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ABSTRACT
Sparse topic modeling under the probabilistic latent semantic indexing (pLSI) model is studied. Novel
and computationally fast algorithms for estimation and inference of both the word-topic matrix and the
topic-document matrix are proposed and their theoretical properties are investigated. Both minimax upper
and lower bounds are established and the results show that the proposed algorithms are rate-optimal,
up to a logarithmic factor. Moreover, a refitting algorithm is proposed to establish asymptotic normality
and construct valid confidence intervals for the individual entries of the word-topic and topic-document
matrices. Simulation studies are carried out to investigate the numerical performance of the proposed
algorithms. The results show that the proposed algorithms perform well numerically and are more accurate
in a range of simulation settings comparing to the existing literature. In addition, the methods are illustrated
through an analysis of the COVID-19 Open Research Dataset (CORD-19).
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1. Introduction

With the development of computer technology and the inter-
net, increasingly large amounts of textual data are generated
and collected every day. It is a significant challenge to analyze
and extract meaningful and actionable information from vast
amounts of unstructured textual data. Many machine learn-
ing and natural language processing algorithms have been
developed for text classification, clustering, and information
retrieval (Salton and McGill 1983; Deerwester et al. 1990;
Nigam et al. 2000). In particular, there is a large body of work
on topic modeling, including latent semantic indexing (LSI)
in Deerwester et al. (1990), the aspect model in Hofmann,
Puzicha, and Jordan (1999) and latent Dirichlet analysis (LDA)
in Blei, Ng, and Jordan (2003), which aims to identify the
latent topic structures in the documents. Among the many
approaches, the probabilistic latent semantic indexing (pLSI)
model introduced by Hofmann (1999) has gained prominence
and has been used in a wide range of applications, includ-
ing document classification, information retrieval, and scene
recognition (Blei 2012; Ai et al. 2016; Daniels and Metaxas
2018; Yan et al. 2018; Xue et al. 2020). Driven by applica-
tions in a wide range of fields, there is an increasing need
for developing computationally efficient statistical methods for
analyzing a massive amount of textual data with theoretical
guarantees.

The pLSI model posits a hierarchical model that each word
of a document comes from a randomly chosen topic, where
the topics are drawn from a document-specific distribution
over topics. Specifically, the pLSI model can be described as
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follows. Suppose there are K latent topics and set A ∈ R
p×K

to be the word-topic matrix, where each column of A cor-
responds to a probability distribution among p words for a
certain topic. We also consider a topic-document matrix W ∈
R

K×n, a collection of n documents with each column sum-
marizing the topic distributions for the corresponding docu-
ment. As a result, the expected word frequencies in the collec-
tion of documents are denoted as a matrix D∗, which is the
product of the word-topic matrix A and the topic-document
matrix W:

D∗ = AW.

As a remark, the columns of the three matrices D∗, A and W rep-
resent probability mass functions and therefore are nonnegative
and sum up to one. In practice, one observes n text documents
consisting of words from a dictionary of size p. The observed
text documents can be summarized by a word-document fre-
quency matrix, D, where each row represents a word and each
column represents a document. Each entry of D is the observed
relative frequency of a given word in a document, that is, the
number of occurrences of a given word divided by the length
of the document. Under the pLSI model, the columns of D are
assumed to be independently generated from a multinomial
distribution with probabilities specified by the corresponding
columns in D∗.

Given the observed word frequency matrix D, the goal is to
estimate and construct confidence intervals for both the word-
topic matrix A and the topic-document matrix W. It is clear
that some identifiability condition is needed in order to recover
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the two matrices A and W. A commonly used identifiability
condition is the anchor words assumption (Donoho and Stodden
2004), which assumes that each topic has at least one anchor
word, where anchor words are the words that only occur in a
certain topic. If the occurrence of such a word is observed, then
it is guaranteed that the document must cover the correspond-
ing topic. Such an anchor words assumption is widely used in
the recent research on pLSI models; see Arora, Ge, and Moitra
(2012), Arora et al. (2013), Ke and Wang (2017), Mao, Sarkar,
and Chakrabarti (2018), Bing, Bunea, and Wegkamp (2020a,b),
and the reference therein.

Despite the popularity of the pLSI model, there is a paucity of
methods with theoretical guarantees, especially for the optimal
estimation of the topic-document matrix W and statistical infer-
ence for both A and W. The problem is particularly challenging
in the setting when the total number of topics, K, is large,
and the number of topics covered by each document is small.
In this article, we consider the setting where the number of
topics K grows with n and p. Additionally, since in practice,
one document typically only covers a small number of topics,
we also consider the scenario that each document covers at
most s topics. We introduce new algorithms to recover the
word-topic matrix A and topic-document matrix W whose
columns are sparse and investigate their theoretical properties.
The procedure for recovering A is shown to be rate-optimal,
with a growing number of topics. Akin to algorithms put for-
ward in Ke and Wang (2017) and Bing, Bunea, and Wegkamp
(2020a,b), the key point of the algorithm is to identify the
anchor words. After projecting all the points into a sphere, our
algorithm uses the one-class Support Vector Machine (Mao,
Sarkar, and Chakrabarti 2018) to find them. We then use a
novel nonnegative constrained MLE to solve for A and show
that this method guarantees an estimator with the optimal rate
of convergence by establishing both minimax upper and lower
bounds.

Estimation of the sparse topic-document matrix W is also
considered. Compared with the estimation of word-topic matrix
A, few results on estimation of W are known in the existing
literature. One result is in Arora et al. (2016) where they estimate
W by finding an approximate left inverse of A and multiplying
the inverse to document frequency to obtain an estimate, but
their method lacks optimality guarantees and asymptotic dis-
tributional results. In this article, we treat the recovery of W
as a multinomial regression problem with nonnegativity and �1
constraints, and show that the proposed estimator of W is rate-
optimal, up to a logarithmic factor.

Another essential problem investigated in this article is sta-
tistical inference for both the word-topic matrix A and the
topic-document matrix W. For a collection of documents, we
are not only interested in knowing the topic distribution of
each document but also testing whether a particular document
covers a specific topic to a certain degree. Construction of
confidence intervals has been actively studied recently for high-
dimensional linear regression. The well-known Lasso estima-
tor is rate-optimal but highly biased and the key idea for the
confidence interval construction is de-biasing the Lasso estima-
tor. See, for example, Zhang and Zhang (2014), van de Geer
et al. (2014), Javanmard and Montanari (2014), and Cai and
Guo (2017). Somewhat surprisingly, our proposed rate-optimal

estimator of W is itself asymptotically unbiased and normal for
each individual entry and thus de-biasing is not needed. Based
on the result, the estimator is used directly for constructing
valid confidence intervals. For inference on the entries of A,
a refitting algorithm is introduced and the solution after the
refitting is shown to be asymptotically unbiased and normal,
and then used to construct confidence intervals for entries
of A.

