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Abstract

Copy number variations (CNVs) are alterations of the DNA of a genome that
results in the cell having an abnormal number of copies of one or more sections of the
DNA. Germline CNVs have been shown to be associated with many complex diseases.
Detecting and identifying all the CNVs in a given sample or in multiple population-
based samples is an important first step in many CNV analyses. In this chapter,
we review statistical methods for CNV identification, focusing on latest developed
methods for sparse segment identifications in various settings. We review methods
for optimal CNV identification for a single sample based on SNP allele intensity data,
methods for robust CNV identification based on the next generation sequence (NGS)
data. and methods for detection of recurrent CNVs in a population when a large set
of samples are available. Our review focuses on problem formulations and optimal
statistical properties of the procedures. We illustrate these methods using data from
the 1000 Genomes Project and data from a large genome-wide association study of
neuroblastoma. Areas that need further research are also presented.

1 Introduction

Structural variants in the human genome (Sebat et al., 2004; Feuk et al., 2006), including
the copy number variants (CNVs) and balanced rearrangements such as inversions and
translocations, play an important role in the genetics of complex diseases. Copy number
variation refers to duplication or deletion of a segment of DNA sequences compared to
a reference genome assembly. In normal genomic regions, there are two copies of DNAs,
one from father, one from mother. CNVs are alternations of DNA of a genome that
results in the cell having a less or more than two copies of segments of the DNA. CNVs
correspond to relatively large regions of the genome, ranging from about one kilobase
to several megabases, that are deleted or duplicated. A high proportion of the genome,
currently estimated at up to 12%, is subject to copy number variation (Hastings et al.,
2009). Hastings et al. (2009) further provides possible molecular mechanisms of change in
the gene copy number. Analysis of CNV in developmental and neuropsychiatric disorders
(Feuk et al., 2006; Stefansson et al., 2008; Stone et al., 2008; Walsh et al., 2008) and in
cancer (Diskin et al., 2009), has led to the identification of novel disease-causing copy
number variant mutations, thus contributing important new insights into the genetics of
these complex diseases.
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This chapter reviews a few related statistical problems that arise from the CNV analysis
for germline constitutional genomes, focusing on methods for sparse segment identifications.
Current high-throughput genotyping technology is able to generate genome-wide observa-
tions in very high resolutions. In this type of ultrahigh dimensional data, the number of
CNVs is relatively very small and the CNV segments are usually very short. These impose
major difficulties in CNV identification (Zhang et al., 2009b). The emerging technologies
of DNA sequencing have further enabled the identification of CNVs by the next-generation
sequencing (NGS) in high resolution. NGS can generate millions of short sequence reads
along the whole human genome. When these short reads are mapped to the reference
genome, both distances of paired-end data and read-depth (RD) data can reveal the pos-
sible structural variations of the target genome (for reviews, see Medvedev et al. (2009)
and Alkan et al. (2011)). The general statistical problem is to identify sparse and subtle
signal segments hidden in a long sequence of noisy data. Let I be the collection of all signal
segments. The goal is two-fold: (1) to detect the existence of segments; and (2) to identify
the locations of the segments if they exist. Precisely, we want to test

H0 : I = ∅ against H1 : I 6= ∅, (1.1)

and if H1 is rejected, identify each Ik ∈ I.
Although many methods have been developed for the CNV analysis, including methods

based on hidden Markov models (Wang et al., 2007) and methods based on fused penalized
regression (Zhang et al., 2010), these methods do not provide any theoretical results in
term of optimality of the procedures. We review three approaches for testing the above
null hypothesis and for identifying the CNVs at both individual sample and multiple-sample
levels:

1. optimal CNV identification for a single sample based on single nucleotide polymor-
phism (SNPs) allele intensity data.

2. robust CNV identification based on the next generation sequence (NGS) data.

3. detection of recurrent CNVs in a population when a large set of samples are available.

These three problems can be formulated as general sparse segment identification prob-
lems in the high dimensional settings. Our review focuses on the problem formulations
and some key steps of the procedure and some theoretical results. We also illustrate these
methods with real data analyses. In addition, we discuss a few other interesting problems
that require new statistical methodology, including methods for testing CNV associations
and methods for CNV analysis based on mapping distances from the pair-end sequencing.

