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On Recovery of Sparse Signals Via �� Minimization
T. Tony Cai, Guangwu Xu, and Jun Zhang, Senior Member, IEEE

Abstract—This paper considers constrained �� minimization
methods in a unified framework for the recovery of high-dimen-
sional sparse signals in three settings: noiseless, bounded error,
and Gaussian noise. Both �� minimization with an �� constraint
(Dantzig selector) and �� minimization under an �� constraint are
considered. The results of this paper improve the existing results in
the literature by weakening the conditions and tightening the error
bounds. The improvement on the conditions shows that signals
with larger support can be recovered accurately. In particular, our
results illustrate the relationship between �� minimization with
an �� constraint and �� minimization with an �� constraint. This
paper also establishes connections between restricted isometry
property and the mutual incoherence property. Some results of
Candes, Romberg, and Tao (2006), Candes and Tao (2007), and
Donoho, Elad, and Temlyakov (2006) are extended.

Index Terms—Dantzig selector�� minimization, restricted isom-
etry property, sparse recovery, sparsity.

I. INTRODUCTION

T HE problem of recovering a high-dimensional sparse
signal based on a small number of measurements, pos-

sibly corrupted by noise, has attracted much recent attention.
This problem arises in many different settings, including com-
pressed sensing, constructive approximation, model selection
in linear regression, and inverse problems.

Suppose we have observations of the form

(I.1)

where the matrix with is given and
is a vector of measurement errors. The goal is to reconstruct
the unknown vector . Depending on settings, the error
vector can either be zero (in the noiseless case), bounded, or
Gaussian where . It is now well understood that

minimization provides an effective way for reconstructing a
sparse signal in all three settings. See, for example, Fuchs [13],
Candes and Tao [5], [6], Candes, Romberg, and Tao [4], Tropp
[18], and Donoho, Elad, and Temlyakov [10].

A special case of particular interest is when no noise is present
in (I.1) and . This is then an underdetermined system of
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linear equations with more variables than the number of equa-
tions. It is clear that the problem is ill-posed and there are gener-
ally infinite many solutions. However, in many applications the
vector is known to be sparse or nearly sparse in the sense that
it contains only a small number of nonzero entries. This spar-
sity assumption fundamentally changes the problem. Although
there are infinitely many general solutions, under regularity con-
ditions there is a unique sparse solution. Indeed, in many cases
the unique sparse solution can be found exactly through min-
imization

subject to (I.2)

This minimization problem has been studied, for example,
in Fuchs [13], Candes and Tao [5], and Donoho [8]. Under-
standing the noiseless case is not only of significant interest in
its own right, it also provides deep insight into the problem of
reconstructing sparse signals in the noisy case. See, for example,
Candes and Tao [5], [6] and Donoho [8], [9].

When noise is present, there are two well-known min-
imization methods. One is minimization under an con-
straint on the residuals

-Constraint subject to (I.3)

Writing in terms of the Lagrangian function of ( -Constraint),
this is closely related to finding the solution to the regularized
least squares

(I.4)

The latter is often called the Lasso in the statistics literature
(Tibshirani [16]). Tropp [18] gave a detailed treatment of the

regularized least squares problem.
Another method, called the Dantzig selector, was recently

proposed by Candes and Tao [6]. The Dantzig selector solves the
sparse recovery problem through -minimization with a con-
straint on the correlation between the residuals and the column
vectors of

subject to (I.5)

Candes and Tao [6] showed that the Dantzig selector can be
computed by solving a linear program

subject to

and

where the optimization variables are . Candes and
Tao [6] also showed that the Dantzig selector mimics the perfor-
mance of an oracle procedure up to a logarithmic factor .
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It is clear that some regularity conditions are needed in order
for these problems to be well behaved. Over the last few years,
many interesting results for recovering sparse signals have
been obtained in the framework of the Restricted Isometry
Property (RIP). In their seminal work [5], [6], Candes and Tao
considered sparse recovery problems in the RIP framework.
They provided beautiful solutions to the problem under some
conditions on the so-called restricted isometry constant
and restricted orthogonality constant (defined in Sec-
tion II). These conditions essentially require that every set of
columns of with certain cardinality approximately behaves
like an orthonormal system. Several different conditions have
been imposed in various settings. For example, the condition

was used in Candes and
Tao [5], in Candes, Romberg, and
Tao [4], in Candes and Tao [6], and

in Candes [3], where is the sparsity index.
A natural question is: Can these conditions be weakened in a
unified way? Another widely used condition for sparse recovery
is the Mutual Incoherence Property (MIP) which requires the
pairwise correlations among the column vectors of to be
small. See [10], [11], [13], [14], [18].