The proposed algorithms are easy to implement and compu-
tationally efficient. Simulation studies are carried out to inves-
tigate the numerical performance of the proposed algorithms.
They are shown to recover more accurate results in a range
of simulation settings comparing to the existing literature. In
addition, we analyze the COVID-19 Open Research Dataset
(CORD-19) (Wang et al. 2020) using the proposed procedure.
CORD-19, offered by Allen Institute for AI and other lead-
ing research groups, is a collection of thousands of articles
associated with COVID-19 and related coronaviruses. Here,
we apply the proposed method to explore the articles and dis-
cover underlying topics in the articles. Although all of these
documents are on COVID-19, the topics recovered have vary-
ing focuses. It is noteworthy that three main approaches for
controlling the pandemic spread, that is, broad-based testing,
vaccination, and clinical care, are successfully discovered by our
algorithm, demonstrated by the visualization of anchor words.
In particular, in the clinical care related topics, we observe
the commonly reported symptoms of COVID-19, including
dyspnea, headache, nausea, anosmia, and arrhythmia. ECMO
and immune-based therapies, such as IVIG, tocilizumab, and
other corticosteroids, are implemented in clinical trials. These
observations are consistent with the information provided by
the CDC1 and NIH.2

1.1. Related Work

A closely related model to the pLSI model is the Latent Dirichlet
Allocation (LDA)(Blei, Ng, and Jordan 2003), which is a three-
level hierarchical Bayesian model, and solved by MCMC. It
assumes that the parameter of topic distribution for each docu-
ment is not fixed but rather follows certain smooth distribution
such as Dirichlet distribution. Other variations of topic models
were developed since then, including dynamic topic models
(Blei and Lafferty 2006b), supervised topic models (Li, Ouyang,
and Zhou 2015) and many others.

Under the pLSI model, a number of methods were devel-
oped to reconstruct A, including Arora, Ge, and Moitra (2012),
Arora et al. (2013), and Mao, Sarkar, and Chakrabarti (2018).
These methods were proposed with some theoretical properties,
but little optimality results were guaranteed, and until recently,
Ke and Wang (2017), Bing, Bunea, and Wegkamp (2020a,b)
provided several minimax optimal results. Specifically, Ke and
Wang (2017) provided an optimal algorithm to recover A for a
constant number of topics K. Later Bing, Bunea, and Wegkamp
(2020a) extended the result to a more general case, where K is
growing, but they require a strong condition with a large signal-
to-noise ratio (SNR). In addition, Bing, Bunea, and Wegkamp

1https://www.cdc.gov/coronavirus/2019-nCoV/hcp/index.html
2https://www.covid19treatmentguidelines.nih.gov/
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(2020b) took the case of sparse A into account. All of these
methods start with determining anchor words. This article
also considers the growing K case but assumes a weaker SNR
condition. In contrast to the relatively extensive studies of the
estimation of A, the estimation of the topic-document matrix
W is less investigated in the literature. Arora, Ge, and Moitra
(2012) and Arora et al. (2013) studied the estimation of WW�
and obtained a couple of theoretical bounds. The subsequent
work (Arora et al. 2016) studied the recovery of a single column
of W under a known A case. However, little is investigated
concerning the corresponding minimax optimal results and
statistical inference.

1.2. Contribution

Under the popular pLSI model, research has essentially focused
on estimation of the word-topic matrix A. Little was known
regarding estimation of the topic-document matrix W or
uncertainty quantification and construction of confidence
intervals.

The present article considers optimal estimation as well as
confidence interval construction for both the word-topic matrix
A and topic-document matrix W under the pLSI model. The
main contribution is three-fold. We first develop a novel and
computationally fast algorithm for estimating the word-topic
matrix A. Both minimax upper and lower bounds are estab-
lished. The estimator is shown to be rate-optimal, up to a log-
arithmic factor, and performs well numerically comparing with
alternative methods in the literature. In addition to an estimator
for the word-topic matrix A, we also propose a computationally
efficient estimator for the topic-document matrix W based on
solving a constrained and nonnegative MLE, and establish the
optimality for the estimator. To the best of our knowledge, this
is the first result in the literature to show the optimality for
estimating W. Thirdly, statistical inference is considered and
algorithms for constructing valid confidence intervals for indi-
vidual entries in A and W are proposed. We believe these are the
first inference procedures with theoretical guarantees on topic
modeling. Our work also uncovers an interesting phenomenon.
Debaising has been known to be an essential step in high-
dimensional statistical inference for a wide range of problems
including high-dimensional sparse linear/logistic regression
and low-rank matrix completion. However, our proposed rate-
optimal estimator of A (or W) is itself asymptotically unbiased
and normal for each individual entry and thus de-biasing is not
needed.

1.3. Organization

The rest of the article is organized as follows. After introducing
the notation and model set-up in Section 2, we propose in Sec-
tion 3 rate-optimal estimators to recover A and W respectively.
Section 4 provides their risk upper bounds and establishes the
minimax lower bounds. The upper and lower bounds match
up to logarithm factors and therefore the proposed estimators
are near rate-optimal. Section 5 introduces an algorithm for
confidence interval construction with theoretical guarantees.
Numerical results are given in Section 6, where our methods are

compared with other existing estimators via both simulations
and real data analysis. We conclude with discussion and future
work in Section 7. For reasons of space, all the proofs of our
theoretical results and technical lemmas are deferred to the
supplementary material.

2. Problem Formulation

In this section, we formulate the model and two estimation
problems considered in the article. We begin with notations and
model setup.

