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ABSTRACT
Matrix completion has attracted significant recent attention in many fields including statistics, applied
mathematics, and electrical engineering. Current literature onmatrix completion focuses primarily on inde-
pendent sampling models under which the individual observed entries are sampled independently. Moti-
vated by applications in genomic data integration, we propose a new framework of structuredmatrix com-
pletion (SMC) to treat structuredmissingness by design. Specifically, our proposedmethod aims at efficient
matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed.
We provide theoretical justification for the proposed SMC method and derive lower bound for the esti-
mation errors, which together establish the optimal rate of recovery over certain classes of approximately
low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety
of configurations. Themethod is applied to integrate several ovarian cancer genomic studies with different
extent of genomicmeasurements, which enables us to constructmore accurate prediction rules for ovarian
cancer survival. Supplementary materials for this article are available online.

1. Introduction

Motivated by an array of applications, matrix completion has
attracted significant recent attention in different fields includ-
ing statistics, applied mathematics, and electrical engineering.
The central goal of matrix completion is to recover a high-
dimensional low-rank matrix based on a subset of its entries.
Applications include recommender systems (Koren, Bell, and
Volinsky 2009), genomics (Chi et al. 2013), multi-task learn-
ing (Argyriou, Evgeniou, and Pontil 2008), sensor localization
(Biswas et al. 2006; Singer and Cucuringu 2010), and computer
vision (Chen and Suter 2004; Tomasi and Kanade 1992), among
many others.

Matrix completion has been well studied under the uniform
samplingmodel, where observed entries are assumed to be sam-
pled uniformly at random. The best known approach is perhaps
the constrained nuclear normminimization (NNM), which has
been shown to yield near-optimal results when the sampling dis-
tribution of the observed entries is uniform (Candès and Recht
2009; Candès and Tao 2010; Gross 2011; Recht 2011; Candes
and Plan 2011). For estimating approximately low-rank matri-
ces from uniformly sampled noisy observations, several penal-
ized or constrained NNM estimators, which are based on the
same principle as the well-known Lasso and Dantzig selector
for sparse signal recovery, were proposed and analyzed (Kesha-
van, Montanari, and Oh 2010; Mazumder, Hastie, and Tibshi-
rani 2010; Koltchinskii 2011; Koltchinskii et al. 2011; Rohde
et al. 2011). In many applications, the entries are sampled inde-
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pendently but not uniformly. In such a setting, Salakhutdinov
and Srebro (2010) showed that the standard NNM methods
do not perform well, and proposed a weighted NNM method,
which depends on the true sampling distribution. In the case
of unknown sampling distribution, Foygel et al. (2011) intro-
duced an empirically weighted NNM method. Cai and Zhou
(2013) studied a max-norm constrained minimization method
for the recovery of a low-rank matrix based on the noisy obser-
vations under the nonuniform sampling model. It was shown
that the max-norm constrained least-square estimator is rate-
optimal under the Frobenius norm loss and yields a more sta-
ble approximate recovery guaranteewith respect to the sampling
distributions.

The focus of matrix completion has so far been on the
recovery of a low-rank matrix based on independently sampled
entries. Motivated by applications in genomic data integration,
we introduce in this article a new framework of matrix comple-
tion called structured matrix completion (SMC), where a subset
of the rows and a subset of the columns of an approximately low-
rankmatrix are observed and the goal is to reconstruct thewhole
matrix based on the observed rows and columns. We first dis-
cuss the genomic data integration problem before introducing
the SMC model.

1.1 Genomic Data Integration

When analyzing genome-wide studies (GWS) of association,
expression profiling or methylation, ensuring adequate power
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of the analysis is one of the most crucial goals due to the high
dimensionality of the genomic markers under consideration.
Because of cost constraints, GWS typically have small to mod-
erate sample sizes and hence limited power. One approach to
increase the power is to integrate information from multiple
GWS of the same phenotype. However, some practical compli-
cations may hamper the feasibility of such integrative analysis.
Different GWS often involve different platforms with distinct
genomic coverage. For example, whole genome next generation
sequencing (NGS) studies would provide mutation information
on all loci while older technologies for genome-wide associa-
tion studies (GWAS) would only provide information on a small
subset of loci. In some settings, certain studies may provide a
wider range of genomic data than others. For example, one study
may provide extensive genomic measurements including gene
expression, miRNA, and DNA methylation while other studies
may only measure gene expression.

To perform integrative analysis of studies with different
extent of genomic measurements, the naive complete observa-
tion only approach may suffer from low power. For the GWAS
setting with a small fraction of loci missing, many imputation
methods have been proposed in recent years to improve the
power of the studies. Examples of useful methods include hap-
lotype reconstruction, k-nearest neighbor, regression, and sin-
gular value decomposition methods (Troyanskaya et al. 2001;
Kim, Golub, and Park 2005; Li and Abecasis 2006; Scheet and
Stephens 2006;Wang et al. 2006; Browning and Browning 2009).
Many of the haplotype phasing methods are considered to be
highly effective in recovering missing genotype information (Yu
and Schaid 2007). These methods, while useful, are often com-
putationally intensive. In addition, when one study has a much
denser coverage than the other, the fraction ofmissingness could
be high and an exceedingly large number of observations would
need to be imputed. It is unclear whether it is statistically or
computationally feasible to extend these methods to such set-
tings. Moreover, haplotype-based methods cannot be extended
to incorporate other types of genomic data such as gene expres-
sion and miRNA data.

When integrating multiple studies with different extent of
genomic measurements, the observed data can be viewed as
complete rows and columns of a large matrix A and the missing
components can be arranged as a submatrix of A. As such, the
missingness in A is structured by design. In this article, we pro-
pose a novel SMC method for imputing the missing submatrix
of A. As shown in Section 5, by imputing the missing miRNA
measurements and constructing prediction rules based on the
imputed data, it is possible to significantly improve the predic-
tion performance.

1.2 StructuredMatrix CompletionModel

Motivated by the applicationsmentioned above, this article con-
siders SMC where a subset of rows and columns are observed.
Specifically, we observem1 < p1 rows andm2 < p2 columns of
a matrixA ∈ Rp1×p2 and the goal is to recover the whole matrix.
Since the singular values are invariant under row/column per-
mutations, it can be assumed without loss of generality that we
observe the first m1 rows and m2 columns of A, which can be

written in a block form:

A =
m2 p2 − m2[
A11 A12
A21 A22

]
m1

p1 − m1,
(1)

where A11, A12, and A21 are observed and the goal is to recover
the missing block A22. See Figure 1(a) in Section 2 for a graph-
ical display of the data. Clearly there is no way to recover A22 if
A is an arbitrary matrix. However, in many applications such as
genomic data integration discussed earlier, A is approximately
low-rank, which makes it possible to recover A22 with accuracy.
In this article, we introduce amethodbased on the singular value
decomposition (SVD) for the recovery ofA22 whenA is approx-
imately low rank.