In this paper, we consider minimization methods in a
single unified framework for sparse recovery in three cases,
noiseless, bounded error, and Gaussian noise. Both min-
imization with an constraint (DS) and minimization
under the constraint ( -Constraint) are considered. Our
results improve on the existing results in [3]–[6] by weakening
the conditions and tightening the error bounds. In particular,
our results clearly illustrate the relationship between mini-
mization with an constraint and minimization with an
constraint (the Dantzig selector). In addition, we also establish
connections between the concepts of RIP and MIP. As an
application, we present an improvement to a recent result of
Donoho, Elad, and Temlyakov [10].

In all cases, we solve the problems under the weaker condi-
tion

(I.6)

The improvement on the condition shows that for fixed and ,
signals with larger support can be recovered. Although our main
interest is on recovering sparse signals, we state the results in the
general setting of reconstructing an arbitrary signal.

It is sometimes convenient to impose conditions that involve
only the restricted isometry constant . Efforts have been made
in this direction in the literature. In [7], the recovery result was
established under the condition . In [3], the weaker
condition was used. Similar conditions have
also been used in the construction of (random) compressed
sensing matrices. For example, conditions and

were used in [15] and [1], respectively. We shall
remark that, our results implies that the weaker condition

suffices in sparse signal reconstruction.
The paper is organized as follows. In Section II, after basic

notation and definitions are reviewed, we introduce an elemen-
tary inequality, which allow us to make finer analysis of the

sparse recovery problem. We begin the analysis of minimiza-
tion methods for sparse recovery by considering the exact re-
covery in the noiseless case in Section III. Our result improves
the main result in Candes and Tao [5] by using weaker condi-
tions and providing tighter error bounds. The analysis of the
noiseless case provides insight to the case when the observa-
tions are contaminated by noise. We then consider the case of
bounded error in Section IV. The connections between the RIP
and MIP are also explored. Sparse recovery with Gaussian noise
is treated in Section V. Appendices A–D contain the proofs of
technical results.

II. PRELIMINARIES

In this section, we first introduce basic notation and defini-
tions, and then present a technical inequality which will be used
in proving our main results.

Let . Let be a vector. The
support of is the subset of defined by

For an integer , a vector is said to be -sparse if
. For a given vector we shall denote by

the vector with all but the -largest entries (in absolute value)
set to zero and define , the vector with
the -largest entries (in absolute value) set to zero. We shall use
the standard notation to denote the -norm of the vector .

Let the matrix and , the -restricted
isometry constant is defined to be the smallest constant
such that

(II.1)

for every -sparse vector . If , we can define another
quantity, the -restricted orthogonality constant , as
the smallest number that satisfies

(II.2)

for all and such that and are -sparse and -sparse,
respectively, and have disjoint supports. Roughly speaking, the
isometry constant and restricted orthogonality constant

measure how close subsets of cardinality of columns
of are to an orthonormal system.

For notational simplicity we shall write for and
for hereafter. It is easy to see that and are
monotone. That is

if (II.3)

if (II.4)

Candes and Tao [5] showed that the constants and are
related by the following inequalities

(II.5)

As mentioned in the Introduction, different conditions on
and have been used in the literature. It is not always imme-
diately transparent which condition is stronger and which is
weaker. We shall present another important property on and
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which can be used to compare the conditions. In addition, it is
especially useful in producing simplified recovery conditions.

Proposition 2.1: If , then

(II.6)

In particular, .

A proof of the proposition is provided in Appendix A.

Remark: Candes and Tao [6] imposes and
in a more recent paper Candes [3] uses . A direct
consequence of Proposition 2.1 is that is in fact
a strictly stronger condition than since Propo-
sition 2.1 yields which means
that implies .

We now introduce a useful elementary inequality. This in-
equality allows us to perform finer estimation on , norms.
It will be used in proving our main results.

Proposition 2.2: Let be a positive integer. Then any de-
scending chain of real numbers

satisfies

The proof of Proposition 2.2 is given in Appendix B.

