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Abstract

Genome-wide association studies (GWAS) and differential expression analyses
have had limited success in finding genes that cause complex diseases such as heart
failure (HF), a leading cause of death in the United States. This paper proposes a
new statistical approach that integrates GWAS and expression quantitative trait loci
(eQTL) data to identify important HF genes. For such genes, genetic variations that
perturb its expression are also likely to influence disease risk. The proposed method
thus tests for the presence of simultaneous signals: SNPs that are associated with
the gene’s expression as well as with disease. An analytic expression for the p-value

∗The authors gratefully acknowledge NIH grants R01 GM097505, R01 HL105993 and R01 CA127334,
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is obtained, and the method is shown to be asymptotically adaptively optimal under
certain conditions. It also allows the GWAS and eQTL data to be collected from
different groups of subjects, enabling investigators to integrate public resources with
their own data. Simulation experiments show that it can be more powerful than
standard approaches and also robust to linkage disequilibrium between variants. The
method is applied to an extensive analysis of HF genomics and identifies several genes
with biological evidence for being functionally relevant in the etiology of HF. It is
implemented in the R package ssa.
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1 Introduction

1.1 Genetically regulated disease genes

This paper proposes a new method for identifying genes under genetic control that are

likely to be functionally relevant to disease processes. This is of great interest because

genome-wide association study (GWAS) results have revealed that the majority of disease-

associated single nucleotide polymorphisms (SNPs) lie in non-coding regions of the genome

(Hindorff et al. 2009). These SNPs likely regulate the expression of a set of downstream

genes (Nicolae et al. 2010), and identifying these downstream genes can lead to better

understanding of disease biology as well as potential targets for drug discovery. Expression

quantitative trait loci (eQTL) studies measure the association between SNPs and expression

levels of both cis- and trans-genes. This paper proposes identifying genetically regulated

disease genes by integrating GWAS and eQTL study results. It is assumed that the GWAS

and eQTL data are collected from different sets of subjects, and that only study summary

statistics are available.

This work is motivated by an ongoing study of the genomics of human heart failure

conducted by Cappola, Margulies, and colleagues at the Myocardial Applied Genomics

Network (MAGNet, www.med.upenn.edu/magnet); see Section 4.1 for a detailed descrip-

tion. Heart failure has been shown to be a heritable trait (Lee et al. 2006), but many of

the causal genes that mediate the functions of disease variants remain unknown. To ad-

dress this, the MAGNet consortium collected genotype and gene expression data from left

ventricular free wall tissue of a separate set of 313 subjects with and without heart failure.

These eQTL data can be used to characterize genetic regulation of gene expression in the

human heart, specifically between causal genes and disease variants. The MAGNet eQTL

data will be integrated with GWAS results from the Penn Heart Failure Study (PHFS; Ky

et al. 2009, Cappola et al. 2011, Ky et al. 2011, 2012), a large multi-center prospective

cohort study of heart failure; see Section 4.1 for more details.
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Figure 1: A simple causal model illustrating a problematic setting for differential expression

analysis. SNPC : causal SNP; GC : causal gene; GR: reactive gene. SNPC can be either cis

or trans to GC . Differential expression analysis cannot distinguish between GC , which is

of interest, and GR, which is not.

1.2 Causal vs. reactive genes

The standard strategy for identifying disease genes is a differential expression analysis.

Genes with different average expression levels between cases and controls, for example, are

deemed to be potentially important. However, there are two drawbacks to this approach.

First, it does not utilize any SNP information, so the genes that it identifies may not be

regulated by disease variants. More importantly, it cannot distinguish between causal genes,

whose expression changes cause disease, and reactive genes, whose expression changes are

caused by disease. This is depicted in Figure 1. Reactive genes are not of biological interest.

To illustrate this problem, a differential expression analysis was conducted using the

MAGNet heart failure data. The expression data were normalized, batch-corrected, and

quality-controlled, which left 13,219 transcripts; see Section 4.1 for the specifics of the

pre-processing. As Figure 2 illustrates, a standard analysis using limma (Smyth 2005,

Ritchie et al. 2015) found 8,245 differentially expressed transcripts after controlling the

false discovery rate at 5%. This is more than half of all measured transcripts, making

downstream biological validation implausible. Furthermore, these results likely contain

numerous reactive genes. New methods are needed to further narrow the list of putative

causal genes.
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Figure 2: Differentially expressed genes in heart failure. Red points are genes that are

significant after controlling the false discovery rate at 5%.

1.3 Simultaneous signal detection

This paper presents a new statistical method for identifying important disease genes by

integrating eQTL and GWAS results. As in the heart failure problem described above,

the focus is on settings where the GWAS and eQTL studies are conducted on separate

sets of subjects and only summary statistics are available. Many existing GWAS-eQTL

integration methods are not applicable under these conditions. For example, Xiong et al.

(2012) combine differential expression and SNP association test statistics, but differential

expression cannot be assessed because the eQTL dataset contains no outcome information.

Huang (2014) and Zhao et al. (2014) combine expression levels and genotypes in a mediation

analysis framework, but their regression models require that genotype, expression, and

outcome measurements all be available from the same subjects. Gamazon et al. (2015)

impute gene expression data for subjects in the GWAS dataset using genotype information,

learning the imputation models from the eQTL data, but their approach requires access to

individual-level genotype data from the GWAS study.

Instead, motivated by Figure 1, this paper proposes testing each gene for whether there

are any SNPs in the genome that are associated both with the gene’s expression, using the

eQTL data, and with disease, using the GWAS data. This can be done using only summary

statistics, which can come from independent samples. Each significant SNP association,
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whether with expression or with disease, is termed a “signal”, and the method detects SNPs

with simultaneous signals. The statistical problem is more formally stated in Section 2.1.

The rationale is that SNPs can be viewed as perturbations of the underlying biological

systems, especially the gene regulatory networks underlying complex diseases. Therefore

for a disease-causing gene, any genetic variation that perturbs its expression is also likely to

influence disease risk. Furthermore, unlike differential expression, the proposed approach

is able to differentiate causal genes GR from reactive genes GC in Figure 1, because GR and

SNPC are independent conditional on disease so GR should not exhibit any simultaneous

signals. One caveat is that this proposed approach may fail to identify some genetically

regulated disease genes, if those genes are regulated only by SNPs that have no marginal

association with the outcome. On the other hand, if there is at least one regulating SNP

that does have a marginal association, those genes will still be detectable by the proposed

method.