It is important to note that the observations here are much
more “structured” comparing to the previous settings of matrix
completion. As the observed entries are in full rows or full
columns, the existing methods based on NNM are not suitable.
As mentioned earlier, constrained NNM methods have been
widely used in matrix completion problems based on indepen-
dently observed entries. However, for the problem considered
in the present article, these methods do not use the structure of
the observations and do not guarantee precise recovery even for
exactly low-rankmatrixA (see Remark 1 in Section 2). Numeri-
cal results in Section 4 show that NNMmethods do not perform
well in SMC.

In this article we propose a new SMC method that can be
easily implemented by a fast algorithm that only involves basic
matrix operations and the SVD. The main idea of our recov-
ery procedure is based on the Schur complement. In the ideal
case when A is exactly low rank, the Schur complement of the
missing block,A22 − A21A†

11A12, is zero and thusA21A†
11A12 can

be used to recover A22 exactly. When A is approximately low
rank,A21A†

11A12 cannot be used directly to estimateA22. For this
case, we transform the observed blocks using SVD; remove some
unimportant rows and columns based on thresholding rules;
and subsequently apply a similar procedure to recover A22.

Both its theoretical and numerical properties are studied. It is
shown that the estimator recovers low-rank matrices accurately
and is robust against small perturbations. A lower bound result
shows that the estimator is rate optimal for a class of approxi-
mately low-rank matrices. Although it is required for the theo-
retical analysis that there is a significant gap between the singular
values of the true low-rankmatrix and those of the perturbation,
simulation results indicate that this gap is not really necessary in
practice and the estimator recovers A accurately whenever the
singular values of A decay sufficiently fast.

1.3 Organization of The Article

The rest of the article is organized as follows. In Section 2,
we introduce in detail the proposed SMC methods when A is
exactly or approximately low rank. The theoretical properties
of the estimators are analyzed in Section 3. Both upper and
lower bounds for the recovery accuracy under the Schatten-q
norm loss are established. Simulation results are shown in Sec-
tion 4 to investigate the numerical performance of the proposed
methods. A real data application to genomic data integration



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 623

Figure . Illustrative example with A ∈ R30×30,m1 = m2 = 10. (A darker block corresponds to larger magnitude.)

is given in Section 5. Section 6 discusses a few practical issues
related to real data applications. For reasons of space, the proofs
of the main results and additional simulation results are given
in the online supplement. Some key technical tools used in the
proofs of the main theorems are also developed and proved in
the online supplement.

2. StructuredMatrix Completion: Methodology

In this section, we propose procedures to recover the submatrix
A22 based on the observed blocks A11, A12, and A21. We begin
with basic notation and definitions that will be used in the rest
of the article.

For a matrix U, we use U[!1,!2] to represent its sub-
matrix with row indices !1 and column indices !2. We
also use the Matlab syntax to represent index sets. Specifi-
cally for integers a ≤ b, “a : b” represents {a, a + 1, . . . , b};
and “”: alone represents the entire index set. Therefore,
U[:,1:r] stands for the first r columns of U while U[(m1+1):p1,:]
stands for the {m1 + 1, . . . , p1}th rows of U. For the
matrix A given in (1), we use the notation A•1 and A1• to
denote [Aᵀ

11,A
ᵀ
21]ᵀ and [A11,A12], respectively. For a matrix

B ∈ Rm×n, let B = U"Vᵀ =
∑

i σi(B)uivᵀ
i be the SVD, where

" = diag{σ1(B), σ2(B), . . .} with σ1(B) ≥ σ2(B) ≥ · · · ≥ 0
being the singular values of B in decreasing order. The
smallest singular value σmin(m,n), which will be denoted by
σmin(B), plays an important role in our analysis. We also
define Bmax(r) =

∑r
i=1 σi(B)uivᵀ

i and B−max(r) = B − Bmax(r) =∑
i≥r+1 σi(B)uivᵀ

i . For 1 ≤ q ≤ ∞, the Schatten-q norm ∥B∥q
is defined to be the vector q-norm of the singular values of
B, that is, ∥B∥q =

(∑
i σ

q
i (B)

)1/q. Three special cases are of
particular interest: when q = 1, ∥B∥1 =

∑
i σi(B) is the nuclear

(or trace) norm of B and will be denoted as ∥B∥∗; when q = 2,
∥B∥2 =√∑

i, j B2
i j is the Frobenius norm of B and will be denoted

as ∥B∥F ; when q = ∞, ∥B∥∞ = σ1(B) is the spectral norm
of B that we simply denote as ∥B∥. For any matrix U ∈ Rp×n,
we use PU ≡ U (UᵀU )†Uᵀ ∈ Rp×p to denote the projec-
tion operator onto the column space of U. Throughout, we
assume that A is approximately rank r in that for some integer
0 < r ≤ min(m1,m2), there is a significant gap between σr(A)

and σr+1(A) and the tail ∥A−max(r)∥q =
(∑

k≥r+1 σ
q
k (A)

)1/q is
small. The gap assumption enables us to provide a theoretical

upper bound on the accuracy of the estimator, while it is not
necessary in practice (see Section 4 for more details).

2.1 Exact Low-RankMatrix Recovery

We begin with the relatively easy case where A is exactly of rank
r. In this case, a simple analysis indicates that A can be perfectly
recovered as shown in the following proposition.

Proposition 1. Suppose A is of rank r, the SVD of A11 is A11 =
U"Vᵀ, whereU ∈ Rp1×r," ∈ Rr×r, andV ∈ Rp2×r. If

rank([A11 A12]) = rank
([

A11
A21

])
= rank(A) = r,

then rank(A11) = r and A22 is exactly given by

A22 = A21(A11)
†A12 = A21V (")−1UᵀA12. (2)

Remark 1. Under the same conditions as Proposition 1, the
NNM

Â22 = argmin
B

∥∥∥∥

[
A11 A12
A21 B

]∥∥∥∥
∗

(3)

fails to guarantee the exact recovery of A22. Consider the
case where A is a p1 × p2 matrix with all entries being 1.
Suppose we observe arbitrary m1 rows and m2 columns, the
NNM would yield Â22 ∈ R(p1−m1 )×(p2−m2) with all entries being(
1∧

√
m1m2

(p1−m1 )(p2−m2 )

)
(see Lemma 4 in the online supplement).