III. SIGNAL RECOVERY IN THE NOISELESS CASE

As mentioned in the Introduction, we shall give a unified
treatment for the methods of minimization with an con-
straint and minimization with an constraint for recovery
of sparse signals in three cases: noiseless, bounded error, and
Gaussian noise. We begin in this section by considering the sim-
plest setting: exact recovery of sparse signals when no noise is
present. This is an interesting problem by itself and has been
considered in a number of papers. See, for example, Fuchs [13],
Donoho [8], and Candes and Tao [5]. More importantly, the so-
lutions to this “clean” problem shed light on the noisy case. Our
result improves the main result given in Candes and Tao [5]. The
improvement is obtained by using the technical inequalities we
developed in previous section. Although the focus is on recov-
ering sparse signals, our results are stated in the general setting
of reconstructing an arbitrary signal.

Let with and suppose we are given and
where for some unknown vector . The goal is to

recover exactly when it is sparse. Candes and Tao [5] showed
that a sparse solution can be obtained by minimization which
is then solved via linear programming.

Theorem 3.1 (Candes and Tao [5]): Let . Suppose
satisfies

(III.1)

Let be a -sparse vector and . Then is the unique
minimizer to the problem .

As mentioned in the Introduction, other conditions on and
have also been used in the literature. Candes, Romberg, and

Tao [4] uses the condition . Candes and Tao
[6] considers the Gaussian noise case. A special case with noise
level of Theorem 1.1 in that paper improves Theorem 3.1
by weakening the condition from to

. Candes [3] imposes the condition .
We shall show below that these conditions can be uniformly

improved by a transparent argument. A direct application of
Proposition 2.2 yields the following result which weakens the
above conditions to

Note that it follows from (II.3) and (II.4) that , and
. So the condition is weaker

than . It is also easy to see from (II.5) and
(II.6) that the condition is also weaker than

and the other conditions mentioned above.

Theorem 3.2: Let . Suppose satisfies

and . Then the minimizer to the problem
obeys

where .

In particular, if is a -sparse vector, then , i.e., the
minimization recovers exactly.

This theorem improves the results in [5], [6]. The improve-
ment on the condition shows that for fixed and , signals with
larger support can be recovered accurately.

Remark: It is sometimes more convenient to use conditions
only involving the restricted isometry constant . Note that the
condition

(III.2)

implies . This is due to the fact

by Proposition 2.1. Hence, Theorem 3.2 holds under the condi-
tion (III.2). The condition can also be used.

Proof of Theorem 3.2: The proof relies on Proposition 2.2
and makes use of the ideas from [4]–[6]. In this proof, we shall
also identify a vector as a function

by assigning .
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Let be a solution to the minimization problem (Exact).
Let be the support of

and let . Write

such that . Let

For a subset , we use to denote the
characteristic function of , i.e.,

if
if .

For each , let . Then is decomposed to
. Note that ’s are pairwise disjoint,

, and for . We first consider the case where
is divisible by .

For each , we divide into two halves in the following
manner:

with and

where is the first half of , i.e.,

and .
We shall treat as a sum of four functions and divide into

four equal parts with

and

We then define for by . It is clear
that .

Note that

(III.3)

In fact, since , we have

Since , this yields

The following claim follows from our Proposition 2.2.

Claim:

(III.4)

In fact, from Proposition 2.2 and the fact that
, we have

It then follows from Proposition 2.2 that

Proposition 2.2 also yields

for any . Therefore

In the rest of our proof we write . Note that
. So we get the equation at the top of the

following page. This yields
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It then follows from (III.4) that

We now turn to the case that is not divisible by . Let
. Note that in this case and are understood as
and , respectively. So the proof for the previous case

works if we set

and

for

and

and

In this case, we need to use the following inequality whose proof
is essentially the same as Proposition 2.2: For any descending
chain of real numbers

, we have

IV. RECOVERY OF SPARSE SIGNALS IN BOUNDED ERROR

We now turn to the case of bounded error. The results ob-
tained in this setting have direct implication for the case of
Gaussian noise which will be discussed in Section V.

Let and let

where the noise is bounded, i.e., for some bounded
set . In this case the noise can either be stochastic or deter-
ministic. The minimization approach is to estimate by the
minimizer of

subject to

We shall specifically consider two cases:
and . The

first case is closely connected to the Dantzig selector in the
Gaussian noise setting which will be discussed in more detail
in Section V. Our results improve the results in Candes,
Romberg, and Tao [4], Candes and Tao [6], and Donoho, Elad,
and Temlyakov [10].