2 Optimal CNV identification for a single sample based

on Log R ratio data from the SNP arrays

2.1 Statistical formulation and summary of theoretical results

The SNP data generated from SNP genotyping array platforms, such as the HumanHap550
array can be informative for CNV analysis. At a given SNP location, the observation
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is the Log R ratio (LRR) calculated as log2(Robs/Rexp), where Robs is the observed total
intensity of both major and minor alleles for a given SNP, and Rexp is computed from linear
interpolation of canonical genotype clusters (Peiffer et al., 2006). When there is no copy
number change at a SNP location for the observed sample, Robs should be the same as Rexp,
and the LRR has a baseline level of zero. If there is a copy number deletion/duplication
at a SNP location, Robs can be smaller/larger than Rexp, therefore the LRR the deviates
from zero to the negative/positive side, which implies deletion or duplication. See Figure
1 for an illustration on how different intensities can be used to infer the CNVs.
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Reference 

Intensity 

sample 

Reference 
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Figure 1: Illustration of detecting insertions and deletions based on the LRR values. Top
panel: duplication; bottom panel: deletion.

The problem of CNV identification using LRR data can be generalized as a problem of
identifying sparse and short signal segments in a long sequence of noisy data. specifically,
we observe {Xi, i = 1, ..., n} with

Xi = µ11{i∈I1} + . . .+ µq1{i∈Iq} + σZi, 1 ≤ i ≤ n. (2.2)

Here q = qn is the unknown number of the signal segments, possibly increasing with
n, I1, . . . Iq are disjoint intervals representing signal segments with unknown locations,

µ1, . . . µq are unknown positive means, σ is an unknown noise level, and Zi
iid∼ N(0, 1).

The problem formulated in Section 1 for data described by model (2.2) pertains to
statistical research in several areas. Without segment structure, it is closely related to large-
scale multiple testing, which has motivated many novel procedures such as false discovery
rate (FDR) (Benjamini and Hochberg, 1995) and higher criticism thresholding (HCT)
(Donoho and Jin, 2008). Arias-Castro et al. (2005) considered the problem of detecting
the existence of signals when there is only one signal segment. This is a special case of the
testing part of our problem with q = 1. They showed that the detection boundary in this
case is

√
2 log n/

√
|I|, i.e., the signal mean should be at least

√
2 log n/

√
|I| in order for a
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signal with length |I| to be reliably detected and that the generalized likelihood ratio test
(GLRT) can be used for detecting the segment. A closely related result in Section 6 of Hall
and Jin (2010) demonstrates the detection boundary under a wide range of signal sparsity
when signals appear in several clusters. Further, Arias-Castro et al. (2005) and Walther
(2010) studied detection of geometric objects and spatial clusters in 2-dimensional space,
respectively, and Arias-Castro et al. (2008) provides detection threshold for the existence
of an unknown path in a 2-dimensional regular lattice or a binary tree.

The problem considered here is also related to the problem of change-point detection,
since it involves shifts in the characteristics of a sequence of data. Change-point detection in
a single sequence has been extensively studied. See Zack (1983) and Bhattacharya (1994) for
a review of the literature. Olshen et al. (2004) used the likelihood ratio based statistics for
analysis of DNA copy number data, and Zhang and Siegmund (2007) proposed a BIC-based
model selection criterion for estimating the number of change-points. Olshen et al. (2004)
further developed an iterative circular binary segmentation procedure for segmentation of
a single sequence and showed promising results in analysis of DNA copy number data,
whereas Zhang et al. (2008) extended the problem of change-point detection from single
sequence to multiple sequences in order to increase the power of detecting changes.

The problem is studied from another perspective in Jeng et al. (2010), which focuses
on the recovery of sparse and subtle signals. For any signal segment, a statistical char-
acterization of identifiable region is derived. When a signal segment is in the identifiable
region, it is possible to reliably separate the segment from the noise; otherwise, it is im-
possible to do so. A likelihood ratio selection (LRS) procedure was proposed to identify
the signal segments. The LRS involves scanning the linear data sequence of length (n)
with all the segment of length less than a pre-specified interval length L and then calcu-
late the likelihood ratio statistics for all these intervals. A threshold of tn =

√
2 log(Ln) is

used to control for the genome-wide error rate. Specifically, the LRS has the following steps:

Step 1: Let Jn(L) be the collection of all possible subintervals in {1, . . . , n} with interval
length less than or equal to L. Let j = 1. Define I(j) = {Ĩ ∈ Jn(L) : X(Ĩ) > tn}.
Step 2: Let Îj = arg maxĨ∈I(j) X(Ĩ).

Step 3: Update I(j+1) = I(j)\{Ĩ ∈ I(j) : Ĩ ∩ Îj 6= ∅}.
Step 4: Repeat Step 2-4 with j = j + 1 until I(j) is empty.

Define the collection of selected intervals as Î = {Î1, Î2, . . .}. If Î 6= ∅, we reject the null
hypothesis and identify the signal segments by all the elements in Î.