Hence when m1m2 < (p1 − m1)(p2 − m2), that is, when the
size of the observed blocks are much smaller than that of A,
the NNM fails to recover exactly the missing block A22. See also
the numerical comparison in Section 4. The NNM (3) also fails
to recover A22 with high probability in a random matrix setting
whereA = B1BT

2 withB1 ∈ Rp1×r andB2 ∈ Rp2×r being iid stan-
dard Gaussianmatrices. See Lemma ?? in the online supplement
for further details. In addition to (3), other variations of NNM
have been proposed in the literature, including penalized NNM
(Toh and Yun 2010; Mazumder, Hastie, and Tibshirani 2010),

ÂPN = argmin
Z

⎧
⎨

⎩
1
2

∑

(ik, jk )∈!

(Zik, jk − Aik, jk )
2 + t∥Z∥∗

⎫
⎬

⎭ ; (4)
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and constrained NNM with relaxation (Cai, Candès, and Shen
2010),

ÂCN = argmin
Z

{
∥Z∥∗ : |Zik, jk − Aik, jk |

≤ t for (ik, jk) ∈ !
}
, (5)

where ! = {(ik, jk) : Aik, jk observed, 1 ≤ ik ≤ p1, 1 ≤ jk ≤
p2} and t is the tuning parameter. However, these NNM
methods may not be suitable for SMC especially when
only a small number of rows and columns are observed.
In particular, when m1 ≪ p1,m2 ≪ p2, A is well spread in
each block A11,A12,A21,A22, we have ∥[A11A12]∥∗ ≪ ∥A∥∗,
[A12]∗ ≪ ∥A∥∗. Thus,
∥∥∥∥

[
A11 A12
A21 0

]∥∥∥∥
∗

≤
∥∥∥∥

[
A11
A21

]∥∥∥∥
∗
+

∥∥[
A12

]∥∥
∗ ≪

∥∥∥∥

[
A11 A12
A21 A22

]∥∥∥∥
∗
.

In the other words, imputing A22 with all zero yields a much
smaller nuclear norm than imputingwith the trueA22 and hence
NNM methods would generally fail to recover A22 under such
settings.

Proposition 1 shows that, when A is exactly low-rank, A22
can be recovered precisely by A21(A11)

†A12. Unfortunately, this
result heavily relies on the exactly low-rank assumption that
cannot be directly used for approximately low-rank matrices.
In fact, even with a small perturbation to A, the inverse of A11
makes the formulaA21(A11)

†A12 unstable, whichmay lead to the
failure of recovery. In practice,A is often not exactly low rank but
approximately low rank. Thus, for the rest of the article, we focus
on the latter setting.

2.2 Approximate Low-RankMatrix Recovery

LetA = U"Vᵀ be the SVDof an approximately low rankmatrix
A and partition U ∈ Rp1×p1 ,V ∈ Rp2×p2 , and " ∈ Rp1×p2 into
blocks as

U =
r p1 − r[
U11 U12
U21 U22

]
m1

p1 − m1

,

V =
r p2 − r[
V11 V12
V21 V22

]
m2

p2 − m2

,

∑
=

r p2 − r[∑
1 0

0
∑

2

]
r

p1 − r
(6)

Then A can be decomposed as A = Amax(r) + A−max(r), where
Amax(r) is of rank r with the largest r singular values of A and
A−max(r) is general but with small singular values. Then

Amax(r) = U•1
∑

1
VT

•1 =
m2 p2 − m2[

U11
∑

1VT
11 U11

∑
1VT

21
U21

∑
1VT

11 U21
∑

1VT
21

]
m1

p1 − m1

,

and A−max(r) = U•2
∑

2
VT

•2. (7)

Here and in the sequel, we use the notation U•k and Uk• to
denote [Uᵀ

1k,U
ᵀ
2k]

ᵀ and [Uk1,Uk2], respectively. Thus,Amax(r) can

be viewed as a rank-r approximation to A and obviously

U21"1Vᵀ
21 = {U21"1Vᵀ

11}{U11"1Vᵀ
11}−1{U11"1Vᵀ

21}.

We will use the observed A11, A12, and A21 to obtain estimates
ofU•1,V•1, and "1 and subsequently recover A22 using an esti-
matedU21"1Vᵀ

21.
When r is known, that is, we knowwhere the gap is located in

the singular values ofA, a simple procedure can be implemented
to estimate A22 as described in Algorithm 1 by estimating U•1
andV•1 using the principal components of A•1 and A1•.

Algorithm 1 Algorithm 1 Algorithm for Structured Matrix
Completion with a given r
1: Input: A11 ∈ Rm1×m2 ,A12 ∈ R(p1−m1)×m2 ,A21 ∈

Rm1×(p2−m2).
2: Calculate the SVD of A•1 and A1• to obtain A•1 =

U (1)"(1)V (1)ᵀ, A1• = U (2)"(2)V (2)ᵀ.
3: Suppose M,N are orthonormal basis of U11,V11. We esti-

mate the column space ofU11 andV11 by M̂ = U (2)
[:,1:r], N̂ =

V (1)
[:,1:r].

4: Finally we estimate A22 as

Â22 = A21N̂(M̂ᵀA11N̂)−1M̂ᵀA12. (8)

However, Algorithm 1 has several major limitations. First,
it relies on a given r, which is typically unknown in practice.
Second, the algorithm need to calculate the matrix divisions,
which may cause serious precision issues when the matrix is
near-singular or the rank r is misspecified. To overcome these
difficulties, we propose another Algorithm that essentially first
estimates r with r̂ and then apply Algorithm 1 to recover A22.
Before introducing the algorithm of recovery without knowing
r, it is helpful to illustrate the idea with heat maps in Figures 1
and 2.

Our procedure has three steps.
1. First, we move the significant factors of A•1 and A1• to

the front by rotating the columns of A•1 and the rows of
A1• based on the SVD,

A•1 = U (1)"(1)V (1)ᵀ, A1• = U (2)"(2)V (2)ᵀ.

After the transformation, we have Z11,Z12,Z21,

Z11 = U (2)ᵀA11V (1), Z12 = U (2)ᵀA12,Z21

= A21V (1),Z22 = A22.