This simultaneous detection approach has been previously proposed in the statistical

genetics literature, where it is also known as colocalization testing, as it tests for SNP-

expression and SNP-disease associations that colocalize to the same SNPs (He et al. 2013,

Ware et al. 2013, Giambartolomei et al. 2014). However, very few existing methods have

been studied in a rigorous statistical framework. Most are variations of a two-stage pro-

cedure (Chen et al. 2008, Emilsson et al. 2008, Nicolae et al. 2010): the identification

stage uses fixed significance thresholds to define indicator variables for whether each SNP

is non-null in the GWAS and eQTL studies, and the enrichment stage tests for indepen-

dence between these indicators using a one-tailed hypergeometric test. Significant positive

dependence indicates the presence of simultaneous signals. However, it is unclear how the

significance thresholds in the identification stage should be chosen. For example, in their

study of whether disease-associated SNPs are more likely to be also associated with gene

expression, Nicolae et al. (2010) used three different p-value thresholds of 10−4, 10−6, and

10−8 to define expression-associated SNPs. Their qualitative conclusions were found to be

consistent across the three choices, but this may not always be the case. Closely related

to colocalization is the approach of Zhu et al. (2016), who propose a method for using

summary statistics from separate GWAS and eQTL studies to test whether a given gene
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mediates the effect of a causal variant on the outcome. However, for each gene they con-

sider only the top outcome-associated cis-SNP as the putative causal variant. This will

fail to detect genes that function by mediating the effects of trans-SNPs.

More recently developed genome-wide methods can avoid this problem. Bayesian pro-

cedures such as (He et al. 2013, Giambartolomei et al. 2014) typically first define a latent

indicator for whether colocalized signals exist. They then model the joint distribution of

the observed GWAS and eQTL summary statistics for each SNP, conditional on the la-

tent indicator. Finally, given a prior for the latent indicator, they compute the posterior

probability of colocalization. The frequentist GPA method of Chung et al. (2014) posits

that the observed test statistics arise from four types of SNPs: those not associated with

either the disease or gene expression, those associated with one but not the other, and those

associated with both. This gives a four-group mixture model for the test statistics, with

the last group corresponding to colocalized signals. After making parametric assumptions

on the distribution of the test statistics for non-null SNPs, the model is fit using the EM

algorithm and a generalized likelihood ratio test is used to assess whether there are more

colocalized SNPs than expected by chance. These methods thus do not require arbitrary

thresholds, but do make rather restrictive assumptions. Furthermore, little is known about

the theoretical properties of both these and the two-stage methods.

This paper proposes a one-step approach for simultaneous signal detection that does not

require any thresholds or priors. A simple closed-form approximation to its p-value is de-

rived, making it exceedingly computationally efficient and especially suitable for unbiased

genome-wide applications. Under certain conditions the proposed method is asymptoti-

cally adaptively optimal for detecting any possible configuration of simultaneous signals.

Importantly, it can integrate GWAS and eQTL data from different sources, which allows

investigators to leverage public data resources in their own studies. Finally, in addition to

being used to detect single disease-associated genes under genetic control, the method is

easily extended to detect gene sets that may be related to disease.

Section 2 formalizes the simultaneous detection problem, introduces the proposed method,

and describes its properties. Simulation results are discussed in Section 3 and Section 4

conducts an in-depth analysis of the PHFS GWAS and MAGNet eQTL studies, including
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a gene-set enrichment analysis. Additional extensions are discussed in Section 5.

2 Methods

2.1 Statistical formulation and previous work

Simultaneous signal detection is conducted one gene at a time. The observed data consist

only of summary test statistics Ui, for the SNP-disease association, and Vi, for the SNP-

expression association. The Ui and Vi are available from the GWAS and eQTL studies,

respectively, which are assumed to have been conducted using independent samples.

For a given gene, define unobserved signal indicators Xi, Yi ∈ {0, 1} to indicate whether

the ith SNP, i = 1, . . . , n, is truly associated with the disease or the gene’s expression,

respectively, where n is the total number of typed SNPs in the genome. Significant GWAS

and eQTL SNPs are usually rare, or sparse, so very few of the Xi and Yi equal 1. The Ui

and Vi are asusmed to follow

Ui | Xi = 0 ∼ FU
0 , Ui | Xi = 1 ∼ FU

i , FU
i ≤ FU

0

Vi | Yi = 0 ∼ F V
0 , Vi | Yi = 1 ∼ F V

i , F V
i ≤ F V

0 , Ui ⊥⊥ Vi | Xi, Yi,
(1)

where the FU
0 and F V

0 are null distributions, which may be unknown, and the FU
i and F V

i

are unknown alternative distributions. The test statistics are assumed to be stochastically

larger under the alternatives, which is reasonable for two-sided tests. For example, one

possibility is to take Ui = |ZU
i | and Vi = |ZV

i |, where ZU
i and ZV

i are Z-scores obtained

from GWAS and eQTL studies, respectively, using linear or logistic regressions. Finally, for

all i the Ui and Vi are independent conditional on Xi and Yi because the GWAS and eQTL

data arise from separate subjects. The setting where the two datasets include overlapping

subjects is left for future work.

Under model 1, let ε denote the proportion of simultaneous signals, i.e., SNPs with

Xi = Yi = 1. The simultaneous signal detection problem is to test

H0 : ε = 0 vs. HA : ε > 0 (2)

using the observed (Ui, Vi), i = 1, . . . , n. Rejecting H0 indicates that the expression of the

8



gene being tested is regulated by SNPs which are also associated with disease, which by

Figure 1 suggests that the gene is likely to be functionally relevant.

In the statistical literature there has been a great deal of recent work on signal detection,

such as the normal mixture detection problem (Ingster 1997, 1998, Donoho & Jin 2004):

given Z-scores Zi, i = 1, . . . , n, test

H0 : Zi ∼ N(0, 1), vs. HA : Zi ∼ (1− ε)N(0, 1) + εN(µ, 1), ε > 0. (3)

The proposed simultaneous detection problem (2) is a generalization of (3). In most large-

scale genomics studies the proportion of signal ε is small and the signal strength µ is not

very large. This has been termed the “rare and weak” regime by Donoho & Jin (2004), and

is of considerable interest. It has been shown that in this regime there exist tests for (3)

that are asymptotically adaptively optimal: they do not require knowledge of the unknown

parameters, yet still asymptotically perform as well as the likelihood ratio test (Ingster

2002a,b, Donoho & Jin 2004). In particular, Donoho & Jin (2004) showed that this is true

of the higher criticism statistic of Tukey:

HC = sup
z
n1/2 |F̂ (z)− Φ(z)|

[Φ(z){1− Φ(z)}]1/2
, (4)

where F̂ (z) is the empirical distribution function of the Zi and Φ(z) is the null distribution

of the Zi. Jager & Wellner (2007) showed that other goodness-of-fit tests can have similar

properties.

Recent research has focused on finding adaptively optimal procedures while relaxing

the distributional assumptions of (3). Cai et al. (2011) considered heteroscedastic normal

mixtures and Cai & Wu (2014) studied mixtures of arbitrary distributions. Hall & Jin

(2008, 2010) allowed for the Zi to have certain dependency structures. Arias-Castro et al.