Jeng et al. (2010) showed that the LRS provides consistent estimates for any signal
segments in the identifiable region. In other words, the LRS procedure is an optimal
procedure, which can reliably separate signal segments from noise as long as the signal
segments can be identified. To elucidate the exact meaning of optimality, Jeng et al.
(2010) introduced a quantity to measure the accuracy of an estimate of a signal segment.
Recall that I is the collection of signal segments. Denote Î to be the collection of interval
estimates. For any Î ∈ Î and I ∈ I, define the dissimilarity between Î and I as

D(Î , I) = 1− |Î ∩ I|/
√
|Î||I|, (2.3)

where | · | represents the cardinality of a set. Note that 0 ≤ D(Î , I) ≤ 1 with D(Î , I) = 1
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indicating disjointness and D(Î , I) = 0 indicating complete identity. Similar quantity has
been used in Arias-Castro et al. (2005) to measure the dissimilarity between intervals.
Definition 1 An identification procedure is consistent for a subset Ω ⊆ I if its set of
estimates Î satisfies

PH0(|̂I| > 0) + PH1(max
Ij∈Ω

min
Îj∈Î

D(Îj, Ij) > δn)→ 0, (2.4)

for some δn = o(1). Obviously, the first term on the left measures the type I error. The
second term, which is the probability that some signal segments in Ω are not ‘substantially
matched’ by any of the estimates, essentially measures the type II error.

2.2 Application to CNV analysis of LRR data from a trio

As an example, Jeng et al. (2010) presented an application of using the genotyping data for
a father-mother-child trio from the Autism Genetics Resource Exchange (AGRC) collection
(Bucan et al., 2009), genotyped on the Illumina HumanHap550 array. For each individual,
the LRR data are observed at a total of 547,458 SNPs over 22 autosomes, and the numbers
of SNPs on each chromosome range from 8,251 on chromosome 21 to 45,432 on chromosome
2. For each individual, the goal is to identify the CNVs by LRS. The purpose of using data
from a trio is to partially validate the results since some CNVs are inherited from parents
to child. Figure 2 shows the CNV segments with the likelihood ratio test scores (xstar) for
the segments that the LRS algorithm selected for the child. The CNV segments identified
in the parents are also plotted if they overlap with the CNV segments of the child. It
is interesting to note that many of the CNV segments identified in the child were also
observed in one of the parents, further indicating that some CNVs are inheritable and
the LRS algorithm can effectively identify these CNVs. More details about the selected
CNV segments and a comparison with the hidden Markov model (HMM)-based method
implemented in PennCNV package (Wang et al., 2007) can be found in Jeng et al. (2010).

One of the key assumption made in Jeng et al. (2010) is that the noise follows a normal
distribution throughout the genomes and the baseline mean values of the data are zero. In
real data application, the LRR data can also be affected by genomic features such as GC
contents and SNP densities. It is important to pre-process the data to ensure that they
roughly follow normal distributions. Loess fitting provides method of normalization for the
correction of wave like correlations in signal intensities across the genome Marioni et al.
(2007).

3 Robust CNV identification for one sample based on

NGS data

3.1 Statistical formulation and summary of theoretical results

Classical approaches for signal detection rely heavily on normality or other distributional
assumptions on data observed. Examples include but not limited to the false discovery rate
(FDR) (Benjamini and Hochberg, 1995), the higher criticism (HC) (Donoho and Jin, 2004)
and the generalized likelihood ratio test (GLRT) (Arias-Castro et al., 2005). It is crucial
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Figure 2: Summary of results of LRS for CNV detection for a trio: the LR test statistics
for the CNV segments identified by the proposed LRS procedure for the child, sorted by the
absolute values of the likelihood ratio statistics. One segment with large statistics (-116.70
for the child) is truncated as -40 for better view.

for these methods to specify the tail distribution of the test statistics under null hypothesis,
so that false positive errors can be controlled at a desired level. However, the tail behavior
critically depends on the noise distribution, which is usually unknown and hard to estimate
in real applications. Although the FDR or the HC can be applied to p-values obtained from
nonparametric methods, popular nonparametric methods such as permutation are often
computationally expensive and not feasible for ultra-high dimensional data.