Clearly A and Z have the same singular values since the
transformation is orthogonal. As shown in Figure 1(b),
the amplitudes of the columns of Z•1 = [Zᵀ

11,Z
ᵀ
21]ᵀ and

the rows of Z1• = [Z11,Z12] are decaying.
2. When A is exactly of rank r, the {r + 1, . . . ,m1}th rows

and {r + 1, . . . ,m2}th columns of Z are zero. Due to the
small perturbation term A−max(r), the back columns of
Z•1 and rows of Z1• are small but nonzero. To recover
Amax(r), the best rank r approximation to A, a natu-
ral idea is to first delete these back rows of Z1• and
columns of Z•1, that is, the {r + 1, . . . ,m1}th rows and
{r + 1, . . . ,m2}th columns of Z.
However, since r is unknown, it is unclear how many
back rows and columns should be removed. It will be
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Figure . Searching for the appropriate position to truncate from r̂ = 10 to .

helpful to have an estimate for r, r̂, and then use Z21,[:,1:r̂],
Z11,[1:r̂,1:r̂], and Z12[1:r̂,:] to recover A22. It will be shown
that a good choice of r̂ would satisfy that Z11,[1:r̂,1:r̂] is
nonsingular and ∥Z21,[1:r̂,1:r̂]Z−1

11,[1:r̂,1:r̂]∥ ≤ TR, whereTR is
some constant to be specified later. Our final estimator
for r would be the largest r̂ that satisfies this condition,
which can be identified recursively frommin(m1,m2) to
1 (see Figure 2).

3. Finally, similar to (2), A22 can be estimated by

Â22 = Z21,[:,1:r̂]Z−1
11,[1:r̂,1:r̂]Z12,[1:r̂,:]. (9)

The method we propose can be summarized as the following
algorithm.

Algorithm2Algorithm2Algorithmof StructuredMatrix Com-
pletion with unknown r

1: Input:A11 ∈ Rm1×m2 ,Am1×(p2−m2)
12 ,A(p1−m1 )×m2

21 . Threshold-
ing level: TR, (or TC).

2: Calculate the SVD A•1 = U (1)"(1)V (1)ᵀ, A1• =
U (2)"(2)V (2)ᵀ.

3: Calculate Z11 ∈ Rm1×m2 ,Z12 ∈ Rm1×(p2−m2),Z21 ∈
R(p1−m1)×m2

Z11 = U (2)ᵀA11V (1), Z12 = U (2)ᵀA12, Z21 = A21V (1).

4: for s = min(m1,m2) : -1: 1 do (Use iteration to find r̂)
5: Calculate DR,s ∈ R(p1−m1)×s (or DC,s ∈ Rs×(p2−m2)) by

solving linear equation system,

DR,s = Z21,[:,1:s]Z−1
11,[1:s,1:s] (or DC,s = Z−1

11,[1:s,1:s]Z12,[1:s,:])

6: if Z11,[1:s,1:s] is not singular and ∥DR,s∥ ≤ TR ( or
∥DC,s∥ ≤ TC) then

7: r̂ = s; break from the loop;
8: end if
9: end for
10: if (r̂ is not valued) then r̂ = 0.
11: end if
12: Finally we calculate the estimate as

Â22 = Z21,[:,1:r̂]Z−1
11,[1:r̂,1:r̂]Z12,[1:r̂,:]

It can also be seen from Algorithm 2 that the estimator r̂ is
constructed based on either the row thresholding rule ∥DR,s∥ ≤
TR or the column thresholding rule ∥DC,s∥ ≤ TC. Discussions

on the choice between DR,s and DC,s are given in the next sec-
tion. Let us focus for now on the row thresholding based on
DR,s = Z21,[:,1:s]Z−1

11,[1:s,1:s]. It is important to note that Z21[:,1:r]
and Z11,[1:r,1:r] approximateU21"1 and"1, respectively. The idea
behind the proposed r̂ is that when s > r, Z21[:,1:s] and Z11,[1:s,1:s]
are nearly singular and hence DR,s may either be deemed singu-
lar or with unbounded norm. When s = r, Z11,[1:s,1:s] is nonsin-
gularwith ∥DR,s∥ bounded by some constant, aswe show inThe-
orem 2. Thus, we estimate r̂ as the largest r such that Z11,[1:s,1:s]
is nonsingular with ∥DR,s∥ < TR.

3. Theoretical Analysis

In this section, we investigate the theoretical properties of the
algorithms introduced in Section 2. Upper bounds for the esti-
mation errors of Algorithms 1 and 2 are presented in Theorems
1 and 2, respectively, and the lower-bound results are given in
Theorem 3. These bounds together establish the optimal rate of
recovery over certain classes of approximately low-rank matri-
ces. The choices of tuning parameters TR and TC are discussed
in Corollaries 1 and 2.

Theorem 1. Suppose Â is given by the procedure of Algorithm
1. Assume

σr+1(A) ≤ 1
2
σr(A) · σmin(U11) · σmin(V11). (10)

Then for any 1 ≤ q ≤ ∞,
∥∥∥Â22 − A22

∥∥∥
q

≤ 3∥A−max(r)∥q
(
1 + 1

σmin(U11)

)

(
1 + 1

σmin(V11)

)
. (11)

Remark 2. It is helpful to explain intuitively why Condition (10)
is needed. When A is approximately low-rank, the dominant
low-rank component of A, Amax(r), serves as a good approxi-
mation to A, while the residual A−max(r) is “small.” The goal
is to recover Amax(r) well. Among the three observed blocks,
A11 is the most important and it is necessary to have Amax(r)
dominatingA−max(r) inA11. Note thatA11 = Amax(r),[1:m1,1:m2] +
A−max(r),[1:m1,1:m2],

σr(Amax(r),[1:m1,1:m2]) = σr(U11"1Vᵀ
11)

≥ σmin(U11)σr(A)σmin(V11),
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∥A−max(r),[1:m1,1:m2]∥ = ∥U12"2Vᵀ
12∥ ≤ σr+1(A).

We thus require Condition (10) in Theorem 1 for the theoretical
analysis.

Theorem 1 gives an upper bound for the estimation accuracy
of Algorithm 1 under the assumption that there is a significant
gap between σr(A) and σr+1(A) for some known r. It is notewor-
thy that there are possibly multiple values of r that satisfy Con-
dition (10). In such a case, the bound (11) applies to all such r
and the largest r yields the strongest result.

We now turn to Algorithm 2, where the knowledge of r is not
assumed. Theorem 2 shows that for properly chosen TR or TC,
Algorithm 2 can lead to accurate recovery of A22.

Theorem 2. Assume that there exists r ∈ [1,min(m1,m2)] such
that

σr+1(A) ≤ 1
4
σr(A) · σmin(U11)σmin(V11). (12)

Let TR and TC be two constants satisfying

TR ≥ 1.36
σmin(U11)

+ 0.35 and TC ≥ 1.36
σmin(V11)

+ 0.35.

Then for 1 ≤ q ≤ ∞, Â22 given by Algorithm 2 satisfies
∥∥∥Â22 − A22

∥∥∥
q

≤ 6.5TR
(

1
σmin(V11)

+ 1
)

∥A−max(r)∥q
(13)

or
∥∥∥Â22 − A22

∥∥∥
q

≤ 6.5TC
(

1
σmin(U11)

+ 1
)

∥A−max(r)∥q

when r̂ is estimated based on the thresholding rule ∥DR,s∥ ≤ TR
or ∥DC,s∥ ≤ TC, respectively.