2.1. Notations

For an integer p > 0, we use [p] to denote the set {1, 2, . . . , p}.
For a subset S ⊆ [p], |S| denotes the cardinality of S and Sc

represents the complement [p] \ S. For a vector x ∈ R
p, xS is

constructed by setting all entries of x whose indices are not in

S to zero. Its �q-norm is defined as ‖x‖q :=
(∑p

i=1 |xi|q
)1/q

with the �0 norm defining the number of nonzero entries and
�∞ defining the maximum entry, that is, ‖x‖0 = |supp(x)| and
‖x‖∞ = max1≤i≤p |xi|. In addition, ‖x‖ also represents the �2
norm. For j ∈ [p], we use ej to denote the jth canonical basis in
R

p. We also use R+ to denote the nonnegative half line.
For a matrix X, both Xij and Xi,j represent the (i, j)th entry of

X. XS and XS,· denote the submatrix of X consisting of columns
Xs and rows Xs,· with s ∈ S, respectively. ‖X‖ and ‖X‖2 both
denote the spectral norm, which is defined as sup‖y‖2=1 ‖Xy‖2.
λmin(X) and λmax(X), respectively, denote the minimum and
maximum singular values of X. We also use λk(X) to denote
the k-th singular value of X (from the largest to the smallest).
�X denotes a diagonal matrix whose ith diagonal entry is the
ith row sum of X. A generalized inverse of X is denoted by X†.
‖X‖F denotes the Frobenius norm of X, and ‖X‖1 is the matrix
�1 norm of X, which is equivalent to the maximum of column-
wise �1 norm of X. ‖X‖0 denotes the matrix �0 norm that is
the number of nonzero entries in X. We also define L1(X) as
L1(X) = ∑p

i=1
∑K

j=1 |Xij|.
We use c and C to denote generic positive constants that

may vary from place to place. For two positive sequences
{an} and {bn}, we write an = O(bn), and an = o(bn), if
limn→∞(an/bn) < ∞ and limn→∞(an/bn) < 0, respectively.
We write an � bn if an = O(bn). We also write an 
 bn if an =
O(bn) and bn = O(an). Õ(·) denotes the term, neglecting the
logarithmic factors. Further, we use the notion op and Op, where
for a sequence of random variables Xn, Xn = op(an) means
Xn/an → 0 in probability, and Xn = Op(bn) means that for any
ε > 0, there is a constant C, such that P(|Xn| ≤ C · bn) ≥ 1 − ε.

2.2. Model Setup

The pLSI model assumes that all the n documents use words
from the same dictionary consisting of vocabulary of size p,
and for i ∈ [n], the document i covers several topics with
different weights wi = {wi(1), ..., wi(K)} among all possible
K topics. In addition, given the kth topic (k ∈ [K]), there is
a word distribution probability vector Ak associated with this
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topic, where Ak is a p-dimensional nonnegative vector summed
to 1. Each word in a document is generated independently from
the corresponding word distribution given the topic selected.
Then, the probability of word j occurring in document i can be
computed as follows:

d∗
i (j) = P(word j|document i)

=
K∑

k=1
P(word j|topic k) · P(topic k|document i)

=
K∑

k=1
Ak(j) · wi(k),

where Ak(j) is the probability of word j occurring in topic k and
wi(k) is the weight of topic k in document i, which implies that
d∗

i = ∑K
k=1 wi(k)Ak. Consequently, we can write the expected

probability matrix as D∗ = AW, and what we observe in practice
is a word frequency vector for each document, denoted by di,
where di(j) is the relative frequency of word j in document i.
di follows a multinomial distribution with parameter d∗

i , the
ith column of D∗. Assume the length of document i is Ni, then
Nidi ∼ multi(Ni, d∗

i ). As a result, the expectation of observation
matrix D is AW and D can be formally written as D = AW + Z
where Z is a matrix denoting multinomial noise. In addition,
documents are independent and so are the columns of D. Our
goal is to recover A and W from the observed D.

To facilitate our study, we introduce the following anchor
words assumption.

Assumption 1 (Anchor words assumption). We call a word j an
anchor word if there exists a topic k ∈ [K], such that Ajk is non-
zero and Ajk′ = 0 for all k′ �= k. We assume throughout the
article that for each topic k, there exists at least one anchor word.

Anchor words are the words that only occur in a certain
topic. That is, if the occurrence of such a word is observed,
then it is guaranteed that the document must cover the corre-
sponding topic. For example, the word “basketball” implies the
corresponding document covers the topic “sports”. The anchor
words assumption is needed as an identifiability condition, see
Donoho and Stodden (2004); Ke and Wang (2017); Bing, Bunea,
and Wegkamp (2020a). In this article, we assume every topic has
at least one anchor word, which implies that there exists a K ×K
diagonal submatrix in A up to a permutation of rows.

3. Methodologies

In this section, we present in detail the algorithms for estimat-
ing the word-topic matrix A and the sparse topic-document
matrix W.

3.1. Recovery of the Word-Topic Matrix A

Recovering the word-topic matrix A is one of the primary
objectives. One key idea that is commonly used in the existing
literature is to first identify the anchor words and then use the
information to help estimate the matrix A. In the literature,
Ke and Wang (2017) considered the case where the number of

anchor words, K, is fixed and proposed an algorithm whose
computational complexity is exponential in K and therefore
computationally infeasible when K is large. Bing, Bunea, and
Wegkamp (2020a,b) considered the growing K case, but they
assume WW� is almost diagonal (see the details in Bing, Bunea,
and Wegkamp 2020a, theor. 7 and coroll. 8). In this section, we
propose an algorithm that allows growing K. This algorithm uti-
lizes the one-class support vector machine method to determine
the anchor words and performs well even in the case of moderate
SNR.

3.1.1. Algorithm Description
Since some words occur much less frequently compared to
others, which would make the variances change significantly
across words and the detection of anchor words harder, to avoid
such problems and to ensure the optimality of the algorithm, we
first normalize rows of D so that the row sums are comparable:
D → M−1/2

0 D, where M0 is a diagonal matrix with M0(j, j) =
K
n ‖Dj,·‖1. In the population level, after the SVD on M−1/2

0 D∗, the
anchor words assumption guarantees that the top K left singular
vectors form the matrix � such that

� = (M−1/2
0 ADA)�P,·,

where P is the set of indices for the anchor words, and DA is
some diagonal nonnegative matrix. Such a step of performing
SVD on a normalized matrix has also been used in Ke and
Wang (2017) for topic modeling, and it is a commonly used
approach in spectral graph theory (Chung and Graham 1997;
Ng, Jordan, and Weiss 2002; Lei et al. 2015). Geometrically,
� consists of p points of K-dimensional vectors, represented
by p blue dots in Figure 1, and each vector is generated from
the linear combination of �P,·. Since the weights M−1/2

0 ADA
are nonnegative, all p points are inside a cone with the cone
boundary determined by �P,·. For instance, all blues dots in Fig-
ure 1 lie in the cone constructed by three black lines. Therefore,
finding the boundary of this cone is equivalent to the detection
of the set P. We proceed this boundary finding problem by

