∣∣2}

:= 2β logp

m2 (T1 + T2).

By Hölder’s inequality and Lemma A.5, with probability at least 1−2/m, we have

T1 ≤
(

m∑
j=1

∣∣a′
j S

h
∣∣6)1/3( m∑

j=1

∣∣a′
j S

(2x + h)
∣∣6)1/3( m∑

j=1

∣∣a′
j S

(x + h)
∣∣6)1/3

≤ C0‖AS‖6
2→6‖h‖2

2‖x‖4
2 ≤ C0

(
m + k3)‖h‖2

2‖x‖4
2
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for some numerical constant C0. By Lemma A.7 and Lemma A.8, with probability
at least 1 − 2/m − 2e−k , we have

T2 ≤ 49

36
‖x‖2

2

∥∥∥∥∥
m∑

j=1

ε2
j ajS

a′
jS

∥∥∥∥∥ ≤ C0mσ 2‖x‖2
2,

for some numerical constant C0, provided m

log2 m
≥ k. In summary,

μ

φ2

√
kτ ≤ C0μ

(√(mk + k4) logp

m
‖h‖2 + σ

‖x‖2

√
k logp

m

)
(6.14)

≤ μ‖h‖2

16
+ C0

μσ

‖x‖2

√
k logp

m
,

provided m ≥ C max(k logp,k2√logp).

Summary. We can guarantee that, with probability at least 1 − 15
m

− 4e−k ,

‖u − x‖2

‖x‖2
≤
(

1 − μ

16

)‖z − x‖2

‖x‖2
+ C0μ

√
k logp

m

σ

‖x‖2
2

,(6.15)

for some absolute constant C0 > 0, provided m ≥ Ck2 log(mp) and μ ≤ μ0. �

Suppose E0 is the intersection of the events E01 and E02 described by Lemmas
6.3 and 6.4, respectively. Then we have

P(E0) ≥ 1 − 46

m
− 10e−k.

The effectiveness of thresholded Wirtinger flow is guaranteed by the following
induction argument.

LEMMA 6.5. Let β = 4 and x̂(n), n = 0,1,2, . . . are defined iteratively by
(2.10) and (2.6). For fixed n ≥ 0, assume that there exists a random vector x(n)

satisfying x(n) ⊥⊥ ASc and supp(x(n)) ⊂ S, and that on an event En ⊂ E0 we have
x̂(n) = x(n) and mini=0,1 ‖̂x(n) − (−1)ix‖2 ≤ 1

6‖x‖2. Then there exists a random
vector x(n+1) satisfying x(n+1) ⊥⊥ ASc and supp(x(n+1)) ⊂ S, and on an event
En+1 ⊂ En satisfying P(En/En+1) ≤ 1 − 1

m2p
, we have x̂(n+1) = x(n+1) and

min
i=0,1

∥∥̂x(n+1) − (−1)ix
∥∥

2

≤
(

1 − μ

16

)
min
i=0,1

∥∥̂x(n) − (−1)ix
∥∥

2 + C0
μσ

‖x‖2

√
k logp

m
≤ 1

6
‖x‖2.
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PROOF. The improved estimation is defined as

x̂(n+1) = T(μ/φ2)τ (̂x(n))

(
x̂(n) − μ

φ2 ∇f
(̂
x(n))),

where Tτ is the soft-thresholding operator. We now define

x(n+1) := η
(
x(n)) = T(μ/φ2)τ (x(n))

(
x(n) − μ

φ2 ∇f
(
x(n))

S

)
.

By the definition of ∇f , τ and φ, as well as the assumption that x(n) ⊥⊥ ASc and
supp(x(n)) ⊂ S, we can prove supp(x(n+1)) ⊂ S as well as x(n+1) ⊥⊥ ASc . In fact,
by the definition (2.5), we know if x(n) is supported on S and independent of ASc ,
then τ(x(n)) is independent of ASc . Moreover, by the definition of the gradient
(2.2), we know (∇f (x(n)))S is supported on S and independent of ASc . The asser-
tion is established by the obvious fact φ ⊥⊥ ASc shown in Lemma 6.1.