Besides σr(A) and σr+1(A), Theorems 1 and 2 involve
σmin(U11) and σmin(V11), two important quantities that reflect
how much the low-rank matrix Amax(r) = U•1"1Vᵀ

•1 is concen-
trated on the first m1 rows and m2 columns. We should note
that σmin(U11) and σmin(V11) depend on the singular vectors of
A and σr(A) and σr+1(A) are the singular values ofA. The lower
bound in Theorem 3 indicates that σmin(U11), σmin(V11), and
the singular values of A together quantify the difficulty of the
problem: recovery ofA22 gets harder as σmin(U11) and σmin(V11)

become smaller or the {r + 1, . . . ,min(p1, p2)}th singular val-
ues become larger. Define the class of approximately rank-r
matrices Fr(M1,M2) by

Fr(M1,M2)

=
{
A ∈ Rp1×p2 : σmin(U11) ≥ M1, σmin(V11) ≥ M2,

σr+1(A) ≤ 1
2σr(A)σmin(U11)σmin(V11)

}
.

(14)

Theorem 3 (Lower Bound). Suppose r ≤ min(m1,m2, p1 −
m1, p2 − m2) and 0 < M1,M2 < 1, then for all 1 ≤ q ≤ ∞,

inf
Â22

sup
A∈Fr (M1,M2)

∥Â22 − A22∥q
∥A−max(r)∥q

≥ 1
4

(
1
M1

+ 1
) (

1
M2

+ 1
)

.

(15)

Remark 3. Theorems 1, 2, and 3 together immediately yield the
optimal rate of recovery over the class Fr(M1M2),

inf
Â22

sup
A∈Fr (M1,M2 )

∥Â22 − A22∥q
∥A−max(r)∥q

≍
(

1
M1

+ 1
) (

1
M2

+ 1
)

for 0 ≤ M1,M2 < 1, 1 ≤ q ≤ ∞. (16)

Since U11 and V11 are determined by the SVD of A and
σmin(U11) and σmin(V11) are unknown based only on A11,A12,

and A21, it is thus not straightforward to choose the tuning
parameters TR and TC in a principled way. Theorem 2 also does
not provide information on the choice between row and col-
umn thresholding. Such a choice generally depends on the prob-
lem setting. We consider below two settings where either the
row/columns of A are randomly sampled or A is itself a ran-
dom low-rankmatrix. In such settings, whenA is approximately
rank r and at least O(r log r) number of rows and columns are
observed, Algorithm 2 gives accurate recovery of A with fully
specified tuning parameter. We first consider in Corollary 1 a
fixed matrix A with the observed m1 rows and m2 columns
selected uniformly randomly.

Corollary 1 (Random Rows/Columns). Let A = U"Vᵀ be the
SVD of A ∈ Rp1×p2 . Set

W (1)
r = p1

r
max
1≤i≤p1

r∑

j=1

U 2
i j and W (2)

r = p2
r

max
1≤i≤p2

r∑

j=1

V 2
i j .

(17)

Let!1 ⊂ {1, . . . , p1} and!2 ⊂ {1, . . . , p2} be, respectively, the
index set of the observedm1 rows andm2 columns. Then A can
be decomposed as

A11 = A[!1,!2], A21 = A[!c
1,!2],

A12 = A[!1,!
c
2], A22 = A[!c

1,!
c
2]. (18)

1. Let !1 and !2 be independently and uniformly
selected from {1, . . . , p1} and {1, . . . , p2} with or with-
out replacement, respectively. Suppose there exists r ≤
min(m1,m2) such that

σr+1(A) ≤ 1
6
σr(A)

√m1m2

p1p2
,

and the number of rows and number of columns we
observed satisfy

m1 ≥ 12.5rW (1)
r (log(r) + c),

m2 ≥ 12.5rW (2)
r (log(r) + c), for some constant c > 1.

Algorithm 2 with either column thresholding with
the break condition ∥DR,s∥ ≤ TR where TR = 2

√
p1
m1

or
row thresholding with the break condition ∥DC,s∥ ≤ TC
where TC = 2

√
p2
m2

satisfies, for all 1 ≤ q ≤ ∞,

∥Â22 − A22∥q ≤ 29∥A−max(r)∥q
√

p1p2
m1m2

with probability ≥ 1 − 4 exp(−c).
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2. If !1 is uniformly randomly selected from {1, . . . , p1}
with or without replacement (!2 is not necessarily ran-
dom), and there exists r ≤ m2 such that

σr+1(A) ≤ 1
5
σr(A)σmin(V11)

√m1

p1

and the number of observed rows satisfies

m1 ≥ 12.5rW (1)
r

(
log(r) + c

)
for some constant c > 1,

(19)

then Algorithm 2 with the break condition ∥DR,s∥ ≤ TR,
where TR ≥ 2

√
p1
m1

satisfies, for all 1 ≤ q ≤ ∞,

∥∥∥Â22 − A22

∥∥∥
q
≤ 6.5∥A−max(r)∥qTR

(
1

σmin(V11)
+ 1

)

with probability ≥ 1 − 2 exp(−c).

3. Similarly, if !2 is uniformly randomly selected from
{1, . . . , p2} with or without replacement (!1 is not nec-
essarily random) and there exists r ≤ m2 such that

σr+1(A) ≤ 1
5
σr(A)σmin(U11)

√m2

p2
,

and the number of observed columns satisfies

m2 ≥ 12.5rW (2)
r

(
log(r) + c

)
for some constant c > 1,

(20)

then Algorithm 2 with the break condition ∥DC,s∥ ≤ TC,
where TC ≥ 2

√
p2
m2

satisfies, for all 1 ≤ q ≤ ∞,

∥∥∥Â22 − A22

∥∥∥
q

≤ 6.5∥A−max(r)∥qTC
(

1
σmin(U11)

+ 1
)

with probability ≥ 1 − 2 exp(−c).

Remark 4. The quantitiesW (1)
r andW (2)

r in Corollary 1measure
the variation of amplitude of each row or each column ofAmax(r).
When W (1)

r and W (2)
r become larger, a small number of rows

and columns inAmax(r) would have larger amplitude than others,
while these rows and columns would be missed with large prob-
ability in the sampling of !, which means the problem would
become harder. Hence, more observations for the matrix with
largerW (1)

r andW (2)
r are needed as shown in (19).

We now consider the case where A is a random matrix.