Figure 1. Graphical Illustration of One-class SVM
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normalizing these p points to have unit �2 norms, and then
applying the one-class support vector machine (SVM) (Mao,
Sarkar, and Chakrabarti 2018) to find the |P| points on the
boundary. In other words, every blue dot is projected to the unit
sphere to obtain the corresponding red dot in Figure 1. There
exists a hyperplane such that it contains |P| boundary points
and all the other points lie on one side of the hyperplane. After
the identification of anchor words set P, we can then solve for
A as follows. Let �D∗ and �W be the diagonal matrices with
elements equal to the row sums of D∗ and W respectively, we
can then rewrite D∗ as

D∗ = AW = �D∗(�−1
D∗ A�W)(�−1

W W) := �D∗ÃW̃,

where Ã and W̃ both have rows sum up to one. Such a normal-
ization is commonly used in topic modeling and nonnegative
matrix factorization (Xu, Liu, and Gong 2003; Arora, Ge, and
Moitra 2012; Arora et al. 2013; Bing, Bunea, and Wegkamp
2020a). As a result, ÃP,· = I and a preliminary estimate of W̃ can
be obtained by directly normalizing DP,· such that its row sums
are one. Moreover, since �D∗ , the diagonal matrix consisting
of row sums of D∗, can be estimated accurately from the data
D, we can then solve for Ã row by row, by maximizing the
likelihood function with constraints ‖Ãi,·‖1 = 1. This analysis
inspires the following empirical version, summarized below in
Algorithm 1.

Algorithm 1 The Estimation of A
1: Input: Word frequency matrix D, tuning parameter Cλ.
2: Perform SVD on M−1/2

0 D to obtain a matrix � ∈ R
p×K

consisting of the top K left singular vectors.
3: Normalize each row of � to have unit �2 norm, say Y .
4: Solve the one-class SVM optimization:

maximize b s.t. wTYi ≥ b (for i = 1, . . . , p) and
‖w‖2 ≤ 1. (1)

5: Find anchor words set P̂, defined as P̂ = {i ∈ [p] : ŵ�Yi ≤
b + δ}, where δ is searched from δ = 0 and incrementally
increase it until λ1(DP̂,·)/λK(DP̂,·) ≤ Cλ.

6: Compute W̃(0) by normalizing the row sums of DP̂,·:
W̃(0) = �−1

DP̂,·
DP̂,·.

7: Find an estimator of Ã: M̂ by performing the following
optimization for each j ∈ [p], let Sj = {k ∈ [K] :
supp(W̃(0)

k,· ) ⊂ supp(Dj,·)} and (M̂j)Sc
j
= 0,

(M̂j)Sj =arg min∑
k∈Sj Mjk=1,Mjk≥0

n∑
i=1

Dji log(�D,jMjW̃(0)
·,i ).

(2)
8: Recover A by left multiplying �D on M̂ and right multiply-

ing a diagonal matrix T = diag(‖M̂·1‖−1
1 , ..., ‖M̂·K‖−1

1 ) to
normalize each column.

Remark 1. It is noteworthy that most of uncommon words
cannot be in all the topics. Therefore, after removing common
words, many words only appear in a small number of topics.
Although we want to adapt to the sparsity of A, it is unnecessary

to employ the sparsity-promoting �1 regularization in step 7 of
Algorithm 1. The reasons are two-fold. First, here ‖Mj‖1 = 1,
and hence �1 regularization cannot be directly used here. Sec-
ond, as mentioned in Meinshausen (2013) and Slawski and Hein
(2013) in the context of nonnegative linear regression, without
employing the �1 regularization, the nonnegativity constraint
alone suffices for sparsity recovery.

Remark 2. The optimization (2) can be solved by using pro-
jected gradient descent, where at each iteration, after the gra-
dient descent step, we project the estimator to a probabilistic
simplex by applying projections (Duchi et al. 2008; Wang and
Carreira-Perpinán 2013).

The anchor words detection part of the proposed algorithm
is similar to the one-class SVM algorithm proposed in Mao,
Sarkar, and Chakrabarti (2018), but there are two main differ-
ences. First, we perform SVD on M−1/2

0 D instead of D, which
accounts for the heteroscedasticity of the pLSI model and there-
fore yields a sharper rate. Second, after the estimation of P,
we use constrained multinomial regression, which adaptively
adjusts for the sparsity of A and yields a sharper rate, and further
facilitates the confidence interval constructions described in
Section 5.

3.2. Recovery of the Sparse Topic-Document Matrix W

In this section, we consider another important problem on topic
modeling, which is to recover the topic-document matrix W.
This problem is also referred to as the inference problem in
Arora et al. (2016). Compared to estimation of the word-topic
matrix A, this problem is much less studied and few theoretical
results are known.

As more documents are taken into account, the topics they
cover also increase. However, typically, a given document can
only cover a small number of topics. We assume that each
document covers up to sW topics. Equivalently, the matrix W
has column sparsity level sW .

3.2.1. Algorithm Description
By considering D column by column, that is, we focus on esti-
mating the topic distribution of a particular document. We first
estimate the support of wi by Ŝi = supp(W̃(0)

·,i ), where W̃(0) was
obtained in step 6 of Algorithm 1. We can regard the problem
of recovering ith column wi on Ŝi as an optimization problem as
follows:

ŵi = arg min
u≥0

p∑
j=1

Dji log(Â�
j u) (3)

s.t.
∑
k∈Ŝi

uk = 1, uŜc
i
= 0.

Similar to our discussion in Remark 1, although wi is sparse,
it is unnecessary to employ the sparsity-promoting �1 regular-
ization. The algorithm for estimating W is then summarized in
Algorithm 2, where the optimization (3) is solved by projected
gradient descent algorithm.
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Algorithm 2 Topic Distribution Recovery
1: Inputs: The document data D ∈ R

p×n, the estimated word-
topic distribution Â.

2: for i = 1, 2, ..., n do
3: Solve the problem (3) by the projected gradient descent

and obtain ŵi.
4: end for
5: Combine all n vectors ŵi to construct Ŵ ∈ R

K×n.
6: Output Ŵ.

4. Theoretical Results on Estimation

In this section, we analyze the theoretical performance of the
proposed algorithms for estimating the word-topic matrix A
and the topic-document matrix W respectively. For simplicity,
following the convention in other recent topic modeling papers
(Ke and Wang 2017; Bing, Bunea, and Wegkamp 2020a,b), we
assume that the lengths of documents Ni’s all satisfy Ni 
 N.
We denote the parameter spaces for A and W by A and W ,
respectively, where

A :=
{

(Aij) ∈ R
p×K
+ : ∀k,

p∑
i=1

Aik = 1; ∀k, ∃i ∈ [p]

such that supp(Ai,·) = k; ‖Ai,·‖0 ≤ sA, ∀i ∈ [p]} ,

and

W :=
{

(wij) ∈ R
K×n+ :

∑K
k=1 wkj = 1, ∀j ∈ [n];

‖Wj‖0 ≤ sW , ∀j ∈ [n]
}

.