The emerging technologies of next generation sequencing enable CNV analysis at even
higher resolutions. NGS can generate millions of short sequence reads along the whole
human genome. When these short reads are mapped to the reference genome, read-depth
data are generated to count the number of reads that cover a genomic location or a small bin
along the genome. The read counts or read depth (RD) data provide important information
about the CNVs (Shendure and Ji, 2008; Medvedev et al., 2009; Yoon et al., 2009; Mills
et al., 2011; Sudmant et al., 2010) that a given individual carries. CNVs include large-scale
deletions, duplications and insertions and form one type of genetic variation. When the
genomic location or bin is within a deletion, one expects to observe a smaller number of
read counts or lower mapping density than the background read depth. In contrast, when
the genomic location or bin is within an insertion or duplication, one expects to observe a
larger number of read counts or higher mapping density. Therefore, these RDs can be used
to detect and identify the CNVs. Yoon et al. (2009) developed an algorithm for read depth
data to detect CNVs, where they convert the read count of a window into a Z-score by
subtracting the mean of all windows and dividing by the standard deviation and identify
the CNVs by examining the maximum p-value in a given interval. The p-values are obtained
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by a normality assumption on the RD data. Abyzov et al. (2011) developed an approach
to first partition the genome into a set of regions with different underlying copy numbers
using mean-shift technique and then merge signal and call CNVs by performing t-tests. Xie
and Tammi (2009) and Chiang et al. (2009) developed methods for CNV detection based
on read depth data when pairs of samples are available. The basic idea underlying these
two methods is to convert the counts data into ratios and then apply existing copy number
analysis methods developed for array CGH data such as the circular binary segmentation
(CBS) (Olshen et al., 2004) for CNV detection.

However, the distribution of the RD data is in general unknown due to the complex
process of sequencing. Some recent literature assumes a constant read sampling rate across
the genome and Poisson distribution or negative-binomial distribution for the read counts
data (Xie and Tammi, 2009; Cheung et al., 2011). However, due to GC content, mappa-
bility of sequencing reads and regional biases, genomic sequences obtained through high
throughput sequencing are not uniformly distributed across the genome and therefore the
counts data are likely not to follow a Poisson distribution (Li et al., 2010; Miller et al.,
2011; Cheung et al., 2011). The feature of the NGS data also changes with the advances
of sequencing technologies. To analyze such data, robust methods that are adaptive to un-
known noise distribution and computationally efficient at the same time are greatly needed
in order to minimize both false positive and false negative identification of CNVs and to
estimate CNV break points more precisely.

The NGS data {Y1, · · · , Yn} is modeled as

Yi = µ11{i∈I1} + . . .+ µq1{i∈Iq} + ξi, 1 ≤ i ≤ n, (3.5)

where Yi is the guanine-cytosine (GC) content-adjusted RD counts at genomic location or
bin i, which can be regarded as continuous when coverage of the genome is sufficiently
high, for example greater than 20 (Yoon et al., 2009; Abyzov et al., 2011). The above
model is more general than (2.2) with the distribution of the noise ξi unspecified. This
model describes the phenomenon that some signal segments are hidden in the n noisy
observations. The number, locations, mean values of the segments, and the distribution
of the random errors are unknown. Under this more general model, parametric methods
designed for Gaussian noise or any other tractable noise may fail completely and provide a
large number of misidentifications.

To tackle this difficulty, a computationally efficient method called robust segment iden-
tifier (RSI) was proposed in Cai et al. (2011), which provides a robust and near-optimal
solution for segment identification over a wide range of noise distributions. As an illustra-
tion, 1000 observations are generated based on Cauchy (0, 1), and the signal segment is
set at [457 : 556] with a positive mean. Figure 3 compares the RSI with the LRS, which
is an optimal procedure for Gaussian noise. In this example, the LRS fails to work at
all by identifying too many false segments, while the RSI, on the other hand, provides
a good estimate of the signal segment even when the noise distribution is unknown and
heavy-tailed.

A key step of the RSI is a local median transformation, which was first introduced in
Brown et al. (2008) and Cai and Zhou (2009) in the context of nonparametric regression.
The original observations are first divided into T small bins with m observations in each
bin and then the median values of the data in these bins are taken as a new data set.
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Figure 3: Effects of long-tailed error distribution on segment identification. Left plot: Data
with Cauchy noise and a signal segment at [457 : 556]. Middle plot: Intervals identified
and estimated interval means by LRS. Right plot: Interval identified and estimated means
by RSI.

The central idea is that the new data set can be well approximated by Gaussian random
variables for a wide collection of error distributions. After the local median transformation,
existing detection and identification methods that are designed for Gaussian noise, such
as LRS, can then be applied to the new data set. Specifically, we first equally divide the
n observations into T = Tn groups with m = mn observations in each group. Define the
set of indices in the k-th group as Jk = {i : (k − 1)m + 1 ≤ i ≤ km}, and generate the
transformed dataset as

Xk = median{Yi : i ∈ Jk}, 1 ≤ k ≤ T. (3.6)

Set
ηk = median{ξi : i ∈ Jk}, 1 ≤ k ≤ T, (3.7)

then the medians Xk can be written as

Xk = θk + ηk, 1 ≤ k ≤ T, (3.8)

where

θk =


µj, Jk ⊆ Ij for some Ij,
µ∗k ∈ [0, µj], Jk ∩ Ij 6= ∅ for some Ij and Jk * Ij,
0, otherwise.