Corollary 2 (RandomMatrix). SupposeA ∈ Rp1×p2 is a random
matrix generated by A = U"Vᵀ, where the singular values "

and singular space V are fixed, andU has orthonormal columns
that are randomly sampled based on the Haar measure. Suppose
we observe the firstm1 rows and firstm2 columns of A. Assume
there exists r < 1

2 min(m1,m2) such that

σr+1(A) ≤ 1
5
σr(A)σmin(V11)

√m1

p1
.

Then there exist uniform constants c, δ > 0 such that ifm1 ≥ cr,
Â22 is given by Algorithm 2 with the break condition ∥DR,s∥ ≤

TR, where TR ≥ 2
√

p1
m1
, we have for all 1 ≤ q ≤ ∞,

∥∥∥Â22 − A22

∥∥∥
q

≤ 6.5∥A−max(r)∥qTR
(

1
σmin(V11)

+ 1
)

with probability at least 1 − e−δm1 .

Parallel results hold for the case when U is fixed and V has
orthonormal columns that are randomly sampled based on the
Haar measure, and we observe the first m1 rows and first m2
columns ofA. Assume there exists r < 1

2 min(m1,m2) such that

σr+1(A) ≤ 1
5
σr(A)σmin(U11)

√m2

p2
.

Then there exist uniform constants c, δ > 0 such that ifm2 ≥ cr,
Â22 is given by Algorithm 2 with column thresholding with the
break condition ∥DC,s∥ ≤ TC, where TC ≥ 2

√
p2
m2
, we have for all

1 ≤ q ≤ ∞,
∥∥∥Â22 − A22

∥∥∥
q

≤ 6.5∥A−max(r)∥qTC
(

1
σmin(U11)

+ 1
)

with probability at least 1 − e−δm2 .

4. Simulation

In this section, we show results from extensive simulation stud-
ies that examine the numerical performance of Algorithm 2 on
randomly generated matrices for various values of p1, p2, m1,
and m2. We first consider settings where a gap between some
adjacent singular values exists, as required by our theoretical
analysis.

Then we investigate settings where the singular values decay
smoothly with no significant gap between adjacent singular val-
ues. The results show that the proposed procedure performswell
even when there is no significant gap, as long as the singular val-
ues decay at a reasonable rate.

We also examine how sensitive the proposed estimators are to
the choice of the threshold and the choice between row and col-
umn thresholding. In addition, we compare the performance of
the SMCmethodwith that of theNNMmethod. Finally, we con-
sider a setting similar to the real data application discussed in the
next section. Results shown below are based on 200–500 repli-
cations for each configuration. Additional simulation results on
the effect ofm1,m2, and ratio p1/m1 are provided in the supple-
ment. Throughout, we generate the randommatrix A fromA =
U"V , where the singular values of the diagonal matrix " are
chosen accordingly for different settings. The singular spaces U
and V are drawn randomly from the Haar measure. Specifically,
we generate iid standardGaussianmatrix Ũ ∈ Rp1×min(p1,p2) and
Ṽ ∈ Rp2×min(p1,p2 ), then apply the QR decomposition to Ũ and
Ṽ and assign U and V with the Q part of the result.

We first consider the performance of Algorithm 2when a sig-
nificant gap between the rth and (r + 1)th singular values of A.
We fixed p1 = p2 = 1000,m1 = m2 = 50 and choose the sin-
gular values as

{1, . . . , 1︸ ︷︷ ︸
r

, g−11−1, g−12−1, . . .},

g = 1, 2, . . . , 10, r = 4, 12, and 20.
(21)
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Figure . Spectral norm loss (left panel) and Frobenius norm loss (right panel) when there is a gap between σr(A) and σr+1(A). The singular values of A are given by (),
p1 = p2 = 1000, andm1 = m2 = 50.

Here r is the rank of the major low-rank partAmax(r), g = σr (A)
σr+1(A)

is the gap ratio between the rth and (r + 1)th singular values
of A. The average loss of Â22 from Algorithm 2 with the row
thresholding and TR = 2

√
p1/m1 under both the spectral norm

and Frobenius norm losses are given in Figure 3. The results sug-
gest that our algorithm performs better when r gets smaller and
gap ratio g = σr(A)/σr+1(A) gets larger. Moreover, even when
g = 1, namely, there is no significant gap between any adjacent
singular values, our algorithm still works well for small r. As will
be seen in the following simulation studies, this is generally the
case as long as the singular values of A decay sufficiently fast.

We now turn to the settings with the singular values being
{ j−α, j = 1, 2, . . . ,min(p1, p2)} and various choices of α, p1,
and p2. Hence, no significant gap between adjacent singular val-
ues exists under these settings and we aim to demonstrate that
ourmethod continues to workwell.We first consider p1 = p2 =
1000, m1 = m2 = 50 and let α range from 0.3 to 2. Under this
setting, we also study how the choice of thresholds affects the
performance of our algorithm. For simplicity, we report results
only for row thresholding as results for column thresholding are
similar. The average loss of Â22 from Algorithm 2 with TR ∈

{c
√
m1/p1, c ∈ [1, 6]} under both the spectral norm and Frobe-

nius norm are given in Figure 4. In general, the algorithm per-
forms well provided that α is not too small and as expected,
the average loss decreases with a higher decay rate in the singu-
lar values. This indicates that the existence of a significant gap
between adjacent singular values is not necessary in practice,
provided that the singular values decay sufficiently fast. When
comparing the results across different choices of the threshold,
c = 2 as suggested in our theoretical analysis is indeed the opti-
mal choice. Thus, in all subsequent numerical analysis, we fix
c = 2.

To investigate the impact of row versus column thresholding,
we let the singular value decay rate be α = 1, p1 = 300, p2 =
3000, andm1 andm2 varying from10 to 150. The originalmatrix
A is generated the sameway as before.We apply row and column
thresholdingwithTR = 2

√
p1/m1 andTC = 2

√
p2/m2. It can be

seen from Figure 5 that when the observed rows and columns
are selected randomly, the results are not sensitive to the choice
between row and column thresholding.

We next turn to the comparison between our proposed SMC
algorithm and the penalized NNM method, which recovers A

Figure . Spectral norm loss (left panel) and Frobenius norm loss (right panel) as the thresholding constant c varies. The singular values of A are { j−α, j = 1, 2, . . .} with
α varying from . to , p1 = p2 = 1000, andm1 = m2 = 50.
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Figure . Spectral and Frobenius norm losses with column/row thresholding. The singular values of A are { j−1, j = 1, 2, . . .}, p1 = 300, p2 = 3000, and m1 , m2 =
10, . . . , 150.

by (4). The solution to (4) can be solved by the spectral regular-
ization algorithm by Mazumder, Hastie, and Tibshirani (2010)
or the accelerated proximal gradient algorithm by Toh and Yun
(2010), where these two methods provide similar results. We
use five-fold cross-validation to select the tuning parameter t.
Details on the implementation can be found in the online sup-
plement.