In the following, we will construct En+1 ⊂ En such that x̂(n+1) = x(n+1) on
En+1. For any i = k + 1, k + 2, . . . , p, with probability 1 − 1

m2p2 ,

∣∣∣∣ ∂

∂zi

f
(
x(n))∣∣∣∣ =

∣∣∣∣∣ 1

m

m∑
j=1

(∣∣a′
j x(n)

∣∣2 − yj

)(
a′
j x(n))(aj )i

∣∣∣∣∣
≤

√
4 log(mp)

m

√√√√ m∑
j=1

(∣∣a′
j x(n)

∣∣2 − yj

)2∣∣a′
j x(n)

∣∣2
≤ τ

(
x(n)).

The first inequality is due to supp(x(n)) ⊂ S and x(n) ⊥⊥ ASc , and the second in-
equality is due to β = 4. Then with probability at least 1 − 1

m2p
,

max
k+1≤i≤p

∣∣∣∣ ∂

∂zi

f
(
x(n))∣∣∣∣ ≤ τ

(
x(n)),

which implies

T(μ/φ2)τ (x(n))

(
x(n) − μ

φ2 ∇f
(
x(n))) = T(μ/φ2)τ (x(n))

(
x(n) − μ

φ2 ∇f
(
x(n))

S

)
.

Notice that on the event En, we have x̂(n) = x(n), and hence

x̂(n+1) = T(μ/φ2)τ (x(n))

(
x(n) − μ

φ2 ∇f
(
x(n))).

Then there exists En+1 ⊂ En, such that P(En/En+1) ≤ 1
m2p

, and

x̂(n+1) = T(μ/φ2)τ (x(n))

(
x(n) − μ

φ2 ∇f
(
x(n))

S

)
= x(n+1).
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By the assumption, we have

min
(∥∥x(n) − x

∥∥
2,
∥∥x(n) + x

∥∥
2

) ≤ 1
6‖x‖2 on En.

Since En ⊂ E0 and x(n+1) = η(x(n)), by Lemma 6.4, we have

min
(∥∥x(n+1) − x

∥∥
2,
∥∥x(n+1) + x

∥∥
2

)
≤
(

1 − μ

16

)
min

(∥∥x(n) − x
∥∥

2,
∥∥x(n) + x

∥∥
2

)
+ C0

μσ

‖x‖2

√
k logp

m
≤ 1

6
‖x‖2 on En,

provided m ≥ C(σ 2/‖x‖4
2)k logp for a sufficiently large absolute constant C.

Since En+1 ⊂ En, and x̂(n+1) = x(n+1) on En+1, we have on En+1

min
i=0,1

∥∥̂x(n+1) − (−1)ix
∥∥

2

≤
(

1 − μ

16

)
min
i=0,1

∥∥̂x(n) − (−1)ix
∥∥

2 + C0
μσ

‖x‖2

√
k logp

m
≤ 1

6
‖x‖2. �

Theorem 3.1 can be directly implied by Lemma 6.5. In fact, by Lemma 6.3,
we know the initial condition in Lemma 6.5 holds. For all t = 1,2,3, . . . , straight
forward calculation yields

min(‖̂x(t) − x‖2, ‖̂x(t) + x‖2)

‖x‖2
≤ 1

6

(
1 − μ

16

)t

+ C0
σ

‖x‖2
2

√
k logp

m
on Et

for some universal constant C0, where P(Et ) ≥ 1 − 46
m

− 10e−k − t
mp2 .

APPENDIX A: PRELIMINARIES AND SUPPORTING LEMMAS

LEMMA A.1 ([5]). Suppose X1, . . . ,Xm are i.i.d. real-valued random vari-
ables obeying Xi ≤ b for some absolute constant b > 0, EXi = 0 and EX2

i = v2.
Setting σ 2 = m(b2 ∨ v2),

P{X1 + · · · + Xm ≥ y} ≤ exp
(
− y2

2σ 2

)
∧ c0

(
1 − �(y/σ)

)
where one can take c0 = 25.