We first state the following technical assumptions before
presenting the upper bounds for recovering A and W.

Assumption 2. Let H = diag(h1, ..., hp) with hj = ‖Aj,·‖1.
Define matrices �A and �W as

�A = A′H−1A ∈ R
K×K and �W = K

n
WWT ∈ R

K×K .
(4)

We assume their eigenvalues satisfy

c1 ≤ λmin(�A) ≤ λmax(�A) ≤ c2,
c3 ≤ λmin(�W) ≤ λmax(�W) ≤ c4, (5)

for some constants c2 ≥ c1 > 0 and c4 ≥ c3 > 0.
This assumption implies that the two matrices A and W

are well shaped so that the condition numbers of �A and
�W are bounded. Such conditions are commonly used in
high-dimensional statistics including existing literature on topic
models, see Ke and Wang (2017), Bing, Bunea, and Wegkamp
(2020a), and Bing, Bunea, and Wegkamp (2020b).

Assumption 3. For j ∈ [p], hj = ‖Aj,·‖1 = O
(

K
p

)
. The row sum

of all the rows are of the same order. That is, the frequencies of
each word among all the topics are comparable.

Assumption 4. The row sums of W are of order n
K . That is, for

the whole collection of documents, the covering of all topics are
evenly distributed.

Assumptions 3 and 4 impose order constraints on the rows of
A and W. Similar assumptions have been made in the literature.
For example, Assumptions 3 appeared in Ke and Wang (2017),
and conditions similar to Assumptions 3 and 4 are also in Bing,
Bunea, and Wegkamp (2020a) and Bing, Bunea, and Wegkamp
(2020b).

4.1. Upper Bounds for Recovering A

We begin by establishing the rate of convergence for estimating
the word-topic matrix A under the elementwise �1 norm, that
is, L1(Â, A) = ∑p

i=1
∑K

j=1 |Âij − Aij|.
Theorem 4.1. Assuming Assumptions 1–4 hold. Let �D and �W
be the diagonal matrices with elements equal to the row sums of
D and W respectively. Let Ã = �−1

D A�W and W̃ = �−1
W W,

and denote the set of anchor words by P. Suppose the tuning
parameter used in Algorithm 1 is of constant level and satisfies

Cλ > 2 λ1(D∗)
λK (D∗) , and for i ∈ Pc,

∑K
k=1 Ãik‖W̃k,·‖

‖∑K
k=1 ÃikW̃k,·‖ > 1 + K2 ·

√
p log n

Nn .

If minD∗
ij �=0 D∗

ij ≥ η with η satisfies η � log(np)( K3/2√
N(n∧p)

∨
pK
N2 ), nN � p log n, N3/4 ≥ p, and K2 � N log n, then with
probability 1 − o(n−1),

‖Â − A‖F � K
√

log n
Nn

; L1(Â, A) � K
√

sA log n
Nn

.

Remark 3. We now compare Theorem 4.1 with the results in
the literature. All three articles mentioned below consider the
loss function L1(Â, A) = ∑p

i=1
∑K

j=1 |Âij − Aij|, and their
estimators achieve the minimax rate up to a logarithmic factor
under varying conditions. Ke and Wang (2017) focused on the
fixed K case. After normalizing rows of D, they apply the SVD
and k-means algorithm to determine the anchor words. Bing,
Bunea, and Wegkamp (2020a) and Bing, Bunea, and Wegkamp
(2020b) considered the growing K and sparse A, respectively,
and obtained similar rates as in our Theorem 4.1, but our
algorithms of anchor words estimation and estimation of A are
all different from theirs. In terms of regularity conditions, their
optimality results require a condition that WW�/n ∈ R

K×K

is essentially a diagonal matrix (see more details, e.g., in Bing,
Bunea, and Wegkamp 2020a, theor. 7 and coroll. 8), while we
do not require such a condition. In Section 6, we found our
algorithms are empirically better than their method in the large
N region. Additionally, our estimation of A facilitates a follow-
up confidence interval construction as shown in Section 5.

Remark 4. Throughout this section, we assume the lengths of
documents have the same order, that is, Ni 
 N for all i ∈
[n]. In the case where the lengths of the documents vary a lot,
in practice, we can remove the documents that are too short.
According to Theorem 4.1, we can optimize over the threshold
value N, such that |{i : Ni ≥ N}| · N is maximized.

Remark 5. In the proof of Theorem 4.1, it is shown that the one-
class SVM algorithm can successfully identify the anchor words
set. In particular, Proposition 1 of the supplement shows that
under the conditions of Theorem 4.1, with high probability, we
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have P̂ ⊂ P and rank(D∗
P̂,·) = K. That is, all the anchor words

found by the algorithm are true anchor words, and also they
cover the K distinct topics. We note here that our theory holds
under the assumption that there exists at least one anchor word
per topic. Such an assumption has been similarly made in Bing,
Bunea, and Wegkamp (2020a,b), and is weaker than the one in
Ke and Wang (2017), where they require the number of anchor
words per topic grows with n and p.

4.2. Upper Bounds for Recovering W

We now investigate the theoretical guarantees for estimating W.
We begin with the following theorem, which provides a column-
wise upper bound for sparse W.

Theorem 4.2. Under the assumptions same as in Theorem 4.1,
and additionally assume that p log n � KN, psW � n, then for
each i ∈ [n], with probability at least 1 − o(n−1),

‖ŵi − w∗
i ‖2 �

√
log n

N
; ‖ŵi − w∗

i ‖1 �
√

sW log n
N

.

Remark 6. In comparison with Arora et al. (2016), where an
upper bound of order ÕP

(√
sW
N

p
K

)
was obtained for estimating

w∗
i , where ÕP hides the log terms, Theorem 4.2 presents a faster

rate of convergence. In the next section, we are going to show
this rate is indeed minimax rate-optimal up to a logarithm
factor.

As a corollary, we sum over the columns and get the following
results under the matrix elementwise �1 norm, Frobenius norm,
and matrix �1 norm, respectively.

Corollary 4.1. Under the assumptions of Theorem 4.2, with
probability of 1 − o(n−3),

L1(Ŵ, W∗) =
n∑

i=1
‖ŵi − w∗

i ‖1 � n
√

sW log n
N

.

Corollary 4.2. Under the assumptions of Theorem 4.2, with
probability of 1 − o(n−3),

‖Ŵ − W∗‖F �
√

n log n
N

;

‖Ŵ − W∗‖1 = max
i

‖ŵi − w∗
i ‖1 �

√
sW log n

N
.