(2011) and Mukherjee et al. (2015) considered detecting non-zero regression parameters in

linear and logistic regression, respectively. However, most work in this area has centered

on detection of signal in a single sequence of test statistics, while here the goal is to detect

simultaneous signals using two sequences of test statistics.
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2.2 Proposed method

To test whether Vi for a given gene and Ui share any simultaneous signals, recall from

model (1) that the Ui and Vi are assumed to be stochastically larger when the signal

indicators Xi and Yi equal 1, respectively. Thus if SNP i is truly simultaneously associated

with both the disease and the gene’s expression, then both Ui and Vi should be large, so

it is reasonable to define the statistic Ti = Ui ∧ Vi. Intuitively, the simultaneous signal

detection (2) null should be rejected if at least one SNP has an observed large value of Ti,

so the proposed test statistic is

M = max
i=1,...,n

Ti. (5)

A large value of M would imply that the gene is functionally relevant for disease. One

caveat is that to achieve the best power, Ui and Vi should be on roughly the same scale,

meaning that the null variances of Ui and Vi should be comparable.

This formulation reduces (2) to a signal detection problem for a single sequence of

test statistics Ti. While this type of problem has been thoroughly studied, as mentioned

previously, existing tests such as HC (4) cannot be used because they require knowledge of

the null distribution of Ti. Here Ti has a composite null: when SNP i is not a simultaneous

signal it can still be non-null in either the GWAS or the eQTL study, and the null of Ti

will depend on one of the unknown alternative distributions FU
i or F V

i . In some cases it

may be possible to estimate the null of Ti, but estimation is usually difficult, complicates

the procedure, and may have poor asymptotic properties.

Obtaining accurate p-values for M is difficult, once again because of the composite null

of Ti. A permutation procedure is instead proposed: the SNP labels of the Ui can be ran-

domly permuted while fixing the labels of the Vi, which removes simultaneous associations.

Then for each permutation M can be recalculated and the permutation null distribution

can be used to calculate a p-value. In fact, this p-value can be obtained without any actual

permutation. By definition it is the proportion of permutations in which the recalculated

max statistic is at least as large as the observed M . This is equal to the probability that

at least one of the Ui with magnitude at least M is permuted such that it overlaps with

one of the Vi with magnitude at least M . Then if there are k SNPs such that Ui ≥M and
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m SNPs such that Vi ≥M , the permutation p-value equals

1−
(
m

0

)(
n−m
k

)(
n

k

)−1
. (6)

Thus the proposed procedure does not require separate identification and enrichment steps,

is tuning parameter- and prior-free, and is extremely simple to compute. It is available in

the R package ssa and is easily scalable to large GWAS studies, calculating p-values in

seconds even with tens of millions of SNPs.

One caveat is that the permutation null does not exactly reproduce the true simulta-

neous detection null. In some of the permutations, some non-null Ui will be permuted to

overlap with non-null Vi. However, the proposed M tends to be larger under permutation

than under the null, which gives conservative inference. To be more precise, let g be any

permutation of the indices i = 1, . . . , n, where g(i) is the index to which i is mapped and

g−1(i) is the index which is mapped to i. Using this notation, the proposed permutation

test calculates T gi = Ug−1(i) ∧ Vi and M g = maxi T
g
i for each g. Let SUi = 1 − FU

i and

SU0 = 1− FU
0 and define SVi and SV0 similarly.

Theorem 1 Let M0 be the max statistic (5) calculated under H0 of (2), the true simulta-

neous detection null. Under model (1), if Ui ⊥⊥ Ui′ and Vi ⊥⊥ Vi′ for i 6= i′, then for any

permutation g, P(M0 ≥ t) ≤ P(M g ≥ t).

Assuming that both the Ui and Vi are independent across i is reasonable if the SNPs

come from different linkage disequilibrium blocks. This can be achieved using linkage

disequilibrium pruning, a common pre-processing step in statistical genetics. On the other

hand, Section 2.4 argues that proposed permutation procedure is actually fairly robust to

correlation arising from linkage disequilibrium, in that it still maintains type I error. This

is verified in simulations in Section 3.2.

Theorem 1 indicates that the permutation p-value (6) is conservative, but in typical

genomics applications it will usually not be overly conservative. Suppose a proportion πU

of the GWAS signals and πV of the eQTL signals are non-null. Then random permutation

will give a proportion ε = πUπV of simultaneous signals. But since GWAS and eQTL

signals are typically rare, πU and πV are usually very small so ε is usually nearly zero,

recovering the true simultaneous detection null.
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2.3 Asymptotic justification

This section analyzes the asymptotic testing performance of M , which reveals that under

certain conditions it has the same adaptive optimality properties as the higher criticism

statistic (4). Another consequence of this analysis is a quantitative characterization of how

many simultaneous signals must exist, and how strong they must be, before detection is

possible for a given total number of SNPs; see Figure 3. This can be especially useful for

study design.

These theoretical results are derived for the following special case of model (1). Let mU

and mV be the sample sizes of the GWAS and eQTL studies, respectively, and suppose to

each SNP i there correspond Z-scores ZU
i ∼ N(m

1/2
U µi, 1) for the SNP-disease association

and ZV
i ∼ N(m

1/2
V νi, 1) for the SNP-expression association. Non-significant associations

have µi and νi are equal to zero, and here the significant associations will be modeled as

following m
1/2
U µi ∼ (1−a)N(−µ, σ2

0)+aN(µ, σ2
0) and µ

1/2
V νi ∼ (1−b)N(−ν, τ 20 )+bN(ν, τ 20 )

for some mixture proportions a and b. Letting Ui = |ZU
i | and Vi = |ZV

i |, the null and

alternative distributions from model (1) become

FU
0 , F

V
0 ∼ |N(0, 1)|, FU

i ∼ |N(µ, σ2)|, F V
i ∼ |N(ν, τ 2)|, (7)

where σ2 = σ2
0 + 1 and τ 2 = τ 20 + 1.

The asymptotics in this section apply to the total the number of SNPs n, such that n

is assumed to tend toward infinity. This is meaningful because in practice n is typically

very large. In this setting, if ε, µ, and ν were fixed with n, any reasonable test would

asymptotically perfectly separate H0 and HA. Instead, a more meaningful comparison

between tests can be obtained by allowing the parameters to vary with n such that HA

approaches H0. Thus similar to Donoho & Jin (2004) and Cai et al. (2011), let

µ = µn = rµ(log n)1/2, ν = νn = rν(log n)1/2, ε = εn = n−β, β ∈ (1/2, 1], (8)

where rµ, and rν are positive constants and the subscripts n make the dependence on the

total number of SNPs explicit. This calibration of εn formalizes the notion, described in

Section 2.1, that simultaneous signals tend to be sparse in GWAS and eQTL studies. This

parameterization relates the asymptotics in n to the usual asymptotics in sample sizes mU
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and mV , since above it was assumed that the average of the m
1/2
U µi and the m

1/2
V νi behave

like µn and νn, respectively.

To study the asymptotic properties of using the proposed statistic M (5) to detect

simultaneous signals, define the following asymptotic test:

φM(T1, . . . , Tn) = I[M ≥ {(1 + δ) log n}1/2], (9)

where δ > 0. The critical function φM is a function of the observed data that gives

the probability of rejecting the null. To motivate (9), define p1n to be the proportion of

SNPs associated with neither disease or expression (Xi = 0 and Yi = 0), p2n to be the

proportion associated with disease but not expression (Xi = 1 and Yi = 0), and p3n is

the proportion associated with expression but not disease (Xi = 0 and Yi = 1). The Xi

and Yi are the signal indicators from model (1). When there are no simultaneous signals,

p1n + p2n + p3n = 1. Since GWAS and eQTL signals are sparse, calibrate p2n, p3n ≤ n−1/2.