LEMMA A.2 (Proposition 34 [43]). Suppose that x ∼ N (0, In) is a standard
normal random vector, and f :Rn →R is a 1-Lipschitz function. Then

P
(
f (x) −Ef (x) ≥ t

) ≤ e−t2/2.
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LEMMA A.3 (Proposition 33 [43]). Consider two centered Gaussian pro-
cesses (Xt)t∈T and (Yt )t∈T whose increments satisfy the inequality

E|Xs − Xt |2 ≤ E|Ys − Yt |2
for all s, t ∈ T . Then

E sup
t∈T

Xt ≤ E sup
t∈T

Yt .

LEMMA A.4 (Proposition 35 [43]). Let AS ∈Rm×p be defined in (6.1). Then,
with probability at least 1 − 2 exp(−t2/2), we have the following inequality:

‖AS‖ ≤ √
m + √

k + t.(A.1)

LEMMA A.5. Let AS ∈ Rm×p be defined in (6.1). Then, with probability at
least 1 − 4 exp(−t2/2), the following inequalities hold:

‖AS‖2→6 ≤ (15m)1/6 + √
k + t,(A.2)

and

‖AS‖2→4 ≤ (3m)1/4 + √
k + t.(A.3)

PROOF. The proof follows that of Theorem 32 in [43] step by step. Define
Xu,v = 〈ASu,v〉 on

T = {
(u,v) : u ∈ Rp, supp(U) ⊂ S,‖u‖2 = 1,v ∈ Rm,‖v‖6/5 = 1

}
.

Then ‖AS‖2→6 = max(u,v)∈T Xu,v. Define

Yu,v = 〈gS,u〉 + 〈h,v〉,
where gS ∈ Rp with supp(gS) = S and h ∈Rm are independent standard Gaussian
random vectors.

For any (u,v), (u′,v′) ∈ T , we have

E|Xu,v − Xu′,v′ | = ‖v‖2
2 + ∥∥v′∥∥2

2 − 2
〈
u,u′〉〈v,v′〉

and

E|Yu,v − Yu′,v′ | = 2 + ‖v‖2
2 + ∥∥v′∥∥2

2 − 2
〈
u,u′〉− 〈

v,v′〉.
Therefore,

E|Xu,v − Xu′,v′ | −E|Yu,v − Yu′,v′ | = 2
(
1 − 〈

u,u′〉)(1 − 〈
v,v′〉) ≥ 0,

due to ‖u‖2 = ‖u′‖2 = 1, ‖v‖2 ≤ ‖v‖6/5 = 1, and ‖v′‖2 ≤ ‖v′‖6/5 = 1. Then by
Lemma A.3, we have

E‖AS‖2→6 ≤ E max
(u,v)∈T

Yu,v = E‖gS‖2 +E‖h‖6

≤
√
E‖gS‖2

2 + (
E‖h‖6

6
)1/6 = √

k + (15m)1/6.
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Since ‖ · ‖2→6 is a 1-Lipschitz function, by Lemma A.2, there holds with proba-
bility at least 1 − 2 exp(−t2/2)

‖AS‖2→6 ≤ √
k + (15m)1/6 + t.

Similarly, with probability at least 1 − 2 exp(−t2/2)

‖AS‖2→4 ≤ √
k + (3m)1/4 + t. �

LEMMA A.6. On an event with probability at least 1 − 1/m, we have∥∥∥∥∥ 1

m

m∑
j=1

∣∣a′
j S

x
∣∣2aj S

a′
j S

− (‖x‖2
2(Ip)S + 2xx′)∥∥∥∥∥ ≤ δ‖x‖2

2

provided m ≥ C(δ)k log k, where C(δ) is constant only depending on δ. Here,
(Ip)S by definition is a diagonal matrix with first k diagonal entries equal to 1,
whereas other entries being 0. Furthermore, it implies that

1

m

m∑
j=1

(
a′
j S

x
)2(a′

j S
h
)2 ≥ 2

(
x′h

)2 + (1 − δ)‖x‖2
2‖h‖2

2

for any h ∈Rp that satisfies supp(h) ⊂ S.

The proof of this lemma is the same as that of Lemma 7.4 in [11].