We shall first consider

where satisfies

Let be the solution to the (DS) problem given in (I.1). The
Dantzig selector has the following property.

Theorem 4.1: Suppose and with
satisfying . If

(IV.1)

then the solution to (DS) obeys

(IV.2)

with and .

In particular, if is a -sparse vector, then
.

Remark: Theorem 4.1 is comparable to Theorem 1.1 of
Candes and Tao [6], but the result here is a deterministic one
instead of a probabilistic one as bounded errors are considered.
The proof in Candes and Tao [6] can be adapted to yield a
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similar result for bounded errors under the stronger condition
.

Proof of Theorem 4.1: We shall use the same notation as in
the proof of Theorem 3.2. Since , letting
and following essentially the same steps as in the first part of the
proof of Theorem 3.2, we get

If , then and . The latter forces
that for every , and we have . Otherwise

To finish the proof, we observe the following.
1) .

In fact, let be the submatrix ob-
tained by extracting the columns of according to the in-
dices in , as in [6]. Then

2)
In fact

We get the result by combining 1) and 2). This completes the
proof.

We now turn to the second case where the noise is bounded
in -norm. Let with . The problem is to
recover the sparse signal from

where the noise satisfies . Once again, this problem
can be solved through constrained minimization

subject to (IV.3)

An alternative to the constrained minimization approach is
the so-called Lasso given in (I.4). The Lasso recovers a sparse
signal via regularized least squares. It is closely connected
to the -constrained minimization. The Lasso is a popular
method in statistics literature (Tibshirani [16]). See Tropp [18]
for a detailed treatment of the regularized least squares
problem.

By using a similar argument, we have the following result on
the solution of the minimization (IV.3).

Theorem 4.2: Let . Suppose is a -sparse
vector and with . If

(IV.4)

then for any , the minimizer to the problem (IV.3) obeys

(IV.5)

with .

Proof of Theorem 4.2: Notice that the condition im-
plies that , so we can use the first part of the proof
of Theorem 3.2. The notation used here is the same as that in
the proof of Theorem 3.2.

First, we have

and

Note that

So

Remark: Candes, Romberg, and Tao [4] showed that, if
, then

(The was set to be in [4].) Now suppose .
This implies which yields ,
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since and . It then follows from
Theorem 4.2 that, with

for all -sparse vector where . Therefore, Theorem
4.2 improves the above result in Candes, Romberg, and Tao [4]
by enlarging the support of by 60%.

Remark: Similar to Theorems 3.2 and 4.1, we can have the
estimation without assuming that is -sparse. In the general
case, we have

A. Connections Between RIP and MIP

In addition to the restricted isometry property (RIP), another
commonly used condition in the sparse recovery literature is the
mutual incoherence property (MIP). The mutual incoherence
property of requires that the coherence bound

(IV.6)

be small, where are the columns of ( ’s are
also assumed to be of length in -norm). Many interesting
results on sparse recovery have been obtained by imposing con-
ditions on the coherence bound and the sparsity , see [10],
[11], [13], [14], [18]. For example, a recent paper, Donoho,
Elad, and Temlyakov [10] proved that if is a -sparse
vector and with , then for any , the
minimizer to the problem ( -Constraint) satisfies

with , provided .

We shall now establish some connections between the
RIP and MIP and show that the result of Donoho, Elad, and
Temlyakov [10] can be improved under the RIP framework, by
using Theorem 4.2.

The following is a simple result that gives RIP constants from
MIP. The proof can be found in Appendix C. It is remarked that
the first inequality in the next proposition can be found in [17].

Proposition 4.1: Let be the coherence bound for . Then

and (IV.7)

Now we are able to show the following result.

Theorem 4.3: Suppose is a -sparse vector and
with satisfying . Let . If

(or, equivalently, ), then for any ,

the minimizer to the problem ( -Constraint) obeys

(IV.8)

with .

Proof of Theorem 4.3: It follows from Proposition 4.1 that

Since , the condition holds. By
Theorem 4.2

Remarks: In this theorem, the result of Donoho, Elad, and
Temlyakov [10] is improved in the following ways.

1) The sparsity is relaxed from to

. So roughly speaking, Theorem 4.3 improves the
result in Donoho, Elad, and Temlyakov [10] by enlarging
the support of by 47%.

2) It is clear that larger is preferred. Since is usually very
small, the bound is tightened from to

, as is close to .