After the local median transformation, the errors ξi in the original observations are re-
represented by ηk. The main idea is that ηk can be well approximated by Gaussian random
variable for a wide range of noise distributions. Specifically, we assume that the distribution
of ξi is symmetric about 0 with the density function h satisfying h(0) > 0 and

|h(y)− h(0)| ≤ Cy2 (3.9)
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in an open neighborhood of 0. This assumption is satisfied, for example, by the Cauchy dis-
tribution, the Laplace distribution, the t distributions, as well as the Gaussian distribution.
A similar assumption is introduced in Cai and Zhou (2009) in the context of nonparamet-
ric function estimation. The distributions of ηk are approximately normal. This can be
precisely stated in the following lemma.

Lemma 3.1 Assume (4.14), (3.13), and transformation (3.8), then ηk can be written as

ηk =
1

2h(0)
√
m
Zk +

1√
m
ζk, (3.10)

where Zk
iid∼ N(0, 1) and ζk are independent and stochastically small random variables

satisfying Eζk = 0, and can be written as

ζk = ζk1 + ζk2

with
Eζk1 = 0 and E|ζk1|l ≤ Clm

−l, (3.11)

P (ζk2 = 0) ≥ 1− C exp(−am) (3.12)

for some a > 0 and C > 0, and all l > 0.

The proof of this lemma is similar to that of Proposition 1 in Brown et al. (2008) and
that of Proposition 2 in Cai and Zhou (2009), and is thus omitted. The key fact is that
ηk can be well approximated by Zk/(2h(0)

√
m), which follows N(0, 1/(4h2(0)m)), so that

after the data transformation in (3.8), existing methods for Gaussian noise can be applied
to Xk, 1 ≤ k ≤ T . It will be shown that by properly choosing the bin size m, a robust
procedure can be constructed to reliably detect the signal segments. We note that the noise
variance for the transformed data, 1/(4h2(0)m), can be easily estimated and the estimation
error does not affect the theoretical results.

It is shown in Cai et al. (2011) that the RSI provides robust and near-optimal results
as long as the distribution of ξi is symmetric about 0 with the density function h satisfying
h(0) > 0 and

|h(y)− h(0)| ≤ Cy2 (3.13)

in an open neighborhood of 0. This assumption is satisfied, for example, by the Cauchy
distribution, the Laplace distribution, the t distributions, as well as the Gaussian distribu-
tion.

Like the LRR data that are subject to local genomic wave effects, the read depth data
also depend on the local genomic features such as the GC contents of the genome. GC-
content bias describes the dependence between fragment count (read coverage) and GC
content found in high-throughput sequencing assays, particularly the Illumina Genome
Analyzer technology. This bias can dominate the signal of interest for analyses that focus
on measuring fragment abundance within a genome, such as copy number estimation.
Benjamini and Speed (2011) proposed a new method to calculate predicted coverage and
correct for the bias. This parsimonious model produces single bp prediction which suffices
to predict the GC effect on fragment coverage at all scales, all chromosomes and for both
strands. This model should be applied to estimate the GC-corrected read depths before our
RSI procedure is used in order to reduce the effects of local feature on CNV identifications.
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3.2 Application to CNV analysis of a trio sequencing data from
the 1000 Genome Project

We applied this RSI procedure to a HapMap Yoruban trio and identified the CNVs inde-
pendently for the parents and the child. After the short reads are mapping to the reference
human DNA sequences, we obtain the RD data at n = 54, 361, 060 genomic locations.
The statistical challenges for CNV detection based on NGS data include both ultra-high
dimensionality of the data that requires fast computation and unknown distribution of the
read depths data. A close examination of our data shows that the variance of the data
is much larger than its mean, indicating that the standard Poisson distribution cannot be
used for modeling these read depth data.

We apply the RSI with m = 400 and L = 150 to each of the three individuals separately,
which assumes that the maximum CNV based on our pre-processed data is 400 × 150 =
60, 000 base pairs (bps). This is sensible since typical CNVs include multi-kilobase deletions
and duplications. Figure 4 shows the concordant rates of the CNVs identified using the
RSI when top 20, 50, 100, 200 and 300 CNVs identified for each of the three individuals
on chromosome 19 are compared. We observe a very high concordant rates, which further
validates the RSI for CNV detection based on the NGS data. On the same plot, we
also present the CNV calling results assuming that the read depth data follow a negative
binomial (NB) distribution. The concordant rates based on the NB distribution are slightly
higher than the RSI procedure. As an example, Figure 5 shows plots of the read depth data
for six different CNVs identified for the child, including two duplications, two deletions,
and two regions with the shortest CNVs. It is clear that these identified regions indeed
represent the regions with different RDs than their neighboring regions. Examinations of
the other CNV regions identified also show that these regions contain more or fewer reads
than their neighboring regions, further indicating the effectiveness of the RSI procedure in
identifying the CNVs.