We consider the setting where p1 = p2 = 500, m1 = m2 =
50, 100 and the singular value decay rate α ranges from 0.6
to 2. As shown in Figure 6, the proposed SMC method sub-
stantially outperform the penalized NNM method with respect
to both the spectral and Frobenius norm loss, especially as α

increases.
Finally, we consider a simulation setting that mimics the

ovarian cancer data application considered in the next section,

where p1 = 1148, p2 = 1225,m1 = 230,m2 = 426 and the sin-
gular values of A decay at a polynomial rate α. Although the
singular values of the full matrix are unknown, we estimate the
decay rate based on the singular values of the fully observed
552 rows of the matrix from the TCGA study, denoted by
{σ j, j = 1, . . . , 522}. A simple linear regression of {log(σ j), j =
1, . . . , 522} on {log( j), j = 1, . . . , 522} estimates α as 0.8777.
In the simulation, we randomly generate A ∈ Rp1×p2 such that
the singular values are fixed as { j−0.8777, j = 1, 2, . . .}. For com-
parison, we also obtained results for α = 1 as well as those based
on the penalized NNM method with five-cross-validation. As
shown in Table 1, the relative spectral norm loss and relative
Frobenius norm loss of the proposed method are reasonably
small and substantially smaller than those from the penalized
NNMmethod.

Figure . Comparison of the proposed SMC method with the NNM method with five-cross-validation for the settings with singular values of A being { j−α, j = 1, 2, . . .}
for α ranging from . to , p1 = p2 = 500, andm1 = m2 = 50 or 100.
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Table . Relative spectral norm loss (∥Â22 − A22∥/∥A22∥) and Frobenius norm loss
(∥Â22 − A22∥F/∥A22∥F ) for p1 = 1148, p2 = 1225, m1 = 230, m2 = 426 and sin-
gular values of A being { j−α : j = 1, 2, . . .}.

Relative spectral norm loss Relative Frobenius norm loss

SMC NNM SMC NNM

α = 0.8777 . . . .
α = 1 . . . .

5. Application in Genomic Data Integration

In this section, we apply our proposed procedures to integrate
multiple genomic studies of ovarian cancer (OC). OC is the
fifth leading cause of cancer mortality among women, attribut-
ing to 14,000 deaths annually (Siegel, Naishadham, and Jemal
2013). OC is a relatively heterogenous disease with 5 year sur-
vival rate varying substantially among different subgroups. The
overall 5 year survival rate is near 90% for stage I cancer. But
the majority of the OC patients are diagnosed as stage III/IV
diseases and tend to develop resistance to chemotherapy, result-
ing a 5 year survival rate only about 30% (Holschneider and
Berek 2000). On the other hand, a small minority of advanced
cancers are sensitive to chemotherapy and do not relapse after
treatment completion. Such a heterogeneity in disease progres-
sion is likely to be in part attributable to variations in under-
lying biological characteristics of OC (Berchuck et al. 2005).
This heterogeneity and the lack of successful treatment strategies
motivatedmultiple genomic studies of OC to identify molecular
signatures that can distinguish OC subtypes, and in turn help
to optimize and personalize treatment. For example, the Can-
cer GenomeAtlas (TCGA) comprehensively measured genomic
and epigenetic abnormalities on high grade OC samples (Can-
cer Genome Atlas Research Network 2011). A gene expression
risk score based on 193 genes, G, was trained on 230 training
samples, denoted by TCGA(t ), and shown as highly predictive
of OC survival when validated on the TCGA independent vali-
dation set of size 322, denoted by TCGA(v ), as well as on several
independent OC gene expression studies including those from
Bonome et al. (2005) (BONO), Dressman et al. (2007) (DRES),
and Tothill et al. (2008) (TOTH).

The TCGA study also showed that clustering of miRNA lev-
els overlaps with gene-expression-based clusters and is predic-
tive of survival. It would be interesting to examine whether
combining miRNA with G could improve survival prediction
when compared to G alone. One may use TCGA(v ) to evalu-
ate the added value of miRNA. However, TCGA(v ) is of lim-
ited sample size. Furthermore, since miRNAwas only measured
for the TCGA study, its utility in prediction cannot be directly
validated using these independent studies. Here, we apply our

proposed SMC method to impute the missing miRNA values
and subsequently construct prediction rules based on both G
and the imputed miRNA, denoted by m̂iRNA, for these inde-
pendent validation sets. To facilitate the comparison with the
analysis based on TCGA(v ) alone where miRNA measurements
are observed, we only used themiRNA fromTCGA(t ) for impu-
tation and reserved the miRNA data from TCGA(v ) for vali-
dation purposes. To improve the imputation, we also included
additional 300 genes that were previously used in a prognos-
tic gene expression signature for predicting ovarian cancer sur-
vival (Denkert et al. 2009). This results in a total of m1 =
426 unique gene expression variables available for imputation.
Detailed information on the data used for imputation is shown
in Figure 7. Prior to imputation, all gene expression andmiRNA
levels are log transformed and centered to havemean zerowithin
each study to remove potential platform or batch effects. Since
the observable rows (indexing subjects) can be viewed as ran-
domwhereas the observable columns (indexing genes andmiR-
NAs) are not random, we used row thresholding with threshold
TR = 2

√
p1/m1 as suggested in the theoretical and simulation

results. For comparison, we also imputed data using the penal-
izedNNMmethodwith tuning parameter t selected via five-fold
cross-validation.

We first compared m̂iRNA to the observed miRNA on
TCGA(v ). Our imputation yielded a rank 2 matrix for m̂iRNA
and the correlations between the two right and left singular vec-
tors m̂iRNA to that of the observed miRNA variables are 0.90,
0.71, 0.34, 0.14, substantially higher than that of those from the
NNM method, with the corresponding values 0.45, 0.06, 0.10,
0.05. This suggests that the SMC imputation does a good job in
recovering the leading projections of the miRNAmeasurements
and outperforms the NNMmethod.