Then M would roughly behave like

max[{log(np1n)}1/2, {2 log(np2n)}1/2, {2 log(np3n)1/2}] ≤ (log n)1/2,

since intuitively the maximum of p variables behaves like (2 log p)1/2 when they are dis-

tributed like |N(0, 1)|, and like (log n)1/2 when they are distributed like |N(0, 1)|∧|N(0, 1)|.

Thus (log n)1/2 is the appropriate critical value for M .

The performance of a test with critical function φ can be measured using the sum of

its type I and type II errors: SH0,HA(φ) = EH0φ + EHA(1 − φ), which depends on the

test statistic and on the true values of the parameters under H0 and HA of (2). The

detection boundary separates the region of the parameter space where SH0,HA(φ) → 1 for

all tests φ, called the undetectable region, from the region where there exists a test φ with

SH0,HA(φ)→ 0.

Under this framework, under certain conditions test (9) is asymptotically adaptively

optimal among all possible tests based on Ti. In other words, it can attain zero error

everywhere in the interior of the detectable region.

Theorem 2 Assume that p2n = n−α2 and p3n = n−α3 with α2, α3 ≥ 1/2. Under model (1),

the distributional assumptions (7), and the calibrations (8), when rµ ∨ rν ≥ 1, the simulta-
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Figure 3: Simultaneous signal detection boundaries (10). The detectable regions lie above

the lines and the undetectable regions lie below. The right panel plots the detection bound-

ary in terms of a more interpretable set of parameters; see text for details.

neous detection boundary for any test based on Ti is characterized by

ρ(β, rµ, σ, rν , τ) = 1− β = 0, 1 ≤ rµ ∧ rν ,

ρ(β, rµ, σ, rν , τ) = 1− β − 1
2

(
1−rµ
σ

)2
= 0, rµ < 1 ≤ rν ,

ρ(β, rµ, σ, rν , τ) = 1− β − 1
2

(
1−rν
τ

)2
= 0, rν < 1 ≤ rµ.

(10)

When ρ(β, rµ, σ, rν , τ) > 0, SH0,HA(φM) → 0 for φM (9) based on M . Otherwise when

ρ(β, rµ, σ, rν , τ) < 0, SH0,HA(φ)→ 1 for any critical function φ.

The detection boundary is plotted in the left panel of Figure 3. The condition that rµ∨rν ≥

1 assumes either the GWAS signals or the eQTL signals, or both, are sufficiently large. This

is usually satisfied because SNP-expression associations can be quite strong, especially

between a gene and its cis-SNPs.

The motivating heart failure data, described in detail in Section 4.1, can be used to give

a more interpretable illustration of the detection boundary (10). Let Y be heart failure

status, X be the expression of a given gene, and Si be the genotype of SNP i under additive

coding. Xie et al. (2011) and Bentkus et al. (2007) gave formulas for calculating µn, σ, νn,
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and τ in terms of the parameters of the models

logit P(Y | Si) = α0i + α1iSi, X = β0i + β1iSi +N(0, s2),

the disease prevalence, the GWAS case-control sampling fraction, the total number of SNPs,

and the study sample sizes. Inverting their formulas and using calibrations (8) leads to an

expression for the detection boundary in terms of the regression model parameters.

The right panel of Figure 3 plots the boundary for parameter values estimated from the

heart failure data analyzed in Section 4. For example, for a certain SNP and gene in the

MAGNet eQTL data, |β̂1i| = 0.14 and ŝ = 0.21, and the figure shows that for this gene

the proposed statistic can detect roughly 3 or more simultaneous signals if α1i ≥ 0.10. In

fact, α̂1i = 0.25 for that SNP in the PHFS GWAS data. These values can be shown to

satisfy the condition rµ ∨ rν ≥ 1 of Theorem 2, which suggests that the proposed M may

be nearly optimal for simultaneous signal detection in this dataset. Figure 3 is also useful

for designing simultaneous signal detection studies.

2.4 Linkage disequilibrium

So far it has been assumed that the Ui are independent across i, as are the Vi. However, this

assumption is frequently violated due to linkage disequilibrium between adjacent SNPs. On

the other hand, the following arguments suggest that the proposed permutation p-value (6)

is fairly robust to linkage disequilibrium.

Consider the set of SNPs with non-null Ui, Vi, and Ug−1(i) for some permutation g. To

show the conservativeness of the permutation procedure in Theorem 1, the proof requires

the distribution of the maximum of the Ti over these SNPs to be invariant to permutation.

When the SNPs are independent this is clearly true. Under linkage disequilibrium, SNPs

are only “weakly dependent”, in the sense that the proportion of very highly correlated

SNPs is low. For example, Dawson et al. (2002) showed that the average r2 between SNPs

separated by more than 25kb is already below 0.3. There is recent work showing that in

certain cases, the maximum of a sequence of this type of weakly dependent variables has

the same asymptotic distribution as if the variables were independent (Cai et al. 2013).

Another requirement of the proof of Theorem 1 is independence between the SNPs

with non-null Ui or Vi when no simultaneous signals exist. This is reasonable because the

15



disease-associated SNPs and the expression-associated SNPs are likely not close together

in the genome. The remainder of the proof should hold if the maximum of the Ti over

these SNPs is independent of the maximum of the Ti over all SNPs with Ui and Vi both

null. This also seems plausible because the latter is the maximum of a very large set of

null SNPs, most of which will be physically distant from the non-null SNPs. Thus the

permutation p-values may remain conservative under suitable conditions on the correlation

structure. This is in fact demonstrated in simulations in Section 3.2.

3 Simulations

3.1 Independent test statistics

Test statistics Ui and Vi were independently generated for n = 100, 000 SNPs. Null Ui and

Vi were generated from |N(0, 1)|, non-null Ui ∼ |N(µi, 1)|, and non-null Vi ∼ |N(νi, 1)|.

Under HA of (2) the non-null SNPs were positioned to give nε simultaneous signals. The

various µi and νi were generated randomly from N(a, 1) and N(b, 1), respectively, for

different values of a and b. Different simulation settings considered different numbers of

non-null signals in the Ui and Vi, different numbers of simultaneous signals, and different

a and b. In each setting the positions of all non-null Ui and Vi, as well as the values of µi

and νi, were generated once and then fixed across replications.

The proposed max statistic M (5) was used to test for simultaneous signals. The

permutation procedure (6) was implemented, and to assess its conservativeness the true

null distribution of M was also used to calculate p-values. The proposed method was

compared to the usual two-stage procedure and the GPA method of Chung et al. (2014),

described in Section 1.3. There is no standard for what threshold to use in the identification

step of the two-stage method, so 10−2, 10−3, 10−4, 10−5, and 10−6 were all implemented.