4.3. Lower Bounds

We have obtained upper bounds for the estimators of A and W in
Sections 4.1 and 4.2. We now present the minimax lower bound
results to show the optimality of the proposed algorithms up
to a logarithmic factor. We first show the lower bound results
for estimating A under both the elementwise �1 norm and
Frobenius norm.

Theorem 4.3. Consider the parameter spaces A defined in Sec-
tion 4. There exist constants c1, c2, C1, C2 > 0 such that

inf
Â

sup
A∈A

PA

(
‖Â − A‖F ≥ C1 ·

(
K

√
1

Nn

))
≥ c1;

inf
Â

sup
A∈A

PA

(
L1(Â, A) ≥ C2 ·

(
K

√
sA
Nn

))
≥ c2.

We also establish the following lower bounds for ‖w∗
i − ŵi‖2

and ‖w∗
i − ŵi‖1.

Theorem 4.4. Consider the parameter spaces W defined in
Section 4, there exist positive constants c and C such that

inf
ŵi

sup
w∗

i ∈W
Pw∗

(
‖w∗

i − ŵi‖2 ≥ C
√

1
N

)
≥ c;

inf
ŵi

sup
w∗

i ∈W
Pw∗

(
‖w∗

i − ŵi‖1 ≥ C
√

sW
N

)
≥ c.

A direct corollary for the elementwise �1 norm loss for esti-
mating W is as follows.

Corollary 4.3. Consider the parameter spaces W defined in
Section 4, there exist positive constants c and C such that

inf
Ŵ

sup
W∗∈W

PW∗
(
L1(W∗, Ŵ) ≥ Cn

√
sW
N

)
≥ c.

Compared with Theorems 4.1 and 4.2, we note that the rates
of convergence in estimating A and W are minimax optimal up
to a logarithmic factor. In addition, this optimal rate suggests
that when we consider the �2 or Frobenius norm, the sparsity
structure will have no effect on the convergence rate. This is in
star contrast with the general high-dimensional problems where
the sparsity will show up when the loss is �2 norm.

5. Statistical Inference for A and W

In this section, we turn to statistical inference for the individual
entries of A and W. We first present the following algorithm,
Algorithm 3, for constructing confidence intervals of Ajk for j ∈
[p], k ∈ [K] below, based on the output Ŵ from Algorithm 2.

Unlike the sparse linear regression, where an additional de-
biased step is critical for the construction of confidence intervals
(Zhang and Zhang 2014; van de Geer et al. 2014; Javanmard
and Montanari 2014; Cai and Guo 2017), the M̂ obtained in
Step 2 of our proposed Algorithm 3 is directly unbiased only
after a screening step Sj. This nice property is inherited in
the specialty of multinomial distribution. The intuition can
be explained through a simple example where μ ∈ R

p is
a probability vector (nonnegative and sum up to one), with
‖μ‖0 ≤ s. Suppose we observe a random vector X∼multi(N, μ).
By the definition of multinomial distribution, we have Xj = 0
if μj = 0. Therefore, the standard sample mean X/N satisfies
‖X/N − μ‖1 = OP(

√
s
N ) without shrinkage. As a result, unlike

the sparse normal mean problem where the optimal rate of
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Algorithm 3 The Confidence Interval for Ajk

1: Inputs: The document data D ∈ R
p×n

2: Split the data D into D(1) and D(2) where both sample
consists of N/2 words.

3: Apply Algorithm 1 and Algorithm 2 to D(1), and obtain
anchor words set P̂ and Ŵ.

4: Normalize each row of Ŵ to obtain an estimator of W̃, say
W̃(1).

5: Find an estimator of Ã: M̂ by performing the following
optimization for each j ∈ [p], let Sj = {k ∈ [K] :
supp(Ŵk,·) ⊂ supp(Dj,·)} and (M̂j)Sc

j
= 0,

(M̂j)Sj = arg min∑
k∈Sj Mjk=1,Mjk≥0

n∑
i=1

Dji log(�D,jMjw̃(1)
i ).

6: Use D(2) to compute �D. Recover A by left multiplying �D
on M̂ and right multiplying �−1

Ŵ
, and denote the result by Â.

7: Compute the interval

I(A)

jk = [Âjk − zα/2 · vjk, Âjk + zα/2 · vjk],

where vjk =
√

(e�
k (Ŵdiag(Dj,·)†Ŵ�)−1ek + �D,jM̂2

jk�
−2
Ŵ,k

)/N
and zα/2 is the α/2-th quantile of a standard normal
distribution.

convergence is obtained by a thresholded sample mean, under
the multinomial distribution, X directly obtains the optimal rate
of convergence while staying unbiased. This idea is carried over
to the setting of M̂ , and hence we have the following result.

Theorem 5.1. Suppose the conditions of Theorem 4.1 hold,
and further assume that if minj:D∗

ij �=0 D∗
ij ≥ η with η satisfies

K3 log n
ηp2 → 0. Then for any j ∈ [p] and k ∈ [K], if Ajk �= 0, then

Âjk satisfies that as N → ∞,
√

N(Âjk − Ajk)√
e�

k (Ŵdiag(Dj,·)†Ŵ�)−1ek + �D,jM̂2
jk�

−2
Ŵ,k

→ N(0, 1),

and as a result,

lim
N→∞P

(
Ajk ∈ I(A)

jk

)
= 1 − α.

Similarly, Algorithm 2 gives an unbiased estimator of W that
can be used to facilitate statistical inference, which can be used
for testing whether a particular document covers a specific topic
to a certain degree. In particular, ŵi, the output from the Step 3
in Algorithm 2, has the following asymptotic distribution.

Theorem 5.2. Suppose the conditions of Theorem 4.2 hold,

and further assume (K
p )3/2 ·

√
log p+K2 log n/n

N → 0 and

minj:D∗
ij �=0 D∗

ij ≥ η with η satisfies K2

η3·p2N → 0. Then for any
i ∈ [n] and k ∈ [K], if wki �= 0, then ŵi would satisfy that as
N → ∞, √

N(ŵki − wki)√
e�

k (Â�diag(Di)†Â)−1ek

→ N(0, 1),

where wki = wi(k) and ŵki = ŵi(k) are the kth entry of wi and
ŵi, respectively. Here, Â is the output of Algorithm 1 and Di is
the i-th column of the observed frequency matrix D.