To evaluate the utility of m̂iRNA for predicting OC sur-
vival, we used the TCGA(t ) to select 117 miRNA markers
that are marginally associated with survival with a nominal
p-value threshold of 0.05. We use the two leading principal
components (PCs) of the 117 miRNA markers, miRNAPC =
(miRNAPC

1 ,miRNAPC
2 )T , as predictors for the survival outcome

in addition to G. The imputation enables us to integrate infor-
mation from four studies including TCGA(t ), which could sub-
stantially improve efficiency and prediction performance. We
first assessed the association between {miRNAPC,G} and OC
survival by fitting a stratified Cox model (Kalbfleisch and Pren-
tice 2011) to the integrated data that combines TCGA(v ) and
the three additional studies via either the SMC or NNM meth-
ods. In addition, we fit the Cox model to (i) TCGA(v ) set alone
with miRNAPC obtained from the observed miRNA; and (ii)
each individual study separately with imputed miRNAPC. As
shown in Table 2(a), the log hazard ratio (logHR) estimates

Figure . Imputation scheme for integrating multiple OC genomic studies.
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Table . Shown in (a) are the estimates of the log hazard ratio (logHR) along with their corresponding standard errors (SE) and p-values by fitting stratified Cox model
integrating information from four independent studies with imputed miRNA based on the SMCmethod and the nuclear normminimization (NNM); and Cox model to the
TCGA test data with original observed miRNA (Ori.). Shown also are the estimates for each individual studies by fitting separate Cox models with imputed miRNA.

(a) Integrated analysis with imputed miRNA versus single study with observed miRNA
logHR SE p-Value

Ori. SMC NNM Ori. SMC NNM Ori. SMC NNM

G . . . . . . . .
miRNAPC1 − . − . − . . . . . . .
miRNAPC2 . . − . . . . . . .

(b) Estimates for individual studies with imputed miRNA from the SMCmethod
logHR SE p-Value

TCGA TOTH DRES BONO TCGA TOTH DRES BONO TCGA TOTH DRES BONO

G . . . . . . . . . . . .
miRNAPC1 − . − . − . − . . . . . . . . .
miRNAPC2 . . − . . . . . . . . . .

(c) Estimates for individual studies with imputed miRNA from the NNMmethod
logHR SE p-Value

TCGA TOTH DRES BONO TCGA TOTH DRES BONO TCGA TOTH DRES BONO

G . . . . . . . . . . . .
miRNAPC1 − . . . − . . . . . . . . .
miRNAPC2 . − . − . . . . . . . . . .

for miRNAPC from the integrated analysis, based on both SMC
and NNMmethods, are similar in magnitude to those obtained
based on the observed miRNA values with TCGA(v ). However,
the integrated analysis has substantially smaller standard error
(SE) estimates due the increased sample sizes. The estimated
logHRs are also reasonably consistent across studies when sep-
arate models were fit to individual studies.

We also compared the prediction performance of the model
based on G alone to the model that includes both G and the
imputed miRNAPC. Combining information from all four stud-
ies via standard meta-analysis, the average improvement in C-
statistic was 0.032 (SE = 0.013) for the SMC method and 0.001
(SE= 0.009) for the NNMmethod, suggesting that the imputed
miRNAPC from the SMC method has much higher predictive
value compared to those obtained from the NNMmethod.

In summary, the results shown above suggest that our SMC
procedure accurately recovers the leading PCs of the miRNA
variables. In addition, adding miRNAPC obtained from impu-
tation using the proposed SMC method could significantly
improve the prediction performance, which confirms the value
of our method for integrative genomic analysis. When compar-
ing to the NNM method, the proposed SMC method produces
summaries of miRNA that is more correlated with the truth and
yields leading PCs that are more predictive of OC survival.

6. Discussions

The present article introduced a new framework of SMC where
a subset of the rows and columns of an approximately low-
rank matrix are observed. We proposed an SMC method for
the recovery of the whole matrix with theoretical guarantees.
The proposed procedure significantly outperforms the conven-
tional NNMmethod formatrix completion, which does not take
into account the special structure of the observations. As shown

by our theoretical and numerical analyses, the widely adopted
NNM methods for matrix completion are not suitable for the
SMC setting. These NNMmethods perform particularly poorly
when a small number of rows and columns are observed.

The key assumption inmatrix completion is thematrix being
approximately low rank. This is reasonable in the ovarian can-
cer application since as indicated in the results from the TCGA
study (Cancer Genome Atlas Research Network 2011), the pat-
terns observed in the miRNA signature are highly correlated
with the patterns observed in the gene expression signature. This
suggests the high correlation among the selected gene expres-
sion and miRNA variables. Results from the imputation based
on the approximate low rank assumption given in Section 5 are
also encouraging with promising correlations with true signals
and goodprediction performance from the imputedmiRNAsig-
natures. We expect that this imputation method will also work
well in genotyping and sequencing applications, particularly for
regions with reasonably high linkage disequilibrium.

Another main assumption that is needed in the theoretical
analysis is that there is a significant gap between the rth and
(r + 1)th singular values ofA. This assumptionmay not be valid
in real practice. In particular, the singular values of the ovarian
dataset analyzed in Section 5 is decreasing smoothly without a
significant gap. However, it has been shown in the simulation
studies presented in Section 4 that, although there is no signif-
icant gap between any adjacent singular values of the matrix to
be recovered, the proposed SMC method works well as long as
the singular values decay sufficiently fast. Theoretical analysis
for the proposed SMC method under more general patterns of
singular value decay warrants future research.

To implement the proposed Algorithm 2, major decisions
include the choice of threshold values and choosing between
column thresholding and row thresholding. Based on both the-
oretical and numerical studies, optimal threshold values can
be set as TC = 2

√
p2/m2 for column thresholding and TR =
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2
√
p1/m1 for row thresholding. Simulation results in Section

4 show that when both rows and columns are randomly cho-
sen, the results are very similar. In the real data applications,
the choice between row thresholding and column thresholding
depends on whether the rows or columns are more “homoge-
nous,” or closer to being randomly sampled. For example, in the
ovarian cancer dataset analyzed in Section 5, the rows corre-
spond to the patients and the columns correspond to the gene
expression levels andmiRNA levels. Thus, the rows are closer to
random sample than the columns, consequently it is more nat-
ural to use the row thresholding in this case.

We have shown both theoretically and numerically in Sec-
tions 3 and 4 that Algorithm 2 provides a good recovery
of A22. However, the naive implementation of this algorithm
requires min(m1,m2) matrix inversions and multiplication
operations in the for loop that calculates ∥DR,s∥ (or ∥DC,s∥),
s ∈ {r̂, r̂ + 1, . . . ,min(m1,m2)}. Taking into account the rela-
tionship among DR,s (or DC,s) for different s’s, it is possible to
simultaneously calculate all ∥DR,s∥ (or ∥DC,s∥) and accelerate the
computations. For reasons of space, we leave optimal implemen-
tation of Algorithm 2 as future work.

7. Supplementary Materials

We provide additional simulation results and the proofs of the
main theorems in the online supplement. Some key technical
tools used in the proofs of the main results are also developed
and proved. The proofs rely on the results in Cai and Zhang
(2014), Gross and Nesme (2010), Laurent and Massart (2000),
Vershynin (2010) and Vershynin (2013).
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