4 Detection of recurrent CNVs based on a population-

based samples

4.1 Statistical formulation and summary of theoretical results

Germline CNVs, as a population level genetic variants, often occur recurrently in indi-
viduals from a population. Recurrent CNVs are important targets for association study
and other down-stream population genetic analysis. When a large set of samples from
a population are available, it is of great interest to pool information from multiple sam-
ples to identity recurrent CNVs in the population. This is especially relevant when the
CNV signals from one single sample are not strong enough to be detect, however, pooling
information across multiple samples can greatly increase the power of detecting such CNVs.

While efficient procedures have been developed for identifying CNVs in a long sequence
of genome-wide observations, some type of post-processing is often used to select regions
with highly recurrent CNVs. One problem with such an approach is that the power for
identifying the recurrent CNVs does not improve with the increase of sample size. An
important fact is that the locations of a recurrent CNV are mostly overlapping across
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Figure 4: Parents-child concordant rate of the CNV identified based on median (RSI) and
negative binomial (NB) transformation of the RD data for the Yoruban trio.

samples, so the improvement of identification power is possible if information from multiples
samples can be efficiently pooled during the CNV identification step. In addition, most
CNVs from the germline constitutional genome are very short and range mostly less than
20 single nucleotide polymorphism (SNPs) (Zhang et al. 2009) in typical Illumina 660K
chip. Many of these short CNVs cannot be identified even by the optimal method based
on data from a single sample (Jeng et al. 2010). Efficiently pooling information from
multiple samples can greatly benefit the discovery of short CNVs that are missed in single-
sample analysis. This has been nicely demonstrated by two recent publications. Zhang
et al. (2010) introduced a method for detecting simultaneous change-points in multiple
sequences that is only effective for detecting common CNVs. Siegmund et al (2010) further
extended the method in Zhang et al. (2010) for identifying both the rare and common
variants by introducing a prior probability of CNV frequencies that needs to be specified.
No rigorous power studies were given in these two papers.

The model and the data for multiple sample CNV identification can be summarized as
follows. Suppose there are N linear sequences (or samples) of noisy data and each sequence
has T observations. Let Xit be the observed data for the ith sample at the tth location.
If there are no signal variations, Xit scatters around 0 for any i and t. Suppose that at
certain nonoverlapping segments (subintervals) I1, . . . , Iq some samples have elevated or
dropped means from the baseline (i.e., carriers) and others do not. Denote the collection of
the segments as I = {I1, . . . , Iq}, the carrier proportion at segment Ik in the population as
πk, and the magnitude of the segment for sample i as Aik. Then an observation for sample
i ∈ {1, . . . , N} at location t ∈ {1, . . . , T} can be modeled as

Xit = Aik1{t∈Ik} + Zit for some Ik ∈ I, (4.14)
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Figure 5: Examples of CNV identified by the RSI on chromosome 19 of NA19240 from
the 1000 Genomes Project. Top two plots: duplications, regions with the highest scores;
middle two plots: deletions, regions with the smallest scores; bottom two plots: the two
shortest CNVs identified. For each plot, the horizontal line presents the median count of
30 and the vertical dashed lines represent the estimated CNV boundaries. For each plot,
x-axis is the genomic location in base pairs/10,000.
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where
Aik ∼ (1− πk)δ0 + πkN(µk, τ

2
k ), µk 6= 0, τ 2

k ≥ 0, (4.15)

δ0 is a point mass at 0, and Zit ∼ N(0, σ2
i ). The noise variance σ2

i for sample i can be
easily estimated when T is large and the signal segments are sparse in the linear sequence
of data for sample i. For example, the robust median absolute deviation (MAD) estimator
can be applied. We assume σ2

i = 1 in theoretical analysis. All of the other parameters
Ik, πk, µk, τk, 1 ≤ k ≤ q are unknown. From this model, if t is not in any signal segment,
Xit is Gaussian noise following N(0, σ2

i ). If t is in a signal segment Ik, then

Xit ∼ (1− πk)N(0, σ2
i ) + πkN(µk, σ

2
i + τ 2

k ). (4.16)

This Gaussian mixture is both heterogenous and heteroscedastic. The τk of the second
component represents the additional variability introduced by the different magnitudes of
signal segments in the population.