LEMMA A.7. Suppose ε1, . . . , εm are independent zero-mean sub-exponential
random variables with

σ := max
1≤i≤m

‖εi‖ψ1 .

Then with probability at least 1 − 3
m

, we have∣∣∣∣∣ 1

m

m∑
j=1

εj

∣∣∣∣∣ ≤ C0σ

√
logm

m
, ‖ε‖∞ ≤ C0σ logm,

∣∣∣∣∣ 1

m

m∑
j=1

ε2
j

∣∣∣∣∣ ≤ C0σ
2,

∣∣∣∣∣ 1

m

m∑
j=1

ε4
j

∣∣∣∣∣ ≤ C0σ
4,

provided m ≥ m0 for some numerical constants C0 and m0.

PROOF. By Proposition 16 in [43], we have

P

(∣∣∣∣∣
m∑

i=1

εi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

[
−c min

(
t2

mσ 2 ,
t

σ

)]
.
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This implies that with probability at least 1 − 2
m10 , we have∣∣∣∣∣

m∑
i=1

εi

∣∣∣∣∣ ≤ C0σ max(
√

m logm, logm) ≤ C0σ
√

m logm

provided m ≥ m0. This implies that∣∣∣∣∣ 1

m

m∑
j=1

εj

∣∣∣∣∣ ≤ C0σ

√
logm

m
.

By the basic properties of sub-exponential random variables, for each j =
1, . . . ,m, we have

P
(|εj | ≥ t

) ≤ exp
(

1 − c
t

σ

)
,

which implies that |εj | ≤ C0σ logm with probability at least 1 − e/m11. This im-
plies that

‖ε‖∞ ≤ C0σ logm

with probability at least 1 − e/m10.
Since

σ ≥ ‖εj‖�1 = sup
p≥1

p−1(E|εj |p)1/p
,

we have Eε2
j ≤ (2σ)2 and Eε4

j ≤ (4σ)4. Define

X = 1

m

m∑
j=1

ε2
j .

Then we have EX ≤ (2σ)2, and

Var(X) ≤ (4σ)4/m.

By Chebyshev’s inequality, we have

P
(|X −EX| ≥ t

) ≤ Var(X)

t2 .

By letting t = (4σ)2, we obtain that with probability at least 1 − 1/m, we have
|X| ≤ 20σ 2.

Similarly, with probability at least 1 − 1/m, we have | 1
m

∑m
j=1 ε4

j | ≤ C0σ
4 for

some absolute constant C0. �
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LEMMA A.8. Suppose zj ∈ Rk , j = 1, . . . ,m are i.i.d. standard normal ran-
dom vectors. For fixed a ∈Rm, with probability at least 1 − 2e−k , we have∥∥∥∥∥

m∑
j=1

aj zj z′
j −

(
m∑

j=1

aj

)
Ik

∥∥∥∥∥ ≤ C0

(√
k‖a‖2

2 + k‖a‖∞
)

for some absolute constant C0.

PROOF. Define A := ∑m
j=1 aj zj z′

j − (
∑m

j=1 aj )Ik . By Lemma 4 in [43], we
have

‖A‖ ≤ 2 sup
x∈N1/4

∣∣x′Ax
∣∣,

where N1/4 is the 1/4-net of the unit sphere T k−1.
For fixed x ∈ N1/4, let yj = |z′

j x|2 − 1. Then

x′Ax =
m∑

j=1

ajyj .

Notice that yj , j = 1, . . . ,m are i.i.d. sub-exponential variables with ‖yj‖ψ1 ≤ K

where K is an absolute constant. By Bernstein inequality (see, e.g., Proposition 16
in [43]), we have with probability at least 1 − 2 exp(−4k),∣∣∣∣∣

m∑
j=1

ajyj

∣∣∣∣∣ ≤ (C0/2)
(√

k‖a‖2
2 + k‖a‖∞

)
for some absolute constant C0.

Since |N1/4| ≤ 9k , we know with probability at least 1 − 2e−k , we have

‖A‖ ≤ 2 sup
x∈N1/4

∣∣x′Ax
∣∣ ≤ C0

(√
k‖a‖2

2 + k‖a‖∞
)
.

�
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