This theorem enables us to construct confidence intervals for
the individual coordinates wik for i ∈ [n], k ∈ [K]. Specifically,
let

I(W)

ki =
[

ŵki − zα/2

√
e�

k (Â�diag(Di)†Â)−1ek/N, ŵki

+zα/2

√
e�

k (Â�diag(Di)†Â)−1ek/N
]

,

where zα/2 is the α/2th quantile of a standard normal distribu-
tion. The following theorem provides the asymptotic guarantee
for the validity of these confidence intervals.

Theorem 5.3. Under the same conditions of Theorem 5.2, for
any i ∈ [n] and k ∈ [K], the confidence intervals I(W)

ki is
asymptotically valid, that is,

lim
N→∞P

(
wik ∈ I(W)

ki

)
= 1 − α.

6. Simulation and Real Data Analysis

We investigate in this section the numerical performance of the
proposed algorithms and make a comparison with several other
existing methods, including Topic-Score from Ke and Wang
(2017) (R package TopicScore) and STM-TOP method from
Bing, Bunea, and Wegkamp (2020b), through simulation stud-
ies and an analysis of the COVID-19 Open Research Dataset
(CORD-19). The results show that the proposed algorithms
perform well in terms of both statistical accuracy and compu-
tational efficiency. For reasons of space, the detailed simulation
results for estimation and inference of W are given in Sections
E.2 and E.3 (the supplementary material), respectively.

6.1. Simulations for Estimation

6.1.1. Data-Generating Mechanism
We start with the generation of A. First, randomly generate a
p × K matrix where each entry follows a uniform distribution
U(0, 1). In order to construct anchor words, for each column k,
we keep the [(k−1)×p/100+1]th to k×p/100th entry and set
any other entries on the top (p/100) × K rows to be zero. Last,
each column is normalized to guarantee the column sum being
one.

In terms of creating W, we consider both sparse and non-
sparse scenarios. For the sparse case, we first randomly generate
a K ×n matrix where each entry follows a uniform distribution.
Second, for each column, we uniformly pick s integers from [K]
as the indices of the support. Note that these s integers can be
repetitive. We keep the entries within the support and set the
remaining ones to zero. Last, we normalize each column to sum
to one. For the non-sparse case, the second step of determining
support is omitted. After creating A, W and D∗, which is simply
the matrix multiplication D∗ = AW, the generation of every col-
umn Di follows a multinomial distribution multi(N, d∗

i ) divided
by N.
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Figure 2. Errors of estimated A with K = 10. Left: varying N, with n = 5000; Right: varying n, with N = 5000.

Figure 3. Errors of estimated A with K = 50. Left: varying N, with n = 5000; Right: varying n, with N = 5000.

Since the word-topic matrix is estimated up to a column
permutation, all the errors reported are computed by ‖ÂÂT −
AAT‖F and ‖ŵTŵ − wTw‖.

6.1.2. Simulations for Recovery of A
We start with some simulation results. For each setting, we
record the average performance of 200 repetitive experiments.
In order to satisfy the assumption of row sum being the order
of O

(
K
p

)
, we remove words with least row sums and denote the

proportion as β . We set δ initially to be 0 and then incrementally
increase it by 0.02b (where b is defined in (1) of Algorithm 1)
until the corresponding ratio λ1(DP̂,·)/λK(DP̂,·) drops below Cλ.
Without specification, the tuning parameter Cλ is set as 150.

We compare the performances of proposed estimator
(MLE+SVM) and two other estimators under small K for K =
10 and large K for K = 50 separately, with varying document
lengths N and different collection sizes n. The other two estima-
tors are, namely, T-Score (Ke and Wang 2017) and STM-TOP
(Bing, Bunea, and Wegkamp 2020b).

Figure 2 demonstrates the results with small K = 10, where
the baseline setting is p = 1000, n = 5000, N = 5000, and
s = 5. We study the performance of our algorithm with respect
to different document lengths N ∈ {2000, 3000, 4000, 5000,
6000, 7000, 8000, 9000, 10,000}, and different collection sizes
n ∈ {2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000}.
The proposed method provides computationally more accurate
estimates than the T-score, while both perform much better
the STM-TOP. Especially for small values of n, such as n in
{2000, 3000, 4000}, it takes a comparably short time and returns
much more accurate estimates, as shown in the supplementary
material (Section E). Therefore, the proposed method outper-
forms the other two in accuracy and also in efficiency for small
vocabulary and document collection size.

The results of large K = 50 are shown in Figure 3 where the
baseline setting is p = 4000, n = 5000, N = 5000, and s = 5.
We compare three methods with respect to different document
lengths N ∈ {3000, 5000, 8000, 10,000, 12,000, 15,000}, and
different collection sizes n ∈ {3000, 5000, 8000, 10,000, 12,000,
15,000}. Although T-score algorithm works well for the small
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K case, there is a significant tradeoff between accuracy and
efficiency for the large K. When the algorithm is applicable for
large K, in order to make it done within a reasonable time, the
errors increase remarkably. Although the proposed estimator
takes longer than the STM-TOP, the former is more accurate.

We now consider the effect of the tuning parameter Cλ on
the performance of the algorithm. The results with varying Cλ

are reported in Figure E.2 (in the supplement). Our method is
quite robust against the variation of the tuning parameter. In the
above simulations, the number of topics K is known. When the
value is not specified, it can be determined using the scree plot,
as shown in Figure E.1.

In conclusion, our proposed method provides efficient and
computationally accurate estimates in both large K and small K
scenarios.

6.2. Simulations for Inference of A

In this section, we investigate the performances of the inference
problem for A. We leave the inference of W to Section E (supple-
mentary material). Akin to the estimation part, we also consider
both small K and large K cases.

For a small K = 5 with p = 1000 and s = 5, we study the per-
formance of our algorithm with respect to different document
lengths N ∈ {2000, 2500, 3000}, and different collection sizes
n ∈ {1000, 2000, 3000, 4000, 5000}. It is noteworthy that the
estimates are accurate up to a column permutation, and hence
the permutation can be determined by minimizing L1 errors
of all column-permuted Â. The average lengths and coverage
probabilities of confidence intervals are reported in Figure 4,
where boxplots of 20 repetitions for each parameter setting are
recorded. In addition, we also recorded the results of more
parameter settings and plotted them in Figures E.12 to E.13 (in
the supplementary material). We can see that the average lengths
of confidence intervals drop as the collection size n increases or
the document length N increases. We also include the results of
large K = 50 in Section E.3 (supplementary material).