Our goal is two-fold: (1) to detect the existence of recurrent segment variants across
samples; and (2) to identify the locations of the segments. Precisely, we wish to first test

H0 : I = ∅ agains H1 : I 6= ∅, (4.17)

and if H0 is rejected, detect each Ik ∈ I.
A major challenge of pooling information from multiple samples to discover recurrent

CNVs is that the CNV carrier’s proportions vary a lot for different CNVs. Jeng et al.
(2011) studied the problem from the perspective of sparse signal detection and proposed a
proportion adaptive segment selection (PASS) procedure. Denote the set of the intervals
with length less than or equal to L by JT,N(L). For any interval Ĩ ∈ JT,N(L), we calculate
the standardized sum of observations in Ĩ for each sample as

XĨ,i =
∑
t∈Ĩ

Xit/

√
|Ĩ|, 1 ≤ i ≤ N. (4.18)

By (4.14) and the assumption σ2
i = 1, XĨ,i follows N(0, 1) under H0. When Ĩ overlaps with

some signal segment, XĨ,i follows a heterogeneous and heteroscedastic Gaussian mixtures

according to (4.16). Specifically, when Ĩ = Ik for some Ik ∈ I,

XIk,i ∼ (1− πk)N(0, σ2
i ) + πkN(µk

√
|Ik|, σ2

i + τ 2
k ). (4.19)

Note that the mean value of the second component includes the information of jump size
and length of the segment variant at Ik.

The key of the PASS is to use the HC statistics (Donoho and Jin, 2004) to pool infor-
mation across multiple samples based on the statistics XĨ,i in order the identify the CNV
regions. The PASS procedure can automatically adjusts to the unknown carrier’s propor-
tion and optimally detect both the rare and common CNVs. Jeng et al. (2011) showed
that PASS has desirable theoretical and numerical properties. They further characterized
the detection boundary that separates the region where a segment variant is detectable by
some method from the region where it cannot be detected by any methods. Despite the
fact that the detection boundaries are very different for the rare and common segment vari-
ants, Jeng et al. (2011) showed that PASS can reliably identify both the rare and common
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segment variants whenever they are detectable. Compared with methods for single sample
analysis, PASS significantly gains power by pooling information from multiple samples.

Similar to the LRS procedure, PASS assumes that the noises of the LRR data follow a
normal distribution. Great care must be taken to ensure that the data are approximately
normal. An interesting problem for future research is the CNV identification by population-
scale genome sequencing (Mills et al., 2011). The next generation sequencing technology
can generate billions of counts data along the whole human genome and genotype much
more DNA regions with rare variants. Due to complexity of the sequencing process, error
distribution of the counts data is unknown and is difficult to characterize parametrically.
An promising approach is to apply the median transformation to the read depths data and
then to apply the PASS to the transformed data.

4.2 Application to analysis of neuroblastoma cases

We applied the PASS procedure to a sample of 674 neuroblamstoma cases that were col-
lected as part of a large-scale genome-wide association study of neuroblastoma (Diskin
et al., 2009). For each sample, about 600,000 SNPs were genotyped using the Illumina
genotype platform and the log R-ratios data were obtained. In order to account for possi-
ble wave-effect or local effects, we performed similar processing as in Zhang et al. (2008) to
obtain the normalized data, including subtracting the sample median, local adjustment by
regressing on the first principal component. In our analysis, we considered only data from
the chromosome 1, which includes T = 40, 929 SNP log R-ratios.

PASS L = 20 resulted in selection of 335 CNVs with length of three or more SNPs,
including 171 CNVs with three SNPs and 100 CNVs with 4 SNPs, and 11 CNVs with 10
or more SNPs. The median size of the CNVs identified is 4,165 bps with a range of 462
bps and 1,038,000 bps.

Since the identification of the short CNVs are more susceptible to local wave effects or
other artifacts of the data, we should interpret the CNVs of three or four SNPs with caution
and focus the following comparison on the identified CNVs of 5 or more SNPs. Among the
CNVs identified, 64 have five or more SNPs. Among these 64 CNVs, 30 overlap with the
CNVs in the database of genomic variants (http://projects.tcag.ca/variation/project.html).
Note that this database only includes the CNVs identified in healthy human cases and are
relatively common. To further demonstrate the power of PASS, we also performed single-
sample CNV identification using the optimal CNV identification procedure LRS. Among
the 64 CNVs with 5 or more SNPs identified by PASS, 20 of them did not reach the
theoretical threshold of

√
2 log(TL) = 5.22 in any of the 674 samples, indicating a great

loss of power of detecting the CNVs based on the single-sample analysis. Of these 20 CNVs
missed by single sample analysis, 10 of them overlap with the CNVs in the genomic variants
database.