The method of He et al. (2013) was also considered for comparison, but its p-value is

calculated by fixing the eQTL profiles and randomly swapping the cases and controls in

the GWAS dataset. Permuting the case-control status in the GWAS data does not reflect

the true null (2) of no simultaneous signals, which can lead to inflated type I error.

Table 1 reports the average type I errors, over 1,000 simulations, of the various methods,
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which were conducted at a nominal α = 0.05. To put the values of a and b into context,

recall that the µi and νi were generated from N(a, 1) and N(b, 1); Z-scores equal to 2.5, 3,

3.5, and 4 correspond to p-values of 1.2×10−2, 3×10−3, 5×10−5, and 6×10−5, respectively.

All methods controlled the type I error at the nominal level, though GPA and the two-stage

method with stringent thresholds were both very conservative. The permutation p-value

(6) was indeed conservative compared to the true p-value of M , but not exceedingly so.

Table 2 reports the average powers corresponding to the type I errors from Table 1.

In general, increasing the number of non-null signals in each sequence reduced the power

of all methods, while increasing the number of simultaneous signals and/or the signal

strengths increased power. Among the various methods, the proposed procedure had the

most power, with the true p-value giving slightly more power than the permutation p-value.

The performance of the two-stage approach heavily depended on the p-value threshold.

Though it performed well at some thresholds, for example 10−3, the optimal threshold is

unknown in practice. GPA had very low power in about half of the simulations. This

is because it requires estimating the parameters of a four-component mixture model, as

described in Section 1.3. Settings with few non-null or simultaneous signals correspond

to scenarios with few observations from one or more of the mixture components, making

parameter estimation difficult.

3.2 Linkage disequilibrium

To study the effect of linkage disequilibrium on the performance of the simultaneous signal

detection methods, GWAS and eQTL data were simulated using real genotype data from

the MAGNet heart failure study analyzed in Section 4. These data consist of 347,019 SNPs

under additive coding for 136 controls and 177 cases; see Section 4.1 for more details.

To simulate GWAS data, genotypes were generated by randomly sampling 136 subjects

with replacement from the MAGNet control group. Let SG denote the resulting 136 ×

347, 019 matrix. To simulate eQTL data, genotypes were generated by randomly sampling

177 subjects with replacement from the MAGNet cases, giving a 136 × 347, 019 matrix

SE. Outcomes were simulated according to the linear models Y G = SGα+ εG and Y E =

SEβ + εE, where εG and εE were independent vectors of N(0, 0.22) random errors.
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Under H0 the non-zero components of α and β were placed such that every SNP was

associated only with Y G or only with Y E. Under HA the non-zero components were placed

to give nε SNPs simultaneously associated with both GWAS and eQTL outcomes. All but

10 components of the coefficient vector α were set to zero; the non-zero ones were simulated

by first drawing values from N(a, 0.12) and then randomly multiplying the value by −1 with

probability 0.5. The β was generated similarly except that the non-zero components were

drawn from N(b, 0.12). Different simulation settings considered different values of a and b.

In each setting the α and β were generated once and then fixed across all replications.

It was suggested in Section 2.4 that the proposed permutation procedure should remain

valid under linkage disequilibrium as long as non-null SNPs are independent. To simulate

this condition, under H0 the non-null SNPs were randomly scattered across the genome;

after being placed, their positions were kept fixed in all replications. Additional simulations

that study violations of this condition, as well as consider different numbers of non-zero

components of α and β, are reported in the Supplementary Material.

Simultaneous signal detection methods were used to test H0 against HA. These were

applied to the GWAS and eQTL marginal test statistics Ui and Vi, obtained by taking the

absolute values of the Z-statistics of the marginal regressions of Y G on the ith column

of SG and Y E on the ith column of SE, respectively. Missing genotypes were imputed

using the average minor allele dosage for the corresponding SNP and then fast marginal

regressions were performed using large matrix multiplication (Sikorska et al. 2013).

Table 3 reports the average type I errors and powers over 1,000 simulations. The

true p-value of the max test statistic M (5) cannot be calculated here because the true

SNP correlation structure is unknown. The proposed permutation p-value (6) was indeed

robust to linkage disequilibrium, giving conservative p-values under these simulations and

all simulations in the Supplementary Material. This supports the arguments in Section 2.4.

In contrast, no other method was able to control the type I error except the two-stage

approach with restrictive p-value thresholds. The proposed procedure also had the most

power among all methods.
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4 Genomics of heart failure

4.1 Description of the heart failure data

Heart failure occurs when the heart is unable to pump enough blood to supply the body’s

demands and affects roughly 5.8 million Americans (Roger 2013). In the past two decades,

modern high-throughput biology has transformed our understanding of the genetic and

genomic basis of heart failure, but the translation of these findings into new treatments

has not proceeded as quickly as hoped (Mudd & Kass 2008, Creemers et al. 2011). As

described in Section 1.2, simple differential expression analyses sometimes identify more

than half of all measured genes. These results are difficult to interpret and validate, and

furthermore many of the identified genes may be reactive rather than causal. New analyses

are needed to narrow the list of findings by prioritizing the ones that are more likely to be

functional.

To this end, the proposed simultaneous signal detection procedure was applied to iden-

tify genes involved in the biological mechanisms of heart failure. GWAS results were ob-

tained from the Penn Heart Failure Study (PHFS), a large prospective study of patients

recruited from the University of Pennsylvania, Case Western Reserve University, and the

University of Wisconsin between 2003 and 2012. Study details have been reported else-

where (Ky et al. 2009, Cappola et al. 2011, Ky et al. 2011, 2012). Genotype data were

collected from 1,586 controls and 2,027 cases using the Illumina OmniExpress Plus array.

Heart failure eQTL data were obtained from the MAGNet eQTL study. Left ventricular

free-wall tissue was collected from hearts of 177 patients with advanced heart failure who

were undergoing transplantation and from 136 donor hearts without heart failure. Genotype

data were collected using using Affymetrix Genome-Wide SNP Array 6.0 and only markers

in Hardy-Weinberg equilibrium with minor allele frequencies above 15% were considered.

Gene expression data were collected using Affymetrix GeneChip ST1.1 arrays, normalized

using RMA (Irizarry et al. 2003), and batch-corrected using ComBat (Johnson et al. 2007).

Probesets expression levels were averaged at the transcript level and only those with high

expression, specifically with RMA values at least 4.8 in all samples, were considered, leaving

13,219 transcripts.
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4.2 Results

GWAS summary statistics were calculated controlling for age, gender, and the first two

principal components of the genotypes. SNPs were imputed using 1000 Genomes Project

data (1000 Genomes Project Consortium 2010). Summary statistics for the MAGNet eQTL

data were conducted controlling for age and gender, using the fast marginal regression

algorithm of Sikorska et al. (2013). Only data from normal heart tissue were used; see

Section 4.3 for a detailed discussion about choosing the appropriate tissue for this analysis.

No population stratification adjustment was performed, as all subjects were Caucasian. All

analyses were performed with genotypes under additive coding.