6.3. An Analysis of the CORD-19 Data

We now further illustrate the merits of the proposed methods
in comparison with other estimators via an analysis of the

COVID-19 Open Research Dataset (CORD-19) (Wang et al.
2020). The CORD-19 data, offered by Allen Institute for AI and
other leading research groups, is a growing resource containing
all scientific articles on Covid-19 and related historical coro-
navirus research. The observed word-document count matrix
Q is obtained by removing the least frequent words, common
words, and non-English words. We remove those occurring less
than 150 times among all documents, and then the remaining
10,224 articles consist of 7776 words with average document
length around 2000. By assuming a topic number K, the LDA
algorithm is applied to Q. The value of K is in {10, 20, 30}. The
obtained posteriors of A and W are denoted as A∗ and W∗.
We set them as true values and utilize them to generate the
word frequency matrix D with document lengths N varying in
{2000, 4000, 5000, 6000, 8000, 10,000}. For each (K, N) setting,
the experiment is repeated for 20 times, and the average results
are reported. For all K values investigated, the proposed esti-
mator of A outperforms the other two estimators with vary-
ing document lengths N, as shown in Figure 5. Especially at
N = 2000, which is the average document length for the
dataset, the differences in accuracy are significant. As the doc-
ument length increases, STM-TOP becomes comparable with
our method, and the performances of our method are very
consistent.

One example of an estimated Â with 10 topics is demon-
strated by the word cloud in Figure 8. We present top 50 anchor
words for each topic. Although all the articles are the research on
the coronavirus, they analyze it from different perspectives and
hence cover various topics. The topics can be separated into four
categories: coronavirus, social impacts, statistical methods, and
LaTex. It is evident that topic 1 contains the words on statistical
methods and analysis, and topic 4 is on the LaTeX format and
packages.

Three main approaches of controlling the pandemic spread,
that is, broad-based testing, vaccination, and clinical care, are
also successfully discovered by our algorithm, which includes
topics 2, 3, 6, 7, and 8. We find out several popular testing
methods in topic 2, containing LAMP, RT-qPCR, and other
biosensors, which might make use of fluorescence and chro-
matography techniques as well as the centrifuge. In topic 3,
which is clinical care related, we observe the commonly reported

Figure 4. Confidence interval results of A with K = 5, p = 1000. Left: average length with varying n and N; Right: coverage probabilities with varying n and N.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 11

Figure 5. Errors of Â for CORD-19 Data. Left: K = 10; Middle: K = 20; Right: K = 30.

Figure 6. One demonstration of literature clustering with 20 clusters

symptoms of COVID-19, including dyspnea, headache, nau-
sea, anosmia, and arrhythmia. High C-reactive protein (CRP)
and elevated D-dimer may be associated with greater illness
severity and mortality. ECMO and immune-based therapies,
such as IVIG, tocilizumab, and other corticosteroids, are imple-
mented in clinical trials. Apart from in-hospital clinical care,
at-home healthcare is another crucial medical care, especially
for patients with milder disease. Related vocabulary is con-
tained in topic 7, including telemedicine and telehealth. It also
includes other health worker-related words such as caregiver,
consultation, and HCWs. Vaccination-related words are also
discovered mainly in two topics, that is, topics 6 and 8. Topic

6 is about the virus-related analysis, while topic 8 is on immune
system-related analysis. All of these scientific observations are
also consistent with the information provided by the CDC and
NIH.

A significant number of documents also investigate the social
impacts of the pandemic from various aspects, demonstrated
by topics 5, 9, and 10. Topic 5 covers the family impact, such
as mental health and the new normal of school life. Topic 9
is from a global perspective, including geographical areas like
Kerala, Pará, Delhi, Lombardy, and social media-related words
such as tweet and hashtag. In addition, topic 10 contains words
corresponding to economic impact and government policy, such
as tourism, investment, and governance.

Since the vocabulary p is large in the dataset, we compare
the proposed estimator of W with the NNLS estimator. The
results are recorded and plotted in Section E.4 (supplementary
material). The estimated Ŵ can be visualized by a scatterplot, as
in Figure 6. In this figure, the Ŵ ∈ R

10×10224 is clustered using
the k-means algorithm and then projected to a two-dimensional
subspace using t-SNE. By discovering the topic distributions of
the collection in combination with clustering, articles covering
similar topics can be easily figured out, which can simplify the
search for articles.

The results of confidence intervals are also reported with
different topic numbers in Figure 7. Their lengths decrease as
the lengths of documents N increase for both A and W.

Figure 7. Lengths of confidence intervals for varying K . Left: A; Right: W .
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Figure 8. One demonstration of word clouds with 10 topics

7. Discussion

This article proposed computationally efficient algorithms for
recovering the word-topic matrix A and topic-document matrix
W and established their optimality, up to a logarithmic factor,
in the setting of a growing number of topics under the anchor-
word assumption. The estimation of the word-topic matrix A
uses constrained MLE after the identification of the anchor
words set. By replacing the true A with the estimated matrix Â
in the regression problem, the topic-document matrix W is then
recovered using MLE column by column. Due to the coverage
of a limited number of topics for each document, the matrix
W is column-wise sparse. Although no regularizing term is
applied, the sparsity recovery is guaranteed by the �1 constraint.
Moreover, our article proposed algorithms for constructing con-
fidence intervals for individual elements for A and W respec-
tively. Somewhat surprisingly, unlike the standard sparse high-
dimensional regression problems where an additional de-biased
step is critical, our proposed rate-optimal estimator of A and W
are themselves asymptotically unbiased, and achieve the optimal
rate of convergence in estimation at the same time.

The main idea can be extended to other related nonnegative
matrix factorization problems as well. The applications subsume
the community estimation problems in the mixed-membership
stochastic block models, where each vertex is an exemplar of
community (Mao, Sarkar, and Chakrabarti 2018; Jin, Ke, and
Luo 2017). The method can also be applied to state aggregation
of Markov processes (Duan, Ke, and Wang 2019).

There are a few issues that deserve further investigation.
The anchor-word assumption is used here and it is also widely
used in the existing literature as an identifiability condition
for nonnegative matrix factorization. This condition is a bit
strong and it is interesting to weaken this condition or replace
it by other assumptions. Moreover, it would be interesting to
extend the multinomial distributional assumption in our model

to the model with zero-inflation or over-dispersion, which are
important in modeling the sparse counting data.

In this article, we focused on the pLSI model. Other related
topic models, such as correlated topic models (Blei and Lafferty
2006a) and dynamic topic models (Blei and Lafferty 2006b), are
also worth investigating. The former considers the topics being
correlated so that if one topic is covered, then another correlated
topic is more likely to be covered, while the latter analyzes
the time evolution of topics in large document collections. It
is of significant interest to develop optimality theory for these
models.

Supplementary Materials

In the supplemental materials, we prove all the theorems and technical
lemmas, and also present additional numerical results.
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