V. RECOVERY OF SPARSE SIGNALS IN GAUSSIAN NOISE

We now turn to the case where the noise is Gaussian. Suppose
we observe

(V.1)

and wish to recover from and . We assume that is known
and that the columns of are standardized to have unit norm.
This is a case of significant interest, in particular in statistics.
Many methods, including the Lasso (Tibshirani [16]), LARS
(Efron, Hastie, Johnstone, and Tibshirani [12]) and Dantzig se-
lector (Candes and Tao [6]), have been introduced and studied.

The following results show that, with large probability, the
Gaussian noise belongs to bounded sets.

Lemma 5.1: The Gaussian error satisfies

(V.2)

and

(V.3)

Inequality (V.2) follows from standard probability calcula-
tions and inequality (V.3) is proved in Appendix D.

Lemma 5.1 suggests that one can apply the results obtained
in the previous section for the bounded error case to solve the
Gaussian noise problem. Candes and Tao [6] introduced the
Dantzig selector for sparse recovery in the Gaussian noise set-
ting. Given the observations in (V.1), the Dantzig selector
is the minimizer of

subject to (V.4)

where .
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In the classical linear regression problem when , the
least squares estimator is the solution to the normal equation

(V.5)

The constraint in the convex program
(DS) can thus be viewed as a relaxation of the normal (V.3).
And similar to the noiseless case, minimization leads to the
“sparsest” solution over the space of all feasible solutions.

Candes and Tao [6] showed the following result.

Theorem 5.1 (Candes and Tao [6]): Suppose is a
-sparse vector. Let be such that

Choose in (I.1). Then with large probability,
the Dantzig selector obeys

(V.6)

with .1

As mentioned earlier, the Lasso is another commonly used
method in statistics. The Lasso solves the regularized least
squares problem (I.4) and is closely related to the -constrained

minimization problem ( -Constraint). In the Gaussian error
case, we shall consider a particular setting. Let be the min-
imizer of

subject to (V.7)

where .
Combining our results from the last section together with

Lemma 5.1, we have the following results on the Dantzig se-
lector and the estimator obtained from minimiza-
tion under the constraint. Again, these results improve the
previous results in the literature by weakening the conditions
and providing more precise bounds.

Theorem 5.2: Suppose is a -sparse vector and the
matrix satisfies

Then with probability , the Dantzig selector

obeys

(V.8)

with , and with probability at least ,

obeys

(V.9)

with .

Remark: In comparison to Theorem 5.1, our result in The-
orem 5.2 weakens the condition from to

and improves the constant in the bound from
to . Note that

1In Candes and Tao [6], the constant � was stated as � � . It

appears that there was a typo and the constant � should be � � ����� � �

� �.

since . The improvement
on the error bound is minor. The improvement on the condition
is more significant as it shows signals with larger support can
be recovered accurately for fixed and .

Remark: Similar to the results obtained in the previous sec-
tions, if is not necessarily -sparse, in general we have, with
probability

where and , and with

probability

where and .

Remark: Candes and Tao [6] also proved an Oracle Inequality
for the Dantzig selector in the Gaussian noise setting under
the condition . With some additional work, our
approach can be used to improve [6, Theorems 1.2 and 1.3] by
weakening the condition to .

APPENDIX A
PROOF OF PROPOSITION 2.1

Let be -sparse and be -sparse. Suppose their

supports are disjoint. Decompose as

such that is -sparse for and
for . Using the Cauchy–Schwartz in-

equality, we have

This yields . Since ,

we also have .

APPENDIX B
PROOF OF PROPOSITION 2.2

Let
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where each is given (and bounded) by

Without loss of generality, we assume that is even. Write

where

and

Now

and

Therefore

and the inequality is proved.

APPENDIX C
PROOF OF PROPOSITION 4.1

Let be a -sparse vector. Without loss of generality, we as-
sume that . A direct calculation shows
that

Now let us bound the second term. Note that

These give us

and hence

For the second inequality, we notice that . It then
follows from Proposition 2.1 that

APPENDIX D
PROOF OF LEMMA 5.1

The first inequality is standard. For completeness, we give
a short proof here. Let . Then each
marginally has Gaussian distribution . Hence
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where the last step follows from the Gaussian tail probability
bound that for a standard Gaussian variable and any constant

, .
We now prove inequality (V.3). Note that is

a random variable. It follows from Lemma 4 in Cai [2] that
for any

Hence

where . It now follows from the fact
that

Inequality (V.3) now follows by verifying directly that
for all .
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