Simultaneous signal detection tests were applied to each of the 13,219 transcripts to

test for colocalization between the GWAS and eQTL summary statistics. Only the 347,019

SNPs genotyped or imputed in both the GWAS and the eQTL study were used. For each

transcript, the GWAS and eQTL test statistics were converted to Z-scores, and the Ui and

Vi were taken to be their absolute values. The proposed method, along with the two-stage

approach and GPA (Chung et al. 2014), were applied to the (Ui, Vi).

Table 4 reports the results of the proposed method and contains genes with permutation

p-values (6) less than 10−3. Almost all of the genes were highly differentially expressed

between normal and failing heart tissue, which is significant because data from failing tissue

were never used in this analysis. Furthermore, the biological validity of these genes enjoys

significant literature support. In general they are involved in three classes of biological

processes: heart muscle strength and contraction, angiogenesis, and inflammation.

Multiple testing correction for the simultaneous signal detection p-values is difficult

because of the unknown correlation structure between the genes and the fact that the

PHFS GWAS dataset was used to test for each of the genes. A Bonferroni correction

for 13,219 tests would thus be too conservative. Instead, the eigenvalue ratio function of

Galwey (2009) was used to estimate an effective number of tests:

Meff =
(
∑

l λ
1/2
l )2∑
l λl

,

where λl is the lth-largest eigenvalue of the correlation matrix of the gene expression values.

Bonferroni correction was then done using Meff instead of the total number of tests.
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Figure 4: Manhattan plots of the GWAS and eQTL p-values for the genes ABCF2 and YY1,

which pass multiple testing correction for simultaneous signal detection. The upper half of

each plot corresponds to GWAS results and the bottom half corresponds to eQTL results;

only p-values less than 10−3 are plotted. Stars indicate possible positions of simultaneous

signals, where both GWAS and eQTL p-values are less than 10−3.
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In the eQTL data Meff = 181.82, giving a Bonferroni threshold of 0.05/182 = 2.75 ×

10−4. Two genes in Table 4 pass this threshold, ABCF2 and YY1, and Manhattan plots

for the GWAS and eQTL p-values of these two genes are shown in Figure 4. ABCF2 is

an ATP-binding cassette transporter, which have been found to protect against cardiac

hypertrophy by promoting angiogenesis (Higashikuni et al. 2012, Maher et al. 2014). YY1

is a transcription factor which in experiments on rat cardiomyocytes was found to re-

press expression of α-myosin heavy chain, which is responsible for heart muscle contraction

(Sucharov et al. 2003, Mariner et al. 2004). The plot for YY1 indicates the presence of

SNPs on chromosome 2 that both regulate YY1 expression and are associated with heart

failure, while the YY1 gene itself is located on chromosome 14. This shows that the pro-

posed method can detect trans-regulatory relationships. The remaining genes in Table 4

may pass other forms of multiple testing correction, such as false discovery rate control,

and more research into multiple simultaneous signal detection is necessary.

To compare with the results of the proposed method, Table 5 reports the discoveries

of the other simultaneous signal detection methods that pass the 2.75 × 10−4 Bonferroni

threshold. Two-stage approaches with thresholds of 10−2, 10−3, and 10−4 were not consid-

ered because they were unable to control the type I error rate under linkage disequilibrium

in simulations. GPA was also unable to control the type I error: though Table 5 reports

that it found ZNF266 to exhibit simultaneous signals in the heart failure data, this gene

was highly non-significant when tested using the two-stage approach regardless of the p-

value threshold. This suggests that ZNF266 is a false positive. The two-stage approach

with a threshold of 10−5 found the same two genes found by the proposed procedure. This

is reassuring, but the two-stage methods are still highly dependent on choosing the proper

threshold, as Table 5 shows that the 10−6 threshold made no discoveries.

4.3 Choosing the correct eQTL tissue

While the MAGNet consortium measured eQTL data from both normal and failing heart

tissue, in the above analysis the Vi were calculated using only normal hearts. Using normal,

rather than failing, heart tissue is appropriate because it more accurately reflects the true

regulatory relationships between SNPs and gene expression. Gene expression patterns in
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the failing hearts are likely to be influenced by many other factors, such as the patients’

medication histories and heart failure disease processes, so the causal model from Figure 1

likely no longer holds.

To illustrate the importance of selecting the correct tissue, the PHFS GWAS results

were integrated with eQTL data from lymphoblastoid cell lines (LCLs) collected by Duan

et al. (2008), instead of with the MAGNet eQTL data from normal heart tissue. This serves

as a negative control experiment, as LCLs are not immediately relevant to cardiovascular

disease.

Table 6 reports the results. Some of the genes detected in this negative control may in

fact be important for heart failure, as long as the genetic regulation of these genes in LCLs

is similar to their regulation in heart tissue. Indeed, two of the top four genes, UBE2D2

and JTB, were differentially expressed in the MAGNet eQTL data. However, without

additional heart tissue-specific expression data, from this analysis alone it is impossible to

tell which of the detected genes are important.

The MAGNet Consortium’s study is unique because it was able to collect eQTL data

from live human heart tissue. In general, however, genomics data from relevant tissue

may be difficult to obtain, for example when studying diseases affecting the heart or the

brain. As mentioned previously, the proposed method can integrate GWAS and eQTL

datasets collected from different groups of subjects. This enables individual investigators

to leverage public resources such as the Genotype-Tissue Expression project (Lonsdale et al.

2013), from which eQTL data from multiple tissue types are available, in combination with

their own GWAS results.

4.4 Gene set enrichment analysis

The proposed simultaneous signal detection test has so far been applied to one gene at a

time. To derive more functional insight it can be extended to gene sets. Let Vij denote the

test statistic for association between SNP i and the jth gene of a gene set. Then Gene Set

Enrichment Analysis (GSEA; Mootha et al. 2003, Subramanian et al. 2005) can be applied

to the max statistics Mj = maxi(Ui ∧ Vij) proposed in (5). Given a gene set S, this can be
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done with the Kolmogorov-Smirnov statistic

sup
x

∣∣∣∣∣1s∑
j∈S

I(Mj ≤ x)− 1

s′

∑
j∈Sc

I(Mj ≤ x)

∣∣∣∣∣ , (11)

where s and s′ are the number of genes in S and Sc, respectively. This amounts to testing

whether the distribution of the Mj differs between genes in S and genes in Sc.

This analysis was applied to gene sets from Gene Ontology (Ashburner et al. 2000)

containing at least 10 genes, specifically, 5,023 Biological Process terms and 936 Molecular

Function terms. Table 7 reports the most significant findings, and Figures 5 and 6 depict

all Gene Ontology terms that are connected to these findings through any path. A number

of the identified Biological Process gene sets relate to chromatin structure and centromere

assembly. For example, the CENP-A histone H3-like centromeric protein A has been found

to be critical in cardiac stem cells (McGregor et al. 2014). The top Molecular Function gene

sets are involved in processes such as unfolded protein binding, protein kinase regulation

and kinase regulator activity, implying that protein quality control may play a role in

cardiac homeostasis (Wang & Robbins 2006).