5 Conclusion and Further Discussion

Our review focuses only on the germeline CNV detection problems, where the CNVs are
short and sparse. There are a few other problems that require further methods development.
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5.1 Statistical tests for CNV associations

One problem is to identify the CNVs that are associated with a clinical phenotype. This is
often performed in a two-step approach. First all the CNVs are identified for all the samples
by some CNV identification methods. These identified CNVs are then tested through some
simple regression models. One limitation of this approach is the information of shared CNVs
across multiple samples are not effectively utilized. In addition, the CNVs identified based
on each sample separately often do not have exactly the same staring/ending boundaries.
This makes the summaries of CNVs across multiple samples difficult. Finally, since the
number of the tests is unknown prior to the CNV calls, it is not clear how one should adjust
for multiple comparisons. An alternative to the two-stage procedure is to test for CNV
association only for those known CNVs. Barnes et al. (2008) developed a robust statistical
method for case-control association testing with CNVs using the EM algorithm treating
the observed CNVs as latent variables.

Besides testing for association between relatively common CNVs and the clinical phe-
notypes, statistical methods for testing rare CNV (found in < 1% of the total sample)
association are also needed. Global rare CNV burden are often compared between cases
and controls regardless of where the rare CNVs are (Girirajan et al., 2011). Zhang et al.
(2009a) presented a genome wide copy number variant (CNV) survey of 1001 Bipolar
disorder cases and 1034 controls using the Affymetrix SNP 6.0 SNP and CNV platform.
Singleton deletions (deletions that appear only once in the dataset) more than 100 kilobases
in length are present in 16.2% of BD cases in contrast to 12.3% of controls (permutation
p = 0.007), indicating potential importance of considering the cumulative effects of rare
CNVs on disease risk. Methods that have been developed for testing rare genetic variants
associations can also been applied for testing rare CNV association with the difficulty that
the carriers of the rare variants have to be inferred from data, which can be challenging
unless the signals are very strong.

5.2 CNV analysis based on mapping distances of pair-end se-
quencing

Another area that needs further statistical research is that CNV detection problem based
on pair-end sequencing data, where the mapping distances between the mate pairs also
provide important information about the structural changes of the genomes. Figure 6 gives
an illustration of how mapping distances can be used for inferring the deletion and dupli-
cation base on the pari-end data. Beside the CNVs, the mapping distances or mapping
orientations also provide information on translocations and inversions. Rigorous statisti-
cal formulations of both single-sample and multiple-sample CNV detection based on the
mapping distances are required. Besides statistical formulation of the problems, efficient
computational methods are also necessary since typical data sets often include several bil-
lions of end sequences of matepairs.

Methods of CNV analysis based on the matepair mapping distances relies on the compu-
tation of the expected distance between matepairs in the donor genome, which is referred
to as insert size, di for the ith matepair. The distribution of the insert sizes di can be
determined (Tuzun et al., 2005). An alignment of a paired-end read to reference genome
is called concordant (Tuzun et al., 2005), if the distance between aligned ends of a pair
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Figure 6: Illustration of detecting insertions and deletions based on the mapping distances
from the paired-end mapping data. The ends of a DNA fragment from a sample individual
are mapped to a reference genome (Schrider and Hahn, 2010). (a) If the portion of the
reference genome spanned by the fragment ends is larger than expected, then the sample
genome probably contains a deletion relative to the reference. (b) If the length of the
region spanned by the locations of the end sequences in the reference genome is smaller
than expected, then an insertion is inferred to be present in the sample genome.
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in the reference genome is thought to come from the baseline insert size distribution, and
both the orientation and the chromosome the paired-end read is aligned to are correct.
For instance, in the Illumina platform, a paired-end read is considered to be aligned in the
correct orientation if the left matepair is mapped to the “+” strand (which is represented
by +), and the right mate pair is mapped to the “-” strand (which is represented by -). A
paired-end read that has no concordant alignment in the reference genome (Tuzun et al.,
2005; Lee et al., 2008; Hormozdiari et al., 2009) is called a discordant paired-end read,
which indicates a possibility of a structure variant. Hormozdiari et al. (2009) proposed a
combinatorial algorithms for structure variation detection and named their program Vari-
ationHunter. Our goal is to determine the discordant paired-end reads and use these reads
to determine the CNV regions. A rigorous statistical formulation of the problem is needed
in order to understand how true CNV lengths and depth of sequencing affect the power of
detecting the CNVs.

5.3 CNV analysis by data integration

Finally, for the SNP chip data, B-allele frequencies also provide useful information for CNV
detection and identifications. How to extend the LRS and PASS procedure to incorporate
the B-allele frequencies data is an important topic in CNV research. For NGS data, an
interesting research topic is to combine both read depth data and the mapping distances
data in a unified framework for CNV detection.
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