5 Discussion

The asymptotic adaptive optimality of the proposed test was established assuming that

the test statistics Ui and Vi are absolute values of normal random variables (7). Additional

issues arise when this does not hold. Mukherjee et al. (2015) studied detecting non-zero

regression coefficients in logistic regression and found that the detection boundary can be

different from the boundary for Gaussian outcomes if too many SNPs have very low minor

allele frequencies. As another example, Delaigle et al. (2011) studied signal detection for a

single sequence of t-statistics and found that the detection boundary depends on the rate

at which the sample size grows with the number of tests. Additional work is necessary to

characterize the detection boundary for testing (2) when Ui and Vi do not follow (7).

Even when the distribution assumptions (7) hold, results from the signal detection

problem for normal mean mixtures (3) under dependence (Hall & Jin 2008, 2010) suggest

that M is likely no longer optimal when the test statistics are correlated across i. Additional
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Figure 5: Directed acyclic graph of all Biological Process nodes connected by some path

to the most significant results from the simultaneous signal GSEA analysis. Yellow: least

significant; Red: most significant; Rectangles: top GSEA results.
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Figure 6: Directed acyclic graph of all Molecular Function nodes connected by some path

to the most significant results from the simultaneous signal GSEA analysis. Yellow: least

significant; Red: most significant; Rectangles: top GSEA results.
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research is necessary to determine how best to incorporate information about the linkage

disequilibrium structure into a simultaneous signal detection method. On the other hand,

simulations in Section 3.2 indicate that M is still effective in a sizable portion of the

detectable region even under dependence.

Alternative detection procedures that take advantage of additional biological informa-

tion may be more powerful than the proposed approach. For example, it is known that

cis-eQTL signals tend to be stronger than trans-eQTL signals. The optimal approach to

incorporating this information into a simultaneous signal detection test statistic remains

to be determined, and is an important direction for future research.

The proposed method can be extended to settings involving more than two sequences

of test statistics. For example, to detect simultaneous signals across K sequences {Uk
i },

k = 1, . . . , K, the max test statistic (5) can be extended to M = maxi(U
1
i ∧ . . . ∧ UK

i ).

To obtain a p-value for this M the indices of each of the K sequences can be permuted

independently. It may also be possible to obtain an analytic expression for the permutation

p-value with multiple sequences, analogous to (6). In some cases it may instead be of interest

to detect simultaneous signals between one sequence Ui and any of a set of sequences {V k
i },

k = 1, . . . , K. This can be done by defining Vi = V 1
i ∨ . . . ∨ V K

i and applying (6) to the

(Ui, Vi). Since Theorem 1 requires no parametric distributional assumptions, it would still

hold for these Ui and Vi, and the permutation p-value would remain conservative.

Finally, while this paper has only considered the problem of detecting simultaneous

signals, it is sometimes also of interest to identify such signals. This requires the devel-

opment of a multiple testing method. Consider a procedure that identifies the ith SNP

as a simultaneous signal if Ti ≥ (log n)1/2. Whenever simultaneous signals are detectable

using Ti, this procedure will also achieve asymptotically perfect identification. It would be

interesting to develop other identification procedures that control the false discovery rate.

The fact that the null hypothesis is composite poses a major difficulty in developing such

a multiple testing procedure.

SUPPLEMENTARY MATERIAL

Supplementary file: Contains additional linkage disequilibrium simulations and a de-

tailed discussion of the results, as well as proofs of all theorems. (.pdf file)
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Table 1: Average type I errors (%) at nominal α = 0.05 over 1,000 replications for inde-

pendent test statistics

Simulation setting Methods

#U #V nε a b True Perm 10−2 10−3 10−4 10−5 10−6 GPA

10 10 5 2.5 3.0 4.0 4.2 3.7 0.4 0.2 0.0 0.0 0.0

10 50 5 2.5 3.0 4.5 4.1 3.3 0.6 0.2 0.0 0.0 0.0

10 100 5 2.5 3.0 4.6 4.5 3.2 0.8 0.3 0.0 0.0 0.0

50 50 5 2.5 3.0 4.6 4.5 3.0 0.9 0.3 0.0 0.0 0.0

50 100 5 2.5 3.0 4.5 4.3 3.1 1.1 0.3 0.0 0.0 0.0

100 100 5 2.5 3.0 4.5 3.9 3.0 0.9 0.4 0.0 0.0 0.1

10 10 10 2.5 3.0 4.0 4.2 3.7 0.4 0.2 0.0 0.0 0.0

10 50 10 2.5 3.0 4.5 4.1 3.3 0.6 0.2 0.0 0.0 0.0

10 100 10 2.5 3.0 4.6 4.5 3.2 0.8 0.3 0.0 0.0 0.0

50 50 10 2.5 3.0 4.6 4.5 3.0 0.9 0.3 0.0 0.0 0.0

50 100 10 2.5 3.0 4.5 4.3 3.1 1.1 0.3 0.0 0.0 0.0

100 100 10 2.5 3.0 4.5 3.9 3.0 0.9 0.4 0.0 0.0 0.1

10 10 5 3.5 4.0 4.1 4.1 3.6 0.4 0.2 0.0 0.0 0.0

10 50 5 3.5 4.0 4.2 4.1 3.2 0.7 0.3 0.0 0.0 0.0

10 100 5 3.5 4.0 4.8 4.4 3.6 0.9 0.6 0.0 0.0 0.2

50 50 5 3.5 4.0 4.7 3.2 3.7 1.3 0.5 0.0 0.0 0.9

50 100 5 3.5 4.0 4.0 3.0 3.5 1.6 0.7 0.0 0.0 1.0

100 100 5 3.5 4.0 4.3 2.3 3.1 1.3 1.1 0.0 0.0 1.0

10 10 10 3.5 4.0 4.1 4.1 3.6 0.4 0.2 0.0 0.0 0.0

10 50 10 3.5 4.0 4.2 4.1 3.2 0.7 0.3 0.0 0.0 0.0

10 100 10 3.5 4.0 4.8 4.4 3.6 0.9 0.6 0.0 0.0 0.2

50 50 10 3.5 4.0 4.7 3.2 3.7 1.3 0.5 0.0 0.0 0.9

50 100 10 3.5 4.0 4.0 3.0 3.5 1.6 0.7 0.0 0.0 1.0

100 100 10 3.5 4.0 4.3 2.3 3.1 1.3 1.1 0.0 0.0 1.0

#U,#V = number of non-null Ui, Vi; nε = number of simultaneous signals; a, b = means

used to generate µi, νi; True = true p-value of M ; Perm = permutation p-value (6); 10−x =

two-stage approach with p-value threshold of 10−x; GPA = method of Chung et al. (2014).
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Table 2: Average powers (%) at nominal α = 0.05 over 1,000 replications for independent

test statistics

Simulation setting Methods

#U #V nε a b True Perm 10−2 10−3 10−4 10−5 10−6 GPA

10 10 5 2.5 3.0 58.4 58.4 11.2 23.0 25.3 6.2 0.9 0.0

10 50 5 2.5 3.0 52.6 52.2 10.8 21.6 20.4 5.0 0.5 0.0

10 100 5 2.5 3.0 16.3 16.0 6.6 4.3 3.5 0.2 0.0 0.0

50 50 5 2.5 3.0 58.1 57.8 11.9 29.4 28.6 9.5 1.7 0.1

50 100 5 2.5 3.0 23.3 22.0 8.0 7.3 6.1 0.7 0.0 0.2

100 100 5 2.5 3.0 22.4 20.5 5.9 5.0 7.9 1.2 0.2 2.6

10 10 10 2.5 3.0 88.7 88.6 25.5 62.5 58.4 25.9 8.6 0.0

10 50 10 2.5 3.0 73.7 73.6 22.8 46.4 41.1 11.9 3.8 0.0

10 100 10 2.5 3.0 69.8 70.4 19.0 42.1 37.1 14.0 4.4 0.4

50 50 10 2.5 3.0 77.1 76.9 25.8 55.0 44.1 12.8 3.0 1.0

50 100 10 2.5 3.0 59.1 57.6 16.8 37.0 29.0 7.5 2.0 4.5

100 100 10 2.5 3.0 93.3 92.4 26.3 81.3 75.6 38.5 14.7 75.4

10 10 5 3.5 4.0 97.4 97.4 22.4 87.2 85.3 55.4 25.2 0.7

10 50 5 3.5 4.0 96.6 95.7 24.1 86.9 83.4 51.6 20.3 16.7

10 100 5 3.5 4.0 69.8 68.5 16.3 49.9 42.9 13.7 3.1 5.9

50 50 5 3.5 4.0 97.3 96.7 23.5 90.0 88.3 59.2 28.3 96.3

50 100 5 3.5 4.0 78.3 74.1 16.5 59.7 54.1 22.8 5.5 70.2

100 100 5 3.5 4.0 73.2 62.0 12.7 43.3 52.8 22.5 7.1 43.4

10 10 10 3.5 4.0 100.0 100.0 62.3 99.9 98.6 86.7 58.2 3.7

10 50 10 3.5 4.0 99.9 99.8 60.2 99.2 96.2 74.5 40.8 35.1

10 100 10 3.5 4.0 99.3 99.2 52.4 98.0 94.8 72.2 36.9 38.6

50 50 10 3.5 4.0 100.0 100.0 61.5 99.7 97.8 77.6 43.9 99.6

50 100 10 3.5 4.0 98.7 98.0 52.1 98.5 92.3 62.7 28.6 99.8

100 100 10 3.5 4.0 100.0 100.0 49.7 99.9 99.6 95.1 75.5 99.9

#U,#V = number of non-null Ui, Vi; nε = number of simultaneous signals; a, b = means

used to generate µi, νi; True = true p-value of M ; Perm = permutation p-value (6); 10−x =

two-stage approach with p-value threshold of 10−x; GPA = method of Chung et al. (2014).

37



Table 3: Average type I errors and powers (%) at nominal α = 0.05 over 1,000 replications

under linkage disequilibrium

Setting Methods

nε a b Perm 10−2 10−3 10−4 10−5 10−6 GPA

Type I error

5 0.1 0.2 2.7 13.5 13.9 10.1 4.0 1.3 23.9

10 0.1 0.2 2.7 13.5 13.9 10.1 4.0 1.3 23.9

5 0.2 0.3 3.0 13.5 14.7 12.0 7.1 2.0 24.8

10 0.2 0.3 3.0 13.5 14.7 12.0 7.1 2.0 24.8

Power

5 0.1 0.2 84.2 20.7 28.5 40.5 64.8 76.7 25.2

10 0.1 0.2 86.6 24.8 38.8 60.9 78.1 79.4 30.7

5 0.2 0.3 72.1 21.4 26.7 37.3 49.9 63.1 28.3

10 0.2 0.3 82.9 24.4 39.0 61.5 71.7 76.7 35.5

nε = number of simultaneous signals; a, b = means used to generate α,β; True = true

p-value of M ; Perm = permutation p-value (6); 10−x = two-stage approach with p-value

threshold of 10−x; GPA = method of Chung et al. (2014).
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Table 4: Genes with simultaneous signal detection p-values less than 10−3 using PHFS

GWAS and MAGNet eQTL data, using the proposed method (6)

Gene SS p DE p Annotation

ABCF2 2.6e-5 9.2e-9 ATP-binding cassette transporter;

angiogenesis (Higashikuni et al. 2012)

YY1 1.8e-4 3.0e-3 Transcription factor; represses heart

muscle contraction (Sucharov et al. 2003)

NSL1 2.9e-4 2.0e-10 MIS12 kinetochore complex

(Petrovic et al. 2010)

ITGA11 6.0-4 0.1 Integrin; myocardial extracellular matrix;

myocardial strength and plasticity

(Ross & Borg 2001, Zhang et al. 2002)

DENND1B 6.1e-4 6.2e-15 Release of cytokines; myocardial

contractile performance

(Sack et al. 2000, Marat & McPherson 2010)

METAP1 6.6e-4 1.4e-13 Molecular target of angiogenesis

(Sin et al. 1997)

PCGF5 7.5e-4 6.6e-6 Polycomb group; regulate heart

development (Morey et al. 2015)

RUSC2 8.3e-4 1.1e-6 Interacts with RAB1A, RAB1B; causes

cardiac hypertrophy (Wei et al. 2015)

MAP1LC3B2 8.6e-4 9.6e-15 Microtubule-associated protein;

inflammation (Oka et al. 2012)

SS p: simultaneous signal detection p-value; DE p: differential expression in MAGNet

eQTL data.
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Table 5: Genes with simultaneous signal detection p-values less than 2.75 × 10−4, using

existing methods

10−5 10−6 GPA

Gene p Gene p Gene p

YY1 6.8e-13 — — ZNF266 6.4e-7

ABCF2 6.8e-12 — — — —

10−x = two-stage approach with p-value threshold of 10−x; GPA = method of Chung et al.

(2014); p = simultaneous signal detection p value; — = no finding.

Table 6: Genes with simultaneous signal detection p-values less than 10−3 using PHFS

GWAS and LCL eQTL data

Gene SS p DE p

UBE2D2 2.88e-6 1.35e-7

TOMM7 1.44e-5 0.70

JTB 9.51e-5 1.19e-35

RAB13 9.51e-5 0.38

SS p: simultaneous signal detection p-value; DE p: differential expression p-value in MAG-

Net eQTL data.
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Table 7: Top five GSEA results using (11), with gene sets were derived from Gene Ontology

(GO)

GO term p-value

Biological process

Centromere complex assembly 2.3e-5

CENP-A containing nucleosome assembly 5.0e-5

CENP-A containing chromatin organization 9.5e-5

Histone H4-K20 demethylation 1.3e-4

Chromatin remodeling at centromere 1.4e-4

Molecular function

Histone demethylase activity 1.3e-4

Protein kinase regulator activity 1.1e-3

Unfolded protein binding 2.2e-3

ARF guanyl-nucleotide exchange factor activity 2.4e-4

Kinase regulator activity 3.3e-3
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